
Beckett, David J. (1995) Combined Log System. Computer Networks and
ISDN Systems, 27 . pp. 1089-1096. ISSN 0169-7552.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/19698/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1016/0169-7552(95)00013-W

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/19698/
https://doi.org/10.1016/0169-7552(95)00013-W
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Combined Log System

David Beckett[1], Computing Laboratory, University of Kent, Canterbury, CT2 7NF,

England
D.J.Beckett@ukc.ac.uk, http://www.hensa.ac.uk/parallel/www/djb1.html

Abstract:
Busy Internet archives generate large logs for each access method being used. These

raw log files can be difficult to process and to search. This paper describes a system

for reading these growing logs, a combined log file format into which they are re-

written and a system that automates this building and integration for multiple access

methods. Automated summarizing of the information is also provided giving statistics

on accesses by user, site, path-name and date/time amongst others.

Keywords:
archives, administration, statistics

Introduction

In a large Internet archive site, providing multiple methods of access (ftp, gopher, WWW, ...),

there are a lot of raw log files being continually generated by the processes that handle the

methods. Several programs exist to scan and summarize these different raw log formats for

individual[myers94][fielding94] and multiple[hughes94][magid94] methods, but none does

this in an extendible way.

For archive administrators, a better way is required to handle these raw logs and a log

processing system is required that has these good design features:

Standard log format
Uses a combined log file format, which has all relevant data retained from the raw

logs, giving quick access to (at least) data by file name, user name, site name and type

of access. Each entry should consist of one line formatted to make it easy to process

with standard UNIX tools.

Logs stored chronologically
Access to the logged transfers available; indexed by date and time.

Log summaries
Summaries provided of (possibly older and compressed) information so that it doesn't

need to be re-scanned for totalling byte counts etc.

Active raw logs
Can handle growing raw log files being written to concurrently with the scanning.

Log rotation
Can cope with raw log files being renamed, moved or rotated between scans.

Compressed files
Is able to read and write gzipped and compressed old raw log files and previously

processed logs.

Extendible
Is very simple to add new raw log file formats.

Efficient
Does not require excessive amounts of processing, storage or time when working

(hopefully).

http://www.cs.kent.ac.uk/pubs/1995/155/content.html#footnote1
http://www.cs.kent.ac.uk/pubs/1995/155/content.html#xferstats
http://www.cs.kent.ac.uk/pubs/1995/155/content.html#xferstats
http://www.cs.kent.ac.uk/pubs/1995/155/content.html#getstats
http://www.cs.kent.ac.uk/pubs/1995/155/content.html#getstats

Design

The combined log file format was very important, based on the goals outlined above and thus

was the first thing to be designed in detail.

Each entry corresponds to a single transfer of data (access) and needs fields to store all

relevant pieces of information for each access type. These fields compose a single line of a

combined log file.

Combined Log File Fields

The following fields were identified:

Type
The access type of the raw log file being summarized (such as ftp, gopher, etc.) This

needs to be encoded in every field so that information can be catgorized by type.

Valid types are configurable. Mandatory field.

Operation
The operation being performed. Most operations result in the transmitting of a file

although other pseudo-operations, which don't involve a transfer, such as the start and

end of interactive sessions can also be performed. Valid operations depend on the

Type field. Mandatory field.

Date and Time (Datetime)

The date and time of the access. Since the entries are going to be sorted by this field,

it is important that it is easy to sort. Thus the following format was used: YYYY-MM-

DD-hh:mm:ss where YYYY, MM and DD is the date (year, month, day) and hh, mm

and ss is the time (hour, minute, second). This representation of the date and time

makes sorting very simple - just using string comparisons which makes it easy for

other programs/languages to process the output.

The full date is needed, including the year and century. Sometimes this needs to be

interpreted if only the last two digits of the year are encoded in the raw logs.

The date component of this field is required however the time may not be known and

if this is the case, it should be set to the (illegal) value "99:99:99".

Name (or Path)
The name of the entry being transfered (if applicable). This may be a name referring

to a file and if it is, it should be a full path name if possible. If the name is not a file

reference it is a string that can identify the transfer, for example a URL. Optional field

(but mandatory for transfer operations).

Size
The amount of data, in bytes, transferred as a result of this access. If this is duplicated

in another field, this can be represented by the number being bracketed, for example

"(100)". This is an optional field since some some logs don't give the byte count

transferred although this may be interpreted later.

User
The user identified with the transfer. Optional field.

Site

The site name (or IP address) identified with the transfer. Optional field (but

mandatory for transfer operations).

Email
The email address of the user identified with the transfer. The user and site fields may

be empty if this field encodes both values as user@site or may be user@ to imply

user@site. Optional field.

Some of the above fields are optional, but require a place-holder to represent their absence.

The place-holder was defined to be "-", that is, the minus sign character (ASCII 45).

