University of

"1l Kent Academic Repository

Thompson, Simon (1995) Regular Expressions and Automata using Miranda.
Other. UKC (Unpublished)

Downloaded from
https://kar.kent.ac.uk/21260/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21260/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Regular Expressions and Automata
using Miranda
Simon Thompson

Computing Laboratory
Univerisity of Kent at Canterbury

May 1995

Contents

1 Introduction 1
2 Regular EXpressions 2
3 Matchingregularexpressons L. 4
4 SES. . .. e e 6
5 Non-deterministic Finite Automata 11
6 SimulatinganNFA L 13
7 Implementinganexample Lo 16
8 Building NFAsfromregular expressions. 17
9 Deterministicmachines o 20
10 Transforming NFAStoDFAS 23
11 MinimisingaDFAo 25
12 Regular definitions 27

1. Introduction

In these notes Miranda is used as a vehicle to introduce regular expressions, pattern
matching, and their implementations by means of non-deterministic and deterministic

(© Simon Thompson, 1995

automata.

As part of the material, we give an implementation of the ideas, contained in a set
of files. References to this material are scattered through the text. The files can be
obtained by following the instructionsin

http://www.ukc.ac.uk/computer_science/Miranda craft/regExp.html

This material is based on the treatment of the subject in [Aho et. al.], but provides full
implementations rather than their pseudo-code versions of the algorithms.

The material gives an illustration of many of the features of Miranda, including
polymorphism (the states of an NFA can be represented by objects of any type); modu-
larisation (the system is split across anumber of modules); higher-order functions (used
in finding limits of processes, for example) and other features. A tutorial introduction
to Miranda can be found in [Thompson].

The paper begins with definitions of regular expressions, and how strings are
matched to them; this also gives our first Miranda treatment also. After describing
the abstract data type of sets we define non-deterministic finite automata, and their
implementationin Miranda. We then show how to build an NFA corresponding to each
regular expression, and how such a machine can be optimised, first by transforming it
into a deterministic machine, and then by minimising the state space of the DFA. We
conclude with adiscussion of regular definitions, and show how recognisers for strings
matching regular definitions can be built.

2. Regular Expressions

Regular expressions are patterns which can be used to describe sets of strings of
characters of various kinds, such as

¢ the identifiers of a programming language — strings of aphanumeric characters
which begin with an alphabetic character;

e the numbers—integer or real —given in aprogramming language; and so on.
There are five sorts of pattern, or regular expression:

€ Thisisthe Greek character epsilon, which matches the empty string.
x x isany character. This matches the character itself.

(r;|rz) r;andr, areregular expressions.
(riry) r; and r, areregular expressions.
(r)* r isaregular expression.

Examplesof regular expressionsinclude (a | (ba)), ((ba) | (¢]| (a) *)) andhello.
In order to give a more readable version of these, it is assumed that * binds more
tightly than juxtaposition (i.e. (r;r;)), and that juxtaposition binds more tightly than
(ri|rz). Thismeansthat r;r,* will mean (r; (r;) *), not ((r,r,)) *, and that
ri|rors willmean vy | (rars), not (rp|ry) rs.
A Miranda algebraic type representing regular expressionsis given by

reg ::= Epsilon |
Literal char |
Or reg reg |
Then reg reg |
Star reg

This definition and those which follow can be found in the file regexp.m. The
Miranda representationsof (a| (ab)) and ((ba) | (¢] (a) *)) are

Or (Literal 'a’) (Then (Literal 'a’) (Literal 'b’))
Or (Then (Literal ’'b’) (Literal 'a’))
(Or Epsilon (Star (Literal ’'a’)))

respectively. Inorder to shorten these definitionswe will usually define constant literals
such as

Literal ’a’
Literal 'b’

a
b

so that the expressions above become
Or a (Then a b) Or (Then b a) (Or Epsilon (Star a))
If we use the infix forms of Or and Then, $Or and $Then, they read

a $Or (a $Then b)
(a $SThen b) $Or (Epsilon $Or (Star a))

