
Thompson, Simon (1995) Regular Expressions and Automata using Miranda.
 Other. UKC (Unpublished)

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21260/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21260/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Regular Expressions and Automata
using Miranda

Simon Thompson
Computing Laboratory

Univerisity of Kent at Canterbury

May 1995

Contents

1 Introduction � 1
2 Regular Expressions � 2
3 Matching regular expressions � 4
4 Sets � 6
5 Non-deterministic Finite Automata � 11
6 Simulating an NFA � 13
7 Implementing an example � 16
8 Building NFAs from regular expressions � � � � � � � � � � � � � � � � � � � 17
9 Deterministic machines � 20
10 Transforming NFAs to DFAs � 23
11 Minimising a DFA � 25
12 Regular definitions � 27

1. Introduction

In these notes Miranda is used as a vehicle to introduce regular expressions, pattern
matching, and their implementations by means of non-deterministic and deterministic

c� Simon Thompson, 1995

1

2

automata.
As part of the material, we give an implementation of the ideas, contained in a set

of files. References to this material are scattered through the text. The files can be
obtained by following the instructions in

http://www.ukc.ac.uk/computer science/Miranda craft/regExp.html

This material is based on the treatment of the subject in [Aho et. al.], but provides full
implementations rather than their pseudo-code versions of the algorithms.

The material gives an illustration of many of the features of Miranda, including
polymorphism (the states of an NFA can be represented by objects of any type); modu-
larisation (the system is split across a number of modules); higher-order functions (used
in finding limits of processes, for example) and other features. A tutorial introduction
to Miranda can be found in [Thompson].

The paper begins with definitions of regular expressions, and how strings are
matched to them; this also gives our first Miranda treatment also. After describing
the abstract data type of sets we define non-deterministic finite automata, and their
implementation in Miranda. We then show how to build an NFA corresponding to each
regular expression, and how such a machine can be optimised, first by transforming it
into a deterministic machine, and then by minimising the state space of the DFA. We
conclude with a discussion of regular definitions, and show how recognisers for strings
matching regular definitions can be built.

2. Regular Expressions

Regular expressions are patterns which can be used to describe sets of strings of
characters of various kinds, such as

� the identifiers of a programming language – strings of alphanumeric characters
which begin with an alphabetic character;

� the numbers – integer or real – given in a programming language; and so on.

There are five sorts of pattern, or regular expression:

� This is the Greek character epsilon, which matches the empty string.
x x is any character. This matches the character itself.
(r1|r2) r1 and r2 are regular expressions.
(r1r2) r1 and r2 are regular expressions.
(r)* r is a regular expression.

3

Examples of regular expressions include(a|(ba)), ((ba)|(�|(a)*)) andhello.
In order to give a more readable version of these, it is assumed that * binds more

tightly than juxtaposition (i.e. (r1r2)), and that juxtaposition binds more tightly than
(r1|r2). This means that r1r2* will mean (r1(r2)*), not ((r1r2))*, and that
r1|r2r3 will mean r1|(r2r3), not (r1|r2)r3.

A Miranda algebraic type representing regular expressions is given by

reg ::= Epsilon |
Literal char |
Or reg reg |
Then reg reg |
Star reg

This definition and those which follow can be found in the file regexp.m. The
Miranda representations of (a|(ab)) and ((ba)|(�|(a)*)) are

Or (Literal ’a’) (Then (Literal ’a’) (Literal ’b’))
Or (Then (Literal ’b’) (Literal ’a’))

(Or Epsilon (Star (Literal ’a’)))

respectively. In order to shorten these definitions we will usually define constant literals
such as

a = Literal ’a’
b = Literal ’b’

so that the expressions above become

Or a (Then a b) Or (Then b a) (Or Epsilon (Star a))

If we use the infix forms of Or and Then, $Or and $Then, they read

a $Or (a $Then b)
(a $Then b) $Or (Epsilon $Or (Star a))

Functions over the type of regular expressions are defined by recursion over the structure
of the expression. Examples include

