
- 1 -

REQUIREMENTS FOR A FIRST YEAR OBJECT-ORIENTED TEACHING LANGUAGE

Michael Kölling, Bett Koch and John Rosenberg
Basser Department of Computer Science

University of Sydney, Australia
{mik,bett,johnr}@cs.su.oz.au

Proceedings SIGCSE'95, Nashville, Tennessee, ACM Press

ABSTRACT

Interest in teaching object-oriented programming in first
year computer science courses has increased substantially
over the last few years. While the theoretical advantages
are clear, it is not obvious that the available object-oriented
languages are suitable for this purpose. None of the
existing languages is appropriate for teaching object-
oriented principles. In this paper we discuss the
requirements for an object-oriented teaching language and
draw attention to the deficiencies of existing languages. In
particular, the paper examines C++, Smalltalk, Eiffel and
Sather. Finally we outline characteristics of a new
language, specifically designed for teaching purposes.

1 INTRODUCTION

Over the last few years the object-oriented approach to
system design has become widely accepted in industry as a
valuable paradigm and has been adopted by many large
companies. Partly as a result of this, and the advantages
from a software engineering point of view, the use of
object-oriented technology and languages is now taught at
some point in most computer science courses.

Initially object-oriented systems were seen as an
advanced topic and were taught in higher year courses.
However, it is now being realised that object-oriented
concepts are, more generally, a good basis upon which to
teach fundamental programming skills, the usual aim of a
first year computer science course. The possibility of using
an object-oriented language for first year teaching is being
seriously considered in many institutions.

Several arguments strongly support the use of an object-
oriented language in first year:
• Object-orientation encourages well structured

programming, which is one of the most important
lessons we try to convey to first year students.

Proceedings of 26th SIGCSE Technical Symposium on
Computer Science Education, Nashville, Tennessee, U.S.A.,
SIGCSE Bulletin 27, 1, March 1995, pp 173-177.

• Re-using existing code can be taught in addition to the
development of new code, leading to a more realistic
perception of the tasks expected of a programmer.

• The ability for students to make use of ready-made
objects in their applications opens a wide range of
possibilities for real-world and interesting examples
and exercises.

• Important software development concepts, such as
evolution and re-use, can be introduced and
experienced through object-oriented techniques at an
early stage.

• Problems with the paradigm shift in moving between
object-oriented and non-object-oriented environments
seem to be reduced. It has been found that many
students whose first programming language is a
procedural language, such as Pascal, experience
problems in adjusting to the object-oriented paradigm
[3]. On the other hand, switching from an object-
oriented language to a non-object-oriented one is not
anticipated to cause as much difficulty (provided the
syntax is not too different) [2].

All of these arguments support the idea of using the
object-oriented paradigm in teaching programming in the
first year of a computer science course.

Unfortunately when one examines the object-oriented
languages which are available, they all have major
deficiencies which make them inappropriate as a first year
teaching language. We would contend that there is a major
need for a new object-oriented programming language
specifically designed for teaching. Such a language would
serve a similar purpose to that of Pascal in the 1980s.

This paper is organised as follows. In the next section
we identify the requirements of an object-oriented teaching
language. We use these requirements to evaluate a number
of existing object-oriented languages which may be
candidates for a teaching language. We conclude from this
evaluation that none of these is suitable and in the
subsequent section we outline some of the features that
may be included in a new language.

- 2 -

2 REQUIREMENTS FOR A NEW LANGUAGE

The requirements for an object-oriented language are
reasonably well understood and there is no need for us to
elaborate these here. However, there are several specific
requirements for a first year teaching language as follows.
1. The language should support clean, simple and well-

defined concepts. This applies especially to the type
system, which will have a major influence on the
structure of the language. The basic concepts of
object-oriented programming, such as information
hiding, inheritance, type parameterisation and dynamic
dispatch, should be supported in a consistent and
easily understandable manner.

2. The language should exhibit "pure" object-orientation
in the sense that object-oriented constructs are not an
additional option amongst other possible structures,
but are the basic abstraction used in programming.

3. It should avoid concepts that are likely to result in
erroneous programs. In particular it should have a
safe, statically checked (as far as possible) type
system, no explicit pointers and no undetectable
uninitialised variables.

