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Abstract

Open Distributed Processing (ODP) is a framework for specifying open distributed systems, under devel-
opment by the International Standards Organisation (ISO). It is based on the general idea of “viewpoints”
— i.e. partial specifications of an overall system, from different perspectives — but assumes five specific,
named viewpoints, which are described informally in the ODP Reference Model (RM-ODP). This paper
summarises some observations regarding an attempt to use ODP to specify a complex air traffic control
system. Some of the key issues that arise are discussed further in the context of the formal specifica-
tion of a simpler, idealised model, involving two formalised viewpoints — the Information Viewpoint (a
high-level, abstract specification, in Z), and the Computational Viewpoint (a specification of distributed
components and objects, in Object-Z).

Introduction

The ODP (Open Distributed Processing) framework is a general architecture for open distributed systems,
proposed by the ISO (International Standards Organisation). The Reference Model for ODP (RM-ODP —
see [10]) identifies five “viewpoints” for system specification, each providing a different, partial perspective
on the overall system:

Enterprise Viewpoint — focuses on the overall scope, purpose, and policies of the system. Represents
the system as a “community” of “actors”, serving an overall objective.

Information Viewpoint — specifies in a fairly abstract way the information involved in the system, and
how it is processed, without describing the distributed architecture that will be used.

Computational Viewpoint — a functional decomposition of the system into objects that interact via
specific interfaces.

Engineering Viewpoint — a specification of the mechanisms and functions needed to support interaction
between the distributed objects of the system.

Technology Viewpoint — concerned with the concrete technological infrastructure of a system, in terms
of the particular hardware and software components involved, and how they are interconnected and
inter-related.

Since it is intended to provide an architecture for open systems, the RM-ODP does not prescribe particular
specification formalisms, software, or hardware. The viewpoints are informally defined in natural language,
and so are inevitably somewhat open to differing interpretations, although there have been attempts to
provide formal or semi-formal models of some aspects of the viewpoints [2, 3, 14]. (For a discussion of the
idea of viewpoints in general, see [9].)

There have been some attempts at large-scale applications of ODP, of which the European air traffic con-
trol organisation Eurocontrol’s ECHO study [8] — a specification of a particular air traffic control system



— is an interesting example. Consideration of the ECHO study is a useful exercise, in that it raises some
general issues regarding ODP and the interpretation of its Reference Model, which we discuss in an informal
setting. These include, for example: (1) what the scope and nature of the Information Viewpoint should be
(in the ECHO study, it defines datatypes subsequently used as class attribute types in the Computational
Viewpoint, but does not encompass definitions of system state or system operations); (2) how a hierarchi-
cal division into subsystems can be integrated with a division according to viewpoints (the ECHO study
uses the Enterprise Viewpoint to express some hierarchical structuring, equating subsystems with multiple
”subcommunities”); (3) how structure in terms of instances of distributed objects should be specified in
the Computational Viewpoint (in the ECHO study, Computational classes are defined, along with some
constraints involving methods and cardinality links between classes, but structure in terms of instances is
less explicit); and (4) what kinds of relationships should there be between the viewpoints (for example, the
ECHO study uses Enterprise actor types as a proper subset of the Computational class types).

The remainder of this paper is organised as follows. Section 2 describes how ODP is used and interpreted
in the ECHO study. In the light of some of the issues raised in section 2, section 3 presents a much
simplified, idealised model of an air traffic control system, in which the formal specification languages Z
[12] and Object-Z [11] are used to represent the Information and Computational Viewpoints respectively.
The Enterprise Viewpoint is expressed informally, and used to constrain the structure of the Computational
Viewpoint. Section 4 discusses the roles of the viewpoint correspondences, both in the ECHO study, and in
our simplified formal model. Finally, section 5 concludes the paper with a summary of the main points.

2 ODP in the ECHO Study

The ECHO study provides specifications from three viewpoints — the Enterprise, Computational, and
Information Viewpoints. This section looks at how these three are used to structure the overall specification,
and comments on them individually.

2.1 Enterprise Viewpoint

In the ECHO study, subsystems of the overall system are identified with “communities” in the terminology
of the Enterprise Viewpoint — that is to say, with groups of actors serving a particular overall objective.
The three top-level communities identified, and their objectives, are as follows:

e Regulation. Objective: To provide the rules and a structure of airspace in which operations can be
carried out effectively and safely, and to ensure that operations work within this framework.

e Support. Objective: To supply services necessary for the operations community to operate.
e Operations. Objective: To provide the appropriate level of Air Traffic Service to airspace users.

The latter two are further broken down into subsystems or subcommunities. Detailed specifications are given
for the Regulation, Control, Navigation, Surveillance, and Control communities. The Regulation system is
specified from the Enterprise Viewpoint, and the Control system from the Information and Computational
Viewpoints. Regarding Navigation and Surveillance, there is a combined specification from the Information
Viewpoint, and a specification for the Surveillance system alone from the Enterprise and Computational
Viewpoints. Figure 1 summarises the structure of the overall system specification in terms of viewpoints and
named subsystems. Names in italics indicate parts of the system for which specifications are given in some
detail.

Where subsystems are analysed in detail from the Enterprise Viewpoint, this is done by means of informal
box and arrow diagrams in which the boxes represent either classes of actor, or other subsystems, and the
arrows represent responsibilities for providing data of various kinds, in the directions indicated by the arrows.
(For example, two arrows from the “Radar” class to the “SDPS” (Surveillance Data Processing System) class
indicate that one or more members of the former class provide 2D and 3D positions to each member of the
latter class.) There is also some supporting text. In the specification of the Surveillance subsystem, the
five Enterprise “actor” type names form a proper subset of the Computational class names used in the
Computational Viewpoint.