4

literals :: reg -> [char]

literals Epsilon = []
literals (Literal ch) = [ch]
literals (Or r1 r2) = literals r1 ++ literals r2
literals (Then r1 r2) = literals r1 ++ literals r2
literals (Star r) = literals r

which prints a list of the literals appearing in a regular expression, and

printRE :: reg -> [char]

printRE Epsilon = "@"
printRE (Literal ch) = [ch]
printRE (Or r1 r2)
= "(" ++ printRE r1 ++ "|" ++ printRE r2 ++ ")"

printRE (Then r1 r2)
= "(" ++ printRE r1 ++ printRE r2 ++ ")"

printRE (Star r) = "(" ++ printRE r ++")*"

which gives a printable form of a regular expression. Note that ’@’ is used to represent
epsilon in ASCII.

Exercises

1. Write a more readable form of the expression((((a|b)|c)((a)*|(b)*))(c|d)).

2. What is the unabbreviated form of ((x?)*(y?)*)+?

3. Matching regular expressions

Regular expressions are patterns. We should ask which strings match each regular
expression.

5

� The empty string matches epsilon.

x The character x matches the pattern x, for any character x.

(r1|r2) The string st will match (r1|r2) if st matches either r1 or r2 (or both).

(r1r2) The string st will match (r1r2) if st can be split into two substrings st1
and st2, st = st1++st2, so that st1 matches r1 and st2 matches r2.

(r)* The stringstwill match(r)* ifst can be split into zero or more substrings,
st = st1++st2++...++stn, each of which matches r. The zero case
implies that the empty string will match (r)* for any regular expression r.

This can be implemented in Miranda, in the file matches.m. The first three cases are
a simple transliteration of the definitions above.

matches :: reg -> string -> bool

matches Epsilon st = (st = "")
matches (Literal ch) st = (st = [ch])
matches (Or r1 r2) st
= matches r1 st \/ matches r2 st

In the case of juxtaposition, we need an auxiliary function which gives the list containing
all the possible ways of splitting up a list.

splits :: [*] -> [([*],[*])]

splits st = [(take n st,drop n st) | n <- [0..#st]]

For example, splits [2,3] is [([],[2,3]),([2],[3]),([2,3],[])].
A string will match (Then r1 r2) if at least one of the splits gives strings which
match r1 and r2.

matches (Then r1 r2) st
= or [matches r1 s1 & matches r2 s2 | (s1,s2)<-splits st]

The final case is that of Star. We can explain a* as either � or as a followed by a*.

6

We can use this to implement the check for the match, but it is problematic when a can
be matched by �. When this happens, the match is tested recursively on the same string,
giving an infinite loop. This is avoided by disallowing an epsilon match on a – the first
match on a has to be non-trivial.

matches (Star r) st
= matches Epsilon st \/

or [matches r s1 & matches (Star r) s2 |
(s1,s2) <- frontSplits st]

frontSplits is defined like splits but so as to exclude the split ([],st).

Exercises

3. Argue that the string � matches (a|(bc)*)* and that the string abba matches
a((b|a)*(ba)*).

4. Why does the string bab not match a((b|a)*(ba)*)?

5. Give informal descriptions of the sets of strings matching the following regular
expressions.

(a|b)*a(a|b)*a(a|b) (a|b)*a(a|b)(a|b)
�|a|b|ba|b?(ab)+a?

6. Give regular expressions describing the following sets of strings

� All strings of as and bs containing at most two as.

� All strings of as and bs containing exactly two as.

� All strings of as and bs of length at most three.

� All strings of as and bs which contain no repeated adjacent characters, that is no
substring of the form aa or bb.

4. Sets

A set is a collection of elements of a particular type, which is both like and unlike a list.
Lists are familiar from Miranda, and examples include

7

[Joe,Sue,Ben] [Ben,Sue,Joe]
[Joe,Sue,Sue,Ben] [Joe,Sue,Ben,Sue]

Each of these lists is different – not only do the elements of a list matter, but also the
order in which they occur, and their multiplicity (the number of times each element
occurs).