Functionsover thetype of regular expressions are defined by recursion over the structure
of the expression. Examplesinclude

literals :: reg -> [char]

literals Epsilon = []

literals (Literal ch) = [ch]

literals (Or rl r2) = literals rl ++ literals r2
literals (Then rl r2) = literals rl ++ literals r2
literals (Star r) = literals r

which prints alist of the literals appearing in a regular expression, and
printRE :: reg -> [char]

printRE Epsilon = "@"
printRE (Literal ch) = [chl]
printRE (Or rl r2)

= "(" ++ printRE rl ++ "|" ++ printRE r2 ++ ")"
printRE (Then rl r2)

= "(" ++ printRE rl ++ printRE r2 ++ ")"
printRE (Star r) = "(" ++ printRE r ++")*"

which givesaprintableform of aregular expression. Notethat ' @ isused to represent
epsilonin ASCII.

Exercises
1. Writeamorereadableformof theexpression ((((a|b) |c) ((a)*| (b) *)) (c|d)).
2. What isthe unabbreviated form of ((x?) * (y?) *) +?

3. Matching regular expressions

Regular expressions are patterns. We should ask which strings match each regular
expression.

€ The empty string matches epsilon.
X The character x matches the pattern x, for any character x.
(r1|rz) Thestring st will match (r, |r,) if st matcheseither r; or r, (or both).

(riry) Thestring st will match (r,r,) if st canbe splitinto two substrings st
and st,, st = st;++st,, sothat st; matches r; and st, matches r,.

(r)* Thestring st will match (r) * if st canbesplitintozero or more substrings,
st = sti++st,++...++st,, each of which matches r. The zero case
impliesthat the empty string will match (r) * for any regular expression r.

This can be implemented in Miranda, in thefilematches . m. Thefirst three cases are
asimple trandliteration of the definitions above.

matches :: reg -> string -> bool
matches Epsilon st = (st = "")
matches (Literal ch) st = (st = [chl])
matches (Or rl r2) st

= matches rl st \/ matches r2 st

In the case of juxtaposition, weneed an auxiliary function which givesthelist containing
all the possible ways of splitting up alist.

splits :: [*] -> [([*],[*]) 1

splits st = [(take n st,drop n st) | n <- [0..#st]]
For example, splits [2,31 s [([],[2,31),([2],1(31),([2,3]1,[1)].
A string will match (Then r1 r2) if at least one of the splits gives strings which

match r1 and r2.

matches (Then rl r2) st
= or [matches rl sl & matches r2 s2 | (sl,s82)<-splits st]

Thefinal caseisthat of Star. We can explain a* as either = or as a followed by a*.

We can use thisto implement the check for the match, but it is problematic when a can
be matched by . When this happens, the match istested recursively on the same string,
giving an infinite loop. Thisisavoided by disallowing an epsilon match on a —thefirst
match on a has to be non-trivial.

matches (Star r) st
= matches Epsilon st \/
or [matches r sl & matches (Star r) s2 |
(sl,s82) <- frontSplits st]
frontSplits isdefined like splits but soastoexcludethesplit ([]1,st).
Exercises

3. Argue that the string ¢ matches (a | (bc) *) * and that the string abba matches
a((bla)*(ba)*).

4. Why does the string bab not match a ((b|a) * (ba) *) ?

5. Give informal descriptions of the sets of strings matching the following regular
expressions.

(a|b)*a(a|b)*a(a|b) (a|b)*a(a|b) (a|b)
ela|b|ba|b? (ab) +a?

6. Give regular expressions describing the following sets of strings
e All strings of as and bs containing at most two as.
e All strings of as and bs containing exactly two as.
e All strings of as and bs of length at most three.

e All strings of asand bs which contain no repeated adjacent characters, that is no
substring of the form aa or bb.

4, Sets

A setisacollection of elements of a particular type, which isboth like and unlike alist.
Lists are familiar from Miranda, and examples include

[Joe, Sue, Ben] [Ben, Sue, Joe]
[Joe, Sue, Sue,Ben] [Joe, Sue,Ben, Sue]

Each of these listsis different — not only do the elements of a list matter, but also the
order in which they occur, and their multiplicity (the number of times each element
OCCUrs).