Figure 1: Structure of the ECHO specification

ENT. VPT. INFO. VPT. COMP. VPT.
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3 Operations

3.1 Airspace management

3.2 Air alerting
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3.4 Control Control Control




2.2 Information Viewpoint

The two detailed Information Viewpoint specifications (jointly for the Navigation and Surveillance subsys-
tems, and for the Control subsystem) consist of UML-style diagrams, and some informal text. Various types
of entity are named, and in some cases attributes are listed. No operations are specified for the Informa-
tion Viewpoint, which seems to have been interpreted as a viewpoint for specifying datatypes used by the
system, at a fairly high level of abstraction. From this perspective, the combination of the Navigation and
Surveillance systems into one Information Viewpoint specification indicates a large overlap in the kinds of
data that the two systems use, but does not imply that they are being regarded as a single subsystem.

2.3 Computational Viewpoint

The Computational Viewpoint specifications (for the Surveillance and Control subsystems) are expressed
using informal text and diagrams. Classes of object are presented, with attributes and methods being listed
by name. Attributes are assumed to come with implicit “get” and “put” (i.e. set) methods. Attribute
types are not given explicitly, but can in many cases be inferred fairly obviously from attribute names which
resemble the names of types identified in the Information Viewpoint. Many of the Computational Viewpoint
classnames appear to correspond to types of entity whose instances would be fairly substantial distributed
applications at the implementation level — e.g. databases of various kinds. For some methods, inputs and
outputs are given, together with an informal “Offers” statement which describes the function of the method
concerned, and a “Uses” list, stating the names of other methods (of the same class or of others) “used” by
the method concerned.

The overall structure of each subsystem, in terms of object instances of the Computational classes, is not
stated explicitly. For example, as regards the Control subsystem, there is no explicit specification of how
many objects of each class are involved, or of when or how such objects are created or destroyed. There are
no “main” classes for the various subsystems, and the nature of the boundary between the Control System
and other subsystems is also not entirely clear — for example, it is not specified whether some Computational
object instances are shared between functional subsystems. This is a significant issue, because it affects how
the external interfaces of subsystems are defined, which in turn may affect how the Computational Viewpoint
specification can be related to other viewpoints.

Box and link diagrams are provided, in which the boxes represent classes, and the links provide cardinality
constraints between the classes, and in some cases a direction arrow, indicating that methods of one class act
on objects of the other class pointed to, but not vice versa. For example, in the Computational Viewpoint
specification of the Surveillance community, there is a one-to-one link from the SDPS (Surveillance Data
Processing System) class to the FDPD (Flight Data Processing and Distribution) class. Both of these
classes, and also the Aircraft and ATSU (Air Traffic Service Unit) classes, also occur in the Computational
Viewpoint specification of another subsystem — the Control community. However, some of the links involving
these classes are different in the two detailed subsystem specifications — e.g. in the Control community
specification, no link is shown between the SDPS and ATSU classes. It is not clear whether the Control and
Surveillance subsystems actually share some instances — i.e. individual objects — of the Computational
classes that they have any common, or whether the sets of instances involved in the two subsystems are
entirely disjoint. Again, this issue affects the way that interfaces can be defined between subsystems, which
may also affect the way that correspondences can be drawn between the Computational Viewpoint and other
viewpoints.

Methods whose names contain the prefix “spontaneous” are listed for some classes in the Computational
Viewpoint. Such a method is said to be “a trigger which may be based on time or some other unspecified
event (this is often the start point of a method thread).” Some such “spontaneous” methods could possibly be
interpreted as “internal” operations, i.e. those which do not involve interaction with an external environment.
“Use case scenarios” in the OID (Object Interaction Diagram) notation illustrate some behaviour associated
with individual objects, although there are some discrepancies in terms of signature between these scenarios
and the Computational Viewpoint, which arose because the scenarios were produced independently.

2.4 Observations and Issues Arising from the ECHO Study
Consideration of the ECHO study suggests the following inter-related points:



o Subsystems versus viewpoints. When viewpoint methods such as ODP are applied to very large and
complex systems, there is a tendency to describe the system in terms of components or subsystems as
well as in terms of viewpoints.

o Subsystems in the ECHO study. In the ECHO case, there is at least some correlation between major
subsystems and the Enterprise Viewpoint description, insofar as several Enterprise “communities” are
identified which seem to correspond to separate subsystems.

o Subsystem interaction. In an ODP specification, how should the interactions and interfaces between
major subsystems be described, and how should this relate to the viewpoints? The Computational
Viewpoint would seem the most appropriate one for dealing with this, but in the ECHO study, there
is little correspondence between the classes listed for the Computational Viewpoint, and the major
subsystems or “subcommunities” identified in the Enterprise Viewpoint. Even though some of the
Computational Viewpoint classes appear to represent fairly substantial distributed applications, such
as databases, they appear to be subsystems at a lower level than those identified as “communities” in
the Enterprise Viewpoint.

o Viewpoints and subsystem hierarchy. If a system consists of a hierarchy of subsystems, how should the
hierarchical structure be described in a viewpoint specification? For example, should each subsystem
— at any of the levels, be specified from several viewpoints? Should the hierarchical structure be
specified within one or more of the viewpoints — and if so, which ones?

e Specification layout and structure. How should an ODP specification — or indeed a viewpoint specifi-
cation in general — be structured and organized?

e Object instances versus classes. In the ECHO study’s detailed Computational Viewpoint specifications
(of which there are two, for two specific subsystems), classes of distributed objects are defined, but
the structure of each subsystem in terms of instances of those classes is not stated explicitly (although
there are some cardinality constraints between classes, in informal diagrams), and there is no class
corresponding to the whole subsystem. Such information, concerning how instances of Computational
Viewpoint object classes are composed into an overall system or subsystem, would be a useful addition
to the Computational Viewpoint.