In many situations, order and multiplicity are irrelevant. If we want to talk about the
collection of people coming to our birthday party, we just want the names – we cannot
invite someone more than once, so multiplicity is not important; the order we might list
them in is also of no interest. In other words, all we want to know is the set of people
coming. In the example above, this is the set containing Joe, Sue and Ben.

Sets can be implemented in a number of ways in Miranda, and the precise form is
not important for the user. It is sensible to declare the type as an abstract data type, or
abstype, illustrated in Figure 1. The abstype and its implementation are found in
the file sets.m.

The implementation we have given represents a set as an ordered list of elements
without repetitions. The individual functions are described and implemented as follows.

sing a is the singleton set, consisting of the single element a

sing a = [a]

union,inter,diff give the union, intersection and difference of two sets. The
union consists of the elements occurring in either set (or both), the intersection of those
elements in both sets and the difference of those elements in the first but not the second
set; their definitions are given in Figure 2.

The empty set is the empty list

empty = []

memset x a tests whethera is a member of the set x. Note that this is an optimisation
of the function member over lists; since the list is ordered, we need look no further
once we have found an element greater than the one we seek.

memset [] b = False
memset (a:x) b = memset x b , if a<b

= True , if a=b
= False , otherwise

8

abstype set *
with
sing :: * -> set *
union,inter,diff :: set * -> set * -> set *
empty :: set *
memset :: set * -> * -> bool
subset :: set * -> set * -> bool
eqset :: set * -> set * -> bool
mapset :: (* -> **) -> set * -> set **
filterset,separate :: (*->bool) -> set * -> set *
foldset :: (* -> * -> *) -> * -> set * -> *
makeset :: [*] -> set *
showset :: (*->[char]) -> set * -> [char]
card :: set * -> num
flatten :: set * -> [*]
setlimit :: (set * -> set *) -> set * -> set *

Figure 1: The set abstype

union [] y = y
union x [] = x
union (a:x) (b:y) = a : union x (b:y) , if a<b

= a : union x y , if a=b
= b : union (a:x) y , otherwise

inter [] y = []
inter x [] = []
inter (a:x) (b:y) = inter x (b:y) , if a<b

= a : inter x y , if a=b
= inter (a:x) y , otherwise

diff [] y = []
diff x [] = x
diff (a:x) (b:y) = a : diff x (b:y) , if a<b

= diff x y , if a=b
= diff (a:x) y , otherwise

Figure 2: Set operations

9

subset x y tests whether x is a subset of y; that is whether every element of x is an
element of y.

subset [] y = True
subset x [] = False
subset (a:x) (b:y) = False , if a<b

= subset x y , if a=b
= subset (a:x) y , if a>b

eqset x y tests whether two sets are equal.

eqset = (=)

mapset, filterset and foldset behave like map, filter and foldr except
that they operate over sets. separate is a synonym for filterset.

mapset f = makeset . (map f)
filterset = filter
separate = filterset
foldset = foldr

makeset turns a list into a set

makeset = remdups . sort
where
remdups [] = []
remdups [a] = [a]
remdups (a:x) = a : remdups x , if a < b

= remdups x , otherwise
where
b = hd x

showset f gives a printable version of a set, one item per line, using the function f
to give a printable version of each element.

showset f = concat . (map ((++"\n") . f))

10

card x gives the number of elements in x

card = (#)

flatten x turns a set x into an ordered list of the elements of the set

flatten = id

setlimit f x gives the ‘limit’ of the sequence

x , f x , f (f x) , f (f (f x)) , ...

that is the first element in the sequence whose successor is equal, as a set, to the element
itself. In other words, keep applying f until a fixed point or limit is reached.

setlimit f x = x , if eqset x next
= setlimit f next , otherwise
where
next = f x

Exercises

7. How is the function powerSet :: set * -> set (set *) which returns
the set of all subsets of a set defined?

8. How would you define the functions

setUnion :: set (set *) -> set *
setInter :: set (set *) -> set *

which return the union and intersection of a set of sets?

9. Can infinite sets (of numbers, for instance) be adequately represented by ordered
lists? Can you tell if two infinite lists are equal, for instance?