In many situations, order and multiplicity areirrelevant. If wewant to talk about the
collection of people coming to our birthday party, we just want the names — we cannot
invite someone more than once, so multiplicity isnot important; the order we might list
theminisalso of nointerest. In other words, all we want to know is the set of people
coming. Inthe example above, thisisthe set containing Joe, Sue and Ben.

Sets can be implemented in a number of ways in Miranda, and the precise form is
not important for the user. It is sensible to declare the type as an abstract data type, or
abstype, illustrated in Figure 1. The abstype and itsimplementation are found in
thefilesets.m.

The implementation we have given represents a set as an ordered list of elements
without repetitions. Theindividua functionsare described and implemented asfollows.

sing a isthesingleton set, consisting of the single element a
sing a = [al

union, inter,diff give the union, intersection and difference of two sets. The
union consists of the elements occurring in either set (or both), the intersection of those
elementsin both sets and the difference of those elementsin the first but not the second
set; their definitions are given in Figure 2.

The empty set isthe empty list

empty = []
memset x a testswhether a isamember of theset x. Notethat thisisan optimisation

of the function member over lists; since the list is ordered, we need look no further
once we have found an element greater than the one we seek.

memset [] b = False
memset (a:x) b = memset x b , 1f a<b
= True , 1f a=b

= False , otherwise

abstype set *

with

sing 11 * -> get *

union, inter,diff :: set * -> set * -> get *

empty :: set *

memset :: set * -> * -5 Dbool

subset :: set * -> set * -> bool

egset :: set * -> set * -> bool

mapset i (% -> **) -5 get * -> get **
filterset, separate :: (*->bool) -> gset * -> get *
foldset 1 (¥ -> % -5 *¥) -5 * -5 get * -> *
makeset :: [*] -> set *

showset :: (*->[char]) -> set * -> [char]
card :: set * -> num

flatten :: set * -> [*]

setlimit :: (set * -> get *) -> set * -> get *

Figure 1. The set abstype

union [] vy =y
union x [] = X
union (a:x) (b:y) = a union x (b:vy) , 1f a<b
= a union x y , if a=b
=Db union (a:x) y , otherwise
inter [] v = []
inter x [] = []
inter (a:x) (b:y) = inter x (b:y) , 1f a<b
= a : inter x vy , if a=b
= inter (a:x) vy , otherwise
diff [] y = I[I
diff x [] = x
diff (a:x) (b:y) = a : diff x (b:y) , 1f a<b
= diff x vy , if a=b
= diff (a:x) vy , otherwise

Figure 2: Set operations

subset x y testswhether x isasubset of y; that iswhether every element of x isan
element of y.

True
False

subset [] vy
subset x []

subset (a:x) (b:y) = False , 1f a<b
= subset x vy , 1f a=b
= subset (a:x) vy , 1f asb

egset x vy testswhether two sets are equal.
egset = (=)

mapset, filterset and foldset behavelikemap, filter and foldr except
that they operate over sets. separate isasynonymfor filterset.

mapset £ = makeset . (map f)
filterset = filter
separate = filterset

foldset = foldr

makeset turnsalistinto a set

makeset = remdups . sort
where
remdups [] = []
remdups [a] = [al
remdups (a:x) = a : remdups x , if a < b
= remdups X , otherwise
where
b = hd x

showset £ givesaprintableversion of aset, oneitem per line, using the function £
to give a printable version of each element.

showset f = concat . (map ((++"\n") . f))

10

card x givesthe number of elementsin x
card = (#)

flatten xturnsaset x into anordered list of the elements of the set
flatten = id

setlimit £ x givesthe'limit’ of the sequence
x , £tx, £ (£fx) , £ (£ (f x)) ,

that isthefirst element in the sequence whose successor isequal, as a set, to the element
itself. In other words, keep applying £ until afixed point or limit is reached.

setlimit £ x = x , if egset x next
= getlimit £ next , otherwise
where
next = £ x
Exercises
7. How isthefunctionpowerSet :: set * -> set (set *) whichreturns

the set of all subsets of a set defined?
8. How would you define the functions

setUnion :: set (set *) -> set *
setInter :: set (set *) -> set *

which return the union and intersection of a set of sets?