4. The language should not include constructs that
concern machine internals and have no semantic value.
This includes, most importantly, dynamic storage
allocation. As a result the system must provide
automatic garbage collection.

5. It should have a well defined, easily understandable
execution model.

6. The language should have an easily readable,
consistent syntax. Consistency and understandability
are enhanced by ensuring that the same syntax is used
for semantically similar constructs and that different
syntax is used for other constructs.

7. The language itself should be small, clear and avoid
redundancy in language constructs.

8. It should, as far as possible, ease the transition to other
widely used languages, such as C.

9. It should provide support for correctness assurance,
such as assertions, debug instructions, and pre and post
conditions.

10. Finally, the language should have an easy-to-use
development environment, including a debugger, so
that the students can concentrate on learning
programming concepts rather than the environment
itself.

Note that some issues, such as efficiency, which are
often considered extremely important for production
programming languages, are of little significance for a
teaching language. We believe that it is only required that
the language be able to be supported in a teaching
environment with reasonable response time. Similarly, it is
not important that the language be flexible enough to
develop real-world applications (e.g. by the inclusion of
operations such as arbitrary bit manipulation) — it will
never be used for this purpose.

The aim is not to replace all other object-oriented

languages — industry will always favour languages which
have clear run-time efficiency advantages. Rather, our aim
is to educate students in such a way that they understand
the underlying concepts and are then able to write good
programs in any language, even if it doesn’t have a good
structure.
3 SURVEY

In this section we evaluate several object-oriented
programming languages which have been used or proposed
as first year teaching languages. The languages considered
are C++ [14], Smalltalk [4], Eiffel [9] and Sather [11] [6].

C++

Although C++ is fast becoming an industry standard
and the most popular object-oriented language, it is one of
the worst candidates for our needs. First of all, it is a
hybrid language that supports object-oriented programming
as well as non-object-oriented programming, leading to the
temptation to develop solutions that are not really object-
oriented. This is particularly a problem for those already
familiar with C, which is the case for an increasing number
of students entering computer science courses. Learning
object-oriented concepts becomes more difficult because
the language does not encourage their use.

Partly as a result of the need to keep compatibility with
C, C++ has many redundant features. In many cases
several different language constructs exist for the same
semantic concept and these sometimes differ in subtle
ways. This makes reading as well as writing C++ an
unnecessarily difficult task.

This problem can be illustrated by an examination of
the object creation mechanisms in C++. There are three
different methods of object creation — automatic, explicit,
or by assignment — which all differ in small aspects. In
the first case objects are destroyed automatically, including
an automatic call to the destructor function; in the second
case objects are not automatically destroyed; in the third
case the objects are created without a call to the constructor
function and calling the destructor can be a problem
(although it may be called automatically, anyway). The
subtleties of this are extremely difficult to explain to
students.

The explicit dynamic storage allocation in C++, in
combination with the lack of garbage collection, forces the
programmer to think at an unnecessarily low level and
greatly increases the risk of errors. Often C programs
which have been tested and used for some time have
"memory leaks" and other bugs that are caused by improper
storage handling. In C++ this problem becomes more
serious, since deallocation is often associated with a
function call. A missing deallocation omits this function
call and this can cause a much greater variety of unwanted
effects than just disappearing memory.

Another serious criticism is the handling of dynamic
dispatch in C++. Dynamically dispatched functions must
be explicitly declared as such in the parent class. This
seriously restricts code re-use, as programmers must
anticipate all later descendants and the routines they may

- 3 -

want to redefine. It also leads to a complicated execution
model.

The confusion is further increased by the ability to
declare a function in a derived class with the same name as
a non-dynamic function in the parent class. It is left to the
reader to determine the different possibilities and problems
resulting from such an action.

Although the problems discussed above are not the only
deficiencies of C++, they are serious enough to disqualify
C++ as a candidate for a teaching language.

SMALLTALK

Smalltalk is an absolutely pure object-oriented
language, that supports the underlying concepts of object-
orientation in a clean and consistent manner [19]. It
enforces the development of code in an object-oriented
style and, consequently, the programmer must adopt an
object-oriented way of thinking about problems and
solutions. Smalltalk usually comes with an integrated,
graphical programming environment.