10. The abstype set * can be represented in a number of different ways. Alternatives
include: arbitrary lists (rather than ordered lists without repetitions), and boolean valued
functions, that is elements of the type * -> bool. Give implementations of the type
using these two representations.

11

5. Non-deterministic Finite Automata

A Non-deterministic Finite Automaton or NFA is a simple machine which can be used
to recognise regular expressions. It consists of four components

� A finite set of states, S.

� A finite set of moves.

� A start state (in S).

� A set of terminal or final states (a subset of S).

In Miranda (see file nfa types.m) this is written

nfa * ::= NFA (set *)
(set (move *))
*
(set *)

This has been represented by an algebraic type rather than a 4-tuple simply for read-
ability. The type of states can be different in different applications, and indeed in the
following we use both numbers and sets of numbers as states.

A move is between two states, and is either given by a character, or an �.

move * ::= Move * char * |
Emove * *

The first example of an NFA, called M, follows.

0 1 2 3

a

a

a b b

The states are 0,1,2,3, with the start state 0 indicated by an incoming arrow, and the
final states indicated by shaded circles. In this case there is a single final state, 3. The
moves are indicated by the arrows, marked with characters a and b in this case. From

12

state 0 there are two possible moves on symbol a, to 1 and to remain at 0. This is one
source of the non-determinism in the machine.

The Miranda representation of the machine is

NFA
(makeset [0..3])
(makeset [Move 0 ’a’ 0 ,

Move 0 ’a’ 1 ,
Move 0 ’b’ 0 ,
Move 1 ’b’ 2 ,
Move 2 ’b’ 3])

0
(sing 3)

A second example, called N, is illustrated below.

0

1 2

3 4 5

a

b

a

b

3

b

The Miranda representation of this machine is

NFA
(makeset [0..5])
(makeset [Move 0 ’a’ 1,

Move 1 ’b’ 2,
Move 0 ’a’ 3,
Move 3 ’b’ 4,
Emove 3 4,
Move 4 ’b’ 5])

0
(makeset [2,5])

This machine contains two kinds of non-determinism. The first is at state 0, from which

13

it is possible to move to either 1 or 3 on reading a. The second occurs at state 3: it is
possible to move ‘invisibly’ from state 3 to state 4 on the epsilon move, Emove 3 4.

The Miranda code for these machines together with a function print nfa to print
an nfa whose states are numbered can be found in the file nfa misc.m.

How do these machines recognise strings? A move can be made from one state s to
another t either if the machine contains Emove s t or if the next symbol to be read
is, say, a and the machine contains a move Move s a t. A string will be accepted
by a machine if there is a sequence of moves through states of the machine starting at
the start state and terminating at one of the terminal states – this is called an accepting
path. For instance, the path

0 a
�� 1 b

�� 2 b
�� 3

is an accepting path throughM for the stringabb. This means that the machineM accepts
this string. Note that other paths through the machine are possible for this string, an
example being

0
a
�� 0

b
�� 0

b
�� 0

All that is needed for the machine to accept is one accepting path; it does not affect
acceptance if there are other non-accepting (or indeed accepting) paths. More than one
accepting path can exist. Machine N accepts the string ab by both

0
a
�� 1

b
�� 2

and
0 a
�� 3 �

�� 4 b
�� 5

A machine will reject a string only when there is no accepting path. Machine N rejects
the string a, since the two paths through the machine labelled by a fail to terminate in
a final state:

0 a
�� 1 0 a

�� 3

Machine N rejects the string aa since there is no path through the machine labelled by
aa: after reading a the machine can be in state 1, 3 or 4, from none of these can an a
move be made.

6. Simulating an NFA

As was explained in the last section, a string st is accepted by a machine M when there
is at least one accepting path labelled by st through M, and is rejected by M when no
such path exists.

14

The key to implementation is to explore simultaneously all possible paths through
the machine labelled by a particular string. Take as an informal example the string ab
and the machine N. After reading no input, the machine can only be in state 0. On
reading an a there are moves to states 1 and 3; however this is not the whole story.
From state 3 it is possible to make an �-move to state 4, so after reading a the machine
can be in any of the states f1,3,4g.