9. Can infinite sets (of numbers, for instance) be adequately represented by ordered
lists? Can you tell if two infinite lists are equal, for instance?

10. The abstype set * can be represented in anumber of different ways. Alternatives
include: arbitrary lists (rather than ordered lists without repetitions), and bool ean val ued
functions, that is elements of thetype * -> bool. Give implementations of the type
using these two representations.

11

5. Non-deter ministic Finite Automata

A Non-deterministic Finite Automaton or NFA is a simple machine which can be used
to recognise regular expressions. It consists of four components

e A finite set of states, 5.

A finite set of moves.

A start state (in \5).
e A set of terminal or final states (a subset of 5).

In Miranda (seefilenfa_types.m) thisiswritten

nfa * ::= NFA

This has been represented by an algebraic type rather than a 4-tuple simply for read-
ability. The type of states can be different in different applications, and indeed in the
following we use both numbers and sets of numbers as states.

A move is between two states, and is either given by a character, or an <.

move * ::= Move * char * |
Emove * *

Thefirst example of an NFA, called ™, follows.

Thestatesare 0, 1, 2, 3, withthe start state 0 indicated by an incoming arrow, and the
final states indicated by shaded circles. In this case thereisasingle final state, 3. The
moves are indicated by the arrows, marked with characters a and b in this case. From

12

state 0 there are two possible moves on symbol a, to 1 andtoremainat 0. Thisisone
source of the non-determinism in the machine.
The Miranda representation of the machineis

NFA

(makeset [0..3])

(makeset [Move 0 'a’ 0 ,
Move 0 'a’ 1 ,
Move 0 b’ 0 ,
Move 1 'b’ 2 ,
Move 2 ‘b’ 3 1)

0

(sing 3)

A second example, called N, isillustrated below.

The Miranda representation of this machineis

NFA

(makeset [0..5])

(makeset [Move 0 'a’ 1,
Move 1 b’ 2,
Move 0 ’'a' 3,
Move 3 ’'b’ 4,

Emove 3 4,

Move 4 'b’ 5 1)
0
(makeset [2,5])

This machine contains two kinds of non-determinism. Thefirstis at state 0, fromwhich

13

it is possible to move to either 1 or 3 on reading a. The second occurs at state 3: itis
possible to move ‘invisibly’ from state 3 to state 4 on the epsilon move, Emove 3 4.

The Miranda code for these machines together with afunctionprint_nfa to print
an nfawhose states are numbered can be found inthefilenfa misc.m.

How do these machines recognise strings? A move can be made from one state s to
another t either if the machine contains Emove s t or if the next symbol to be read
is, say, a and the machine contains amove Move s a t. A string will be accepted
by a machine if there is a sequence of moves through states of the machine starting at
the start state and terminating at one of the terminal states —thisis called an accepting
path. For instance, the path

a b b

0O0—1 —2—73

isan accepting path through M for the string abb. Thismeansthat the machineM accepts
this string. Note that other paths through the machine are possible for this string, an

example being
a b b

00— 0 —0—720

All that is needed for the machine to accept is one accepting path; it does not affect
acceptance if there are other non-accepting (or indeed accepting) paths. More than one
accepting path can exist. Machine N accepts the string ab by both

a b

00— 1 —2

and

02,3 E,4 P, ¢

A machine will rgject a string only when there is no accepting path. Machine N rejects
the string a, since the two paths through the machine labelled by a fail to terminate in
afina state:

031 o0-%3

Machine N regjects the string aa since thereis no path through the machine labelled by
aa: after reading a the machine can bein state 1, 3 or 4, from none of these can an a
move be made.

6. Simulating an NFA

Aswas explained in the last section, astring st isaccepted by a machineM when there
is at least one accepting path labelled by st through M, and is rejected by M when no
such path exists.