3 A Partially Formalised ODP Specification

This section discusses a simple model of an ATC system, which addresses some of the issues arising from
the ECHO study, using the formal languages Z [12] and Object-Z [11] to specify the Information and
Computational Viewpoints, respectively. A realistic model of an ATC system would, of course, be far
more complex than this one — the aim here is to use an idealised model to explore some of the general issues
involved, not to provide an accurate model of an air traffic control system.

The ODP Reference Model is informally stated, goes into little detail about how the viewpoints or
correspondences between them should be represented, and is deliberately not expressed in terms of any
particular specification formalism or underlying formal model. Consequently, what is presented here is not
claimed to be a definitive interpretation, but is one possible way of interpreting the outline provided by the
Reference Model.

3.1 Enterprise Viewpoint

According to the informal account in the ODP Reference Model, the Enterprise Viewpoint should represent
the system as a “community” of “actors” of certain types, each serving a role in order to satisfy some overall
system objective. The structure described is rather “flat”, consisting of a single level of actors, serving one
objective. It is not very clear how a hierarchical division into subsystems should be integrated with such
a picture. The ECHO study provides one interpretation, by using the Enterprise Viewpoint to identify a
hierarchy of named subsystems — each of which is then regarded as an Enterprise “community” in its own
right — as well as introducing some classes of distributed objects which are subsequently used as a subset



of those referred to in the Computational Viewpoint. It is not made clear, however, whether the subsystems
are viewed as overlapping, in terms of the distributed object instances that they involve. Another way
of interpreting the Reference Model might be to allow some overlap between the concepts of “actor” and
“community”, i.e. to allow at least some of the “actors” in a top-level Enterprise Viewpoint specification
to be treated as “communities” themselves, which are then analysed in more detail — from multiple ODP
viewpoints if necessary — at a lower level.

In our simplified air traffic control specification, we assume that the Enterprise Viewpoint consists of an
informal statement of the hierarchy of subsystems involved, and of their objectives. (An alternative approach,
based on a language for specifying Enterprise “policies” (i.e. permissions, prohibitions, and obligations) —
and a translation from that language into Object-Z — is described in [13].) As just suggested, some of these
subsystems could be thought of as being both “actors” and “communities” (or alternatively, the Reference
Model should be interpreted in such a way that it allows a community to consist of several “subcommunities”,
as was assumed in the ECHO study). In the Computational Viewpoint, these subsystems will be identified
with instances of object classes, and any overlap between them, in terms of common components, will be
stated explicitly — but in the Enterprise Viewpoint, we merely state their functional objectives.

Like the system described in the ECHO study, the one described in this section has “communities” or
subsystems at more than one level. At the top-level, the overall system has two subsystems: a “control”
system, whose objective is to allocate flights and resolve conflicts, and a “support” system, whose objective
is to provide and update flight data. The “control” system has two lower-level subsystems — a “flight
manager”, whose objective is to make the decisions, and a “flight database”, whose objective is to keep track
of flight information. The “support” system has two lower-level components — a “surveillance” subsystem
for collecting data, and a “flight database” for storing the data. In the Computational Viewpoint, the flight
databases of the “control” and “support” subsystems are identified as being in fact the same entity. The
Enterprise Viewpoint could also be used — as in the ECHO study — to list types of actor other than the
subsystems themselves — e.g. “radars”, “controllers”, etc. — that are subsequently used as some of the
classes in the Computational Viewpoint.

3.2 Information Viewpoint

In the ECHO study, the Information Viewpoint is applied separately to parts of the overall system. It may
indeed in many cases be useful to provide such subsystem specifications from the Information Viewpoint,
particularly as a way of structuring the presentation of datatypes (as in the ECHO study). However, we
suggest that it would also be helpful for the Information Viewpoint to provide a high-level, fairly abstract
specification of the system as a whole. In addition to defining datatypes used as class attribute types in the
Computational Viewpoint, this should adefine an abstract system state, and high-level operations (which
can give an initial indication of the top-level operations required in the Computational Viewpoint). The
specification in our simplified air traffic control model, described in detail in this section, is a specification
of this kind. It would have to be refined further in practice, for example by providing definitions of certain
global predicates which are not defined in detail, such as those relating to conflict. Likewise, the operations
defined would require further refinement, to impose additional constraints, and further operations might
need to be added.

Coordinates, points, and paths. Latitudes, longitudes, and aircraft types are represented here ab-
stractly as given types, and “flight levels” and times as natural numbers. A “4D point” is a 4-tuple consisting
of a latitude, longitude, flight level, and time. The function time returns the fourth element of such a tuple,
i.e. its time coordinate.

[Lat, Long, Aircraft Type]

FlightLevel == N

Time == N

Ptyp == Lat x Long x FlightLevel x Time

‘ time : Ptap — Time

‘ Y(lat,long, fl,t) : Ptyp e time((lat,long, fl,t)) =t



A “4D path” is a spatio-temporal trajectory — represented by a finite sequence of 4D points — that is
possible for a specified type of aircraft. The “start time” of a (non-empty) path is the time coordinate of
the first 4D point in that path’s sequence of 4D points.

_ Pathyp
atype : Aircraft Type
pts : seq Ptap

pts possibleFor atype

| (= possibleFor _) : seq Ptyp <> Aircraft Type

‘ startTime : Pathysp + Time

dom startTime = {p : Pathsp | p.pts # ()}
V' p : Pathyp e p € dom startTime = startTime(p) = time(head(p.pts))

Flights and Conflict. The main functions of an ATC system are to assign and monitor flights, and to
resolve any conflicts that arise. Our idealised model assumes four broad types of conflict, identified in the
ECHO case study:

(1) Aircraft—aircraft (AA) conflicts — those involving unacceptable proximity between two aircraft.