On reading a b, we have to look for all the possible b moves from each of the states
f1,3,4g. From 1 we can move to 2, from 3 to 4 and from 4 to 5 – no �-moves
are possible from the states f2,4,5g, and so the states accessible after reading the
string ab are f2,4,5g. Is this string to be accepted by N? We accept it exactly if the
set contains a final state – it contains both 2 and 5, so it is accepted. Note that the
states accessible after reading a are f1,3,4g; this set contains no final state, and so
the machine N rejects the string a.

There is a general pattern to this process, which consists of a repetition of

� Take a set of states, such as f1,3,4g, and find the set of states accessible by a
move on a particular symbol, e.g. b. In this case it is the set f2,4,5g. This is
called onemove in nfa lib.m.

� Take a set of states, like f1,3g, and find the set of states accessible from the
states by zero or more �-moves. In this example, it is the set f1,3,4g. This is
the �-closure of the original set, and is called closure in nfa lib.m.

The functions onemove and closure are composed in the function onetrans, and
this function is iterated along the string by thetrans function ofimplement nfa.m.

Implementation in Miranda

We discuss the development of the function

trans :: nfa * -> string -> set *

top-down. Iteration along a string is given by foldl

foldl :: (set * -> char -> set *)
-> set * -> string -> set *

foldl f r [] = r
foldl f r (c:cs) = foldl f (f r c) cs

15

The first argument, f, is the step function, taking a set and a character to the states
accessible from the set on the character. The second argument, r, is the starting state,
and the final argument is the string along which to iterate.

How does the function operate? If given an empty string, the start state is the result.
If given a string(c:cs), the function is called again, with the tail of the string, cs, and
with a new starting state, (f r c), which is the result of applying the step function
to the starting set of states and the first character of the string. Now to develop trans.

trans mach str
= foldl step startset str
where
step set ch = onetrans mach ch set
startset = closure mach (sing (startstate mach))

step is derived from onetrans simply by suppling its machine argument mach,
similarlystartset is derived from the machinemach, using the functionsclosure
and startstate. All these functions are defined in nfa lib.m. We discuss their
definitions now.

onetrans :: nfa * -> char -> set * -> set *

onetrans mach c x = closure mach (onemove mach c x)

Next, we examine onemove,

onemove :: nfa * -> char -> set * -> set *

onemove (NFA states moves start term) c x
= makeset [s | t <- flatten x ;

Move z d s <- flatten moves ;
z=t ; c=d]

The essential idea here is to run through the elements t of the set x and the set of moves,
moves looking for all c-moves originating at t. For each of these, the result of the
move, s, goes into the resulting set.

The definition uses list comprehensions, so it is necessary first to flatten the sets

16

x and moves into lists, and then to convert the list comprehension into a set by means
of makeset.

closure :: nfa * -> set * -> set *

closure (NFA states moves start term)
= setlimit add
where
add stateset = union stateset (makeset accessible)

where
accessible
= [s | x <- flatten stateset ;

Emove y s <- flatten moves ;
y=x]

The essence ofclosure is to take the limit of the function which adds to a set of states
all those states which are accessible by a single �-move; in the limit we get a set to which
no further states can be added by �-transitions. Adding the states got by single �-moves
is accomplished by the function add and the auxiliary definition accessible which
resembles the construction of onemove.

7. Implementing an example

The machine P is illustrated by

0 1

2 3

4 5

6 7 8

a

b

a3

3

3

3

3

3

3Machine P

Exercise

11. Give the Miranda definition of the machine P.

17

The �-closure of the set f0g is the set f0,1,2,4g. Looking at the definition of
closure above, the first application of the function add to f0g gives the set f0,1g;
applying add to this gives f0,1,2,4g. Applying add to this set gives the same set,
hence this is the value of setlimit here. The set of states with which we start the
simulation is therefore f0,1,2,4g. Suppose the first input is a; applying onemove
reveals only one a move, from 2 to 3. Taking the closure of the set f3g gives the set
f1,2,3,4,6,7g. A b move from here is only from 4 to 5; closing under �-moves
gives f1,2,4,5,6,7g. An a move from here is possible in two ways: from 2 to
3 and from 7 to 8; closing up f3,8g gives f1,2,3,4,6,7,8g. Is the string aba
therefore accepted by P? Yes, because 8 is a member of f1,2,3,4,6,7,8g. This
sequence can be illustrated thus