However, there are some problems with Smalltalk as a
candidate for a first year teaching language.

Smalltalk is not statically typed and, as a result, type
errors will not be detected until run-time. In the worst case,
errors may not be detected at all, if, for example, the
program is not thoroughly tested and not regularly used (as
is often the case with students’ assignments). Dynamic
type checking also increases the difficulty of locating the
cause of an error.

Another problem is the size of the system. Smalltalk
usually offers a huge class library. Since everything in
Smalltalk is an object (including, for example, control
structures), extensive use must be made of the library from
the very beginning. Experiences with teaching Smalltalk
have shown that the Smalltalk system environment is
considered by most students to be confusing, hard to
understand and not helpful enough [15]. It usually takes
considerable time to learn to use the environment before a
beginner can start to concentrate on the language itself.

Another drawback is the syntax. While the unification
of all operations and control structures as method
invocations has a theoretically nice appeal, it unfortunately
makes the syntax more obscure. For example:

if (x > y) then
begin
 max := x; index := index + 1;
end

becomes in Smalltalk:

x > y ifTrue: [max <- x.
 index <- index + 1]

This style of syntax is not familiar to students who have
already seen a procedural language and is not a good
preparation for a later switch to a more commonly used
language.

EIFFEL

Eiffel is probably the language that comes closest to
fulfilling our requirements. It supports object-oriented
concepts in a very clean way, avoids redundancy and has a
clear, easily readable syntax.

The problems with Eiffel are similar to those discussed
for Smalltalk. The system is considered overwhelming,
and the programming environment offers insufficient
support for the programmer. Considerable time is needed
to understand how to handle the programming system.
Lutz [7] stated that he had to abandon Eiffel because of
these problems.

While people are working on the development of better
programming environments, the language itself is being
revamped and is becoming less suitable for our purposes.
After having a very small and clean type system in early
versions, current versions of Eiffel feature explicit pointers
and an implementation alternative for classes that is visible
in the class interface definition (“expanded classes”). This
complicates the execution model and forces the
programmer to think about implementation details during
class design. The changes are a result of the use of Eiffel in
more and more commercial applications and the associated
need for efficiency.

SATHER

Sather can be seen as a cross between C++ and Eiffel.
Unfortunately, it adopts some of the characteristics that we
mentioned as problematic in the discussion of C++.

These are:
• the inclusion of untyped objects and a reduction in the

level of static type checking. Some type checks are
static while others are dynamic.

• the need to explicitly identify dynamic dispatch. This
is done in Sather on the basis of a variable holding an
object reference. This causes problems which are
different from those with the C++ mechanism, but still
unacceptable in our context.

Overall Sather operates at too low a level for good
conceptual development. The reason for this approach is
the high efficiency of the resulting code, which is not a
major concern for us.

4 DISCUSSION

Object-oriented languages are currently taught at the
first year level at several institutions and some of these
have reported their experiences. A common theme
emerges: teaching the object-oriented paradigm in general
is seen as having a very positive effect on the enthusiasm
and the progress of the students [5, 12, 15]. It is perceived
that students gain a better grasp of the fundamentals of
programming since it is possible to teach concepts before
syntax [13].

All publications, however, include a list of difficulties
with the language that was used. Comments about C++

- 4 -

regularly stated that students had difficulties with the C++
syntax [8, 10, 16], and the authors suggested that it should
be replaced by a language that is easier to use [1].

Institutions adopting Smalltalk reported difficulties in
the usage of its environment. In particular, students had
difficulties using the debugger and inspector and were
overwhelmed by the size of the class library [13].

Experience with Eiffel includes statements that
compilation and linking was too slow, students had
difficulty writing the System Description File, and had
problems navigating through the library [8].

Most of the studies reported difficulty in switching to
the object-oriented paradigm from the procedural approach.
A survey by D. Mazaitis of different courses teaching
object-orientation in the undergraduate curriculum reaches
the conclusion that they suffer from common problems:
"difficulties with the language chosen, inadequacies in
existing support tools, and the amount of time students
need to become proficient with a new paradigm,
environment, language and set of tools" [8].

A comparison of the languages examined with our
requirements listed in section 2 suggests the following
deficiencies.

Sather does not meet the requirements 3, 4, and 5 (error
prone constructs, low level constructs, simple execution
model).