2) Deviation conflicts — when an aircraft’s actual path deviates too far from its assigned path.

(2)
(3) Request conflicts — in which an aircraft requests an alteration to its assigned path.
(4)

Resource conflicts — those in which an aircraft’s path conflicts with an “environmental object”,
such as a mountain or an airspace boundary.

The four conflict types are formalised differently — (1) as a relation between flights, (2) and (3) as properties
of flights, and (4) as a relation between flights and environment objects. Accordingly, the Flight schema
has three 4D paths for a particular aircraft type atype, representing the path actually taken so far, the path
mostly recently assigned by air traffic control, and the path most recently requested by the aircraft (either
before take-off, or to make an inflight alteration). In this simplified model, the assigned and actual paths
are required to have the same start time.

__ Flight
atype : Aircraft Type
actualPathyp, assignedPathyp , requestedPathyp : Pathyp

atype = actualPathyp.atype
= assignedPathyp .atype = requestedPathyp .atype
startTime(assignedPathyp) = startTime(actualPathsp)

In a more detailed specification, further invariants would need to be added to this schema, to impose further
constraints on the inter-relations between the three paths.

The four types of conflict involving flights are defined by assuming three relations of conflict between
4D paths, which would have to be constrained further in a fuller specification. “AA conflict” (aircraft—
aircraft conflict) is defined as involving two paths belonging to different flights — either two actual paths,
two assigned paths, or an assigned path and an actual path. Generic definitions of symmetric, reflexive, and
irreflexive relations, for an arbitrary type X, are used in the definitions relating to conflict.

symmReln[X]=={R: X & X |Vz,y: X o (z,y) € X = (y,z) € X}
reflexReln[X]|=={R: X & X |Vz: X o (z,2) € X}
irreflezReln[X]|=={R: X & X |Vz : X o (z,2) ¢ X}



‘ inA AConflict, inDevConflict, inReqConflict : symmReln[Pathysp]

{inDevConflict, inReqConflict} C irreflexReln[Pathyp]
inAAConflict € reflexReln|[Pathyp]

DevConflict == {f : Flight |
(f.actualPathyp, f .assignedPathsp) € inDevConflict}
ReqConflict == {f : Flight |
(f.assignedPathsp, f .requestedPathsp) € inReqConflict}
AAConflict == {(fi, o) : Flight x Flight | fi # > A
((fi-actualPathyp, fi .assignedPathyp) € inAAConflict
V (fi.assignedPathsp , fo-actualPathyp) € inAAConflict
V (fi-actualPathyp, fo-actualPathsp) € inAAConflict
V (f1.assignedPathsp, f>.assignedPathyp) € inAAConflict)}

A “resource conflict” relation is declared (but not precisely defined) between 4D paths and “environmental
objects” (which are either airspaces or physical objects, such as mountains).

[Airspace, PhysObj]

EnvObj = airspace((Airspace))
| physObj (PhysObj))

| ResConflict : Flight +» EnvObj

System state schema. The abstract system state has as its main attributes a system time, a finite set of
environmental objects, a flight index, and a set of “current flights” (those in progress or waiting for take-off)
which is a subset of the flights indexed. The flight index is an injective sequence of flights (so flights are
uniquely numbered). Other attributes, whose values are determined by state invariants, record the various
kinds of conflicts currently present, and the set of all current flights which are involved in some kind of
conflict. The initialisation schema SysINIT requires that in an initial state, the system time is 0, and the
flight index is the empty sequence (hence, given the state invariants, there are no current flights or flights in
conflict).

—_Sys
sysTime : Time

envObjs : F EnvObj

flightIndez : iseq Flight

currentFlights, allFlightsInConflict : F Flight
aaConflicts : F(Flight x Flight)
devConflicts, reqConflicts : F Flight
resConflicts : F(Flight x EnvObj)

allFlightsInConflict C currentFlights C ran flightIndex
aaConflicts = AAConflict N (currentFlights x currentFlights)
devConflicts = DevConflict N currentFlights
reqConflicts = ReqConflict N currentFlights
resConflicts = ResConflict N (currentFlights x envObjs)
allFlightsInConflict =

devConflicts U reqConflicts U dom aaConflicts U dom resConflicts

—_ SysINIT
Sys'

sysTime' = 0 A flightIndezx' = ()




Operations. The operations defined are: Tick, AssignFlight, TakeOff, Landing, FlightObs, and ResolveConflict.
All of these increment the system time, but in the case of the Tick operation, nothing else changes.

_ Tick
ASys

flightIndezx' = flightIndex A currentFlights’ = currentFlights
envObjs’ = envObjs N\ sysTime' = sysTime + 1

The AssignFlight operation adds a new flight f! to the set of current flights (those already assigned —
either in progress, or awaiting take-off) and to the index of all flights. Its outputs are the flight f!, and the
start time ¢! of its assigned flightpath, which must be different to those of other current flights, and later
than the current system time. (In this simplistic model,, we assume that we are dealing with the air traffic
control system of a single airport, and that simultaneous take-offs are ruled out on safety grounds, even if
there is more than one runway.) The sequence of points of the actual path of the new flight must be empty
(because the flight has not taken off yet). The new flight must not result in any new conflicts arising.