0 0
1
2
4

3

1
2
3
4
6
7

5

1
2
4
5
6
7

3

8

1
2
4
5
6
7
8

a
b

a

a

3
3

3

3

3

Exercise

12. Show that the string abb is not accepted by the machine P.

8. Building NFAs from regular expressions

For each regular expression it is possible to build an NFA which accepts exactly those
strings matching the expression. The machines are illustrated in Figure 3.

The construction is by induction over the structure of the regular expression: the
machines for an character and for � are given outright, and for complex expressions,
the machines are built from the machines representing the parts. It is straightforward to
justify the construction.

(e|f) Any path through M(e|f) must be either a path through M(e) or a path
through M(f) (with � at the start and end.

ef Any path through M(ef) will be a path through M(e) followed by a path through
M(f).

18

M(e)

M(f)

M(e|f)

3

3

3

3

M(a)

a3

M(3)

M(e) M(f)

M(ef)

M(e)

M(e*)

3

3

3

3

Figure 3: Building NFAs for regular expressions

19

e* Paths through M(e*) are of two sorts; the first is simply an �, others begin with a
path through M(e), and continue with a path through M(e*). In other words,
paths through M(e*) go through M(e) zero or more times.

The machine for the pattern (ab|ba)* is given by

a b

b a

3

3

3

33

3

3

3

M((ab|ba)*)

The Miranda description of the construction is given in build nfa.m. At the top
level the function

build :: reg -> nfa num

does the recursion. For the base case,

build (Literal c)
= NFA
(makeset [0..1])
(sing (Move 0 c 1))
0
(sing 1)

The definition of build Epsilon is similar. In the other cases we define

build (Or r1 r2) = m or (build r1) (build r2)
build (Then r1 r2) = m then (build r1) (build r2)
build (Star r) = m star (build r)

in which the functions m or and so on build the machines from their components as
illustrated.

20

We make certain assumptions about the NFAs we build. We take it that the states are
numbered from 0, with the final state having the highest number. Putting the machines
together will involve adding various new states and transitions, and renumbering the
states and moves in the constituent machines. An example program is

m or :: nfa num -> nfa num -> nfa num

m or (NFA states1 moves1 start1 finish1)
(NFA states2 moves2 start2 finish2)

= NFA
(states1’ $union states2’ $union newstates)
(moves1’ $union moves2’ $union newmoves)
0
(sing (m1+m2+1))
where
m1 = card states1
m2 = card states2
states1’ = mapset (renumber 1) states1
states2’ = mapset (renumber (m1+1)) states2
newstates = makeset [0,(m1+m2+1)]
moves1’ = mapset (renumber move 1) moves1
moves2’ = mapset (renumber move (m1+1)) moves2
newmoves = makeset [Emove 0 1 ,

Emove 0 (m1+1) ,
Emove m1 (m1+m2+1) ,
Emove (m1+m2) (m1+m2+1)]

The function renumber renumbers states and renumber move moves.

9. Deterministic machines

A deterministic finite automaton is an NFA which

� contains no �-moves, and

� has at most one arrow labelled with a particular symbol leaving any given state.

The effect of this is to make operation of the machine deterministic – at any stage there
is at most one possible move to make, and so after reading a sequence of characters, the

21

machine can be in one state at most.
Implementing a machine of this sort is much simpler than for an general NFA: we

only have to keep track of a single position. Is there a general mechanism for finding
a DFA corresponding to a regular expression? In fact, there is a general technique for
transforming an arbitrary NFA into a DFA, and this we examine now.