14

The key to implementation is to explore simultaneously all possible paths through
the machine labelled by a particular string. Take as an informal example the string ab
and the machine N. After reading no input, the machine can only be in state 0. On
reading an a there are moves to states 1 and 3; however this is not the whole story.
From state 3 it is possible to make an c-moveto state 4, so after reading a the machine
can beinany of thestates {1,3,4}.

Onreading ab, we have to look for all the possible b moves from each of the states
{1,3,4}. From 1 we can move to 2, from 3 to 4 and from 4 to 5 — no e-moves
are possible from the states {2, 4, 5}, and so the states accessible after reading the
string ab are {2, 4, 5}. Isthisstring to be accepted by N? We accept it exactly if the
set contains a final state — it contains both 2 and 5, so it is accepted. Note that the
states accessible after reading a are {1, 3, 4}; this set contains no final state, and so
the machine N regjects the string a.

There is ageneral pattern to this process, which consists of arepetition of

o Take aset of states, such as {1, 3, 4}, and find the set of states accessible by a
move on a particular symbol, e.g. b. Inthiscaseitistheset {2,4,5}. Thisis
caled onemove innfa_lib.m.

o Take a set of states, like {1, 3}, and find the set of states accessible from the
states by zero or more c-moves. In thisexample, itistheset {1,3,4}. Thisis
the e-closure of the original set, andiscalled closure innfa_ lib.m.

The functions onemove and closure are composed in the function onetrans, and
thisfunctionisiterated along thestring by thet rans functionof implement nfa.m.

Implementation in Miranda

We discuss the development of the function
trans :: nfa * -> string -> set *
top-down. Iteration along astringisgiven by foldl

foldl :: (set * -> char -> set *)
-> gset * -> string -> set *

foldl £ r []
foldl £ r (c:cs)

r
foldl £ (£ r ¢) cs

15

The first argument, £, is the step function, taking a set and a character to the states
accessible from the set on the character. The second argument, r, is the starting state,
and the final argument is the string along which to iterate.

How does the function operate? If given an empty string, the start state isthe result.
If givenastring (c:cs), thefunctioniscalled again, with thetail of the string, cs, and
with a new starting state, (f r c¢), which isthe result of applying the step function
to the starting set of states and the first character of the string. Now to develop trans.

trans mach str
= foldl step startset str

where
step set ch = onetrans mach ch set
startset = closure mach (sing (startstate mach))

step is derived from onetrans simply by suppling its machine argument mach,
similarly startset isderived fromthe machinemach, usingthefunctionsclosure
and startstate. All these functions are defined innfa_1ib.m. We discuss their
definitions now.

onetrans :: nfa * -> char -> set * -> get *

onetrans mach ¢ x = closure mach (onemove mach c¢ X)
Next, we examine onemove,

onemove :: nfa * -> char -> set * -> sget *

onemove (NFA states moves start term) c X

= makeset [s | t <- flatten x ;
Move z d s <- flatten moves ;
z=t ; c=d]

The essential ideahereisto runthrough the elements t of the set x and the set of moves,
moves looking for all c-moves originating at t. For each of these, the result of the
move, s, goes into the resulting set.

The definition uses list comprehensions, so it isnecessary first to £ 1at ten the sets

16

x and moves into lists, and then to convert the list comprehension into a set by means
of makeset.

closure :: nfa * -> set * -> set *

closure (NFA states moves start term)
= setlimit add

where

add stateset = union stateset (makeset accessible)
where
accegsible

= [s | x <- flatten stateset ;
Emove y s <- flatten moves ;

y=x]

The essence of closure istotake thelimit of the function which addsto a set of states
all those stateswhich are accessible by asingles-move; inthelimit we get aset to which
no further states can be added by ¢-transitions. Adding the states got by single =-moves
is accomplished by the function add and the auxiliary definition accessible which
resembles the construction of onemove.

7. Implementing an example

The machine P isillustrated by

Machine p

RO O
b

Exercise
11. Givethe Miranda definition of the machine P.