_ AssignFlight
ASys
f!: Flight; t!: Time

startTime(f!.assignedPathsp) = t! A t! > sysTime

YV f : currentFlights e startTime(f.assignedPathsp) # t!
flightIndez' = flightIndex ™ (f!)

currentFlights' = currentFlights U {f!}
fl.actualPathyp .pts = ()

allFlightsInConflict’ = allFlightsInConflict

envObjs’ = envObjs A sysTime' = sysTime + 1

The TakeOff operation represents an aircraft taking off. Its inputs are a flight number n?, which is one
of those in the domain of the flight index, and a flight f?, which is the flight indexed by that n?. The output
of the operation is a flight f!, identical to f?, except that its actual 4D path is now non-empty, with its
sequence of points containing one point — the first 4D point in the assigned path of f7. f? must be a current
flight which is not in conflict. In this simplified model, TakeOff is assumed to occur at the scheduled take-off
time as specified in the assigned path.

— TakeOff
ASys
n?:N; f?,f!: Flight

n? € dom flightIndex A flightIndex(n?) = f?
f? € currentFlights N f? & allFlightsInConflict
startTime(f?.assignedPathyp) = sysTime
flightIndez' = flightIndex & {n? — f!}
f!'={ atype == f?.atype,

assignedPathyp == f7.assignedPathyp,

requestedPathyp == f?.requestedPathyp,

actualPathyp ==

( atype == f?.atype, pts == (head f?.assignedPathyp.pts) | |)

currentFlights' = (currentFlights \ {f7}) U {f!}
envObjs’ = envObjs A sysTime' = sysTime + 1

The Landing operation models an aircraft landing. It removes a flight from the set of current flights
(which, if it is in conflict, implicitly removes it from the flights in conflict, as well, given the invariants in the
state schema Sys). In a more refined specification, further constraints would be imposed on this operation.
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— Landing
ASys
f?: Flight

f? € currentFlights A currentFlights' = currentFlights \ {f?}
flightIndezx' = flightIndex
envObjs’ = envObjs N sysTime' = sysTime + 1

FlightObs represents the receipt of an observation of an aircraft’s position at a particular time (in the
form of a 4D point), regarding one of the current flights. f7 is the input flight, and f! the modified output
flight, incorporating the new observation. The time coordinate of the observation must be less than or equal
to the current system time. The constraints specified in the Flight datatype schema implicitly ensure that
the observation here must be sensible for the flight, i.e. it must be possible for the type of aircraft involved,
given the actual path of 4D points so far.

__ FlightObs
ASys
n?:N; pt?: Piyp; f?,f!: Flight

n? € dom flightIndex A flightIndex(n?) = f?

f? € currentFlights N\ time(pt?) < sysTime

f?.actualPathsp.pts # () A time(pt?) > time(last(f?.actualPathsp .pts))
f!'={ atype == f?.atype,

actualPathyp ==

( atype == f?.atype, pts == f?.actualPathyp.pts ~ (pt?) ),
requestedPathyp ==

( atype == f?.atype, pts == f7.requestedPathsp.pts |
assignedPathyp ==

( atype == f?.atype, pts == f?.assignedPathsp .pts ) |)
flightIndez' = flightIndex & {n? — f!}
currentFlights' = (currentFlights \ {f7}) U {f!}
envObjs’ = envObjs N sysTime' = sysTime + 1

ResolveConflict represents in a very abstract way the resolution of a conflicting set flights of flights, which
is a subset of the current flights in conflict. The partial injective functions indezedFlights? and indexedFlights!
represent respectively the initial indexing of those flights (a subset of the overall flight index), and the revised
indexing for the same flight numbers, after the conflicting set of flights has been replaced by modified flights.
An invariant states that flights? is a “self-contained” conflicting set, in the sense that none of its members
are in “AA conflict” (the only type of conflict involving pairs of flights) with any other flights currently in
conflict. Further invariants state that indexedFlights! represents a “resolution for” indexedFlights?; that the
new index flightIndex' uses the revised flights as indexed by indexedFlights'; and that no new conflicts have
been introduced as a result.

— ResolveConflict
ASys
flights? : F Flights; indexedFlights?, indexedFlights! : Ny ~~ Flight

indexedFlights? C flightIndex

dom indexedFlights? = dom indexedFlights!

flights? = ran indexedFlights? N\ flights? C allFlightsInConflict
aaConflicts N (flights? x (allFlightsInConflict \ flights?)) = &
indexedFlights! resolutionFor indexedFlights? wrt envObjs
flightIndezx' = flightIndex @® indexedFlights!

currentFlights' = (currentFlights \ flights?) U ran indezedFlights!
allFlightsInConflict’ = allFlightsInConflict \ flights?

envObjs’ = envObjs N sysTime' = sysTime + 1
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The 3-place conflict resolution used in this operation schema is declared as follows:

(= resolutionFor _ wrt _) : P((Ny =~ Flight) x (Ny = Flight) x (F EnvObj))

Y fn, fng : (Ny = Flight); objSet : F EnvObj e
((fny resolutionFor fns wrt objSet) = dom fn; = dom fny)
A(Vn:N; en € domfn = fny(n).atype = fna(n).atype)
A = (fny conflictFreeWrt objSet)
A (fng conflictFreeWrt objSet)

Here, fn; is an indexed set of flights in which at least some conflicts are present, with respect to a set
objSet of environmental objects, and fn is a second set of flights (with corresponding numerical indices, and
corresponding aircraft types for flights with the same index number) that is conflict-free with respect to the
same set objSet.

3.3 Computational Viewpoint Specification

The Computational Viewpoint specification is expressed in Object-Z [11], a language which, given its intrin-
sically object-oriented nature, is better suited than standard Z to the specification of systems of distributed
objects. An Object-Z specification includes several class schemas, each corresponding to an ADT, of which
one represents the type of system being modelled, e.g. in our case study, the Main class. Variable declara-
tions such as z : ClassName are allowed, where z denotes an unique identifier for, or pointer to, an object of
the class Classname. If Op is an operation of class Classname, the notation z.0Op represents the execution
of Op on the object to which z refers. For example, in the specification given shortly, the Main class has an
attribute clock of class Clock, and the expression clock. Tick represents the execution on that clock of its own
(lower-level) Tick operation. When a higher-level operation is defined in this way, by promoting an operation
on a component object, the higher-level operation implicitly has the same input and output variables (if any)
as the component object operation being promoted, and the higher-level operation implicitly has an empty
A-list — so that it does not change any attributes of the higher-level object.