The conversion of an NFA into a DFA is based on the implementation given in
Section 6. The main idea there is to keep track of a set of states, representing all the
possible positions after reading a certain amount of input. This set itself can be thought
of as a state of another machine, which will be deterministic: the moves from one set
to another are completely deterministic.

We show how the conversion works with the machine P. The start state of the
machine will be the closure of the set f0g, that is

A = f0,1,2,4g
Now, the construction proceeds by finding the sets accessible from A by moves on a
and on b – all the characters in the alphabet of the machine P. These sets are states of
the new machine; we then repeat the construction with these new states, until no more
states are produced by the construction.

FromA on the symbol a we can move to 3 from2. Closing under �-moves we have
the set f1,2,3,4,6,7g, which we call B

B = f1,2,3,4,6,7g

A a
�� B

In a similar way, from A on b we have
C = f1,2,4,5,6,7g

A b
�� C

Our new machine so far looks like

A

B

C

a

b

We now have to see what is accessible from B and C. First B.
D = f1,2,3,4,6,7,8g

B
a
�� D

22

which is another new state. The process of generating new states must stop, as there is
only a finite number of sets of states to choose from f0,1,2,3,4,5,6,7,8g. What
happens with a b move from B?

B b
�� C

This gives the partial machine

A

B

C

a

b

a

b D

Similarly,
C

a
�� D

C
b
�� C

D a
�� D

D b
�� C

which completes the construction of the DFA

A

B

C

a

b

a

b D

a

b

a

b

Which of the new states is final? One of these sets represents an accepting state exactly
when it contains a final state of the original machine. ForP this is 8, which is contained
in the set D only. In general there can be more than one accepting state for a machine.
(This need not be true for NFAs, since we can always add a new final state to which
each of the originals is linked by an �-move.)

23

10. Transforming NFAs to DFAs

The Miranda code to covert an NFA to a DFA is found in the file nfa to dfa.m, and
the main function is

make deterministic :: nfa num -> nfa num

make deterministic = number . make deter

A deterministic version of an NFA with numeric states is defined in two stages, using

make deter :: nfa num -> nfa (set num)

number :: nfa (set num) -> nfa num

make deter does the conversion to the deterministic automaton with sets of numbers
as states, number replaces sets of numbers by numbers (rather than capital letters, as
was done above). States are replaced by their position in a list of states – see the file for
more details.

make deter is a special case of the function

deterministic :: nfa num -> [char] -> nfa (set num)

make deter mach = deterministic mach (alphabet mach)

The process of adding state sets is repeated until no more sets are added. This is a
version of taking a limit, given by the nfa limit function, which acts as the usual
limit function, except that it checks for equality of NFAs as collections of sets.

deterministic mach alpha
= nfa limit (addstep mach alpha) startmach

where
startmach = NFA

(sing starter)
empty
starter
finish

24

starter = closure mach (sing start)
finish = empty

, if eqset (term $inter starter) empty
= sing starter , otherwise

(NFA sts mvs start term) = mach

The start machine, startmach, consists of a single state, the �-closure of the start
state of the original machine. addstep mach alpha takes a partially built DFA
and adds the state sets of mach accessible by a single move on any of the characters in
alpha, the alphabet of mach.

addstep
:: nfa num -> [char] -> nfa (set num) -> nfa (set num)

addstep mach alpha dfa
= add aux mach alpha dfa (flatten states)

where
(NFA states m s f) = dfa
add aux mach alpha dfa [] = dfa
add aux mach alpha dfa (st:rest)

= add aux mach alpha (addmoves mach st alpha dfa) rest

This involves iterating over the state sets in the partially built DFA, which is done using
addmoves. addmoves mach x alpha dfa will add to dfa all the moves from
state set x over the alphabet alpha.

addmoves :: nfa num -> set num -> [char]
-> nfa (set num) -> nfa (set num)

addmoves mach x [] dfa = dfa

addmoves mach x (c:r) dfa
= addmoves mach x r (addmove mach x c dfa)

In turn, addmoves iterates along the alphabet, using addmove. addmove mach x
c dfa will add to dfa the moves from state set x on character c.

addmove :: nfa num -> set num -> char

25

-> nfa (set num) -> nfa (set num)

addmove mach x c (NFA states moves start finish)
= NFA states’ moves’ start finish’
where
states’ = states $union (sing new)
moves’ = moves $union (sing (Move x c new))
finish’ = finish $union (sing new)

, if ˜ (eqset empty (term $inter new))
= finish , otherwise

new = onetrans mach c x
(NFA s m q term) = mach

The new state set added by addmove is defined using the onetrans function first
defined in the simulation of the NFA.