These fields were given a physical encoding, as a single text line, composed from the

concatenation of all the fields above, in the order given, with a single TAB (ASCII 9)

character as separator and terminated with a line feed (ASCII 10).

There are a few restrictions to the field contents: no field may contain the TAB (ASCII 9) or

space (ASCII 32) character except for the email field since is the last one on the line. In the

future, these restrictions may be lifted by using an encoding, for example, the URL one "%"

plus two hex-digits for 7-bit ASCII.

Example from the log for January 1994 for the Parallel Computing archive[2] (anonymized

for site and user):

ftp txfile 1994-01-19-11:27:14 /ftp/pub/parallel/documents/in\

mos/archive-server/checkocc/test80xa.occ 58019 - 123.45.67.89\

 abcdef@ghijklmn.fr

gopher txfile 1994-01-19-11:27:39 /ftp/pub/parallel/parlib/butte\

rfly/queens/bflyparqueens.c 4789 - abc.def.Uni-ghijk.DE\

 -

http txfile 1994-01-19-11:27:54 /usr/l/lib/httpd/htdocs/parall\

el/home.html 961 - unix.hensa.ac.uk -

where the white spaces are TABs and \ are line wraps. In this case, the lines represent

transmitting a file - the txfile operation - for each method.

Combined Log Files

The lines representing the entries converted from the raw log files are then stored in files.

These should then be indexed by date and time. This date-sorted information could be stored

in a special database but for ease of use with standard (UNIX) tools, it was decided that the

lines would be written into plain text files, with a range of dates applying to a file. The range

of dates stored in any one file has several options:
Option Output log file name

yearly YYYY

monthly YYYY-MM

daily YYYY-MM-DD

monthly/ YYYY/MM

daily/ YYYY/MM/DD

These give the choice of either a flat or deep hierarchy of log files, stored by year, month

and/or day as required. If the name format contains a "/" then sub-directories are used as

appropriate. The choice may also be made depending on the size of the output files generated.

http://www.cs.kent.ac.uk/pubs/1995/155/content.html#footnote2

Inside each file, the information needs to be sorted by date and time but this needs only to be

done occasionally, at worst once a day since that is the smallest date quanta in a single log

file.

System Design

In the UNIX tradition, the system was designed as a circuit of communicating programs

(some filters), passing data via pipes or files as the user prefers. The input to the system is

raw log files, it works with combined log files and outputs these and summary files. The

overall picture is shown in Figure 1: PostScript [B&W] or GIF [578x777, 1 bit]

The programs in the system are:

lscan

Reading raw log files and writing combined log files.

lsort, lclean and lsqueeze

Sorting, cleaning and gzipping / compressing combined log files in-place respectively.

sum-counts

Summarizing combined log files by numeric fields and writing a summary file.

sum-names

Summarizing combined log files for text fields and writing a summary file.

sum-sort

Sorting summary files in place.

sum-format

Reading summary files and outputting text/HTML[conolly95] documents.

Creating Combined Log Files (lscan)

The major problem in creating these combined log files from the raw logs is caused by the

raw logs continually growing as the software daemons append to them. The new entries must

be added as they appear at the end of the raw log files, beginning from where the last scan

finished. It was also necessary to handle the log files being rotated (renamed), moved into

other directories, and being compressed (gzipped) which are commonly done on these large

files to save space. This required some careful thought and state saving between parses of the

logs.

The system is configured to know, for each type of access:

 The latest log file being written to;

 The type of the log (wuarchive ftp, CERN http, NCSA http, etc.);

 How the logs are rotated, truncated or renamed;

 How to find the rotated log files - these may be compressed;

 ... and other flags.

The combined log files that have just had the newly added entries appended, are then be

sorted by date and time in place, to preserve their internal order. These may then be

compressed and then possibly summarized by one or more fields to present the information to

the user.

http://www.cs.kent.ac.uk/pubs/1995/155/comblog_system.ps
http://www.cs.kent.ac.uk/pubs/1995/155/comblog_system.gif
http://www.cs.kent.ac.uk/pubs/1995/155/content.html#htmlstd

The lscan program performs the creation process and for each type of raw log file, it does the

following:

1. Find out where the parse finished for the previous scan, by checking a status file. If

the log file has been rotated, a search must begin to find where the file now is. The

last position may be found by checking in the older rotated logs or by searching line-

by-line.

2. Convert each access into the combined log entry format. It is crucial to generate a

date/time entry for each entry since that is the major sort field. This may involve some

heuristics if, for example, the full year is not encoded in the raw log (e.g. gopher).

3. Clean up the resulting entry - ignore excluded path names, errors etc.

4. Append the entry to the correct file in the combined log file tree.

After all the combined log files have been updated, they should then be processed in place by

lsort which sorts the entries in the files by date and time. They can also be compressed in

place using lsqueeze to save disk space.