17

The =-closure of the set {0} isthe set {0,1,2,4}. Looking at the definition of
closure above, thefirst application of the function add to {0} givestheset {0, 1};
applying add to thisgives {0,1, 2, 4}. Applying add to this set gives the same set,
hence thisis the value of set1imit here. The set of states with which we start the
simulation is therefore {0, 1,2, 4}. Suppose thefirst input is a; applying onemove
reveals only one a move, from 2 to 3. Taking the closure of the set {3} gives the set
{1,2,3,4,6,7}. A b movefromhereisonly from 4 to 5; closing under c-moves
gives{1,2,4,5,6,7}. An a move from here is possible in two ways: from 2 to
3 and from 7 to 8; closingup {3, 8} gives{1,2,3,4,6,7,8}. Isthe string aba
therefore accepted by P? Yes, because 8 isamember of {1,2,3,4,6,7,8}. This
sequence can be illustrated thus

€

0——=0 1 1 a € 1
1 a € 2 2 —==3 —=2

2 ——3 ——=3 b € 4 4

4 4 —=5 ——=5 5

6 6 a) 6

7 7 —=8 —=>7

8

Exercise
12. Show that the string abb is not accepted by the machine p.

8. Building NFAsfrom regular expressions

For each regular expression it is possible to build an NFA which accepts exactly those
strings matching the expression. The machines are illustrated in Figure 3.

The construction is by induction over the structure of the regular expression: the
machines for an character and for are given outright, and for complex expressions,
the machines are built from the machines representing the parts. It is straightforward to
justify the construction.

(e|£) Any path through M (e | £) must be either a path through M (e) or a path
through M (£) (with e at the start and end.

ef Any path throughM (ef) will be apath throughM (e) followed by a path through
M(f).

18

M(E) M(a)

¢
&
O
&

M(ef)

Figure 3: Building NFAs for regular expressions

19

e* Pathsthrough M (e*) are of two sorts; the first is simply an ¢, others begin with a
path through M (e) , and continue with a path through M (e*) . In other words,
paths through M (e*) go throughM (e) zero or more times.

The machine for the pattern (ab |ba) * isgiven by

M((ab|ba)*)

The Miranda description of the construction is given in build nfa.m. At the top
level the function

build :: reg -> nfa num
does the recursion. For the base case,

build (Literal c)
= NFA
(makeset [0..1])
(sing (Move 0 c 1))
0
(sing 1)
The definition of build Epsilonissimilar. Inthe other cases we define

build (Or rl r2) m.or (build rl) (build r2)
build (Then rl r2) = m.then (build rl) (build r2)
build (Star r) m_star (build r)

in which the functions m_or and so on build the machines from their components as
illustrated.

20

We make certain assumptions about the NFAswe build. Wetakeit that the states are
numbered from 0, with thefinal state having the highest number. Putting the machines
together will involve adding various new states and transitions, and renumbering the
states and moves in the constituent machines. An example programis

mor :: nfa num -> nfa num -> nfa num

m_or (NFA statesl movesl startl finishl)
(NFA states2 moves2 start2 finish2)
= NFA
(statesl’ sunion states2’ Sunion newstates)
(movesl’ Sunion moves2’ Sunion newmoves)
0
(sing (ml+m2+1))
where
ml = card statesl
m2 = card states2
statesl’ = mapset (renumber 1) statesl
states2’ = mapset (renumber (ml+l)) states2
newstates = makeset [0, (ml+m2+1)]

movesl’ = mapset (renumber move 1) movesl
moves2’ = mapset (renumber move (ml+l)) moves2
newmoves = makeset [Emove 0 1 ,

Emove 0 (ml+1) ,
Emove ml (ml+m2+1) ,
Emove (ml+m2) (ml+m2+1)]

The function renumber renumbers states and renumber_move MOVES.

9. Deter ministic machines

A deterministic finite automaton is an NFA which
e contains no e-moves, and

e has at most one arrow labelled with a particular symbol leaving any given state.