Each operation has an optional A-list, showing attributes that it allows to change — attributes not in
the A-list are not changed by that operation (unless they are ‘secondary’ attributes, separated from the
main attributes by a A symbol, in which case they may change in any way consistent with preserving the
state invariant). Class operations and attributes can be declared as “public”, or not, at the top of each
class — if such declarations are not shown (as they are not in the following specification), this means that
all operations and attributes are visible. Object-Z provides several operators for combining operations —
including A (schema conjunction), and ||. The latter operator implicitly introduces invariants which equate
the output variables of one operation with similarly named input variables of another (e.g. if Opl has an
output variable z! and Op2 has an input variable 27, then the operation Opl||Op2 includes an implicit
invariant z! = x7).

The “communities” identified informally in the Enterprise Viewpoint are equated with particular instances
of some of the classes specified in the Computational Viewpoint. Since particular instances of Object-Z classes
may share component objects, specifying the communities in this way allows the different communities to
overlap in terms of the objects involved — something that is quite likely in a system composed of distributed
objects, in which some individual objects may operate as part of several ensembles of objects, each of which
collectively performs a particular system function. (For example, an individual server might be shared by
several functional groups of system components.)

The main focus in an initial Computational Viewpoint specification should be to give a broad indication
of system structure, in terms of identifiable subsystems, and the objects of which they are composed. As
regards operations, the aim is to specify them in outline only, in terms of the objects that they involve,
whether they involve synchronisations of lower-level operations, and so forth. Operations are thus associated
with particular distributed objects, rather than being defined in a purely abstract way, as they were in
the Information Viewpoint specification. Detailed constraints on the inputs and outputs of operations, and
operation invariants, can be left to subsequent refinement of those operations, which might also involve
adding extra inputs and outputs. Some such refinement may occur in the course of unification with other
viewpoints — particularly with the Information Viewpoint.
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Main system. The overall system is viewed as an instance of the Main class. At the top level of abstrac-
tion, an object of this class has a subsystem control of type Control, for allocating flights and detecting
and resolving conflicts, and a subsystem support of type Support, which provides and updates the data re-
quired by control. The two subsystems share a database flightDbase, which holds information about flights.
(The subscript (© is an abbreviated notation in Object-Z for “object containment” — for example, the
attribute declaration control : Controlc) implies a global invariant stating that each instance of the Main
class “uniquely contains” its own object instance control of type Control, which cannot be shared with other
instances of Main.) The AssignFlight operation involves a synchronisation of a request for a flight from
the support subsystem, with the actual assignment of a flight by the control subsystem. The operations
FlightObs, Landing, and TakeOff are promotions of the identically named operations of the surveillance
subsystem. ResolveConflict promotes the operation of the same name of the Control subsystem.

_ Main

control : Control@
support : Support()
clock : Clock

control.flight Dbase = support.flightDbase
clock = control.clock = support.clock

INIT = clock.INIT N control . INIT N\ support.INIT

Tick = clock. Tick

AssignFlight = Tick N (support.RequestFlight||control. AssignFlight)
TakeOff = Tick N\ support. TakeOff

Landing = Tick N\ support.Landing

FlightObs = Tick N support.FlightObs

ResolveConflict = Tick N\ control. ResolveConflict

The Clock class is defined as follows, with an attribute time, and an operation Tick which increments the
value of time.

Clock

time : Time

INIT = time =0
Tick = [ A(time) | time' = time + 1]

The clock object of a given instance of the Main class is shared by all the other direct and indirect component
objects of that instance of Main. For the sake of clarity, the ticking of the clock is shown explicitly in all
operations, at all levels — even though this is not strictly necessary, given that the clock is shared.

Control subsystem. An object of the class Control has a subsystem flight Manager, which executes control
functions, and a subsystem flightDbase, containing information about current flights. These two subsystems
have a clock object in common. The AssignFlight operation, involving the assignment of a new flight, is
represented as the synchronisation of a flight selection operation by the flight manager subsystem, and an
operation on the flight database subsystem which records that selection. The ResolveConflict operation
also involves a synchronisation of operations of the same name involving the flight database and the flight
manager.
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__Control

flightManager : FlightManager()
flightDbase : FlightDbase(c)
clock : Clock

clock = flight Manager.clock = flightDatabase.clock

INIT = clock. INIT N flightManager.INIT N flight Dbase . INIT
AssignFlight = Tick /N

(flightManager.SelectFlight||flight Dbase. AssignFlight)
ResolveConflict = Tick /N

(flightDbase. Resolve ConflictSet||flight Manager. ResolveConflict)
Tick = clock. Tick

An object of the class FlightManager has as its attributes a finite set of one or more “controllers”, and
a clock (which is common to all the controllers). The SelectFlight and ResolveConflict operations represent
the selection of a flight and the resolution of a conflict set, respectively, by a particular controller. These are
promotions of identically named operations of the class Controller.

___ FlightManager

controllers : B, Controller
clock : Clock

Y ¢ : controllers o c.clock = clock

INIT = clock. INIT N\ () ¢ : controllers o c.INIT)
SelectFlight = Tick N [c] : controllers] o

cl.SelectFlight N\ (A ¢2 : controllers \ {c1} o ¢2.Tick)
ResolveConflict = Tick N [c1 : controllers] e

cl.ResolveConflict N\ () ¢2 : controllers \ {c1} o ¢2.Tick)
Tick = clock. Tick

The Controller class has a single attribute — a clock. The SelectFlight operation represents the selection
of a flight by a controller. Its input is an aircraft type, and its outputs are a flight and a take-off time.
This operation is defined only in terms of inputs and outputs here — it would be refined further to impose
constraints on the inputs and outputs. The same comment applies to the ResolveConflict operation, which
represents the resolution of a particular set of conflicting flights by an individual controller.