Summarizing combined log files

Once the information has been put in the combined log file format, it can then be

summarized. This is equivalent to indexing by some fields in the log file, in database terms,

but for this specialized case it was decided that simpler programs could be written and used

rather than needing a full database.

The summarizing in this case consists of summing the byte and access counts indexed by

 Date and Time (sum-counts)

 A textual field (sum-names) eg user, site and path names.

The output of the summary, a summary file, can then be formatted and presented to the user

as ASCII text or HTML output.

Summary Files

Since each summary file has potentially a different number of fields, this must be encoded in

the summary file. Other information to encode is: the period (Datetime) covered by the

summary; the totals for the byte and access counts; the number of data entries and an

indication of the sort field if the data has been sorted.

This gave the following design for the elements in a summary file:

period start datetime end datetime

The datetime (format as described earlier) period over which this data has been

collected. This must be the first element - it is currently used by all summary

programs to recognise a summary file from a combined log file.

fields fields

The field names separated by a space. Mandatory element.

field-widths widths

http://www.cs.kent.ac.uk/pubs/1995/155/content.html#comblogfieldssec

The width of each field, separated by a space. This can be calculated during

processing and remove duplication of work for later programs. Optional element.

sort-field sort field name

The name of the field by which this data was sorted. This is not used for the sum-

counts program output. The type of the sort field determines whether the sorting will

be done numerically or alphabetically. Optional element - when missing implies

unsorted data.

totals total access counts total bytes

The totals of the numeric data which could be used later for further processing.

Optional element.

entries number of entries

The number of data entries following. Optional element.

data ..

The data summarized - space separated data corresponding to the fields described in

the fields element above. These must be the last entries in the summary file, and none

of the above elements must appear after the first data element. Mandatory element (if

there is any data).

Summary File Operations

sum-names program

Summarizies the byte OR access counts with respect to any text field such as the name

(path), email or site fields. In addition, the program can alter the site to be either an institution

- a guess of the `real' site or a country and can reverse the site to give a reversed-domain

name.

sum-counts program

Summarizes the byte counts and access count fields. It outputs a file indexed by date scheme

which are:
scheme scheme name scheme values

--

per hour of the day per_hour 00 to 23 (or ?? if not known)

per day of the month per_day 01 to 31

per month of the year per_month 01 to 12

date date YYYY-MM-DD

month-year month YYYY-MM

year year YYYY

total total -

The fields output are the scheme name followed by the scheme value and then the byte/access

counts for each type seen.

print-entries program

Both of the above programs work on complete log files (or work as filters) but often a

summary is required over a particular date period that doesn't correspond to whole combined

log files. In this case, this program can be used to output the entries for a given period and

this output, which is a combined log file, can then be piped into one of the above summary

programs (or stored in a temporary file).

sum-sort program

Sort a summary file by any field - this only makes sense for data produced by sum-names

since sum-counts outputs data already sorted by scheme and scheme-value.

sum-format program

Print the data prettily, either as text or HTML. It also allows a ranking to be given, for `top

10s' and percentage of the totals to be calculated for each entry.

print-scheme program

Print a particular scheme, from a summary-by-count for example, this is the total scheme for

January 1994:
Data Period: 1994-01-01-00:56:55 to 1994-01-31-23:16:29

Data Summary for scheme: total

Type || bytes %bytes | Accesses %Acc. | Avg. Xfer

ftp || 296,970,244 88.37 | 5,494 60.92 | 54,054

gopher || 38,103,232 11.34 | 3,380 37.48 | 11,273

fbr-howftp || (2,772,384) (0.82) | (11) (0.12) | (252,035)

fbr-email || (934,670) (0.28) | (9) (0.10) | (103,852)

http || 661,115 0.20 | 132 1.46 | 5,008

mserv || 319,060 0.09 | 12 0.13 | 26,588

fbr || 7,188 0.00 | 1 0.01 | 7,188

total || 336,060,839 100.00 | 9,019 100.00 | 37,261

From this it is easy to see the most common access method at that time was ftp with World

Wide Web http entries (new at the time) just starting up. The final column is the average

transfer size which, as could be expected, gives much smaller values for http than the other

methods.

build-sums program

This builds a cache of summaries for the current log files and generates super-summaries by

month, year and in totals. This means a complete running total of all the statistics required

over the entire life of the archive can be kept. It supports keeping up-to-date summaries for

many types - count, site, country etc.

Other programs

Several auxiliary programs were also written to work on combined log and summary files

including: sum-grep to do a pattern match in the output of summary-by-name files - it has to

be used to preserve the totals; and lgrep for a similar operation on combined log files.