The effect of thisisto make operation of the machine deterministic —at any stage there
is at most one possible move to make, and so after reading a sequence of characters, the

21

machine can be in one state at most.

Implementing a machine of this sort is much simpler than for an general NFA: we
only have to keep track of a single position. Isthere a general mechanism for finding
a DFA corresponding to aregular expression? In fact, thereis a general technique for
transforming an arbitrary NFA into a DFA, and this we examine now.

The conversion of an NFA into a DFA is based on the implementation given in
Section 6. The main idea there is to keep track of a set of states, representing al the
possible positions after reading a certain amount of input. This set itself can be thought
of as a state of another machine, which will be deterministic: the moves from one set
to another are completely deterministic.

We show how the conversion works with the machine p. The start state of the
machine will be the closure of the set {0}, that is

A = {0,1,2,4}

Now, the construction proceeds by finding the sets accessible from A by moves on a
and on b — all the charactersin the alphabet of the machine p. These sets are states of
the new machine; we then repeat the construction with these new states, until no more
states are produced by the construction.

From A on the symbol a we can moveto 3 from 2. Closing under s-moveswe have
theset {1,2,3,4,6,7},whichwecal B

B={1,2,3,4,6,7}

a -3 B
In asimilar way, from A on b we have

¢ =1{1,2,4,5,6,7}

A2 oc

Our new machine so far looks like

We now have to see what is accessible from B and C. First B.

D ={1,2,3,4,6,7,8}

B -2 D

22

which is another new state. The process of generating new states must stop, asthereis
only afinite number of setsof statesto choosefrom{0,1,2,3,4,5,6,7,8}. What

happens with ab move from B?

B 2, ¢

This gives the partial machine

Similarly,
c 2%

CcC —

onuo

D —

D — C

Which of the new statesisfinal? One of these sets represents an accepting state exactly
when it contains afinal state of the original machine. For P thisis 8, whichis contained
in the set D only. In general there can be more than one accepting state for a machine.
(This need not be true for NFAS, since we can always add a new final state to which
each of the originalsis linked by an s-move.)

23

10. Transforming NFAsto DFAs

The Miranda code to covert an NFA to aDFA isfound inthefilenfa_to_.dfa.m, and
the main functionis

make deterministic :: nfa num -> nfa num
make deterministic = number . make deter
A deterministic version of an NFA with numeric states is defined in two stages, using
make deter :: nfa num -> nfa (set num)
number :: nfa (set num) -> nfa num

make_deter doesthe conversion to the deterministic automaton with sets of numbers
as states, number replaces sets of numbers by numbers (rather than capital letters, as
was done above). States are replaced by their positionin alist of states— see thefilefor
more details.

make deter isaspecial case of the function

deterministic :: nfa num -> [char] -> nfa (set num)
make deter mach = deterministic mach (alphabet mach)

The process of adding state sets is repeated until no more sets are added. Thisis a
version of taking a limit, given by the nfa_1imit function, which acts as the usua
limit function, except that it checks for equality of NFAs as collections of sets.

deterministic mach alpha
= nfa limit (addstep mach alpha) startmach

where

startmach = NFA
(sing starter)
empty
starter
finish

24

starter = closure mach (sing start)
finish = empty
, 1f egset (term $inter starter) empty
= sing starter , otherwise
(NFA sts mvs start term) = mach

The start machine, startmach, consists of a single state, the =-closure of the start
state of the original machine. addstep mach alpha takes a partialy built DFA
and adds the state sets of mach accessible by a single move on any of the charactersin
alpha, the alphabet of mach.

addstep
nfa num -> [char] -> nfa (set num) -> nfa (set num)
addstep mach alpha dfa
= add_aux mach alpha dfa (flatten states)

where
(NFA states m s f) = dfa
add_aux mach alpha dfa [] = dfa

add_aux mach alpha dfa (st:rest)
= add-aux mach alpha (addmoves mach st alpha dfa)

Thisinvolvesiterating over the state setsin the partially built DFA, whichis done using

addmoves. addmoves mach x alpha dfa will addto dfa all the movesfrom
state set x over the aphabet alpha.

