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� Introduction �

The representation of n�dimensional continuous surfaces often employs a discrete lattice
of n�dimensional cube cells� For instance� the Marching Cubes method �Lorensen and
Cline ���	
� locates the surface lying between adjacent vertices of the n�cube edges in
which the cell vertices represent discrete sample values� The volume�s surface exists at
a point of zero value� it intersects any cube edge whose vertex values have opposing
sign�
Ambiguities occur in the cells whose vertex set show many sign alternations� Geo�

metrically� the surface intersects one face of the n�cube through each of its four edges�
It is these special cases which engenders the need for resolution as a central concern
in surface modeling� This gem reviews and illustrates the disambiguation strategies
described in the literature�

� Background �

In an ideal surface algorithm� the features of the surface geometry should match those
of the underlying surface� In particular� if the original surface is continuous� the rep�
resentational model must preserve this continuity� Most practical algorithms create
spurious holes �false negatives
 or additional surfaces �false positives
 depending on the

eagerness� of the algorithm in joining pieces of the surface model along adjacent cube
faces� This is the consequence the 
ambiguous face� n�cube present in any dimension
n �� � and whose vertex signs resemble a spatial 
checkerboard� �Figure �
� The
abutting of two cubes having such faces then introduces the possibility of false positives
or negatives �Figure �
�
In this gem� we refer to the vertex classi�cation with respect to the threshold as
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Figure 1. Ambiguous Face Choices

Surface showing false negative Ideal surface

Figure 2. Ambiguous Face

inside or outside the surface� and the surface intersects the edge between an inside and
an outside vertex� shown grey on the diagrams� linear interpolation is used to calculate
this position� The ambiguous face can be estimated using the vertex classi�cation� but
can never be completely disambiguated�
The local surface contours can be represented by sections of a hyperbola and the

ambiguous face can be one of three orientations �Figure �
� therefore� the cross repre�
sentation is the other orientations taken to the limit� and is normally discarded�
The cells can be subdivided into further n�cubes or into simplices� A simplex is the

simplest non�degenerate object in n�dimensions �Hanson �����Moore ����a
� e�g� a
triangle in two dimensions and a tetrahedron in three dimensions� A simplex is always
unambiguous and so can be used in an n�cube disambiguation strategy�

� Static Analysis �

To disambiguate the ambiguous face the static techniques consider only the vertex
classi�cation points� they do not introduce extra classi�cation points� These methods
are generally fast� but they do not guarantee an ideal or faithful surface�

Uniform Orientation: always present the surface at a common orientation whenever
the evaluation of an ambiguous face is encountered� Computation of orientation can
can be implemented using a lookup table �Lorensen and Cline ���	
 or by algorithm
�Wyvill et al� �����Bloomenthal �����Bloomenthal ����
� If the data resolution is high
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Figure 3. Fixed Orientation
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Figure 4. Adjacent Cell Disambiguation

the surface segments will be small and the anomalies unnoticeable �unless the surface
is zoomed
� This method is simple to implement and is fast to execute�

Face Adjacency: in some cases the adjacent cell con�guration can be used to disam�
biguate the n�cube �Duurst �����Zahlten ����
� for example� if an 
inverted� cube and
a 
normal� cube orientation are adjacent then the surface should be added �Figure �
�
The new surface intersects the diagonal between the non�adjacent vertices c and d�
where vertex d is inside and vertex c is outside the surface�

Simplex Decomposition: in two dimensions the square can be decomposed into two
triangle segments� and treated as by the 
Uniform Orientation� method� In three
dimensions the cube has many decompositions into tetrahedra �Moore ����b�Moore
����a
 �Figure �
� examples of �ve tetrahedra �Ning and Bloomenthal ����
 and six
tetrahedra �Zahlten ����
 behave like the 
Fixed Orientation� method in that they
add an extra diagonal which a�ects the connectivity of the surface� The orientation of
the diagonal is determined by the simplex decomposition� To maintain surface consis�
tency� neighboring n�cubes should have the same diagonal orientation �mirrored simplex
orientation
�
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5 tetrahedra orientation

The middle
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Figure 5. Simplex Decompositions, and surfaces

� Interpolation Analysis �

This section reviews disambiguation techniques that require the computation of addi�
tional values or vertices for the decision� The values are often created by methods of
tri�linear interpolation �Hill ����
 and other methods such as tri�cubic interpolation
�Arata ����
�

Closest Orientation: the four face intersection points are located by linear interpo�
lation� the total length of the connecting paths calculated� and the orientation having
the shortest path is chosen �Mackerras ����
� If both paths are the same length then
the cross con�guration is chosen �Cottifava and Moli ����
� In Figure �� the 
Closest
Orientation� technique would select con�guration A�

Resampling: the data is resampled at a higher resolution and solution reattempted�
This is possible only when the data is algorithmically obtained or readily resampled�
Moreover� ambiguities may still remain at the higher resolution�
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Figure 6. 12 Tetrahedra Orientation in a cube

Interpolation: the data resolution is doubled using a tri�linear interpolation �Hill
����
 or a tri�cubic interpolation� The tri�cubic interpolation considers points outside
the local neighbors� As with the Resampling technique� ambiguities may still occur at
the �ner resolution� �A variation reinterpolates merely the ambiguous cells�


Subdivision: all the n�cubes that are on the surface are sub�divided �using linear
interpolation
 until a prede�ned limit is reached� The limit can be the pixel size e�g�

Dividing Cubes �Cline et al� ����
� or smaller �Cook et al� ���	
� Each sub�cube is
either inside� outside or on the surface� and may be shaded and projected onto the
view plane� Tri�linear interpolation cannot introduce an ambiguous case� but might
not �therefore
 faithfully model the surface� However� adaptive subdivision techniques
�using interpolation or resampling methods
 can be used at points of great interest or
high curvature �Bloomenthal ����
�

Simplex Decomposition: in two dimensions the two�cube can be decomposed into
two or four triangles �Figure �
� with two triangles the method is similar to the 
Uniform
Orientation� strategy� but with four triangles an extra center vertex is required� This
can be obtained by averaging the four vertices �i�e� bi�linear interpolation
� If the
center value is inside the threshold then orientation B is chosen otherwise orientation
A is used �Figure �
� This method is often named 
facial average� and can be used on
any n�cube face when n � � �Wyvill et al� �����Wilhelms and Gelder �����Hall ����
�
In three dimensions the three�cube can be divided into twelve tetrahedra and the

value at the center of the cube is required �using tri�linear interpolation
 �Figure �
�

Bilinear Contours: the contours of the image can be represented �locally
 by parts
of a hyperbola �Nielson and Hamann ����
� The ambiguous face occurs when both
parts of the hyperbola intersect a face� therefore� the topology of the hyperbola equals
the connection of the contour� The correct orientation is achieved by comparing the
threshold with the bilinear interpolation at the crossing point of the asymptotes of the
hyperbola� given by� P�P��P�P�

P��P��P��P�
�Figure 	
� If the interpolation value is less than

the threshold then use orientation A otherwise use orientation B�
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Figure 7. Bilinear Contours

Ambiguous Cell

Gradient 
calculations

Figure 8. Gradient Disambiguation

Gradient: disambiguation of the cell can be achieved by calculating the gradient con�
tribution �Ning and Bloomenthal �����Wilhelms and Gelder ����
� from the neigh�
boring faces which point towards the center of the ambiguous face� These gradient
contributions can be added to the four face vertex values and used to create a bet�
ter approximation for the center of that face� This center value can then be used to
disambiguate the cell �Figure �
�

Quadratic: disambiguation can be achieved by �tting a quadratic curve to the local
values �using the method of least�squares
� The orientation of the curve is then used to
disambiguate the face �Wilhelms and Gelder �����Ning and Bloomenthal ����
�

� Summary �

The n�cube with an ambiguous face can never be disambiguated by the vertex classi��
cation alone� however� at high resolutions the anomalies become unnoticeable�
The Simplex decomposition strategies work well if a center vertex is calculated� but

they accrue many triangle elements�
Subdivision techniques can be used to view an enlargement of the image without false

positives and negatives appearing� and the pixel sized cubes are then projected onto
the viewing plane using a gradient shading based upon the four vertices� Subdivision
techniques also eliminate degenerate triangle segments� Degenerate segments �very
small triangle pieces
 occur when the data resolution is high� or at the edge of the
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Ideal surfaceSurface showing shared face

Figure 9. Concave Triangle Surfaces

evaluation mesh� The degenerate triangles degrade the rendering e�ciency� Degenerate
triangles can also be reduced by using a 
bending� technique �Moore and Warren ����
�
The Gradient and Quadratic methods are more accurate and more expensive than

other methods� but they are useful if the sampling rate is low and if the data cannot
be resampled�
Most disambiguation strategies� after deciding on the face orientation� place an extra

surface section on the face� However� two such adjacent surfaces may share a common
face� To resolve this� concave surfaces are used �Nielson and Hamann ����
 �Figure �
�
In the choice of disambiguation strategy there is a contention between speed and

�delity� Static methods are generally faster but can lead to erroneous surfaces� When
the data resolution is su�ciently high these artifacts are not signi�cant�
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