Results

At HENSA Unix[3], the system has been keeping up-to-date summaries of all the transfers

since the archive was opend - currently (February 1995) over four years of logs, 300

gigabytes of data sent and 10 million accesses are kept up to date.

http://www.cs.kent.ac.uk/pubs/1995/155/content.html#footnote3

With a concrete design like this, there are likely to be missing things that need to be added

later. An example of this is the result code returned by the HTTP daemons (amongst others).

Since no result field existed, it was appended to the operation field where it can be found if

needed. Since most operations succeed, it makes the failed ones stand out:

http txfile/fail=404 1995-02-01-02:25:06 /ftp/pub/parallel/othe\

r-sites.html 248 - abcdefgh.ijk.EDU -

Recently, archie logs were recently added to the system. The new code to do this took less

than 30 minutes and was easily added. The query was placed in the name field, which, with

hindsight, should probably be described as a request. Like described above, since there was

no response / reply / status field, the number of hits returned was just appended to the

operation field:
archie query/matches=19/esttime=40 1994-11-01-01:06:10 wnbff2\

0b.zip - nobody 123.456.789.01 -

Conclusions

A flexible and efficient combined log system has been designed and implemented. It

automatically processes active log files being written concurrently by software daemons,

stores the collected information in a readily accessible format and provides summaries for

users. In addition, it is easily customisized and the data generated is easy to access by

programs outside the system, since each line has an easy-to-use format that well known

programs like grep, awk, sed and wc can process.

If you wish to obtain and try out this software, it can be found at the HENSA Unix[3] archive

by WWW[4], ftp[5] or email[6].

Thanks go to the HENSA Unix staff: Maggie Bowman, Tim Hopkins and Neil Smith for their

help in designing of this software and for looking over much earlier drafts of this paper as

well to the anonymous reviewers for their useful comments.

References

[conolly95]
Daniel W Conolly: Public Text of the HTML 2.0 Specification, 1995,

<URL:http://www.hal.com/users/connolly/html-spec/>

[fielding94]
Roy Fielding: wwwstat, processes only NCSA WWW logs, March 1994,

<URL:http://www.ics.uci.edu/WebSoft/wwwstat/>

[hughes94]
Kevin Hughes: getstats, processes gopher plus CERN, NCSA, Plexus, GN and

common WWW logs, February 1994,

<URL:http://www.eit.com/software/getstats/getstats.html> and

<URL:ftp://ftp.eit.com/pub/web.software/getstats/>

[magid94]
Jonathan Magid: fwgstat, processes FTP, Gopher, WAIS and the NCSA and Plexus

HTTP logs, 1994, <URL:ftp://ftp.sunet.se/pub/archiving/ftp/fwgstat-0.035.shar>

[myers94]
Chris Myers: xferstats, processes only FTP logs and available as part of the

Wuarchive FTP daemon software, 1994,

http://www.cs.kent.ac.uk/pubs/1995/155/content.html#footnote3
http://www.cs.kent.ac.uk/pubs/1995/155/content.html#footnote4
http://www.cs.kent.ac.uk/pubs/1995/155/content.html#footnote5
http://www.cs.kent.ac.uk/pubs/1995/155/content.html#footnote5
http://www.hal.com/users/connolly/html-spec/
http://www.ics.uci.edu/WebSoft/wwwstat/
http://www.eit.com/software/getstats/getstats.html
ftp://ftp.eit.com/pub/web.software/getstats/
ftp://ftp.sunet.se/pub/archiving/ftp/fwgstat-0.035.shar

<URL:ftp://unix.hensa.ac.uk/pub/walnut.creek/FreeBSD/FreeBSD-

current/ports/net/wu-ftpd/ util/xferstats>

Footnotes

[1]

This work was done with funding from COMETT for transputer and occam training

and the JISC SEL-HPC project.

[2]

Parallel Computing Archive at HENSA Unix -

<URL:http://www.hensa.ac.uk/parallel/>.

[3]

HENSA Unix Archive - <URL:http://www.hensa.ac.uk/>.

[4]

Combined Log Tools by WWW -

<URL:http://www.hensa.ac.uk/tools/www/logtools/>

[5]

Combined Log Tools by ftp - <URL:ftp://unix.hensa.ac.uk/tools/www/logtools/>/>

[6]

Combined Log Tools by sending an email message to archive@unix.hensa.ac.uk

with the contents: send /tools/www/logtools/README or help for more

information.

ftp://unix.hensa.ac.uk/pub/walnut.creek/FreeBSD/FreeBSD-current/ports/net/wu-ftpd/util/xferstats
ftp://unix.hensa.ac.uk/pub/walnut.creek/FreeBSD/FreeBSD-current/ports/net/wu-ftpd/util/xferstats
http://www.hensa.ac.uk/parallel/
http://www.hensa.ac.uk/
http://www.hensa.ac.uk/tools/www/logtools/
ftp://unix.hensa.ac.uk/tools/www/logtools/