Eiffel, due to its size, does not meet requirement 7
(language should be small). The featuring of “expanded”
and indirect classes violates requirement 5 (simple
execution model).

Smalltalk does not meet requirement 3, since it is not
statically typed, or requirement 8, because of its syntax.

C++ violates almost every requirement.
In addition, all languages have major deficiencies in

their programming environment, violating requirement 10.
C++, Eiffel and Sather, do not provide an adequate
environment, and Smalltalk, requires too much of its
extensive environment to be used to write simple programs.

The solution seems obvious: what is needed is an
object-oriented teaching language that avoids the above
mentioned problems, meets the listed requirements, and is
embedded in an easy-to-use development environment.

If such a system could be developed, it would strongly
increase the interest in object-oriented teaching. We
suspect that many institutions are generally interested in
teaching object-oriented concepts, but hesitate in the
realisation because no suitable language is available.

5 A NEW LANGUAGE?

In this section we briefly outline our ideas for a new
object-oriented language specifically designed for teaching
first year students.

Our first principle is that the language should be a pure
object-oriented language. This means that every program is
written as one or more objects, and that objects are the
fundamental construct for building systems. This
immediately excludes the development of a system as an
upwards compatible extension of an existing, procedural

language.
Although we strongly believe in "purity" in the sense

discussed above, we feel that special support should be
given to fundamental language elements. Constructs such
as control structures should not be viewed as objects, but
rather as basic language building blocks; basic data types
such as integers, characters and strings should have built-in
language support by having specialised syntax for
accessing their operations.

The inclusion in the language of syntax for control
structures and basic data types enables the use of a
syntactic structure very similar to that in common
procedural languages, avoids the startup difficulties that for
example Smalltalk has, and simplifies the switch to other
languages.

While the syntactic structure of C and Pascal are very
similar, their actual syntax is not. We consider it important
to maintain similarity with that structure, while avoiding
the problems associated with the concrete syntax,
especially in the case of C.

One of the main issues in this respect is that we favour
the use of textual keywords over symbols. C was
developed in the spirit of having as few keywords as
possible, leading to a cryptic syntax, overloading of the
same keyword for different purposes, and confusing
constructs. C++, which has taken the same approach,
illustrates how this can inhibit understandability of the
language.

As an example, consider the definition of deferred
functions (functions declared but not defined in a class, and
which must subsequently be defined in a descendant class).
These are called "pure virtual functions" in C++. The
syntax in C++ is:

virtual void f () = 0;

By employing a syntax similar to variable assignment,
the meaning of the construct is hidden and the declaration
becomes unreadable to a non-C++-programmer. Even
experienced programmers in other object-oriented
languages would have difficulties understand the meaning
of this construct. The simple replacement of "= 0" with a
keyword such as "deferred" or "abstract", would result in a
reader familiar with object-oriented concepts understanding
the construct.

For beginners the keywords have the additional
advantage that they can be looked up in the index of a good
textbook. It is much harder to use a textbook if the
language prevents the book from having a convenient index
referring to different language constructs.

Another important characteristic of a new language is
that no implementation concerns should be visible in the
language. Constructs such as "packed" in Pascal or
"register" in C are exclusively optimisation considerations
and only serve to confuse students.

A similar argument can be applied to the use of explicit
pointers. Having two different mechanisms for accessing
an object, directly or via a reference, tends to be confusing
to beginners. While object references might have pointer
semantics, these references should be the only construct to
access the object, and pointers should not be explicit in the

- 5 -

language. Objects should be created in a uniform manner
and must be automatically garbage collected.

The language should be strongly typed with static type
checking wherever possible. This allows errors to be
detected early and avoids difficulties in locating the source
of an error.

The issue of strong typing is connected to the question
of multiple inheritance. Strong typing is usually too
restrictive for certain applications if no mechanism is
supplied to treat an object as being of different types in
different contexts. One way to achieve this is a type
casting mechanism such as that in C++. Such a mechanism
basically breaks the type system and can be abused. It is
therefore not a desirable solution.