__ Controller

clock : Clock

INIT = clock. INIT
SelectFlight = Tick /N

[atype? . Aireraft Type; f!: Flight; t!: Time]
Resolve Conflict =

[ﬂights? : F, Flight; oldIndex?, newIndex! : Ny Flight]
Tick = clock. Tick

The FlightDbase class has a state schema very similar to the global state schema Sys in the Z specification
for the Information Viewpoint. As in the ECHO study, it assumes datatypes (such as Flight) and global
definitions of sets, functions, etc., that are already defined in the previously given Information Viewpoint
specification. (N.B. An Object-Z specification can include conventional Z schema type declarations and
global definitions, so this is unproblematical.) The operations AssignFlight, TakeOff, Landing, FlightObs,
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and ResolveConflict are given in outline form here, simply with inputs and/or outputs of specific types.
They would need to be refined later, in order to incorporate the constraints embodied in the operations of
the same names in the top-level state of the Information Viewpoint specification.

__ FlightDbase

envObjs : F EnvObj

flightIndez : iseq Flight

currentFlights : F Flight

clock : Clock

A

allFlightsInConflict, reqConflicts, devConflicts : F Flight
aaConflicts : F(Flight x Flight)

resConflicts : F(Flight x EnvObj)

allFlightsInConflict C currentFlights C ran flightIndex
aaConflicts = AAConflict N (currentFlights x currentFlights)
devConflicts = DevConflict N currentFlights
reqConflicts = ReqConflict N currentFlights
resConflicts = ResConflict N (currentFlights x envObjs)
allFlightsInConflict = devConflicts U reqConflicts
U(dom aaConflicts) U (dom resConflicts)

INIT = clock. INIT N flightIndex = ()

AssignFlight = Tick N\ [A(ﬂight]ndex, currentFlights)
atype? : AircraftType; f?7 : Flight; t!: Time]

TakeOff = Tick N [ A(flightTndex, currentFlights)fNo? : N |

Landing = Tick N\ [A(currentFlights)fNo? S\ ]

FlightObs = Tick N\
[ A(flightIndez, currentFlights)fNo? : Ni; pt? : Ptyp |

ResolveConflict = Tick N [ A(flightIndex, currentFlights)
newlndex? : N Flight]

Tick = clock. Tick

Support subsystem. An object of the class Support consists of a surveillance subsystem, a flight database
subsystem, and a clock, which is common to both of those subsystems. The operation FlightObs represents
the receipt of a mid-flight observation, and the operations Landing and TakeOff represent the registering of a
landing and a take-off, respectively. These three operations are analysed as sychronisations of a surveillance
operation with a corresponding update operation affecting the flight database. The operation RequestFlight
represents the receipt by the surveillance system of a request for a flight to be assigned.

__ Support

Sury : Surv@
flightDbase : FlightDbase()
clock : Clock

clock = surv.clock = flightDbase.clock

INIT = clock.INIT A surv.INIT N\ flightDbase.INIT
FlightObs = Tick N (surv.FlightObs||flight Dbase. Flight Obs)
Landing = Tick N (surv.Landing||flight Dbase.Landing)
TakeOff = Tick N (surv. TakeOff || flightDbase. TakeOff )
RequestFlight = Tick N\ surv.RequestFlight

Tick = clock. Tick
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An object of the Surv (surveillance system) class consists of a set of one or more radar stations, and a
clock, which is also a component of all the radars. The FlightObs models the receipt of an observation from
one of the radars. The Landing and TakeOff operations are assumed to be observed directly, and so do not
involve a radar station. The operation RequestFlight represents very abstractly the receipt of a request for
a flight to be assigned for an aircraft of a specific type atype!.

__ Surv

radars : F, Radar
clock : Clock

Vr :radars e r.clock = clock

INIT = clock.INIT N\ (\r : radars e r.INIT)
FlightObs = Tick A [rl : radars] e

r1.FlightObs N\ (A r2 : radars \ {r1} e r2.Tick)
Landing = Tick A [fNo!: N |
TakeOff = Tick A [ fNo!: N |
RequestFlight = Tick N\ [atype! : AircmftType]
Tick = Tick N\ (\r : radars e r.Tick)

Objects of the Radar class are modelled very abstractly, with only a single attribute — a clock. The
operation FlightObs represents the receipt of a 4D point observation for a particular flight number (with the
time coordinate being the current clock time), plus the ticking of the clock; and Tick represents the ticking
of the clock only.

Radar

clock : Clock

INIT = clock.INIT
FlightObs = Tick N\ [fNo! Ny ; pt!: Pyp | time(Ptyp) = clock.time]
Tick = clock. Tick

4 Viewpoint Correspondences

Previous related work [2, 3] involving the authors and other colleagues has developed a general approach to
viewpoint specification that is independent of particular formal specification languages, and that is applicable
to, but not restricted to, ODP viewpoints. The central idea of this approach is that multiple viewpoints — in
some cases expressed in several different languages — can be shown to be mutually consistent by developing
a specification that is a common refinement of all the viewpoints, a process described as “unification”. In
practice this can be done step by step rather than in one go, unifying specifications a pair at a time, until
ultimately a binary tree of specifications has been constructed, in which the leaves are the initial viewpoint
specifications, and the root is their common refinement.