11. Minimising a DFA

In building a DFA, we have produced a machine which cam be implemented more
efficiently. We might, however, have more states in the DFA than necessary. This
section shows how we can optimise a DFA so that it contains the minimum number of
states to perform its function of recognising the strings matching a particular regular
expression.

Two states m and n in a DFA are distinguishable if we can find a string st which
reaches an accepting state from n but not from n (or vice versa). Otherwise, they can
be treated as the same, because no string makes them behave differently — putting it a
different way, no experiment makes the two different.

How can we tell when two states are different? We start by dividing the states
into two partitions: one contains the accepting states, and the other the remainder, or
non-accepting states. For our example, we get the partition

I: D
II: A,B,C

Now, for each set in the partition, we check whether the elements in the set can be
further divided. We look at how each of the states in the set behaves relative to the
previous partition. In pictures,

26

C

a

b

C

a

b

C

a

b

C

a

b

A

B

C

a

b

A

B

C

a

b

A

B

C

a

b

A B

C

a

b

C

a

b

C

a

b

C

a

b

C

a

b

D D(II)

(II) (II) (II)

(I) (I)

This means that we can re-partition thus:

I: D
II: A
III: B,C

We now repeat the process, and examine the only set which might be further subdivided,
giving

C

a

b

C

a

b

C

a

b

C

a

b

B

C

a

b

C

a

b

C

a

b

C

a

b

D D(I) (I)

(III) (III)

This shows that we don’t have to re-partition any further, and so that we can stop now,
and collapse the two states B and C into one, thus:

A D

b

a

B C

a

b

a

b

The Miranda implementation of this process is in the file minimise dfa.m.

Exercises

13. For the regular expression b(ab|ba)*a, find the corresponding NFA.

14. For the NFA of question 1, find the corresponding (non-optimised) DFA.

15. For the DFA of question 2, find the optimised DFA.

27

12. Regular definitions

A regular definition consists of a number of named regular expressions. We are allowed
to use the defined names on the right-hand sides of definitions after the definition of the
name. For example,

alpha -> [a-zA-Z]
digit -> [0-9]
alphanum -> alpha | digit
ident -> alpha | alphanum*
digits -> digit+
fract -> (.digits)?
num -> digits fract

Because of the stipulation that a definition precedes the use of a name, we can expand
each right-hand side to a regular expression involving no names.

We can build machines to recognise strings from a number of regular expressions.
Suppose we have the patterns

p1: a
p2: abb
p3: a*b*

We can build the three NFAs thus:

3

a

3
a b b

2

3
a b b

1
a

4 5 6

7 8

b

and then they can be joined into a single machine, thus

28

3

a

3
a b b

2

3
a b b

1
a

4 5 6

7 8

3

3

3

0

p1

p2

p3

b

In using the machine we look for the longest match against any of the patterns:

0,1,3,7,8(p3)
a 2(p1),4,7,8(p3)
a 7,8(p3)
b 8(p3)
a -

In the example, the segment of aab matches the pattern p3.

Exercises

16. Fully expand the names digits and num given above.

17. Build a Miranda program to recognise strings according to a set of regular defini-
tions, as outlined in this section.

Bibliography

[Aho et. al.] Aho, A.V., Sethi, R. and Ullman, J.D., Compilers: Principles, Techniques
and Tools, Addison-Wesley, Reading, MA, USA, 1986.

[Thompson] Thompson, S., Miranda The Craft of Functional Programming, Addison-
Wesley, Wokingham , Berks, UK, 1995.