Another possibility in an object-oriented language is the
use of multiple inheritance. We consider multiple
inheritance itself to be too confusing for beginners. These
thoughts lead to the conclusion that the language should
either
• support only single inheritance. It is hoped that the

resulting restrictions in combination with the type
system will not be a serious a problem since the
students would not be building large scale applications
in their first year. If this turns out to be a severe
restriction then

• support multiple inheritance, but provide it in such a
way that it does not complicate the syntax as long as it
is not used. This would allow the lecturer to first
introduce single inheritance only, without having to
mention the possibility of multiple inheritance.

The last important group of characteristics is concerned
with ensuring a smooth introduction to programming
during the early stages of the course. The language and its
environment should be intuitive and simple so that students
can concentrate on the concepts.

This requirement clearly justifies the special treatment
of basic types in the language. The students should not be
required to use a significant number of libraries to write a
first, simple program.

It is also essential that there is a well designed
environment in which the students develop their
applications. Where there is a conflict, simplicity in usage
should be given priority over sophisticated functionality.

6 CONCLUSION

There is currently a strong interest in teaching object-
oriented concepts at the first year level. None of the
existing languages can be considered appropriate for
teaching object-orientation to beginners. A new teaching
language is required to meet the needs for teaching the
object-oriented paradigm. This language does not have to
be a real world production language and thus can avoid the
compromises in conceptual cleanness for efficiency that
cause many of the problems with existing languages.

We have listed requirements for an object-oriented
teaching language in this paper and are currently in the
process of designing such a language and an associated
development environment.

REFERENCES

[1] Rick Decker in Using C++ in CS1/CS2, ACM,
SIGCSE 1994, Vol 1.

[2] R. Decker, St. Hirshfield: Top-Down Teaching:
Object-Oriented Programming in CS 1, Dept. of
Mathematics and Computer Science, Hamilton
College, Clinton, NY, 1994 ACM, SIGCSE 1993, Vol
1.

[3] R. Decker, St. Hirshfield: The Top 10 Reasons Why
Object-Oriented Programming Can't Be Taught in CS
1, Dept. of Mathematics and Computer Science,
Hamilton College, Clinton, NY, 1994 ACM,
SIGCSE 1994, Vol 1.

[4] A. Goldberg and D. Robson: Smalltalk-80 - The
Language, Addison-Wesley, 1989.

[5] R.C. Holt: Introducing Undergraduates to Object
Orientation Using the Turing Language, Dept. of
Computer Science, University of Toronto, 1994,
ACM, SIGCSE Bulletin, Sept. 1993, Vol 25, No 3.

[6] Chu-Cheow Lim and Andreas Stolcke: Sather
Language Design and Performance Evaluation, ICSI
Technical Report TR-91-034, 1991.

[7] Michael J. Lutz: Experiences With an Undergraduate
Seminar on Object-Oriented Concepts, Proc SOOPPA
1990.

[8] D. Mazaitis: The Object-Oriented Paradigm in the
Undergraduate Curriculum: A Survey of
Implementations and Issues, St. Josephs College,
West Hardford, Ct, 1993, ACM, SIGCSE Bulletin,
Sept. 1993, Vol 25, No 3.

[9] Bertrand Meyer: Eiffel - The Language, Prentice Hall
1992.

[10] Dung Nguyen in Using C++ in CS1/CS2, ACM,
SIGCSE 1994, Vol 1.

[11] S.M. Omohundro: The Sather Language, ICSI, 1991
Part of the Sather system distribution.

[12] R.J. Reid: The Object-Oriented Paradigm in CS1,
Computer Science Dept., Michigan State University,
1993 ACM, SIGCSE 1993, Vol 1.

[13] S. Skublics, P. White: Teaching Smalltalk as a First
Programming Language, School of Computer
Science, Carlton University, Ottawa, Ontario, Canada,
1991 ACM, SIGCSE 1991, Vol 1.

[14] B. Stroustrup: The C++ Programming Language, 2nd
edition, Addison-Wesley, 1991.

[15] M.C. Temte: Let's Begin Introducing the Object-
Oriented Paradigm, Dept. of Computer Science,
Indiana University - Purdue, University at Fort
Wayne, IN, 1991 ACM, SIGCSE 1991, Vol 1.

[16] Eugene Wallingford in Using C++ in CS1/CS2,
ACM, SIGCSE 1994, Vol 1.