To apply this general approach to a particular formalism requires a well-defined notion of refinement for
that formalism. When several formalisms are used, methods for translating from one formalism to another
are also needed (the translations already considered include, for example, that from LOTOS to Object-Z
7).

In this section, our aim is to consider what the relationships between ODP viewpoint specifications might
typically look like, using the ECHO study and our simplified air traffic control model as an example. Given
the informal nature of the ODP Reference Model, this is of course not a definitive interpretation, but one
possible interpretation.

In the ECHO study, the roles of the Enterprise, Information, and Computational Viewpoints, and the
main correspondences between them, can be summarised briefly as follows:
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e FEnterprise Viewpoint. This is used to outline the structure of the overall system, in the sense of equating
“subcommunities” with subsystems, some of which are then specified in detail from the Information
and Computational Viewpoints. Also, Enterprise “actor” type names are subsequently used as a proper
subset of the class names in the Computational Viewpoint.

e Information Viewpoint. This is treated as a viewpoint for defining types of data used by the system,
at a fairly high level of abstraction — no operations are defined for this viewpoint. The Information
Viewpoint types are used as class attribute types in the Computational Viewpoint. Their presentation
is subdivided into groups of related datatypes for individual Enterprise subsystems, or pairs of such
subsystems, in one case where there is a large overlap in the datatypes used.

o Computational Viewpoint. This consists of classes defined by means of UML class diagrams, and
informal text. Attributes and methods are listed — in some cases with inputs, outputs, and information
about the purpose of classes and the names of other methods (of the same or different classes) that
they use.

e In addition, the Technology Viewpoint is said to constrain the Enterprise Viewpoint (although no
specification from the Technology viewpoint is provided).

In our simplified partially formalised model, we have suggested that the Information Viewpoint should
be interpreted in such a way that it provides a fairly high-level, abstract formal specification of the state and
operations of the overall system, as well as providing datatype definitions. The more concrete Computational
Viewpoint specification can then be thought of as a particular, more implementation-oriented specification
that gives more concrete information about system structure, in terms of distributed objects.

There should be a one-to-one correspondence between the top-level operations of the Information View-
point and the top-level operations of the Main class in the Computational Viewpoint. The latter operations
will often be defined, however, in terms of lower-level Computational Viewpoint operations, in some cases
involving synchronisations or sequential compositions of such lower-level operations. If the Information
Viewpoint were used to specify individual subsystems as well as the overall system, then a similar one-to-one
correspondence between Information and Computational Viewpoint operations should be obliged to hold at
the top levels of each such subsystem.

A possible role for the Enterprise Viewpoint is to provide a starting point for the Computational View-
point by identifying functional subsystems and their objectives (as in the ECHO study and in our simplified
model), without specifying the concrete objects used to implement them, or the extent to which the subsys-
tems overlap in terms of objects. This could be done not only at the top level, but as a way of initiating the
structuring of subsystems developed in the Computational Viewpoint. In addition, the Enterprise Viewpoint
may identify some of the classes of object to be used in the Computational Viewpoint. As in the simplified
air traffic control model described in this paper, the Enterprise Viewpoint need not be expressed formally,
even if the Information and Enterprise Viewpoints are.

One general point that is apparent from the ECHO case study is that there is a need to interpret the
ODP Reference Model in a way which allows hierarchical structure to be specified and subsystems to be
identified. As regards the Enterprise Viewpoint, viewing the overall system as a single, one-level community
of actors, serving a single objective, seems inadequate for some complex systems. Allowing some actors to
be thought of as “communities” in their own right, which can then be analysed in more detail by a recursive
application of the ODP viewpoints, is one possible way of interpreting the Reference Model that allows such
hierarchical structuring. At lower levels, it might not be considered necessary to specify every subsystem
from two or three viewpoints, e.g. a Computational Viewpoint specification alone might suffice.

The layout and organization of an ODP specification need not always consist simply of a sequence of
separate viewpoint specifications. In some cases, it might be more convenient to intermingle the viewpoints to
some extent, with the overall specification reflecting the hierarchical structure, and with different viewpoint
specifications of the same subsystem being adjacent to one another. For large-scale specifications, software
tools which can record and graphically display networks of specifications from different viewpoints, and their
common refinements, would be a very useful aid. Such a framework of specifications could ultimately be
used to structure an implementation into executable code.
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5 Conclusion

This paper began with a description of a case study (the ECHO air traffic control system) in which an
attempt was made to apply the ODP viewpoints framework to specify a complex distributed system, using
three of the five ODP viewpoints — the Information, Computational, and Enterprise Viewpoints. Some
observations concerning that study were used to raise some general issues relating to the interpretation of
the ODP Reference Model. It was emphasised that an interpretation of the ODP Reference Model should
provide some way of describing functional subsystems or components of the overall system — including how
they are organised hierarchically, and how they are composed of instances of distributed objects, in some cases
shared between different functional subsystems (an aspect which is not very explicit in the ECHO study).
It was also suggested that the Information Viewpoint should provide not only a definition of datatypes (as
in the ECHO study), but also a high-level abstract definition of overall system state and operations.

A simple, idealised air traffic control model was presented to explore some of these issues. In this model,
the Enterprise Viewpoint was used informally to identify a hierarchy of the main functional subsystems
and their objectives (as in the ECHO study). The language Object-Z was used to describe the structure of
distributed objects in the Computational Viewpoint. The state-based language Z was used to provide a high-
level, abstract description of datatypes and top-level system operations (which corresponded one-to-one with
the operations of the top-level Main class in the Computational Viewpoint). It was suggested that such a
more explicit representation of these aspects of system structure and behaviour could usefully augment those
aspects focussed upon in the ECHO study, such as the identification of Information Viewpoint datatypes
and Computational Viewpoint classes.
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