addmoves :: nfa num -> set num -> [char]
-> nfa (set num) -> nfa (set num)

addmoves mach x [] dfa = dfa

addmoves mach x (c:r) dfa
= addmoves mach x r (addmove mach x c¢ dfa)

Inturn, addmoves iterates along the al phabet, using addmove. addmove mach x
c dfa will add to dfa the moves from state set x on character c.

addmove :: nfa num -> set num -> char

rest

25

-> nfa (set num) -> nfa (set num)

addmove mach x ¢ (NFA states moves start finish)
= NFA states’ moves’ start finish’

where
states’ = states Sunion (sing new)
moves’ = moves S$Sunion (sing (Move X c new))
finish’ = finish Sunion (sing new)
, 1f 7 (egset empty (term S$inter new))
= finish , otherwise
new = onetrans mach ¢ x
(NFA s m q term) = mach

The new state set added by addmove is defined using the onetrans function first
defined in the ssmulation of the NFA.

11. Minimising a DFA

In building a DFA, we have produced a machine which cam be implemented more
efficiently. We might, however, have more states in the DFA than necessary. This
section shows how we can optimise a DFA so that it contains the minimum number of
states to perform its function of recognising the strings matching a particular regular
expression.

Two states m and n in a DFA are distinguishable if we can find a string st which
reaches an accepting state from n but not from n (or vice versa). Otherwise, they can
be treated as the same, because no string makes them behave differently — putting it a
different way, no experiment makes the two different.

How can we tell when two states are different? We start by dividing the states
into two partitions. one contains the accepting states, and the other the remainder, or
non-accepting states. For our example, we get the partition

I: D
IT: A,B,C

Now, for each set in the partition, we check whether the elements in the set can be
further divided. We look at how each of the states in the set behaves relative to the
previous partition. In pictures,

26
B (Il) D () D ()
yd yd yd
A B
N N
(ol (])) c (n c (I

This means that we can re-partition thus:

I: D
IT: A
ITT: B,C

We now repest the process, and examinethe only set which might befurther subdivided,
giving
D () D ()

B C

N N

() c ()

This shows that we don’t have to re-partition any further, and so that we can stop now,
and collapse the two states B and C into one, thus:

a a a
(A Jo I 1®)
b b
b

The Miranda implementation of thisprocessisinthefileminimise dfa.m.
Exercises

13. For the regular expression b (ab | ba) *a, find the corresponding NFA.
14. For the NFA of question 1, find the corresponding (non-optimised) DFA.
15. For the DFA of question 2, find the optimised DFA.

27

12. Regular definitions

A regular definition consists of anumber of named regular expressions. We are allowed
to use the defined names on the right-hand sides of definitions after the definition of the
name. For example,

alpha -> [a-zA-Z]

digit -> [0-9]

alphanum -> alpha | digit
ident -> alpha | alphanum*
digits -> digit+

fract -> (.digits)?

num -> digits fract

Because of the stipulation that a definition precedes the use of a name, we can expand
each right-hand side to aregular expression involving no names.

We can build machines to recognise strings from a number of regular expressions.
Suppose we have the patterns

pl: a
p2: abb
p3: a*b*

We can build the three NFAs thus;

—®

O—@

and then they can be joined into a single machine, thus

‘m@m ©
5
(=)

28

In using the machine we look for the longest match against any of the patterns:

0,1,3,7,8(p3)
2(pl),4,7,8(p3)
7,8 (p3)

8 (p3)

9 oW W

In the example, the segment of aab matches the pattern p3.
Exercises
16. Fully expand the names digits and num given above.

17. Build a Miranda program to recognise strings according to a set of regular defini-
tions, as outlined in this section.

Bibliography
[Ahoet. al.] Aho, A.V., Sethi, R. and Ullman, J.D., Compilers. Principles, Techniques
and Tools, Addison-Wesley, Reading, MA, USA, 1986.

[Thompson] Thompson, S., Miranda The Craft of Functional Programming, Addison-
Wesley, Wokingham , Berks, UK, 1995.

