
Boiten, Eerke Albert, Bowman, Howard, Derrick, John and Steen, Maarten
(1995) Cross Viewpoint Consistency in Open Distributed Processing (Intra
language consistency). Technical report. UKC, University of Kent, Canterbury,
UK

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21256/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21256/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

�

Cross Viewpoint Consistency in
Open Distributed Processing
�Intra language Consistency�

Prepared by Eerke Boiten� Howard Bowman� John Derrick� Maarten
Steen

Computing Laboratory
University of Kent at Canterbury
Canterbury
Kent CT� �NF

Phone ����������	�

Fax ����������	����
Email �EABoiten�HBowman�JDerrick�mwas��ukcacuk

�

Contents

� Introduction �
��� Introduction �
��� Overview of Project �
��� Overview of deliverable �

� Background �
��� The Reference Model for Open Distributed Processing � � � � � � � � � � � � � � � � �

����� Viewpoints �
��� Architectural Semantics for ODP ��
��� ODP System development and conformance assessment � � � � � � � � � � � � � � � ��

����� System development ��
����� Conformance assessment ��

��� Summary ��

� De�nitions of Consistency ��
��� Three Possible De	nitions of Consistency ��
��� A General De	nition of Consistency ��

����� Notation ��
����� Consistency �

����� Balanced Consistency ��
����� Unbalanced Consistency ��

��� Uni	cation ��
����� Balanced Uni	cation ��
����� Unbalanced Uni	cation ��
����� Representative Uni	cation ��

��� Inter Language Consistency ��
��� Conclusion ��

����� Generality of the De	nition ��
����� Discussion ��

� Consistency in LOTOS ��
��� Development Relations ��

����� Trace preorder ��
����� Conformance ��
����� Reduction ��
����� Extension ��
����� Structural Re	nement � Testing Equivalence � � � � � � � � � � � � � � � � � � ��
���� Structural Re	nement � Bisimulation Equivalences � � � � � � � � � � � � � � ��
����� Discussion� Properties of the Development Relations � � � � � � � � � � � � � ��

��� Relating the RM�ODP De	nitions ��
����� RM�ODP Instantiations ��
����� Relating De	nitions ��

�

� CONTENTS

��� General LOTOS Instantiations of Consistency ��
����� Unbalanced Consistency ��
����� Balanced Consistency �

��� Consistency Checking and Uni	cation Techniques ��
����� Trace preorder preserving uni	cation ��
����� Reduction preserving uni	cation ��
����� Extension preserving uni	cation ��
����� Testing equivalence preserving uni	cation �

��� Example of Uni	cation in LOTOS �
����� Computational speci	cation �
����� Information speci	cation ��
����� Consistency check and uni	cation �

�� Summary and Discussion �

� Consistency Checking Mechanisms in Z ��
��� Unifying Viewpoint Speci	cations in Z ��

����� State Uni	cation ��
����� Operation Uni	cation ��
����� Example � � A classroom ��
����� Example � � Dining Philosophers ��
����� Example � � OSI Management ��

��� Consistency Checking of Viewpoint Speci	cations in Z � � � � � � � � � � � � � � � � �
����� Example � � The classroom �
����� Example � � Dining Philosophers �
����� Example � � OSI Management �

��� Software Engineering Issues �
��� Using Object Oriented Techniques �

����� Relation between Uni	cation and Inheritance � � � � � � � � � � � � � � � � �

� Conclusion 	�
�� Summary of results ��

���� De	ning consistency ��
���� Consistency checking in LOTOS ��
���� Consistency checking in Z ��

�� Open problems ��
���� Inter language consistency checking ��
���� Translation ��
���� ODP speci	c concepts ��
���� Tool Development ��
���� Object orientation ��

�� Future plans ��

Chapter �

Introduction

��� Introduction

Open Distributed Processing �ODP� is recognised as an important standardisation activity� The
ODP model seeks to provide an architecture for building potentially global distributed systems
with components from many vendors� Thus� ODP will realise the open systems ethos in the
distributed systems domain�

A central concept in ODP is that of a viewpoint� Distributed systems are viewed to be
so complex that a process of separation of concerns must be employed when describing such
systems� Viewpoints provide such a separation of concerns by presenting 	ve distinct views of a
single system� these are the enterprise viewpoint� information viewpoint� computational viewpoint�
engineering viewpoint and technology viewpoint�

It should be clear that in such viewpoint models it is essential that speci	cations in di�erent
viewpoints are related in order to determine whether the multiple speci	cations impose con�icting
requirements� The project being reported here responds to these needs by investigating how to
check that multiple viewpoint speci	cations are in some sense consistent�

The objective of the project is to perform a veri	cation of the concept of cross viewpoint
consistency checking� We will determine the feasibility of performing such checks by developing
prototype techniques and tools for relating viewpoint speci	cations written in Z and LOTOS�
These two languages have been chosen because they are formal� enabling formal reasoning to be
applied� which we argue is an essential prerequisite for successful consistency checking� In addition�
Z and LOTOS represent two of the most di�erent speci	cation techniques being advocated as
viewpoint languages� thus� consistency checking between these two languages bounds the di�culty
of the problem�

This deliverable describes the initial phase of our work� it focusses on consistency checking
methods for individual FDTs� A second deliverable will be produced which extends this work by
developing cross�language consistency checks between Z and LOTOS�

��� Overview of Project

Figure ��� depicts the work plan for the project� Depicted is the full three year trajectory of the
project� The two milestone deliverables for BT are shown as bold tasks�

The project is divided into � workpackages�

�� WP�
 Consistency Framework
The objective of this workpackage is to develop a general framework for consistency in ODP�
This will de	ne the basic concepts and mechanisms involved in consistency in a general� FDT
independent� fashion� Particular instantiations of the framework can be made by substituting
speci	c FDTs and their correctness properties into the general framework� An important

�

 CHAPTER �� INTRODUCTION

Case Study

Dissem.
and Collab.

Consistency
Framework

Intra
Language
Consistency

Inter
Language
Consistency

Start Year 1
(Jan 1994)

Start Year 2
(Jan 1995)

Start Year 3
(Jan 1996)

Start Year 4
(Jan 1997)

CF.1 CF.3

CF.2

CF.5

CF.4

INTRA.1

INTRA.2

INTRA.3

INTRA.4

INTER.2INTER.1 INTER.3

CS.1

CS.2

CS.3

CS.4

DC.1 DC.2 DC.4DC.3

Figure ���� Plan of Work

role of the framework is to ensure that consistency is treated uniformly in each FDT� The
framework will provide an interpretation of the main consistency concepts� consistency�
uni�cation� translation etc and will de	ne general strategies for consistency checking� The
properties of these concepts and strategies will be determined and classi	ed� These properties
will highlight the character of the consistency checking problem in ODP� The framework will
necessarily be formal in nature�

�� WP�
 Intra Language Consistency
Consistency checking between speci	cations in the same language will be investigated in this
workpackage� Speci	cally� the consistency checking concepts and strategies developed in the
previous workpackage will be instantiated for the two formal speci	cation languages� Z and
LOTOS� These strategies will be realised by the development of consistency checking tool
support for both languages�

�� WP�
 Inter Language Consistency
Consistency checking between speci	cations in di�erent languages will be investigated in
this workpackage� As a veri	cation of concept� cross language consistency checking between
Z and LOTOS will be explored� This is an extremely demanding area for which there are
currently few positive research results� It is intended that tool support for such Z and
LOTOS inter language consistency checking will be developed�

�� WP�
 Case Study
In this workpackage the suitability of the techniques and tools developed in the previous

���� OVERVIEW OF DELIVERABLE �

workpackages will be assessed against a number of case studies� A signi	cant part of this
workpackage will involve locating suitable examples of ODP systems which can act as case
studies� These example ODP speci	cations must be in multiple viewpoints and have both Z
and LOTOS viewpoint speci	cations�

�� WP�
 Dissemination and Collaboration
Dissemination of the results of the project will be targetted at three main groups� the
ODP standardisation community� interested industrial parties and the distributed sytems
research community� Dissemination to the 	rst two of these groups will be facilitated by our
collaboration with B�T� under the Formosa project� Two deliverables will be produced for
B�T�� the 	rst describing our results on intra language consistency and the second describing
our results on inter language consistency� In addition� contributions will be made directly
to the ODP standardisation forum through the BSI and to the research community through
papers at major conferences and in learned journals�

Each of the 	ve workpackages is divided into tasks� We list these here� The role of each task
should be evident from the tasks title�

WP�� CF��� Initial formulation of Consistency Framework
WP�� CF��� Study of RM�ODP De	nitions
WP�� CF��� Re	ned Consistency Framework
WP�� CF��� Location of Correspondence Rules
WP�� CF��� Consistency Framework � Final Revision

WP�� INTRA��� Z Consistency Techniques
WP�� INTRA��� LOTOS Consistency Techniques
WP�� INTRA��� Z Consistency Tool
WP�� INTRA��� LOTOS Consistency Tool

WP�� INTER��� Preliminary Study of Potential Approaches
WP�� INTER��� Z and LOTOS Consistency Techniques
WP�� INTER��� Z and LOTOS Consistency Tool

WP�� CS��� Location of Possible Case Studies
WP�� CS��� Z to Z Case Studies
WP�� CS��� LOTOS to LOTOS Case Studies
WP�� CS��� Z and LOTOS Inter Lang� Consistency Case Studies

WP�� DC��� First BT Deliverable
WP�� DC��� Input to RM�ODP Part �
WP�� DC��� Second BT Deliverable
WP�� DC��� Final Deliverable and Recommendation to ODP

��� Overview of deliverable

This deliverable has the following structure��

� Chapter �
 Introduction� This 	rst chapter introduces the project and describes the
structure of the deliverable�

� Chapter �
 Background� Background on the ODP initiative and the role of viewpoints
within this work is presented in this chapter� Three aspects of ODP are considered with
reference to the viewpoints model� the architectural semantics� system development for ODP
and conformance assessment�

 CHAPTER �� INTRODUCTION

� Chapter �
 De�nitions of Consistency� The consistency framework developed during
the 	rst phase of the project is presented in this chapter� Central to this framework is a
precise de	nition of consistency� We argue that this de	nition is general enough to embrace
all the interpretations of consistency that have already been proposed within ODP� In par�
ticular� we show how our de	nition of consistency can be related to all the interpretations
of consistency in the RM�ODP�

� Chapter �
 Consistency in LOTOS� Consistency checking within LOTOS is investigated
in this chapter� We present a number of possible LOTOS instantiations of the framework
concepts and then relate these instantiations� In addition� we present speci	c mechanisms
for consistency checking in LOTOS and give an example of a LOTOS consistency check�

� Chapter �
 Consistency in Z� This chapter describes the work on consistency checking in
Z� A general algorithm for unifying two Z speci	cations is presented� Consistency checking
by validating the implementability of the derived uni	cation is also explored� An example
of uni	cation and consistency checking of two Z speci	cations is presented�

� Chapter �
 Conclusions� The deliverable is summarised and concluded in this chapter�

Chapter �

Background

In this chapter� some of the developments in the light of which the research project described in this
deliverable should be seen� are high�lighted� Our research was mainly triggered by the progressing
standardisation of the Reference Model for Open Distributed Processing �RM�ODP�� In section
���� a brief overview is given of the ODP concepts most relevant to this deliverable� This project is
also closely related to the dti and epsrc funded formosa project between bt and the University
of Stirling� The major aim of the formosa project is to advance the formulation of architectural
semantics for the ODP standards using the Formal Description Techniques �FDTs� LOTOS and
Z� In section ���� we identify the relationships between our work on consistency checking and the
work on de	ning an architectural semantics for ODP� such as in the formosa project� Another
project that in�uenced our research on consistency checking is the prost project�

��� The ReferenceModel for Open Distributed Processing

The standardisation of a Reference Model for Open Distributed Processing ���� is a joint e�ort of
the International Standardisation Organisation �ISO� and the International Telecommunication
Union �ITU�T�� The objective is to enable the construction of distributed systems in a multi�
vendor environment through the provision of a general architectural framework that such systems
must conform to� One of the cornerstones of this framework is a model of multiple viewpoints
which enables di�erent participants each to observe a system from a suitable perspective and at a
suitable level of abstraction ����� Section ����� deals in more detail with the ODP viewpoints�

����� Viewpoints

The complete speci	cation of any non�trivial distributed system involves a very large amount of
information� Attempting to capture all aspects of the design in a single description is generally
unworkable� Most design methodologies aim to establish a coordinated� interlocking set of models
each aimed at capturing one facet of the design� satisfying the requirements which are the concern
of some particular group involved in the design process�

In ODP� this separation of concerns is established by identi	cation of 	ve viewpoints� each
with an associated viewpoint language which expresses the concepts and the rules relevant to a
particular area of concern�

The viewpoints de	ned in the Reference Model for ODP are� Enterprise viewpoint� Information
viewpoint� Computational viewpoint� Engineering viewpoint and Technological viewpoint� see
	gure ����
The enterprise viewpoint is concerned with business policies� management policies and human
user roles with respect to the systems and the environment with which they interact� The use
of the word enterprise here does not imply a limitation to a single organisation� The model
constructed may well describe the constraints placed on the interaction of a number of distinct

�

�� CHAPTER �� BACKGROUND

Enterprise
Viewpoint

Information
Viewpoint

Computational
Viewpoint

Engineering
Viewpoint

Technology
Viewpoint

The SYSTEM

Figure ���� The Multiple Viewpoints Model

organisations� The enterprise language introduces concepts to support the expression of policy�
particularly with regard to agreements and responsibilities between parts of the enterprise� Agents
perform actions and artifacts represent resources� Agents can be assigned roles in a contract which
expresses permissions or prohibitions� Groupings of agents are considered as communities which
may be administered by a particular agent�

The information viewpoint is concerned with information modelling� By factoring an in�
formation model out of the individual components� it provides a consistent common view which
can be referenced by the speci	cations of information sources and sinks and the information �ows
between them� The information language de	nes concepts for information schema de	nition�
The language distinguishes between an instantaneous view of information �a static schema�� a
statement of information which is necessarily unchanged by the system �an invariant schema�
and a description of information re�ecting the behaviour and evolution of the system �a dynamic
schema��

The computational viewpoint is concerned with the algorithms and data �ows which provide
the distributed system function� This viewpoint speci	es the individual components which are the
sources and sinks of information �ows� The computational language enables the representation
of the system and its environment in terms of objects which interact by transfer of information
via interfaces� Interfaces are given types and rules are de	ned for the matching of these types�
so that object interfaces need not be speci	ed in an identical way in order to enable interaction
between the objects� Objects are chosen to achieve a functional decomposition� but also identify
the candidate boundaries for physical distribution�

The engineering viewpoint is concerned with the distribution mechanisms and the provision
of the various transparencies needed to support distribution� The engineering language de	nes
a number of functional building blocks which can be combined together to provide the requested
transparencies�

The technology viewpoint is concerned with the hardware and software components from
which the distributed system is constructed�

Requirements and speci	cations of an ODP system can be made from any of these viewpoints
�as depicted in 	gure ����� However� these viewpoints are not independent� They are each partial
views of the complete system speci	cation� Some entities can� therefore� occur in more than one
viewpoint� and there are a set of consistency constraints arising from the correspondences between

���� ARCHITECTURAL SEMANTICS FOR ODP ��

terms in two viewpoint languages and the statements relating the various terms within each
language� The checking of such consistency is an important part of demonstrating the correctness
of the full set of speci	cations�

��� Architectural Semantics for ODP

Each viewpoint language consists of a set of de	nitions and a set of rules which constrain the ways
in which the de	nitions can be related� The notion of language used is an abstract one� the rules
are� in e�ect� the foundations for the grammar of a set of possible detailed languages or notations�

The reference model is not prescriptive in the choice of a speci	c notation� rather the intention
is that a number of existing notations will be used as viewpoint languages� by supporting the
concepts and rules de	ned in the RM�ODP� To this end� a clear interpretation of the architectural
concepts of the reference model should be available for those formal notations�

The need for an architectural semantics was recognised from the start of the work on the ODP
reference model and is re�ected by the inclusion of the architectural semantics as Part � of the
standard� RM�ODP Part � provides an interpretation of the ODP modelling and speci	cation
concepts in LOTOS� Estelle� SDL and Z� Thus� this work will act as a bridge between the ODP
model and the semantic models of the FDTs and will enable formal descriptions of standards for
ODP systems to be developed in a sound and uniform way�

In order to achieve these requirements� the architectural semantics should be consistent in two
ways� Firstly� it is necessary to demonstrate that the interpretations of the same architectural en�
tity in di�erent FDTs are consistent� Secondly� the architectural semantics of di�erent viewpoints
are related and should therefore be checked for consistency�

The architectural semantics will also provide the basis for uniform and consistent comparison
between formal descriptions of the same system or standard in di�erent FDTs� It is� therefore� of
great signi	cance to realistic consistency checking techniques�

��� ODP System development and conformance assess�

ment

The RM�ODP provides a general architectural framework for the speci	cation of open distributed
systems� It does not prescribe a particular system development methodology� The prost project
has investigated a general system development strategy for ODP� which is outlined in section ������

Within the framework� domain speci	c ODP standards can be formulated� When particular
distributed systems conform to ODP standards� this will guarantee interoperability and exchange�
ability of components� Conformance assessment for ODP is discussed in section ������

����� System development

A number of development strategies could be envisaged for ODP� The multiple viewpoint ap�
proach to speci	cation puts particular requirements on the system development methodology�
Each viewpoint speci	cation is� at least potentially� at the same level of abstraction� suggesting
that viewpoints are related horizontally relative to a vertical system development� This is in con�
trast to classic waterfall development methodologies� In the prost project such a� fully general�
system development methodology has been investigated� The general development scenario is
depicted in 	gure ���� The methodology promotes a number of speci	cation to speci	cation trans�
formations� such as translation� re�nement and uni�cation� with the aim to derive a composite
�implementation� speci	cation from the multiple viewpoint speci	cations�

Translation maps a speci	cation from one language onto another while maintaining semantic
equivalence� Re	nement has the usual meaning of making a speci	cation less abstract� and thus
bringing it closer to an implementation while maintaining the captured requirements� Uni	cation
is a transformation which enables speci	cations to be combined�

�� CHAPTER �� BACKGROUND

Vertical
System
Development

V1 in L1 V2 in L2 V3 in L3

Implementation
Specification

Viewpoints
Related
Horizontally

S1 S2CONSISTENCY

REFINE

S1’

REFINE

S2’TRANSLATION
to L2

S1"

UNIFICATION

Vi − Viewpoint i
Li − Language i
Si − Specification i

Figure ���� PROST System Development Scenario

Consistency is implicit in such a system development methodology� For example� two speci�
	cations would be viewed as inconsistent if a common uni	ed speci	cation did not exist� Thus�
consistency arises during uni	cation of speci	cations in models of ODP system development�

����� Conformance assessment

Conformance assessment has been considered from early on in the work on ODP� The meaning of
conformance has been built into the RM�ODP� An ODP system conforms to an ODP standard if
it satis	es the conformance requirements of that standard�

Conformance assessment of distributed systems is potentially more complex and costly than in
traditional communications protocols� The complexity inherent in a distributed system infrastruc�
ture may require that in addition to direct testing� techniques such as veri	cation and validation
may be necessary to achieve su�cient con	dence in the conformance of a particular product�

Results from the prost project indicate that conformance assessment for distributed systems
can be divided into two categories of activities� conformance testing and speci�cation checking�
Conformance testing is the activity that relates real implementations to speci	cations by applying
a series of tests to the implementation that were derived from the speci	cation� Speci	cation
checking involves activities such as validation� veri	cation and consistency checking� Both valida�
tion and veri	cation apply to speci	cations within one viewpoint� Validation checks a speci	cation
against its requirements� Veri	cation checks a re	nement against its speci	cation� Consistency
checking� potentially� relates speci	cations across viewpoints� Obviously� no product can conform
to a set of viewpoint speci	cations that are inconsistent�

���� SUMMARY ��

��� Summary

The research project on consistency checking� described in the rest of this deliverable� was mainly
triggered by the progression of the standardisation of the Reference Model for Open Distributed
Processing� One of the cornerstones of the RM�ODP is a model of multiple viewpoints from which
ODP systems can be speci	ed� One of the consequences of adopting a multiple viewpoint approach
is that descriptions of the same or related objects can appear in di�erent viewpoints and must
co�exist� Consistency of speci	cations across viewpoints thus becomes a central issue�

The ongoing work on the de	nition of architectural semantics for ODP manifests important
input to the work on consistency checking as it provides a formalisation of the ODP viewpoint
languages� Conversely� techniques for consistency checking can also prove valuable in validating
the architectural semantics�

Although the RM�ODP does not prescribe a particular system development methodology�
it is clear that the multiple viewpoint approach to speci	cation requires a horizontal relating
of viewpoint speci	cations with respect to a vertical development� Several transformations of
speci	cations may be required� such as translation and uni	cation� which also play a role in
consistency checking�

Conformance assessment for ODP encompasses both conformance testing �i�e� relating real
implementations to speci	cations� and speci�cation checking �i�e� relating speci	cations to spec�
i	cations�� Veri	cation of cross viewpoint consistency is an important example of speci	cation
checking�

�� CHAPTER �� BACKGROUND

Chapter �

De�nitions of Consistency

In order for consistency to be treated uniformly� a single basic de	nition of the concept must be
given� We seek a fully general interpretation that can be instantiated for di�erent languages as
appropriate� e�g� can be intanstiated for the correctness properties of both Z and LOTOS�

��� Three Possible De�nitions of Consistency

This section highlights three possible interpretations of consistency� These de	nitions all appear
in the RM�ODP� the 	rst two appear in part � �clause ����� and the third appears in part � ����
�clause ���� Although� the 	rst of these de	nitions is only alluded to and the IS version of the
reference model is considerably less prescriptive about the de	nition to use than previous drafts
of the standard�

De�nition �
����� Two speci�cations are consistent i� they do not impose contradictory requirements�
����� Two speci�cations are consistent i� it is possible for at least one example of a product �or
implementation� to exist that can conform to both of the speci�cations�
���	� Two speci�cations are consistent i� they are both behaviourally compatible with the other�

This last interpretation is a rewording of the RM�ODP de	nition� This is because the RM�ODP
de	nition is expressed in terms of relating speci	c viewpoints� We are considering more generalised
notions of consistency� thus� we have brought the de	nition into line with the other de	nitions in
order to facilitate a direct comparison� In addition note that all these de	nitions are symmetric�
i�e� if a speci	cation S is consistent with a speci	cation R then R is consistent with S� This is a
reasonable intuitive requirement for a large class of consistency problems �see section �������

Behavioural compatibility is de	ned as follows�

De�nition � �Behavioural Compatibility A speci�cation is behaviourally compatible with a
second speci�cation
 with respect to a set of criteria
 if the �rst speci�cation can replace the sec�
ond speci�cation without the environment being able to notice the di�erence in the speci�cation�s
behaviour on the basis of the set of criteria�

This de	nition slightly adapts the RM�ODP presentation of this concept� Speci	cally� the RM�
ODP de	nition is expressed in terms of objects� However� we would like to be more general than
this and hence we have presented the concept in terms of the notion of a speci	cation� In addition�
these three consistency interpretations blur over the fact that speci	cations may be in di�erent
FDTs and that it may not be possible to relate speci	cations directly without some element of
translation�

Each of these notions of consistency is intuitively reasonable� However� the question arises�
what is the relationship between the interpretations and� in particular� are these de	nitions of

��

� CHAPTER �� DEFINITIONS OF CONSISTENCY

consistency themselves consistent� In fact� the di�erent interpretations are likely to be applicable
in di�erent settings� For example� de	nition � is relevant to consistency checking in a logical
setting� e�g� in an FDT such as Z which is based on 	rst order logic�

We seek to reconcile these interpretations through formalisation� We formalise the 	rst notion
of consistency as follows�

De�nition � S� C� S� i� ���� s�t � S� j� � � S� j� ���

where j� is the satisfaction relation of the speci	cation�s logic� This de	nition states that two spec�
i	cations are consistent if and only if there is no property that holds over one of the speci	cations
and its negation holds over the other speci	cation�

To interprete consistency ��� we need a formal interpretation of conformance� There is a
di�culty here because conformance relates real physical implementations to speci	cations and
implementations are not amenable to formal interpretation� The classical approach to handling
this di�culty is to only consider conformance up to a� so called� implementation speci�cation�
This is a speci	cation that describes a real implementation in as much detail that a direct map�
ping from the implementation speci	cation to the real implementation can be found� Thus� it is
normal just to consider conformance relations between speci	cations� see ���� ���� ��� for typical
approaches� However� implementation speci	cations relate to real implementations in di�erent
ways for di�erent FDTs and� in particular� for some FDTs not all implementation speci	cations
are implementable� This would� for example� be the case for Z� see discussion in section ������

Our approach then is to divide conformance testing into two parts� Firstly� we consider confor�
mance up to implementation speci	cations� using a relation conf � SPEC � SPEC � and then we
consider conformance of implementation speci	cations to real implementations� using a relation
Conf � IMP � SPEC �� where SPEC is the set of possible ODP speci	cations and IMP is the
set of possible ODP implementations�

By way of clari	cation� S� conf S� expresses the property that speci	cation S� conforms to
speci	cation S�� i�e� according to tests derived from S�� S� cannot be distinguished from S�� It
should be noted that we have not speci	ed how and what form of tests are derived from S�� there
are many options for such derivation ���� ����� In a similar way I Conf S expresses the property
that I conforms to S � Interpretation ��� is now formalized as��

De�nition � S� C��� S� i� � S � SPEC� I � IMP s�t � S conf S� � S conf S� � I Conf S�

i�e�� two speci	cations are consistent i� an implementation speci	cation which conforms to both
and a real implementation of the implementation speci	cation can be found� This de	nition is
correct� but is not very useful since it uses Conf � which is not subject to formal interpretation� In
order to resolve this di�culty we introduce the concept of internal validity which holds whenever
a speci	cation is implementable��

De�nition � S is internally valid
 denoted ��S �
 i� � I � IMP s�t � I Conf S

We will return to this notion of implementability in section ������ For example� a Z speci	cation
which contains contradictions would not be internally valid� Now we can rede	ne C� in a more
usable way�

De�nition � S� C��� S� i� �S � SPEC s�t � S conf S� � S conf S� � ��S ��

The third and 	nal consistency interpretation hinges on the notion of behavioural compatibility
which is de	ned in terms of an environment and unspeci	ed criteria� We will consider speci	c
instantiations of behavioural compatibility when we look at speci	c FDTs� at this stage we for�
mulate the interpretation completely generally� for bc a particular instantiation of behavioural
compatibility�

�The order of our relations is in accordance with LOTOS conventions and is opposed to Z conventions

���� A GENERAL DEFINITION OF CONSISTENCY ��

De�nition 	 S� C� S� i� S� bc S� � S� bc S��

This de	nition is parameterised on the notion of behavioural compatibility� Thus� we will often
make this parameterisation explicit and denote the interpretation as C bcs

� � where bcs is a symmetric
subset of bc� i�e� the consistency relation induced by bcs�

Discussion� We would like to relate these three de	nitions� C�� C��� and C�� however� a number
of aspects of these RM�ODP de	nitions are FDT dependent� such as behavioural compatibility or
internal validity� So� we can only make such a comparison for speci	c FDTs� ��� has specialized
de	nitions C��� and C� for LOTOS by instantiating the de	nitions with obvious notions of internal
validity� conformance and behavioural compatibility� The main results of this work will be revisited
in chapter � as instances of the general notion of consistency that we will adopt in this report�

Probably the most important implication of ��� is that consistency checking must be performed
selectively� In particular� it is inappropriate to view consistency checking as a single mechanism
which can be applied to any pair of speci	cations� For example� it would be inappropriate to
check two speci	cations which express exactly corresponding functionality with the same notion
of consistency that is applicable to checking consistency between speci	cations which extend each
other�s functionality� Thus� in order to apply suitable consistency checks the relationship of the
speci	cations being checked must be made available� The RM�ODP has no provision for the
communication of such information� The correspondence rule concept is used in the reference
model as a means to locate portions of viewpoint speci	cations that should be compared� However�
there is no means to de	ne how these portions of speci	cations should be related�

��� A General De�nition of Consistency

This subsection presents a general de	nition of consistency� Our work with the three RM�ODP
de	nitions has shown that each is a specialized notion of consistency that is applicable in a certain
setting� e�g� C� to consistency in Z� but none of the de	nitions gives the �big picture� and is general
enough to be instantiated reasonably for many FDTs and many notions of ODP consistency� We
will give general de	nitions of the consistency checking relationships� consistency� both intra and
inter language� and uni�cation� First though we will present the notation that we will work with�
Importantly� this notation re�ects the search for a general interpretation of consistency by de	ning
very general notational conventions� These conventions will be specialized for particular FDTs
and particular forms of consistency�

����� Notation

We begin by assuming a set COMP of all possible computations� Subsets of COMP include IMP
the set of physical implementations and DES the set of formal descriptions� The latter of these
is the domain that we will be working in� DES contains both formal speci	cations in languages
such as LOTOS and Z and semantic descriptions in notations such as labelled transition systems
and ZF set theory�

We assume a set DR of description relations� Members of this set relate pairs of descriptions
in DES � DR embraces all possible ways of relating descriptions� e�g� re	nement relations or
semantic maps� For a particular relation r � DR� where r � DES � DES we de	ne the left and
right projections of r as� pl �r� � fD � �D �s�t ��D �D �� � rg and pr �r� � fD � �D �s�t ��D ��D� � rg

DR is subdivided into DEV the set of development relations and SEM the set of semantic
maps� Importantly� although members of DEV and of SEM have very di�erent functions� both
can be viewed as relations between pairs of descriptions� possibly in di�erent languages�

Development relations are written dv or dev and if X dv X � then� in some sense� X is a valid
development of X �� Our concept of a development relation generalises all notions of evolving a
formal description towards an implementation and thus embraces the many such notions that have
been proposed� In particular� DEV contains re�nement relations� equivalences and relations which
can broadly be classed as implementation relations ��� such as the LOTOS conformance relation

�
 CHAPTER �� DEFINITIONS OF CONSISTENCY

conf� These di�erent classes of development are best distinguished by their basic properties� Re�
	nement is typically re�exive and transitive �i�e� a preorder�� equivalences are re�exive� symmetric
and transitive� and implementation relations are only re�exive� The distinction between re	ne�
ment and implementation relations is particularly signi	cant� transitivity is a crucial property
in enabling incremental development of speci	cations towards realizations and implementation
relations are typically lacking in this respect�

In general though we do not require that development relations support any speci	c properties�
In particular� we cannot even assume re�exivity in the general case� This is because� in order to
support inter language consistency checking� we allow development relations to relate descriptions
in di�erent notations� In these circumstances re�exivity is not a sensible concept�

Members of SEM are semantic maps between descriptions in formal techniques� Typically
they map descriptions from one formal technique to a second formal technique� Elements of SEM
will usually be denoted �����

Descriptions are written in formal techniques� The set of all such techniques is denoted FT �
Formal techniques are triples� they are elements of PDES �PDEV �PSEM � Thus� every formal
technique is characterised by the set of possible descriptions in the notation� a set of associated
development relations and a set of semantic maps� We require that the left projection of all
elements of DEV and SEM contains a subset of DES � For a particular formal technique ft we
denote the set of all descriptions in ft as DESft � the set of all development relations as DEVft and
the set of all semantic maps as SEMft �

����� Consistency

Basic De�nition� In its general form consistency is a check which takes any number of descrip�
tions and returns true if all the descriptions are consistent and false otherwise� This check will
be performed according to a list of development relations� one per description� and is denoted�
C �dv�� dv�� ���dvn��X��X�� ����Xn�� The validity of the check has two elements� type correctness and
consistency�

De�nition � �Type Correctness C �dv�� dv�� ���dvn��X��X�� ����Xn� is type correct i� �X� �
pr �dv�� � X� � pr �dv�� � ���� Xn � pr �dvn �� � �pl �dv�� � pl �dv�� � ���� pl �dvn � 	� ���

Type correctness ensures� 	rstly� that for every description the corresponding development relation�
i�e� dvi for Xi � is correctly typed with regard to the description� In addition� type correctness
ensures that the target types of the relations has some intersection� This check has the function
of determining that the consistency check being attempted is sensible� Type correctness will not
be an issue for intra language consistency� but will be necessary when determining an appropriate
inter language consistency check to apply� When writing C �dv�� dv�� ���dvn ��X��X�� ����Xn� unless
otherwise stated we will assume the check has already been shown to be type correct�

Once type correctness has been determined we can investigate consistency� Intuitively we view
n speci	cations X��X�� ����Xn as consistent if and only if there exists a physical implementation
which is a realization of all the speci	cations� i�e� X��X� through to Xn can be implemented in
a single system� However� we can only work in the formal setting� so we express consistency in
terms of a common �formal� description� X � and a list of development relations� dv�� dv�� ���dvn�
The de	nition states that n descriptions are consistent if and only if a description can be found
which is a development of X� according to dv�� X� according to dv�� through to Xn according to
dvn � and the third description is internally valid� written ��X �� The structure of the consistency
check is depicted in 	gure ��� and is formalized in de	nition ��

De�nition � �Consistency
X��X�� ����Xn are consistent by dv�� dv�� ���dvn
 i�e� C �dv�� dv�� ���dvn��X��X�� ����Xn� holds
 i�
�X � DES s�t � �X dv� X� �X dv� X� � ���� X dvn Xn� ���X ��

For n descriptions to be consistent this de	nition requires that X is a common development
of Xi for all i between � and n� Notice that we allow the descriptions to be related to their

���� A GENERAL DEFINITION OF CONSISTENCY ��

1X X 2 X n.

X

dv 1
dv 2 dv n

and X is internally valid

Figure ���� A Consistency Check

common development in di�erent ways� i�e� if dvi 	� dvj � This is important in order to support
the full generality of ODP viewpoints� A particular specialization of the viewpoints may for
example require a viewpoint to be related to a second viewpoint directly by re	nement� In order
to re�ect alternative classes of specialization we will distinguish between balanced and unbalanced
consistency� These two alternatives will be discussed in sections ����� and ������

The internal validity check in the above de	nition formalizes the notion of implementability� It
is required because descriptions relate to physical implementations in di�erent ways for di�erent
languages and� in particular� for some FDTs not all speci	cations are implementable� For example�
a Z speci	cation that contains an operation �n� � IN j n� � �� n� � �� has no real implementation�
Thus� for some FDTs it is possible to 	nd a description which is a common development of a
pair of speci	cations� but is not itself implementable� The property ��X � is true if and only
if the description X has a real implementation� Thus� � acts as a receptacle for properties of
particular languages that make descriptions in that language unimplementable� For example� a Z
speci	cation which contains contradictions would not be internally valid�

In most cases X��X�� ����Xn in the above de	nition will all be speci	cations� however� X will
commonly be a semantic representation� In particular� if some of X��X�� ����Xn are in di�erent
languages then X is almost certain to be in a common semantic notation� The properties that
enable a semantic notation to be suitable for representing common developments of speci	cations
in di�erent formal techniques will be discussed in section ���� If X��X�� ����Xn are in the same
formal technique then C �dv�� dv�� ���dvn��X��X�� ����Xn� is called an intra language consistency
check and if for some i and j between � and n� Xi and Xj are in di�erent formal techniques then
C �dv�� dv�� ���dvn��X��X�� ����Xn� is called an inter language consistency check� We will denote this
interpretation of consistency as C when we refer to it in text�

Binary Consistency� An important special case is binary consistency� i�e� the consistency check
C �dv�� dv���X��X�� is performed� Binary consistency is a binary relation and is often written�
X� Cdv��dv� X�� The possibility of inter language consistency make some of the standard prop�
erties of binary relations problematic� For example� we can consider re�exivity� symmetry and
transitivity�

Proposition �
Binary consistency is neither �i� reexive
 �ii� symmetric or �iii� transitive�

Proof

�i� Re�exivity is the case C �dv ��X �� and this will be false whenever X is not internally valid�

�ii� AssumingC �dv�� dv���X��X�� is true� in the case of inter language consistency C �dv�� dv���X��X��
is likely not even to be type correct� Thus� in its most general form symmetry of consistency does

�� CHAPTER �� DEFINITIONS OF CONSISTENCY

not even yield a type correct consistency check�

�iii� Assuming C �dv�� dv���X��X�� and C �dv�� dv���X��X�� hold then transitivity requires us to
show that X� and X� are consistent� however� according to what development relations will we
check consistency� The transitivity varient that we would like is that C �dv�� dv���X��X�� follows
from the assumptions� However� nothing in our assumption guarantees that� pl �dv���pl �dv�� 	� ��
thus� C �dv�� dv���X��X�� may not be type correct� Furthermore� even if we assume type cor�
rectness of C �dv�� dv���X��X��� consistency will not always hold� since C �dv�� dv���X��X�� and
C �dv�� dv���X��X�� are likely to have di�erent common developments that cannot be related� �

Implementation Complete� There are a number of languages in which all speci	cations are
internally valid� This is for example the case for LOTOS� for which even a deadlock has an
implementation equivalent� Thus� we introduce the following notation��

Notation � �Implementation CompleteA formal technique ft is called implementation com�
plete i�
X � DESft � ��X ��

The following result is almost trivial� but it enables us to start characterising re�exivity of consis�
tency�

Proposition �
If X � D for D � DES
 then C �dv�� dv���X �X � holds
 i�e� reexivity of consistency
 i�
X �
D �X � � DES s�t � X � �dv� � dv�� X ���X ���

Proof
����X Cdv��dv� X �� �X �s�t � X � dv� X � X � dv� X � ��X �� �� X � �dv� �dv�� X � ��X ���
���� �X � s�t � X � �dv� � dv�� X ���X �� �� X � is the required common development� �

Note that C �dv�� dv���X �X � can also be written as C �dv��dv���X �� Proposition � has the following
immediate corollary�

Corollary �
If ft is implementation complete and dv� and dv� are reexive
 then
X � DESft � C �dv�� dv���X �X �
holds
 i�e� reexivity of consistency�

Proof
This result follows from the re�exivity of the development relations� which implies that X is a
common development� and from the right to left implication in proposition �� �

This corollary implies that consistency is re�exive for a language such as LOTOS in which all
speci	cations are internally valid and development is at least re�exive�

Pairwise Consistency� An important issue is in what way we can determine consistency� for
example� can we assert consistency between three or more descriptions by performing a series
of binary consistency checks� In order to determine this we consider the notion of a pairwise
consistency check��

De�nition �� �Pairwise Consistency Descriptions X��X�� ����Xn are pairwise consistent ac�
cording to development relations dv�� dv�� ���dvn i�
Xi �Xj s�t � � i � j n� Xi Cdvi �dvj

Xj �

The following result characterizes the broad relationship between pairwise and normal consistency�

Proposition �
�i� Consistency implies pairwise consistency�
�ii� Pairwise consistency of three or more speci�cations does not imply consistency�

���� A GENERAL DEFINITION OF CONSISTENCY ��

Proof
�i� Assume �X � DES s�t � �X dv� X� � X dv� X� � ��� � X dvn Xn� � ��X �� Now clearly
XiCdvi �dvj

Xj for any � i � j n since X can act as the internally valid common development�

�ii� We demonstrate this by counterexample� Consider the three speci	cations� S� � �x �� y � � IN j
x � � y ��� S� � �x �� z � � IN j x � � z �� and S� � �z �� y � � IN j z � 	� y �� Intuitively these are balanced
pairwise consistent� i�e� S� C S�� S� C S�� S� C S�� but� they are not globally consistent� �

Intuitively� the second part of the above proposition arises because pairwise consistency only
requires the existence of a common development� Thus� many pairwise consistency results may
exist each of which focuses on a di�erent common development� This is not su�cient to induce
�global� consistency which requires the existence of a single common development� We should
also emphasise that the generalized consistency that the ODP viewpoints model induces is our
normal consistency� not pairwise consistency� since a single development of all the viewpoints �i�e�
the realization� is required� In later sections we will characterize circumstances in which pairwise
and normal consistency are the same�

����� Balanced Consistency

Balanced consistency re�ects the situation in which the speci	cations being checked for consistency
are at the same level of abstraction� balanced consistency is written� C �dv ��X��X�� ����Xn�� It
should be noted that some of our previous papers have only considered balanced consistency� e�g�
��� and presented this as consistency in its entirety� This report presents a generalization of that
work�

De�nition �� �Balanced Consistency
C �dv�� dv�� ��� dvn��X��X�� ����Xn�
 is balanced i� dvi � dvj �
 dvi � dvj s�t � � i � j n�

We have the following result��

Proposition �
C �dv ��X��X�� ����Xn� is well founded
 i�e� C �dv ��X�� ����Xn� � C �dv ��Y � where Y is any possible
permutation of X�� ����Xn�

Proof
Immediate from de	nition of consistency and balanced consistency� �

This proposition states that the ordering of X�� ����Xn in the argument list of C is not important in
balanced consistency� This is once again a very obvious result� but does contrast with the situation
for unbalanced consistency� where ordering is crucial and permuting the order of descriptions may
invalidate type correctness�

Once again we can consider the special case of binary balanced consistency� C �dv ��X��X���
which is often written as Cdv � The next result follows naturally from the previous result��

Proposition �
Cdv is symmetric�

Proof
From proposition �� �

This proposition characterizes symmetry of binary balanced consistency and proposition � char�
acterizes re�exivity of all binary consistency� transitivity of Cdv is� however� more di�cult to
characterize� We have the following partial characterization�

Proposition � dv is transitive and symmetric �� Cdv is transitive

�� CHAPTER �� DEFINITIONS OF CONSISTENCY

Proof Assume �X �X � s�t � X dv X� � X dv X� � ��X � and X � dv X� � X � dv X� � ��X ���
then from symmetry of dv we get X� dv X and transitivity can be applied twice to get X � dv X��
Thus� X � is the required common development of X� and X�� �

The following results which relate the characteristics of the development relation used to the
induced balanced consistency are also easily obtained��

Proposition 	
�i� If dv is reexive and ��X��
 then X� dv X� �� X� Cdv X��
�ii� If dv is symmetric and transitive then X� Cdv X� �� X� dv X��

Proof
�i� Assume X� dv X� and ��X��� from re�exivity of X� we get X� is the required common
development�
�ii� Assume �X s�t � X dv X� � X dv X� � ��X �� then from symmetry X� dv X and from
transitivity X� dv X� as required� �

Corollary �
If ft is implementation complete and dv is an equivalence relation
 then for all descriptions in ft

dv � Cdv �

This result will be valuable when we seek to relate behavioural compatibility to our interpretation
of consistency� See section ����� for a discussion of this�

In addition� as the following result shows� if we impose some strong requirements on the
development relation we can relate pairwise consistency to consistency in the balanced case��

Proposition �
dv is transitive and symmetric �� �balanced pairwise consistency �� balanced consistency��

Proof Assume that dv is transitive and symmetric� then we can prove the equivalence of pairwise
consistency and consistency as follows��
���� We already have this from ��
���� Assume
Xi �Xj s�t � � i � j n�i 	� j �Yk s�t � � k n�n����� � ��Yk � � Yk dv Xi�
Yk dv Xj � �In this proof we assume that all Yks are distinct� This is the worst case situation to
prove� if di�erent pairs have the same common development the situation only becomes easier��
We will show that any of the Yk s could act as a common development for all the descriptions� So�
pick Yr s�t� � r n�n � ����� Firstly� note that ��Yr � by the assumption� Now pick Xt s�t�
� t n� Clearly� �Xs s�t � Yr dv Xs and �Ym s�t � Ym dv Xt �Ym dv Xs � From symmetry of
dv we get Xs dv Ym and we can apply transitivity twice to Yr dv Xs � Xs dv Ym and Ym dv Xt

to get Yr dv Xt as required� �

����� Unbalanced Consistency

Unbalanced consistency re�ects the situation in which the speci	cations being checked for con�
sistency are at di�erent levels of abstraction or have di�erent granularities� Such relationships
are easy to imagine for particular specializations of the ODP viewpoints� In circumstances in
which confusion cannot arise unbalanced consistency is denoted C �dv�� dv�� ��� dvn��X��X�� ����Xn��
although if we wish to speci	cally distinguish the unbalanced case from the general case we will
write C u �dv�� dv�� ��� dvn��X��X�� ����Xn�� In general unbalanced consistency is considerably more
di�cult to work with than balanced consistency� We have the following general de	nition��

De�nition �� �Unbalanced Consistency
C �dv�� dv�� ��� dvn��X��X�� ����Xn�
 is unbalanced i� � dvi � dvj s�t � � i � j n � dvi 	� dvj �

Some results can be derived on binary unbalanced consistency� which is often denoted as Cdv��dv�

or as C u
dv��dv�

if we wish to distinguish this class of consistency from the general binary case�

���� UNIFICATION ��

Proposition �
If ft is implementation complete and dv is a preorder �i�e� reexive and transitive� then
X��X� �
DESft � X� dv X� �� X� Cdv���dv X��

Proof
���� Firstly� X� dv X� by assumption� but also X� dv�� X� by re�exivity of dv � So� X� is the
required common development�
���� Assume �X s�t � X� dv X �X dv X� then by transitivity of dv � X� dv X�� �

Interestingly� we also have��

Proposition ��
If ft is implementation complete and dv is a preorder then
X��X� � DESft � X� dv X� ��
X� C�dv�dv����dv X��

Proof
���� X� dv X� by assumption� also X� dv � dv�� X� by re�exivity�
���� Since X� C�dv�dv����dv X� �� X� Cdv���dv X� and using previous proposition �

This 	nal result characterizes the relationship between dv and C��dv where � is the equivalence
de	ned by � � dv � dv��� These results will be important when we characterize the consistency
arising from the LOTOS re	nement preorders� e�g� reduction and extension� and their equivalence�
testing equivalence�

Corollary �
For implementation complete formal techniques and dv a preorder
 dv � Cdv���dv � C�dv�dv����dv �

��� Uni�cation

Uni	cation is the mechanism by which descriptions are composed in such a way that the compo�
sition is a development of all the descriptions�

De�nition �� �Uni�cation Set U �dv�� dv�� ��� dvn��X��X�� ����Xn� � f X � X � DES �
�X dv� X� �X dv� X� � ���� X dvn Xn �g�

The uni	cation set is the set of all common developments of a list of descriptions� i�e� the set of
all uni	cations� Clearly� C �dv�� dv�� ��� dvn��X��X�� ����Xn� holds if and only if �X � U such that
��X �� In fact� one approach to consistency checking is to perform a uni	cation and then to show
that this uni	cation is internally valid� This will be the approach taken for consistency checking
in Z�

In the same way as for consistency we can consider binary uni	cation and distinguish between
balanced and unbalanced uni	cation� We begin by considering balanced uni	cation�

����� Balanced Uni�cation

De�nition �� U �dv�� dv�� ��� dvn��X��X�� ����Xn� is a balanced uni�cation set i�
 dvi � dvj s�t � �
i � j n� dvi � dvj �

The balanced uni	cation set is denoted U �dv ��X��X�� ����Xn� and the following results are easily
obtained�

Proposition ��
�i� U �dv ��X��X�� ����Xn� is well founded
 i�e� any permutation of the order of X��X�� ����Xn will
give the same uni�cation set�
�ii� U �dv ��X��X�� � U �dv ��X��X�� � commutativity
�iii�
X � U �dv ��X��X�� ����Xn�� X dv X��X�� ����Xn � common development

Proof Straightforward� �

�� CHAPTER �� DEFINITIONS OF CONSISTENCY

����� Unbalanced Uni�cation

De�nition �� U �dv�� dv�� ���� dn��X��X�� ����Xn� is an unbalanced uni�cation set i� � dvi � dvj s�t �
� i � j n � dvj 	� dvj �

Wellfoundedness and commutativity will not hold for unbalanced uni	cation� common develop�
ment will hold�

����� Representative Uni�cation

A particular uni	cation algorithm will construct just one member of the uni	cation set� Impor�
tantly� we need to know that the uni	cation that we construct is internally valid if and only if
an internally valid uni	cation exists� otherwise we may construct an internally invalid uni	cation
despite the fact that an alternative uni	cation may be internally valid�

Thus� we introduce the concept of a representative uni	cation� which is de	ned as follows��

De�nition �� X � U �dv�� dv�� ���� dn��X��X�� ����Xn� is a representative uni�cation i� ��X � �
U �dv�� dv�� ���� dn��X��X�� ����Xn� s�t � ��X ��� �� ��X ��

We denote a representative uni	cation as U �dv�� dv�� ���� dn��X��X�� ����Xn�� The following result
is very straightforward��

Proposition ��
ft is implementation complete and X�� ����Xn � DESft ��
X � U �dv�� ���� dn��X�� ����Xn�� X is
a representative uni�cation�

We believe that the least uni�cation will� in general� generate a representative uni	cation� The
importance of taking the least uni	cation is that the contradications contained in the uni	cation
will re�ect contradictions occuring in the original speci	cations and will not have been introduced
during development�

Unfortunately� for inter language consistency the least of the set of uni	cations is a problematic
concept� Speci	cally� descriptions in the uni	cation set� U �dv�� dv�� ��� dvn��X��X�� ����Xn�� are
likely to be in a di�erent notation from X��X�� ����Xn� thus it is unlikely that the uni	cations
can be related in a type correct manner using dv�� dv�� ��� dvn� Thus� we will consider the least
uni	cation in the intra language case�

De�nition �	 �Least Uni�cation �Intra Language X � U �dv�� dv�� ��� dvn��X��X�� ����Xn�
is the least uni�cation i� ��X � � U �dv�� dv�� ��� dvn��X��X�� ����Xn�� s�t � X �dv� � dv� � ��� �
dvn � X � � ��X � �dv� � dv� � ���� dvn � X ��

We denote the least uni	cation LU �dv�� dv�� ���� dn��X��X�� ����Xn��

��� Inter Language Consistency

The basic de	nition of consistency that we presented in section ����� is able to relate descriptions
in di�erent formal techniques and thus to support inter language consistency� This would be the
case if the uni	cation sought is a description in a common semantics� i�e� a semantic notation that
can represent the formal techniques of both the original descriptions� However� it is important
that we consider what constitues a satisfactory common semantic representation� This section
makes a 	rst e�ort to de	ne the criteria that such a common semantics should satisfy�

We use the notion of a development relation in di�erent notations correlating under certain
conditions� These conditions amount to a full abstraction requirement�

De�nition �� �Correlation between relations A development relation dv� correlates to a
development relation dv�
 written dv� � dv� with regard to a semantics ���� for a formal technique
ft i�
X��X� � DESft �X� dv� X� �� ��X��� dv� ��X����

���� CONCLUSION ��

De�nition �� �Fully Correlated A semantics ���� is fully correlated with regard to a formal
technique ft i�
 dv� used in ft � dv� used in pr ������ such that dv� � dv� with regard to the
semantics �����

��� Conclusion

This section concludes this chapter with a discussion of the properties of our consistency de	nition�
In particular� the next section considers the generality of C �

����� Generality of the De�nition

Reconciling the RM�ODP De�nitions

As we have indicated previously all of the three RM�ODP de	nitions are reasonable� but each is
relevant to consistency checking in a particular setting� What we have sought in this chapter is
a single general de	nition� which can be instantiated as appropriate for di�erent notations� We
believe we have obtained such a general interpretation� In particular� our de	nition embraces
one of the reference models de	nitions directly and the other two through imposition of certain
constraints on the development relation used� We will consider these results here�

Reconciling C���� The following proposition represents a straightforward instantiation into C �

Proposition ��
If dv is instantiated as conformance then Cdv � C����

Reconciling C�� Our approach is to de	ne a development relation with the required character�
istics and instantiate this into C � We de	ne dev as�

�dev�i� X� dev X� �� �X� j� � �� X� j� �� and
�dev�ii� dev is a re�exive development relation�

These represent strong constraints on development� However� neither are unreasonable and could
be de	ned in speci	c settings� e�g� the 	rst constraint could be de	ned for Z and the second
constraint is a standard requirement of re	nement relations� In addition� we de	ne internal validity
as�

��X ������ � s�t � X j� �����

which is a natural instantiation�
We need a simple lemma�

Lemma �
X� C� X� �� ���� � s�t � X� j� ����� � ��� �� s�t � X� j� ���������

Proof
We will show that X� C� X� �� ��� � s�t � X� j� ������ We will use contradiction� so assume
� � s�t � X� j� ����� Now if we consider X� it is clear that either X� j� � � X� j� ��� However� if
either of these hold then C�� i�e� ��� �

�� s�t � X� j� ���� � X� j� ����� is contradicted� This gives us
the required contradiction� We can make a similar argument to show that ��� �� s�t � X� j� �������
follows from C�� �

Now we can prove the equality that we want�

Proposition ��
C� � Cdev �

Proof

�C� �� Cdev�
Assume C�� i�e� ��� � s�t � X� j� �� � X� j� ��� From this we can draw the following implications��

� CHAPTER �� DEFINITIONS OF CONSISTENCY

��� � s�t � X� j� �� � X� j� �� ��
 ����X� j� �� � X� j� �� ��

 ������X� j� �� � X� j� �� ��
 ������X� j� �� � ����X� j� ���� ��

 ���X� j� � � ��X� j� ��� ��
 ���X� j� � �� X� j� ��

thus X� dev X�� by �dev�i�� Now by �dev�ii� we also have that X� dev X�� So� X� is a common
development and from lemma � we have that ��X��� Thus� X� Cdev X� as required�

�C� �� Cdev�
We will use contradiction� Thus� assume Cdev and the negation of C��
�X s�t � X dev X� � X dev X� � ��� � s�t � X j� ����� and � �� s�t � X� j� �� � X� j� ����
but from �dev�i� these assumptions imply X j� ������ which is the required contradiction� �

Reconciling C�� As a concept� behavioural compatibility is extremely general� the notion is�
	rstly� FDT dependent and� secondly� can be interpreted a number of ways for each FDT� thus� a
direct relating of C� and C is not possible� However� we can give stong evidence that C� can be
fully embraced� In particular� the following results give a general relationship for implementation
complete formal techniques�

Proposition ��
For implementation complete languages and � an equivalence C�

� � C��

Proof
Directly from �� �

Thus� if ft is implementation complete and behavioural compatibility induces an equivalence on
C� we can make a straightforward instantiation of behavioural compatibility in the development
relation and obtain an equivalent de	nition� Furthermore� the restriction to implementation com�
plete formal techniques is not overly restrictive� since the target of C� is the behavioural portion of
notations such as� LOTOS� Estelle and SDL� which can be viewed to be inherently implementation
complete�

We will further justify that C� can be embraced by C by showing� in section ������ that
all the obvious LOTOS instantiations of behavioural compatibility can be given an equivalent
C interpretation� This is strong evidence since LOTOS is a main target for the behavioural
compatibility concept� We will summarise these results here�

Firstly� using proposition �� above we can reconcile any LOTOS instantiation that interprets
C� as an equivalence� e�g� testing equivalence or weak or strong bisimulation� In addition� we will
show that the single remaining interpretation can also be embraced� Under this interpretation
behavioural compatibility is viewed as the LOTOS conf relation� which is a realistic interpretation
of conformance� By using a relation based on conf� denoted xcs� as development relation we can
get the required relationship between C� and C �

Proposition �� For LOTOS speci�cations and bc �conf
 C� � Cxcs�

Proof
See section ������

We will explain the relation xcs and prove this result in section ������

Aspects of Generality

The previous subsection has indicated that the three RM�ODP de	nitions of consistency can be
embraced by C � This suggests that our interpretation of consistency is general relative to the
RM�ODP de	nitions� It is also worth highlighting the particular aspects of our interpretation
that make it general��

� Di�erent development relations can be instantiated which are appropriate both to di�erent
FDTs and to assessing di�erent forms of consistency�

���� CONCLUSION ��

� Notions of internal validity relevant to di�erent languages can be employed�

� Both intra and inter language consistency are incorporated�

� Consistency checking between an arbitrary number of descriptions can be supported and
checked according to a list of di�erent development relations� Binary consistency is just a
special case of this global consistency�

� Both balanced and unbalanced consistency are incorporated�

� Both logical and behavioural notions of consistency are embraced�

����� Discussion

We will ultimately need global consistency� however� there are a number of outstanding issues to
consider on this topic� In particular� we need to determine which uni	cation to choose when doing
incremental consistency checking in order that we can obtain global consistency between a group
of n �larger than �� speci	cations� Taking representative and least uni	cations is clearly relevant
to this issue� but more work is required in order to fully characterise the problem� Thus� in the
remainder of this report we will concentrate on consistency between pairs of speci	cations�

�
 CHAPTER �� DEFINITIONS OF CONSISTENCY

Chapter �

Consistency in LOTOS

In this chapter we present an overview of the work done on consistency checking and uni	cation
within the formal speci	cation language LOTOS� The approach to consistency checking and uni	�
cation outlined in this chapter is general� ODP correspondence rules or the object based nature of
ODP speci	cations� for example� are not yet taken into account� As a consequence� the uni	cation
methods given in this chapter also apply to composition of partial speci	cations beyond the scope
of Open Distributed Processing�

LOTOS is a process algebra based speci	cation language which is used for the formal speci	ca�
tion of distributed� concurrent information processing systems �see �� for a general introduction��
In particular� LOTOS ���� was adopted by the International Standardisation Organisation �ISO�
to formally describe the services and protocols of the Open Systems Interconnection Reference
Model �OSI RM� ��� ��� �
�� Currently� LOTOS is also being used for the speci	cation of ODP
systems and standards�

The LOTOS language has two parts� a behavioural part and a data part� The former of these
is a process algebraic language� related to CCS� CSP and ACP� in which systems are described in
terms of the temporal relationship between externally observable actions� The subset of LOTOS
that consists solely of the behavioural part is usually referred to as Basic LOTOS� The latter
is an abstract data typing language� ACT�ONE� In this chapter� we will largely focus on Basic
LOTOS� i�e� the behavioural part� Basic LOTOS is a natural point of focus since it is the subset of
LOTOS that is most fundamentally di�erent to Z and ultimately we are interested in addressing
the hardest consistency checking between Z and LOTOS� which will arise in this circumstance�
Nevertheless� since the semantics of a Full LOTOS speci	cations can be expressed in Basic LOTOS�
the consistency checking mechanisms developed here for Basic LOTOS apply equally well to Full
LOTOS behaviour speci	cations�

Structure of Chapter� The general framework for consistency checking outlined in chapter �
relies on the existence of development relations for the formal techniques used� In section ����
some of the existing development relations for LOTOS are brie�y reviewed� This is followed in
section ��� by an investigation of the generality of our de	nition of consistency� de	nition �� in the
LOTOS setting� The three RM�ODP consistency de	nitions for LOTOS are interpreted and then
related to the general de	nition of consistency given in chapter �� Section ��� considers part of the
spectrum of possible LOTOS instantiations of de	nition � and relates these instantiations in both
the unbalanced and balanced case� This is followed in section ��� by a presentation of some speci	c
consistency checking techniques for balanced consistency� Operational semantics for a number of
classes of uni	cation are presented� Some of the developed techniques are then applied to two
example viewpoint speci	cations of a shared memory system in section ���� Finally� we present
some concluding remarks in section ���

��

�� CHAPTER �� CONSISTENCY IN LOTOS

Notation Meaning

P ���P � denotes a transition� i�e�
P can do � and consequently behaves as P ��

P ��� �P � such that P ���P �

P
�

���� 	 �P � such that P ���P �
�

�� re�exive and transitive closure of i��

P
��

���P � �Q �Q � �P
�

��Q ���Q � �

��P �

P
�

�� �P � � P
�

��P �

P
�

�	� 	 �P � �P
�

��P �

P
��

� P � �Q � P
�

�� ���P �

Table ���� Derived transition denotations

��� Development Relations

In this section� some well�known development relations for LOTOS are recapitulated� We assume
the reader has some familiaritywith LOTOS and its semantics� Before de	nitions of these relations
are given� we introduce some notation that will allow us to reason about processes�

Notation� LOTOS has a well�de	ned operational semantics which maps LOTOS behaviour
expressions onto Labelled Transition Systems �LTSs�� As a result of the existence of such a
mapping� and the possibility to express any LTS in LOTOS� we can use behaviour expressions and
their corresponding LTSs interchangeably� In particular� relations de	ned on transition systems
are likewise applicable to behaviour expressions and the processes they de	ne�

A labelled transition system is a tuple� � S �L�T � s� 	� S is a set of states which ranges over the
possible process behaviours that the system can reach� L is a set of action labels� T is a set of

transitions of the form P
�
��P �� and s� is a starting state�

In the following P �P ��Q �Q � stand for processes� L is the alphabet of observable actions
associated with a certain process� while i is the invisible or internal action� We use the variables

�
i to range over L� and the variables �� �i to range over L � fig� Furthermore� L� denotes
strings over L� The constant � � L� denotes the empty string� and the variables �� �i are used
to range over L�� Elements of L� are also called traces� In table ��� the notion of transition is

generalised to traces� The de	nitions of
�

�� and
�

� are inductive on the length of ��

Using the notation derived in table ���� we can now de	ne some other useful concepts�

Tr�P� � f� j P
�

��g� denotes the set of traces of a process P �
out�P � �� � f
 j �
 � Tr�P�g� denotes the set of possible observable actions after the trace ��

P after � � fP � j P
�
��P �g� denotes the set of all states reachable from P by the trace ��

P!a�� fP � j P
�

� P �g�P after �� denotes the set of states that P leads to under � 	� ��

Ref �P � �� � fX j �P � � �P after ��� such that

 � X � P �
�

�	� g� denotes the refusal set of P
after the trace ��

����� Trace preorder

An important category of system properties that one would like have satis	ed by a LOTOS
speci	cation� are safety properties� Safety properties state that something bad should not happen�
where something bad can be interpreted as a certain trace of the speci	cation� Observe that if S
is a safety property� then
��� �� we have if �� �� then S ���� � S ����� i�e� if S holds for the
trace ��� it also holds for all its pre	xes� In particular� all safety properties hold for the empty
trace ��

���� DEVELOPMENT RELATIONS ��

When a speci	cation is re	ned� it seems reasonable to require that the re	nement is at least
as safe as the speci	cation� This intuition is re�ected by the trace preorder�

De�nition �� �trace preorder
Given two process speci�cations P and Q
 then P re�nes Q by reducing the possible traces
 denoted
P tr Q
 i��

� Tr�P� � Tr�Q�
 or equivalently

�
� � L� �P
�
�� implies Q

�
�� �

����� Conformance

In addition to safety properties we are sometimes also interested in the liveness �or deadlock� prop�
erties of a system speci	cation� A liveness property states that something good must eventually
happen� It may be required that a development of a speci	cation does not deadlock in a situation
where the speci	cation would not deadlock� in other words� every trace that the speci	cation must
do� the development must do as well� This requirement is formalised by the conf relation ���� �����
which has been adopted as the primary interpretation of conformance in LOTOS�

De�nition �� �conformance
Given two process speci�cations P and Q
 then P conforms to Q
 denoted P conf Q
 i��

�
� � Tr�Q� and
A � L we have

if �P � � �P after �� such that

 � A � P �
�

�	� �

then �Q � � �Q after �� such that

 � A �Q �
�

�	�
 or equivalently

�
� � Tr�Q� � Ref �P � �� � Ref �Q � ��

We will also use a development relation which is a symmetric subset of conf� This relation is
called conf symmetric and is denoted cs� it will play a central role in instantiations of C�� the
RM�ODP de	nition of consistency based on behavioural compatibility� In particular� since the
ODP architectural semantics adopt conf as their interpretation of behavioural compatibility cs is
the obvious interpretation of C��

De�nition �� �conf symmetric�
Given two process speci�cations P and Q
 then P cs Q i� P conf Q � Q conf P�

����� Reduction

A re	nement relation that combines both the preservation of safety and liveness properties is the
reduction relation� red� de	ned in �����

De�nition �� �reduction
Given two process speci�cations P and Q
 then P �deterministically� reduces Q
 denoted P red
Q
 i��

�� P tr Q
 and

�� P confQ

�� CHAPTER �� CONSISTENCY IN LOTOS

����� Extension

Another re	nement relation proposed in ���� is the extension relation� This relation allows for the
introduction of new possible traces in a re	nement� while preserving the liveness properties of the
speci	cation� Extension seems particularly relevant in the context of partial speci	cation�

De�nition �� �extension
Given two process speci�cations P and Q
 then P extends Q
 denoted P ext Q
 i��

�� Tr�P� � Tr�Q�
 and

�� P confQ

����� Structural Re�nement � Testing Equivalence

Another view of re	nement is that the re	nement provides more detail on the subdivision of
the system into smaller components than the speci	cation� The speci	cation and its re	nement
are semantically equivalent� i�e� they express the same external or observable behaviour� The
intension of both descriptions is not the same though� as the re	nement gives more detail about the
internal structure of the system under consideration� The weakest interpretation of observational
equivalence is captured by the testing equivalence relation�

De�nition �� �testing equivalence
Given two process speci�cations P and Q
 then P is testing equivalent to Q
 denoted P te Q
 i��

� P red Q and Q red P
 or equivalently

� P ext Q and Q ext P
 or equivalently

� Tr�P� � Tr�Q� �
� � Tr�P� �Ref �P � �� � Ref �Q � ���

����	 Structural Re�nement � Bisimulation Equivalences

An alternative interpretation of observational identity is given by the bisimulation equivalences�
strong and weak bisimulation ����� The observational identity that they induce is in some circum�
stances seen to be too strong ����� for example� when the observer is viewed as a tester for the
process�

The de	nition of weak bisimulation equivalence� �� of LOTOS processes is given below�

De�nition �� �weak bisimulation
Given two LOTOS process speci�cations P� and P�
 we de�ne
P� � P� ��

� � L�

�� if �P �� � P�
�

��P �� then �P �� �P�
�

��P �� and P �� � P ��� and

�� if �P �� � P�
�
��P �� then �P �� �P�

�
��P �� and P �� � P ���

Strong bisimulation� denoted �� is de	ned in a similar manner to weak bisimulation� except i
actions are matched in addition to observable actions� Hence strong bisimulation is an even
stronger notion of observational identity than weak bisimulation�

���� RELATING THE RM�ODP DEFINITIONS ��

����
 Discussion� Properties of the Development Relations

Apart from cs the properties of the development relations presented above have been well docu�
mented in the literature� We will review some of these properties here�

Proposition �	
�i� tr
 red and ext are preorders�
�ii� te
 �
 and � are equivalences�

�iii� conf is reexive
 but neither symmetric or transitive�

�iv� cs is �a� reexive and �b� symmetric
 but �c� not transitive�

Proof
�i�� �ii� and �iii� are all standard results from the theory of LOTOS and process algebra in general�
see for instance ����� ���� and ����� However� �iv� needs some justi	cation��

�iv�a� This is a consequence of conf being re�exive�

�iv�b� This is immediate from the de	nition of cs�

�iv�c� The following counterexample justi	es this� Let P �� b� stop��i � a� stop� Q ��
i � a� stop and R �� b� c� stop��i � a� stop� then P cs Q � Q cs R� but ��P cs R�� This
is because ��P conf R� as P refuses c after the trace b� but R cannot refuse c after
the same trace� �

Thus� tr � red and ext can be classed together as preorder re�nement relations� te� �� and �
can be classed together as equivalences� conf and cs are weaker implementation relations�

��� Relating the RM�ODP De�nitions

Section ����� has related the three RM�ODP de	nitions of consistency to C in a very general way�
in this section we will specialize this to LOTOS instantiations of the RM�ODP de	nitions� This
will give us even more evidence that C is fully general� This is particularly an issue since C� is
dependent upon the FDT speci	c interpretation of behavioural compatibility adopted and thus
only a language speci	c relating of C� and C can be given�

The section begins by giving a set of LOTOS instantiations of relevant de	nitions and� in
particular� the RM�ODP de	nitions� and then these instantiations are related to C in the following
subsection�

����� RM�ODP Instantiations

Firstly� we have the following��

Proposition ��

P � DESLOTOS � ��P��

This follows intuitively from considering the nature of LOTOS speci	cations� In particular� at
least theoretically� we can view all LOTOS speci	cations as implementable� Even degenerate
speci	cations� such as those containing deadlocks� for example� have a physical implementation
equivalent� This is a fundamental characteristic of behavioural languages that distinguishes them
from logically based speci	cation notations�

Corollary �
LOTOS is implementation complete and all uni�cations are representative�

�� CHAPTER �� CONSISTENCY IN LOTOS

This corollary is important as it considerably simpli	es the class of consistency that must be
considered for LOTOS� Furthermore� we assume that all consistency checks are type correct� This
is reasonable since we are only considering consistency intra the LOTOS language�

Of the speci	c RM�ODP de	nitions� we could relate C� via an interpretation of LOTOS in logic�
for example� the temporal logic interpretation in ����� however� this is a complex interpretation
with a number of subtle issues� Thus� we will view this as beyond the immediate scope of our
work and we will not consider C� further in the context of LOTOS� In contrast� C��� and C� are
immediately appropriate to LOTOS� We will consider these in turn�

Instantiation of C���� This is very straightforward� we give the following de	nition��

De�nition �	 For P��P��P � DESLOTOS P� C��� P� i� �P �P conf P� �P conf P��

Although it should be noted that this instantiation is dependent on the interpretation of confor�
mance adopted� conf is a weak interpretation� in particular� it does not enforce the preservation of
safety properties� However� conf is a realistic re�ection of the capabilities of conformance testing
and is now accepted as the basis of work on test case generation for LOTOS ���� �����

Instantiation of C�� Consistency de	nition C� is dependent upon the interpretation of be�
havioural compatibility� which in turn hinges on the interpretation of a speci	cation�s environ�
ment and the criteria imposed on that environment� The looseness of the de	nition of behavioural
compatibility implies that one of a number of interpretations of C� could be made� It is our view
that C� could be interpreted as any of the following��

De�nition ��
�i� P�C

�
� P� i� P� � P� � Strong Bisimulation

�ii� P�C�
� P� i� P� � P� � Weak Bisimulation

�iii� P�C te

� P� i� P�teP� � Testing Equivalence
�iv� P�C cs

� P� i� P� cs P� � Conf symmetric

De	nitions �
�i� and �
�ii� view the environment as an unconstrained observer� in the sense of
bisimulation equivalences� Note de	nition �
�i� is particularly interesting because C�

� has the
advantage of being a congruence for LOTOS�

In contrast� �
�iii� and �
�iv� view the environment as a tester for the speci	cations� The
distinction between �
�iii� and �
�iv� is that �
�iii� implies robustness testing and �
�iv� implies
restricted testing� see ���� ���� for a discussion of these alternatives� Amongst these de	nitions
C cs
� is particularly important for a number of reasons� Firstly� this interpretation agrees with the

LOTOS de	nition of behavioural compatibility in the RM�ODP architectural semantics ����� In
addition� as indicated in the following proposition�C cs

� is the weakest of the LOTOS interpretations
of C��

Proposition ��
C�
� � C�

� � C te
� � C cs

� �

Proof
C�
� � C�

� � C te
� are standard process algebra results� C te

� � C cs
� requires some justi	cation�

Firstly� it is straightforward to see that te � cs� In addition� we can provide the two processes
P �� a� stop��i � b� stop and Q �� i � b� stop as counterexamples to justify that cs 	� te� since P
cs Q � but ��P te Q� as the trace sets of the two processes are not equal� �

Furthermore� ��� has shown that C� is the strongest of the RM�ODP interpretations of consistency�
thus� C cs

� bounds the relationship between C� and the other RM�ODP consistency de	nitions and
warrants particular attention�

���� RELATING THE RM�ODP DEFINITIONS ��

����� Relating De�nitions

This subsection specializes the results of section ����� to LOTOS�

Reconciling C���� This interpretation of consistency is very straightforward��

Proposition ��
For LOTOS C��� � Cconf�

Proof
Immediate from a comparison of instantiations�

Reconciling C�� Three of the interpretations made in section ����� can be related to our general
de	nition easily�

Corollary �
�i� C�

� � C�
�ii� C�

� � C�
�iii� C te

� � Cte

Proof
Immediate from corollary ��

Thus� interpretations of behavioural compatibility in LOTOS which are based on one of the
language�s equivalences are easily re�ected in our general de	nition of consistency� But� C cs

� is
not transitive� proposition ��� so corollary � does not get us a relationship between C cs

� and Ccs�
In fact� we have the following result�

Proposition ��
C cs
� � Ccs�

Proof
Firstly� P� C cs

� P� �� P� Ccs P�� follows immediately from the re�exivity of cs� i�e� either of
P� or P� could act as the required common cs�development�

In addition� we can provide a counterexample to show that� Ccs 	� C cs

� � Consider� P� ��
i � a� stop��b� c� stop� P� �� i � a� stop��b� stop and P �� i � a� stop� Now� P cs P� and P cs P��
but ��P� cs P��� This is because ��P� conf P�� as P� refuses c after the trace b� but P� cannot
refuse c after the same trace� �

This result is disappointing� but interesting� The counterexample provided is one of the few
situations in which the uni	cation has a smaller trace set than both the original speci	cations
and futhermore a uni	cation with a larger trace set does not seem to exist for this example� This
observation motivates the following� which considers a development relation in which the trace set
increases� Thus� we de	ne extended conf symmetric� denoted xcs as��

De�nition �� P� xcs P� i� P� cs P� � Tr�P�� � Tr�P���

It should be clear that an alternative derivation of xcs is� P� xcs P� i� P� ext P� � P� conf P��
So� we have added a trace extension constraint on the development� Note in particular that using
xcs as development relation inC will rule out the counterexample used in the previous proposition�
So let us try to relate Cxcs and C cs

� �

Proposition ��
Cxcs � C cs

�

Proof
Assume P� Cxcs P�� i�e�� �P � P conf P� � P� conf P � Tr�P� � Tr�P�� � P conf P� �
P� conf P � Tr�P� � Tr�P��

� CHAPTER �� CONSISTENCY IN LOTOS

which expands to��

�i�
� � Tr�P��� Ref �P � �� � Ref �P�� �� �
�ii�
�� � Tr�P�� Ref �P�� �

�� � Ref �P � ��� �
�iii�
��� � Tr�P��� Ref �P � ���� � Ref �P�� �

��� �
�iv�
�� � Tr�P�� Ref �P�� �

�� � Ref �P � ��� �
�v� Tr�P� � Tr�P���Tr�P��

From properties �i�� �iv� and �v� we get��

�� � Tr�P��� Ref �P�� ��� � Ref �P � ��� � Ref �P�� ���
i�e� P� conf P�� Similarly� P� conf P� since properties �iii�� �ii� and �v� give us�

�� � Tr�P��� Ref �P�� ��� � Ref �P � ��� � Ref �P�� ���
Notice these relationships can only be derived because Tr�P� � Tr�P���Tr�P��� �

So� we have the direction of implication that we could not get with Ccs� but now the other
implication direction is more di�cult as we need to show a uni	cation with trace extension exists�
Before we consider this we need a simple result�

Proposition ��
P� cs P� ��
� � Tr�P�� �Tr�P��� Ref �P�� �� � Ref �P�� ���

Proof
A straightforward consequence of the de	nition of cs� �

We will use the following uni	cation construction��

Denote Ux �P��P�� as the set of all LOTOS speci	cations characterised by the following constraints��

Tr�Ux �P��P��� � Tr�P�� �Tr�P�� � ��a�

� � Tr�Ux �P��P����
� � Tr�P�� �Tr�P�� �� Ref �Ux �P��P��� �� � Ref �P�� �� � Ref �P�� �� � ��b�
� � Tr�P��� Tr�P�� �� Ref �Ux �P��P��� �� � Ref �P�� �� � ��c�
� � Tr�P��� Tr�P�� �� Ref �Ux �P��P��� �� � Ref �P�� �� � �d�

Notice that �b� is only possible because of proposition ��� It should also be noted that this
construction is well founded and will always yield a LOTOS speci	cation� One justi	cation for
this is that ���� performs the same construction with his rooted failure tree model �de	nition ����
on page ���� and shows that the resulting tree is well�formed� i�e� can be mapped to a labelled
transition system�

Proposition ��
C cs

� � Cxcs�

Proof
Assume P� C cs

� P�� i�e� P� cs P�� then take X � Ux �P��P��� we suggest that X is a common xcs
development of P� and P�� as required by Cxcs� Let us show that X xcs P�� We will show 	rst
that X conf P�� then that P� conf X and then that Tr�X � � Tr�P���

�i� �X conf P���
Take � � Tr�P��� Now� if � is also a trace of P�� by �b�� Ref �X � �� � Ref �P�� ��� however� if
� 	� Tr�P��� by �c�� Ref �X � �� � Ref �P�� ���

�ii� �P� conf X ��
Take � � Tr�X �� We have the following cases��
�a� � � Tr�P�� � Tr�P�� �� Ref �P�� �� � Ref �X � ��� by �b��
�b� � � Tr�P���Tr�P�� �� Ref �P�� �� � Ref �X � ��� by �c��
�c� � � Tr�P��� Tr�P�� �� Ref �P�� �� � � as � 	� Tr�P��� hence Ref �P�� �� � Ref �X � ���

�iii� �Tr�X � � Tr�P����
This is immediate from �a��

���� GENERAL LOTOS INSTANTIATIONS OF CONSISTENCY ��

Thus� X xcs P� and it can be similarly veri	ed that X xcs P�� �

Corollary �
C cs
� � Cxcs�

This result completes our relating of C� to C and shows that all� obvious LOTOS instantiations
of behavioural compatibility in C� can be given an equivalent formulation in C and justi	es
proposition � quoted in chapter ��

��� General LOTOS Instantiations of Consistency

The previous section has shown how C is general with regard to LOTOS interpretations of the
RM�ODP de	nitions� In this section we will consider the broad properties of LOTOS instantiations
of C � We will provide categorisations of a number of the de	nitions� The section is divided into
two subsections� the 	rst considers unbalanced conistency and the second balanced consistency�

����� Unbalanced Consistency

The main motivation for considering unbalanced consistency is to enable us to address situations
in which a viewpoint is a direct development of a second viewpoint� or in which the viewpoint
speci	cations have a di�erent level of granularity� Thus� we would like to give LOTOS instantia�
tions of consistency that model the LOTOS development relations� conf� red� ext� etc� Firstly�
it is clear that notions of development based on equivalence� e�g� �� � and te� can be easily
embraced� In addition� development using one of the LOTOS preorders can be easily embraced
as corollary � suggests� We have the following instantiations of this result for LOTOS preorders��

Proposition ��
�i� tr� C���

tr
��tr

� C����

tr
��tr ���tr

�

�ii� red � Cred��
�red � Cte�red�

�iii� ext � Cext���ext � Cte�ext�

Proof
Follows immediately from corollary �� �

However� since conf is not transitive we have to work a bit harder to relate this notion of devel�
opment� Firstly� we note the following negative result��

Proposition ��
conf 	� Cconf��

�conf

Proof
We can use our conf transitivity counterexample again here� Speci	cally� let P� �� b� stop��i � a� stop�
P� �� b� c� stop��i � a� stop and P �� i � a� stop then� P is the required common development to
give P� Cconf���conf P�� but ��P� conf P��� �

However� the following stronger result gives us the necessary relationship��

Proposition �	
conf � Cte�conf�

Proof

�conf � Cte�conf�
Assume P� conf P�� but in addition from re�exivity of te� P�te P� and� thus� P� is the required
common development�

�
 CHAPTER �� CONSISTENCY IN LOTOS

�Cte�conf � conf�
Take P such that P te P� and P conf P�� If we expand these out we get�
Tr�P� � Tr�P�� �
� � Tr�P�� Ref �P � �� � Ref �P�� �� �

� � Tr�P��� Ref �P � �� � Ref �P�� ��
Equality of the traces of P� and P implies that there are no traces of P� that P� could do� but P
could not do� thus�

� � Tr�P��� Ref �P � �� � Ref �P�� �� and thus�
� � Tr�P��� Ref �P�� �� � Ref �P�� ��� So�
P� conf P� as required� �

This completes our relating of LOTOS development relations to C �

����� Balanced Consistency

In this section balanced consistency is instantiated with the LOTOS development relations� This
class of consistency is the easiest to work with and thus we will be able to obtain a complete
categorisation of the relationship between the di�erent instantiations� Our presentation works
from the weakest interpretations of consistency to the strongest�

We begin with a suprising result��

Proposition ��
Take P�� P� � DESLOTOS
 then�
�i� P�C�tr P� � true�
�ii� P�CextP� � true�
�iii� P�CconfP� � true�

Proof
We justify these results in turn��

�i� For any two processes P and Q � we have stop tr P and stop tr Q � i�e� the empty process
is always a common development of any two speci	cations�

�ii� In ���� it is shown that for any two LTSs a third LTS can be found that is an extension of both�
Since LTSs provide the semantics for processes� this result extends to LOTOS speci	cations�

�iii� Since ext �� conf this is an easy consequence of �ii�� �

Corollary 	
C�tr � Cext � Cconf � true

The implication of these results is that all pairs of LOTOS speci	cations will be found to be
consistent by C�tr � Cext and Cconf� Thus� these instantiations of consistency are very weak
and are unable to distinguish any speci	cations� In other words� when tr � ext or conf is the
appropriate development relation� there is no need for a consistency check�

Example � We illustrate the second case
 �ii�
 of proposition ��� ext supports functionality
extension and any pair of LOTOS speci�cations can be reconciled according to such extension�
Figure ��� illustrates this fact with some examples� The following properties hold��

P � U �ext��P��P��
Q � U �ext��Q��Q��
Q � 	� U �ext��Q��Q��
R � U �ext��R��R��
R� 	� U �ext��R��R��

Notice that �b� shows that U �ext� must not introduce new non�determinism
 e�g� Q is a uni�cation

but Q � is not as it may refuse either d or e after performing a and Q� cannot refuse d after a and
Q� cannot refuse e after a� Additionally
 �c� shows that uni�cation may limit non�determinism�
Speci�cally
 R is a uni�cation
 but R� is not as it can refuse everything after the empty trace
 while
R� must o�er either a or c�

���� GENERAL LOTOS INSTANTIATIONS OF CONSISTENCY ��

a

P1

1Q Q2 Q

1R RR2

P2
b c

P
b c

a

a

b

c

a

b

c

ed
a

b e

c

d

a

b

c

a

b

c

ed

Q’

i i
i

a

i
i

a c

i i

a a c

i
ii

ba c

i
R’

(a)

(b)

(c)

b
b

Figure ���� Uni	cation by extension examples

However� other instantiations of consistency are distinguishing� We begin with the following
result��

Proposition ��
Cred � true�

Proof
We simply need to exhibit a pair of speci	cations that are not consistent� Consider P� �� a� stop
and P� �� b� stop� The only process which is a trace subset of both P� and P� is P �� stop� but
P cannot be a common reduction of either P� or P� since it will refuse a and b immediately� �

Thus� Cred is stronger than C�tr � Cext and Cconf�

Example � Consider the examples in �gure ���� The following properties hold��

U �red��P��P�� � �

Q � U �red��Q��Q��
R� � U �red��R��R��

The consistency relation Ccs was introduced in section ����� in an attempt to reconcile C cs

� with
C � our results there showed that Ccs is weaker than C cs

� � however� we are interested to determine
how much weaker� If we can show that Ccs is stronger than Cred then we will have an upper
and lower bound on the strength of Ccs� Thus� we will consider the relationship between Ccs and
Cred� We will use the following result��

Lemma �
P� Ccs P� ��
P � U �cs��P��P���
� � Tr�P� �Tr�P�� �Tr�P��� Ref �P � �� � Ref �P�� �� �
Ref �P�� ���

Proof
Assume � � Tr�P��Tr�P���Tr�P�� then fromP cs P� we apply proposition �� to get Ref �P � �� �
Ref �P�� �� and from P cs P� we get Ref �P � �� � Ref �P�� �� and the result follows directly� �

�� CHAPTER �� CONSISTENCY IN LOTOS

a

P1

1Q Q2

1R R2

a

i i

ba

(a)

(b)

(c)

P2
b

a

b

a a

bc

a

b

Q

a

Figure ���� Uni	cation by reduction� examples

Using this result we can obtain the following��

Proposition ��
Cred 	� Ccs

Proof
We show that P� and P� exist such that P� Cred P�� but ��P� Ccs P��� Consider P� ��
a� b� stop��a� stop and P� �� a� b� stop� Now P� Cred P�� because P� can act as the required
common reduction�

We argue by contradiction that ��P� Ccs P��� So� assume P is such that P cs P� and P cs P��
Firstly� P must be able to perform the trace a� because if a 	� Tr�P� then fag � Ref �P � ��� but
since fag 	� Ref �P�� �� this implies that Ref �P � �� 	� Ref �P�� �� and ��P conf P���

So� we assume a � Tr�P�� hence a � Tr�P� � Tr�P�� � Tr�P�� and we can apply lemma
� which implies that Ref �P � a� � Ref �P�� a� � Ref �P�� a�� But this cannot be the case as
fbg � Ref �P�� a� and fbg 	� Ref �P�� a� so Ref �P�� a� 	� Ref �P�� a�� Which gives us the required
contradiction and implies that such a P does not exist� �

So� Ccs is not weaker than Cred� Using the following small result we will be able to further clarify
the relationship between Ccs and Cred�

Lemma �
P is fully deterministic �in the usual sense� �� �
� � Tr�P�� a � out�P � �� �� ��X �
Ref �P � �� � a � X ��

Proof
Standard from theory of LOTOS� �

This result states that for a deterministic process an action cannot be both o�ered and refused�

Proposition ��
Ccs � Cred�

Proof
Assume P� Ccs P�� i�e� �P � P cs P� � P cs P�� Now construct P � as the fully deterministic

���� GENERAL LOTOS INSTANTIATIONS OF CONSISTENCY ��

process characterised by�
Tr�P �� � Tr�P� �Tr�P�� �Tr�P��
Noting from this construction that Tr�P �� � Tr�P���Tr�P�� and from lemma � that
� �
Tr�P ��� Ref �P � �� � Ref �P�� �� � Ref �P�� ��� In order to show that P � is the required common
reduction of P� and P� we need to show that
� � Tr�P ��� Ref �P �� �� � Ref �P�� ���Ref �P�� ���
This is enough because any �� � Tr�P�� �Tr�P�� � �� 	� Tr�P �� will give Ref �P �� ��� � �� which
trivially gives us the required refusals relationship�

We argue by contradiction that
� � Tr�P ��� Ref �P �� �� � Ref �P�� ���Ref �P�� ��� So� assume
�� � Tr�P �� � Ref �P �� �� � �Ref �P�� �� � Ref �P�� �� � Ref �P � ���� Thus� �fag 	� �Ref �P�� �� �
Ref �P�� �� � Ref �P � ���� such that fag � Ref �P �� ��� From here we can use lemma � to get
a 	� out�P �� ��� but it must also be the case that a � out�P�� ��� out�P�� ��� out�P � �� and thus we
have a contradiction as the trace ��a is in Tr�P� �Tr�P�� �Tr�P��� So� it must be the case that
Ref �P �� �� � Ref �P�� ���Ref �P�� �� and P � red P� and P � red P� as required� �

Corollary �
Ccs � Cred�

Proof
From propositions �� and ���

Thus� Ccs is strictly stronger than Cred�

When the above results are combined with proposition �� and corollary we obtain a precise
classi	cation of Ccs� as follows��

Corollary �
Cxcs � Ccs � Cred

Proof
Immediate from proposition ��� corollary and corollary
� �

In addition� we can put an upper bound on the strength of these relationships using the following
proposition��

Proposition ��
Cte � Cxcs�

Proof
This follows immediately from proposition ��� which relates C cs

� to C te

� � corollary � and corollary
� which shows that C cs

� � Cxcs� �

The relationship between the di�erent interpretations of consistency are shown in 	gure ���� In ad�
dition� consistency based on behavioural compatibility can be incorporated into this categorisation
through the following properties��

Cxcs � C cs
� � Cte � C te

� � C� � C�
� � and C� � C�

� �

These instantiations present us with a number of possible interpretations of consistency in LOTOS�
This situation re�ects our view that consistency checking must be performed selectively� this issue
was discussed in some depth in ���� In particular� it is inappropriate to view consistency checking
as a single mechanism which can be applied to any pair of speci	cations� For example� it would be
inappropriate to check two speci	cations which express exactly corresponding functionality with
Cext� An implication of this is that� in order to apply suitable consistency checks the relationship
of the speci	cations being checked must be made available by the speci	er�s��

�� CHAPTER �� CONSISTENCY IN LOTOS

C red

C te

C cs
C xcs

C~
~C~

ext< tr confC = C = C = true

Figure ���� LOTOS Consistency Relations

��� Consistency Checking and Uni�cation Techniques

The previous sections have classi	ed the di�erent LOTOS instantiations of consistency� In this
section we will provide some results on how actually to check for consistency� Thus� we will
provide mechanisms by which certain classes of consistency can be checked� Speci	cally� we provide
LOTOS uni	cation strategies for balanced binary consistency�

Although consistency implies that the set of uni	cations is not empty and we can determine
the denotational semantics of the least uni	cation in some cases� it would be useful for system de�
velopment purposes to have a method to construct a uni	cation within the speci	cation language�
This uni	cation can then be used for further re	nement or as the implementation speci	cation�

The purpose of this section is to 	nd operators for LOTOS that can be used to unify speci	�
cations� In case the original speci	cations are consistent �with respect to some notion of develop�
ment�� the uni	cation should obviously be a common development �with respect to that notion of
development�� Such operational de	nitions of uni	cation have several advantages over the uni	�
cation algorithms that are applied to a denotational model of the speci	cations� The operational
semantics of the uni	cation operators give uni	cation a constructive character which is useful for
simulation and implementation purposes�

We will consider in order trace preorder� reduction� extension and then testing equivalence�

����� Trace preorder preserving uni�cation

Parallel composition of speci	cations preserves the safety properties�

Proposition �� �Uni�cation w�r�t� tr
If P� and P� are two arbitrary LOTOS process speci�cations
 then the process S �� P� jj P� is a
uni�cation of P� and P� with respect to tr �

Proof
We only prove P jj Q tr P as the other case is symmetric�

���� CONSISTENCY CHECKING AND UNIFICATION TECHNIQUES ��

We derive that

 � L � �P jj Q
�
�� � P

�
�� �� and therefore Tr�P jj Q� � Tr�P��

P jj Q
�
�� � �from de	nition of

�
�� �

�P ��Q � � P jj Q
�

��P � jj Q � �P � jj Q � ��� � �from de	nition of jj�

�P � � P jj Q
�
��P � � P � ��� � �by de	nition of

�
�� �

P
�
�� � �

����� Reduction preserving uni�cation

The following theorem gives a necessary and su�cient condition on two speci	cations for them to
be consistent with respect to reduction� The condition requires that P� and P� can at least refuse
all the actions they may not both do after a certain trace�

Theorem � �consistency w�r�t� reduction
Let P�
 P� be two LOTOS speci�cations using the alphabet L
 then�
P�CredP� ��
� � Tr�P�� �Tr�P�� � L � out�P�� �� � out�P�� �� � Ref �P�� �� �Ref �P�� ��

Proof

���� We need to prove that

� � Tr�P�� �Tr�P�� � L � out�P�� �� � out�P�� �� � Ref �P�� �� �Ref �P�� ��
implies �P � P redP� and P redP��

Now� take P to be the fully deterministic process that is completely determined �modulo
strong bisimulation� by the intersection of the traces of P� and P�� i�e� Tr�P� � Tr�P�� �
Tr�P��� For such a deterministic process� we have

� � Tr�P� �Ref �P � �� � P�L � out�P � ����

where P�X � denotes the powerset of the set X �

Next� we prove that P redP� and P redP��

�� From Tr�P� � Tr�P�� �Tr�P��� it follows that Tr�P� � Tr�P�� and Tr�P� � Tr�P��

�� From the de	nition of P � we derive that

� � Tr�P�� �Tr�P���
X � Ref �P � �� �X � �L� out�P � ����

As Tr�P� � Tr�P�� � Tr�P��� it follows� by the de	nition of out�P � �� and the pre	x�
closedness of tracesets� that

� � Tr�P�� �Tr�P�� � out�P � �� � out�P�� �� � out�P�� ���

From the condition of the proposition� we can now derive that

� � Tr�P�� �Tr�P�� �X � Ref �P � �� implies X � Ref �P�� �� �Ref �P�� ���

Finally� we have
� � Tr�P��� Tr�P� �Ref �P � �� � � � Ref �P�� �� and similarly for
P�� by Ref �P � �� � �� � 	� Tr�P��

���� Assume that there exists an P such that P redP� and P redP�� By contradiction�

Suppose L � out�P�� �� � out�P�� �� 	� Ref �P�� �� � Ref �P�� ��� for a certain � � Tr�P�� �
Tr�P���

Then there exists an
 � L�out�P�� ���out�P�� �� such that f
g 	� Ref �P�� ���Ref �P�� ���
It follows that either

 � out�P�� �� �
 	� out�P�� �� � f
g 	� Ref �P�� �� �Ref �P�� ��� or �����

 	� out�P�� �� �
 � out�P�� �� � f
g 	� Ref �P�� �� �Ref �P�� ��� �����

�� CHAPTER �� CONSISTENCY IN LOTOS

As both cases are symmetric� we only prove case ���� Since
 	� out�P�� �� implies f
g �
Ref �P�� �� and f
g 	� Ref �P�� ���Ref �P�� ���f
g � Ref �P�� �� implies f
g 	� Ref �P�� ���
we derive�

 � out�P�� �� �
 	� out�P�� �� � f
g 	� Ref �P�� �� � f
g � Ref �P�� ��

For P redP� and P redP� to hold� it is necessary that �a� ��
 	� Tr�P�� because ��
 	�
Tr�P��� and that �b� f
g 	� Ref �P � ��� because f
g 	� Ref �P�� ��� Clearly� �a� and �b� can
never be satis	ed by any process� Hence� there does not exist a reduction of both P� and
P�� This contradicts with the assumption that such a common reduction exists� �

Unfortunately� none of the existing LOTOS operators yields a common reduction when applied
to two behaviour expressions� Therefore� we de	ne a new operator� This binary operator� coined
the conjunction operator� resolves all non�determinism present and removes all internal actions in
either operand� The conjunction of two processes can only perform a trace if both processes are
able to perform that trace�

De�nition �� �conjunction operator
Let P and Q be LOTOS behaviour expressions� We de�ne their conjunction
 P�Q
 by the follow�
ing inference rule �"�X � represents generalised choice��

P
�

�� �Q
�

��

P �Q ���"�P �a�� �"�Q�a��

Proposition �� �correctness of conjunction
If P�Cred P�
 then
P��P� redP� and P��P� redP�

Proof
We will prove only that P��P� red P�� The other case is symmetric� The proof consists of two
parts�

�� Tr�P��P�� � Tr�P���

Inspecting the only inference rule� we see that P��P�
�
�� implies P�

�
�� �

�� P��P� confP�

Suppose there exists a P such that P��P�
�

��P
�

�	� � where � � Tr�P���
 � L� From the
inference rule� it follows that P � P ���P

�
�� where P

�
� � "�P�!a�� and P �� � "�P�!a��� For

P to refuse
 either P ��
�

�	� or P ��
�

�	� � In the 	rst case� we are ready� because P�
�
��P ��

�

�	� �

In the case where P ��
�

�	� � we take the consistency condition L� out�P�� �� � out�P�� �� �

Ref �P�� ���Ref �P�� �� into consideration� P
�
�

�

�	� implies
 	� out�P�� ��� By the condition�
we derive that f
g � Ref �P�� �� �Ref �P�� ��� and therefore f
g � Ref �P�� ��� Hence there

exists a P � � �P� after �� such that P�
�
��P �

�

�	� � �

Although the conjunction operator yields a common reduction� it is usually not the least reduction
of its two operands� This is due to the fact that all non�determinism is resolved� When both original
speci	cations contain non�determinism it may not be necessary to resolve all non�determinism� as
is shown in the following example�

Example � Take P� �� i � a� stop��i � b� stop��i � c� stop and P� �� i � a� stop��i � b� stop� Then
P� � P� � a� stop��b� stop
 which is a common reduction
 but not the least common reduction

which is i � a� stop��i � b� stop�

���� CONSISTENCY CHECKING AND UNIFICATION TECHNIQUES ��

����� Extension preserving uni�cation

From proposition �
 we know that any two speci	cations are consistent with respect to extension�
However� none of the existing LOTOS operators will always yield a common extension� Therefore�
we de	ne a new operator� This binary operator� coined the join operator� merges as it were those
patterns of behaviour that the two operand speci	cations have in common� and then provides a
choice between the two behaviours when they start to di�er� Note that the composition will be
completely deterministic until a choice for either behaviour has been made�

De�nition �� �join operator
Let P and Q be LOTOS behaviour expressions� We de�ne their join
 P � Q
 by the following
inference rules�

���
P

�

�� �Q
�

��

P � Q ���"�P �a�� � "�Q�a��
� ���

P
�

�� �Q
�

�	�

P � Q ���"�P �a��
� ���

P
�

�	� �Q
�

��

P � Q ���"�Q�a��

Proposition �� �correctness of join
If P� and P� are two arbitrary LOTOS process speci�cations
 then the process P �� P��P� is a
uni�cation of P� and P� with respect to ext�

Proof
We will prove only that P��P� ext P�� The other case is symmetric� The proof consists of two
parts�

�� Tr�P��P�� � Tr�P���

Inspecting the inference rules� we see that P�
�
�� implies P��P�

�
�� �

�� P��P� confP�

Suppose there exists a P such that P��P�
�

��P
�

�	� � where � � Tr�P���
 � L� From the
inference rules� we derive the following three possible cases�

�a� P � P �� �P ��� where P
�
� � "�P�!a�� and P �� � "�P�!a��� and P ��

�

�	� and P ��
�

�	� �

In this case� it follows directly that there exists a P ��� P ��� such that P�
�
��P �

�

�	� �

�b� P � P ��� where P
�
� � "�P�!a��� and P ��

�

�	� � Clearly� P�
�
��P ��

�

�	� �

�c� P � P ��� where P �� � "�P�!a��� and P ��
�

�	� � We argue that this case will not
occur� For it to exist there should exist traces �� and ��� such that ����� � �� process

P � � �P�!a�� � and a Q � � �P�!a�� � such that P��P�
�
�

���P ��Q � and P �
�
��

��	� while

Q � �
��

��� � However� ����� � Tr�P�� and because P � � "�P�!a�� � we have P �
�
��

��� � �

In the de	nition of the operational semantics of the join operator� we make use of a so�called
negative premise �see ������ This is potentially dangerous� because the transition relation may
not be uniquely de	ned by the collection of all the inference rules of the language� Indeed� using
unguarded recursion� which is allowed in LOTOS� we can show that the use of the negative premise
here is not safe� Consider� for example� the following recursive process de	nition� P �� a� stop �
i � P � Since the ��operator abstracts from internal actions� the associated LTS is non image�	nite�
which makes it impossible to determine the next state� Even if unguarded recursion would be
forbidden� then it would still be possible to make guarded recursion unguarded by applying the
hide operator� Despite this� the � operator is meant to compose process speci	cations� with the
aim to yield a new composed speci	cation� A system will not be composed of itself and some
other process� i�e� speci	cations of the shape S� �� S� � S� do not make sense� Therefore� if the
join operator is used for composition of speci	cations� its usage is safe�

Another drawback of the join operator is the fact that it does not yield the least common
extension as is shown in the example below�

� CHAPTER �� CONSISTENCY IN LOTOS

read read

write write

MemoryUser_0 User_1

Figure ���� Shared Memory example

Example � Consider the following two gambling machine speci�cations� P� �� coin� lose� stop
�� coin� win� stop
 P� ��coin� lose� stop �� coin� win� �coin� jackpot� stop �� coin� lose� stop��
Although the uni�cation P� � P� � coin� �lose� stop �� win� coin� �jackpot� stop �� lose� stop�� is an
extension of both speci�cations
 the ��operator makes it completely deterministic� This is clearly
not the desired e�ect here� The least possible uni�cation is given by P��

����� Testing equivalence preserving uni�cation

With respect to testing equivalence� either of the two original speci	cations will do as the compo�
sition� because both speci	cations are testing equivalent to each other� However� this may result
in the loss of the intention of the other speci	cation�

��� Example of Uni�cation in LOTOS

In order to demonstrate consistency checking and uni	cation of partial speci	cations of a dis�
tributed information system� a simple Shared Memory system is introduced� We give two partial
speci	cations of the system� One speci	cation focuses on the computational aspects of the system�
i�e� it describes the functional components of the system and the possible communication patterns
between them� The second speci	cation focuses on the information �ow within the whole of the
system without identifying the components it is composed of� it describes an invariant that should
be satis	ed by the data contained in the system� We thus obtain a nice separation of concerns�

Note� that the given speci	cations are not intended to be ODP compliant� They merely serve as
a means to demonstrate the techniques for consistency checking and uni	cation developed above�

The Shared Memory system is depicted in 	gure ���� It consists of a memory and two users�
The users can access the memory through the read and write interfaces� but cannot communicate
directly to one another� For simplicity we assume that the memory only contains one data value
at a time�

����� Computational speci�cation

In the computational speci	cation the Shared Memory system is viewed as a collection of commu�
nicating processes� Two types of components are identi	ed� a Memory component and a collection
of User components� For this example� there are only two instantiations of the User process� but
this could easily be extended to an arbitrary number� The User components do not communicate
directly with each other� Therefore the two instantiations of User in process Users are placed in
parallel �jjj�� There is communication between the Memory and the Users� which is represented
by the synchronisation operator �jj� between the processes Memory and Users�

The computational speci	cation is not concerned with the speci	c data values that are ex�
changed between communicating components� We see this re�ected in the de	nition of the be�
haviour of a User� It speci	es that a user can� at any time� either perform a read or a write
operation� but this viewpoint does not care what the read or written data value is� represented by
a non�deterministic choice�

���� EXAMPLE OF UNIFICATION IN LOTOS ��

process ComputationalSpec�read� write� � noexit��
Memory �read� write� jj Users �read� write�
where
process Users�read� write� � noexit��
User �read� write� ��� jjj User �read� write� ���
where
process User�read� write��uid � UserId� � noexit��
choice x � Data ��
i�

�read�uid �x � User �read� write� �uid�
��
write�uid �x � Data � User �read� write� �uid� �

endproc �# User #�
endproc �# Users #�

process Memory�read� write� � noexit��
ConcurrentReads �read�
�	
write�uid � UserId �input � Data � Memory �read� write�

where
process ConcurrentReads�read� � noexit��
SequentialReads �read� jjj SequentialReads �read�
where
process SequentialReads�read� � noexit��
choice uid � UserId� output � Data ��
i� read�uid �output � SequentialReads �read�
endproc �# SequentialReads #�

endproc �# ConcurrentReads #�
endproc �# Memory #�

endproc �# ComputationalSpec #�

The speci	cation of the Memory component expresses that read operations can take place con�
currently �process ConcurrentReads�� but that these can at any time be disabled ��	� by a write
operation� This disabling ensures that write operations take place atomically in order to avoid
data inconsistencies� Taking a closer look at process ConcurrentReads� we see that it actually
only allows two concurrent read operations at one time� Obviously� this can easily be extended to
a higher degree of concurrency� The individual threads of ConcurrentReads� process Sequential�
Reads� allow for read operations by arbitrary users to happen sequentially� Again the data value
is non�deterministically chosen�

����� Information speci�cation

In the information speci	cation� only the information �ow within the Shared Memory system
is considered� It speci	es that the Memory is initialised with an arbitrarily chosen data value
	rst �InitMem�� From then on the following invariant must hold� the data value associated
with each consecutive read operation is equal to the last written value� This is ensured by the
process MemoryInvariant� which has one parameter to pass the last written value to it� The
process MemoryInvariant is de	ned using a process Read n� which allows arbritary users to do
read operations while ensuring that mem is the data value read� Process Read n can at any time
be disabled by a write operation taking place� The UserId and the data value associated with the
write operation can be randomly chosen� but the written data value will consequently be passed
to a new invocation of MemoryInvariant�

process InformationSpec�read� write� � noexit��
InitMem 		 accept mem � Data in MemInvariant �read� write� �mem�

�
 CHAPTER �� CONSISTENCY IN LOTOS

where
process InitMem � exit�Data���
choice mem � Data �� i� exit�mem�
endproc �# InitMem #�

process MemInvariant�read� write��mem � Data� � noexit��
Read n �read� �mem�
�	
�choice uid � UserId� x � Data ��
write�uid �x � MemInvariant �read� write� �x� �

where
process Read n�read��mem � Data� � noexit��
choice uid � UserId �� i� read�uid �mem � Read n �read� �mem�
endproc �# Read n #�

endproc �# MemInvariant #�
endproc �# InformationSpec #�

Note that we have generally avoided variable declarations of the form read �uid�UserId �x�Data as
a shorthand for the set of actions fread�uid�x	 j uid�UserId� x�Datag� Instead we have made the
choice more abstract in terms of non�determinism by using the construct�

choice uid � UserId� x � Data �� i� read�uid �x�

Although this �style� of speci	cation is not required in a constraint oriented style� it is necessary
to make the speci	cations consistent by reduction�

����� Consistency check and uni�cation

First� we need to identify which instantiation of consistency applies here� As both viewpoint
speci	cations in this example use the same event structure and the intention is for them to work
together and not extend each others functionality� Cred seems more applicable than Cext� As it
is unlikely the two speci	cations describe exactly the same behaviour� Cte is not applicable here�
As for C�tr � this form of consistency is also covered by Cred�

In order to show that the two speci	cations are consistent by Cred we have to verify the consis�
tency condition of Theorem �� Unfortunately� the presence of data variables in the speci	cations
leads to a state explosion� which makes it hard to verify this condition�

Fortunately� it is possible to assess the consistency of the two speci	cations in an alternative
way� If the speci	cations are consistent� the conjunction operator will yield a common reduction
of both speci	cations� Thus� we 	rst apply the conjunction operator� and then verify whether the
uni	cation is a reduction of either speci	cation� Part of the LTS representing the conjunction� Com	
putationalSpec � InformationSpec� is shown in 	gure ���� In order to represent in	nitely branching
transitions caused by variable declarations� we have represented such transitions symbolically� It
can be veri	ed that this composition is indeed a reduction of both original speci	cations�

��	 Summary and Discussion

This chapter has investigated consistency in LOTOS� We explored instantiations of consistency
with a number of the LOTOS development relations� We have given appropriate LOTOS instan�
tiations of the RM�ODP de	nitions of consistency and related these to our de	nition� This work
supports the view presented in chapter � that our de	nition is general and can embrace all the
RM�ODP de	nitions�

We have also characterised the relative strengths of di�erent LOTOS instantiations of C � The
results of this are summarised in 	gure ���� Further� necessary and su�cient conditions were
investigated for speci	cations to be consistent with respect to particular notions of development�

Several forms of uni	cation are already supported in standard LOTOS� In fact� it can be
argued that all binary operators enable some form of uni	cation� The parallel operator has proved

��	� SUMMARY AND DISCUSSION ��

read !0 !mem

re
ad

 !1
 !m

em

write !0 ?m
em

:Data

write !1 ?mem:Data

re
ad

 !1
 !m

emread !0
 !m

em
write !1 ?mem:Data

w
rite

 !0
 ?

m
e
m

:D
a
ta

re
ad

 !1
 !m

emread !0
 !m

em
write !1 ?mem:Data

w
rite

 !0
 ?

m
e
m

:D
a
ta

Figure ���� Uni	cation of Shared Memory

especially useful for the uni	cation of constraints in the constraint�oriented speci	cation style �����
However� the jj operator only supports uni	cation w�r�t� trace preorder �tr �� which is but a weak
notion of development�

We have proposed two new operators for LOTOS to support uni	cation with respect to re�
	nement by reduction and extension� The latter operator� �� was inspired by the speci�cation
merge operator� �� in a pioneering paper on incremental speci	cation ����� Our � operator is an
improvement of the ��operator� in the sense that it can deal with non�deterministic speci	cations�

The problem of composing speci	cations with respect to reduction and extension have been
reported on before� For processes modelled by acceptance trees� an algorithm to unify such
processes with respect to reduction is given in ����� In order to apply this algorithm to LOTOS
speci	cations a denotational semantics in terms of acceptance trees must be provided� In ����
and in ���� algorithms are given that can be used to compose two speci	cations� such that the
composition is an extension of both� The 	rst algorithm applies to LTSs� but uses acceptance trees
as an intermediate model� The second algorithm applies to rooted failure trees �RFTs�� which can
provide a denotational semantics for a subset of LOTOS� In contrast to these compositionmethods�
we have given an operational semantics for uni	cation� This enables us to unify speci	cations on
the speci	cation language level� rather than on the semantic level� This is useful for simulation
purposes�

The general framework for consistency and uni	cation will allow us to investigate more instan�
tiations of consistency �for example with implementation relations based on action re	nement� in
future research� Further� we intend to develop software tools for simulation and construction of
uni	cation� and for assessing the consistency of speci	cations�

�� CHAPTER �� CONSISTENCY IN LOTOS

Chapter �

Consistency Checking
Mechanisms in Z

In this part we describe a general strategy for unifying two Z speci	cations� In order to increase
its applicability� it is not speci	c to any particular ODP viewpoint� nor is it tied to any partic�
ular instantiation of the architectural semantics� We show how to use this uni	cation to check
the consistency of two viewpoints written in Z� This is illustrated with a number of examples�
including an information viewpoint speci	cation from OSI Management� The link into the general
consistency checking framework is made by using the logical de	nition of consistency� which can
be integrated into the framework as previously discussed�

��� Unifying Viewpoint Speci�cations in Z

In this section we describe a general strategy for unifying two Z speci	cations� As described
above we would like uni	cation of two speci	cations to yield the least common re	nement of both
viewpoints� Such least uni	cation is what we will investigate in this chapter� Uni	cation of Z
speci	cations will therefore depend upon the Z re	nement relation� which is given in terms of two
separate components � data re	nement and operation re	nement� ����� Two speci	cations will thus
be consistent if their uni	cation is internally valid� and for Z this holds when the uni	cation is
free from contradictions �assuming the speci	cations that were uni	ed were both internally valid��
Thus to check the consistency of two speci	cations� we check for contradictions within the uni	ed
speci	cation�

Z is a state based FDT� and Z speci	cations consist of informal English text interspersed with
formal mathematical text� The formal part describes the abstract state of the system �including a
description of the initial state of the system�� together with the collection of available operations�
which manipulate the state� One Z speci	cation re	nes another if the state schemas are data
re	nements and the operation schemas are operation re	nements of the original speci	cations
state and operation schemas� Details of the language and its re	nement relation are contained in
introductionary texts� for example ���� ��� ����

The uni	cation algorithm we describe is divided into three stages� normalization� common
re	nement �which we usually term uni	cation itself�� and re�structuring� This algorithm can be
shown to be the least re	nement of both viewpoints� �
�� Related work on the combination of Z
speci	cations includes ��� ���

Normalization identi	es commonality between two di�erent viewpoint speci	cations� and
re�writes each speci	cations into a normal form suitable for uni	cation in the following manner�
Clearly� the two speci	cations that are to be uni	ed have to represent the world in the same way
within them �e�g� if an operation is represented by a schema in one viewpoint� then the other
viewpoint has to use the same name for its �possibly more complex� schema too�� and that the
correspondences between the speci	cations have to have been identi	ed by the speci	ers involved�

��

�� CHAPTER �� CONSISTENCY CHECKING MECHANISMS IN Z

These will be given by mappings that describe the naming� and other� conventions in force� Once
the commonality has been identi	ed� normalization re�names the appropriate elements of the
speci	cations� Normalization will also expand data�type and schema de	nitions into a normal
form� Examples of normalization are given in ���� ����

Uni	cation itself takes two normal forms and produces the least re	nement of both� Because
normalization will hide some of the speci	cation structure introduced via the schema calculus� it
is necessary to perform some re�structuring after uni	cation to re�introduce the structure chosen
by the speci	er� We do not discuss re�structuring here�

����� State Uni�cation

The purpose of state uni	cation is to 	nd a common state to represent both viewpoints� The
state of the uni	cation must be the least data re	nement of the states of both viewpoints� since
viewpoints represent partial views of an overall system description�

The essence of all constructions will be as follows� We unify declarations rather than types�
so non�identical types with name clashes are resolved by re�naming� then we unify declarations as
follows� If an element x is declared in both viewpoints as x � S and x � T respectively� then the
uni	cation will include a declaration x � U where U is the least re	nement of S and T � The type
U will be the smallest type which contains a copy of both S and T � For example� if S and T can
be embedded in some maximal type then U is just the union S �T �

Given two viewpoint speci	cations both containing the following fragment of state description
given by a schema D �

D
x � S

predS

D
x � T

predT

we unify as follows

D
x � S �T

x � S �� predS
x � T �� predT

whenever S � T is well founded� If S and T cannot be embedded in a single type then the
uni	cation will declare x to be a member of the disjoint union of S and T � and the mechanism
to describe disjoint unions has to be included in the uni	cation� In these circumstances we again
achieve the least re	nement of both viewpoints�

Axiomatic descriptions are uni	ed in exactly the same manner�

����� Operation Uni�cation

Once the data descriptions have been uni	ed� the operations from each viewpoint need to be
de	ned in the uni	ed speci	cation� We assume all renaming of names visible to the environment
has taken place� Uni	cation of schemas then depends upon whether there are duplicate de	ni�
tions� If an operation is de	ned in just one viewpoint� then it is included in the uni	cation �with
appropriate adjustments to take account of the uni	ed state��

For operations which are de	ned in both viewpoint speci	cations� the uni	ed speci	cation
should contain an operation which is the least re	nement of both� w�r�t� the uni	ed representation
of state� The uni	cation algorithm 	rst adjusts each operation to take account of the uni	ed
state in the obvious manner� then combines the two operations to produce an operation which is
a re	nement of both viewpoint operations�

���� UNIFYING VIEWPOINT SPECIFICATIONS IN Z ��

The uni	cation of two operations is de	ned via their pre� and post�conditions� Given a schema
it is always possible to derive its pre� and post�conditions� ����� Given two schemas A and B
representing operations� both applicable on some uni	ed state� then the uni	cation of A and B is�

U�A�B�
���

pre A � pre B
pre A �� post A
pre B �� post B

where the declarations are uni	ed in the manner of the preceding subsection� This de	nition
ensures that if both pre�conditions are true� then the uni	cation will satisfy both post�conditions�
Whereas if just one pre�condition is true� only the relevant post�condition has to be satis	ed�
This provides the basis of the consistency checking method for object behaviour which we discuss
below�

We show� in �
�� that this construction is the least re	nement of the two viewpoint speci	cations�
It is also associative� allowing the natural extension of uni	cation to an arbitrary 	nite number of
viewpoints�

����� Example � � A classroom

As an illustrative example we perform state and operation uni	cation on a simple speci	cation of
a classroom� The example consists of the state represented by the schema Class� and operation
Leave� The two viewpoint speci	cations to be uni	ed are�

Max � IN
Class
d � Pf�� �g

$d Max

Leave
%Class
p� � f�� �g

p� � d
d � � d n fp�g

Min � IN
Class
d � Pf�� �� �g

$d � Min

Leave
%Class
p� � f�� �� �g

$d 	 Min & �
p� � d
d � � d n fp�� �g

As described above� we 	rst unify the state model� i�e� the schema Class in this example� which
becomes�

Class
d � Pf�� �g� Pf�� �� �g

d � Pf�� �g �� $d Max
d � Pf�� �� �g�� $d � Min

With this uni	ed state model we can unify the operation Leave on this state� To do so we calculate
the pre and post�conditions in the usual manner� and for this we need to expand the schema Leave
into normal form in each viewpoint� This will involve� for example� declaring p� � Z and containing
p� � f�� �g as part of the predicate for the description of Leave in the 	rst viewpoint� The pre�
condition of Leave in the 	rst viewpoint is then p� � d � f�� �g �in fact this is the part of the
pre�condition which is distinct from the pre�condition in the second viewpoint� the rest acting as
a state invariant�� Hence� the uni	ed Leave becomes�

�� CHAPTER �� CONSISTENCY CHECKING MECHANISMS IN Z

Leave
%Class
p� � Z

�p� � d � f�� �g�� �p� � d � f�� �� �g�$d 	 Min & ��
�p� � d � f�� �g� �� d � � d n fp�g
�p� � d � f�� �� �g�$d 	 Min & �� �� d � � d n fp�� �g

To show that the uni	ed Leave is indeed a re	nement of Leave in viewpoint one we will decorate
elements in viewpoint one with a subscript one� We can then use the retrieve relation

R�

Class
Class�

d� � fdg � Pf�� �g

to describe the re	nement between the uni	ed state and the state in the 	rst viewpoint� To
demonstrate the re	nement is correct� we make the following deductions� Suppose pre Leave� �
%R� � Leave� we have to show the result of this schema is compatible with post Leave�� Now if
pre Leave�� then p� � d� � fdg � Pf�� �g� and hence d � � d n fp�g� Then d �� � fd

�g � Pf�� �g �
fd n fp�gg � Pf�� �g� So d �� � d � � f�� �g � �d n fp�g� � f�� �g � d� n fp�g� since by pre Leave��
p� � f�� �g� The deduction that pre Leave� � R� �� pre Leave is similar� These two deductions
complete the proof that the uni	cation is a re	nement of viewpoint one� The case for viewpoint
two is symmetrical�

����� Example � � Dining Philosophers

As a second illustration of uni	cation in Z� we shall consider the following viewpoint speci	cations
of the dining philosophers problem� The dining philosophers problem� ��
�� is a classic problem
in synchronisation� A group of N philosophers sit round a table� laid with N forks� There is one
fork between each adjacent pair of philosophers� Each philosopher alternates between thinking
and eating� To eat� a philosopher must pick up its right�hand fork and then the left�hand fork�
A philosopher cannot pick up a fork if its neighbour already holds it� To resume thinking� the
philosopher returns both forks to the table�

The synchronisation needed is that no philosopher thinks or eats forever� and that the philoso�
phers must not starve through deadlock� The three viewpoint speci	cations de	ned are the philoso�
phers� forks and tables viewpoints� The philosophers and forks describe individual philosopher
and fork objects and the operations available on those objects� The table viewpoint describes
a system constructed from those objects and the synchronisation mechanism between operations
upon them� We shall then describe the uni	cation of the three viewpoints�

Although this example is not one of an ODP system� it provides a suitable illustration of the
issues involved in viewpoint speci	cation and consistency checking�

The Philosophers Viewpoint

This viewpoint considers the speci	cation from the point of view of a philosopher� A philosopher
either thinks� eats or holds her right fork� Note that since the latter is just a state of mind �for a
philosopher�� there is no need to describe the operations from a forks point of view at all in this
viewpoint�

PhilStatus ��� Thinking j HasRightFork j Eating

A philosopher object is just de	ned by the state of the philosopher�

���� UNIFYING VIEWPOINT SPECIFICATIONS IN Z ��

PHIL
status � PhilStatus

Initially a philosopher is thinking�

InitPHIL
PHIL�

status� � Thinking

We can now describe the operations available� A thinking philosopher can pick up its right�
hand fork�

GetRightFork
%PHIL

status � Thinking
status� � HasRightFork

Philosophers who hold their right fork can begin eating upon picking up their left�hand fork�
Finally to resume thinking� a philosopher releases both forks�

GetLeftFork
%PHIL

status � HasRightFork
status� � Eating

DropForks
%PHIL

status � Eating
status � � Thinking

The Forks Viewpoint

This viewpoint speci	es a fork object� Each fork is either free or busy� The fact that the philosopher
might change state when a fork is picked up or dropped does not concern forks�

ForkStatus ��� Free j Busy

The state of the fork is given by�

FORK
fstatus � ForkStatus

Initially a fork is free�

InitFORK
FORK �

fstatus� � Free

We can now describe the operations available� A free fork can be picked up� and both forks
can be released�

Acquire
%FORK

fstatus � Free
fstatus � � Busy

Release
%FORK

fstatus � Busy
fstatus � � Free

� CHAPTER �� CONSISTENCY CHECKING MECHANISMS IN Z

The Tables Viewpoint

This viewpoint has a number of schemas from the other viewpoints as parameters� these are
given as empty schema de	nitions� Upon uni	cation the non�determinism in this viewpoint will
be resolved by the other viewpoint speci	cations� and thus uni	cation will allow functionality
extension of these parameters�

The parameters we require are�

PHIL InitPHIL GetRightFork
%PHIL

GetLeftFork
%PHIL

DropForks
%PHIL

FORK

InitFORK Acquire
%FORK

Release
%FORK

The system from the table viewpoint is de	ned by a collection of fork and philosopher objects�

Table
forks � ���N � FORK
phils � ���N � PHIL

Initially the table consists of forks and philosophers all in their respective initial states�

InitTable
Table �

� InitFORK � InitPHIL � ran forks� � fInitFORKg � ran phils� � fInitPHILg

Here we use promotion �ie the operator� in the structuring of viewpoints� which allows an
operation de	ned on an object in one viewpoint to be promoted up to an operation de	ned over
that object in another viewpoint� As we can see� this can be used e�ectively to reference schemas
in di�erent viewpoints without their full de	nition�

In order to de	ne operations on the table� we de	ne a schema 'Table which will allow individual
object operations to be de	ned in this viewpoint� See ���� for a discussion of the use of promotion�

'Table
%Table
%PHIL
%FORK
m� � ���N
n� � ���N

phils�n�� � PHIL
phils� � phils � fphils�n�� � PHIL�g
forks�m�� � FORK
forks� � forks � fforks�m�� � FORK �g

Note that we use two inputs m�� n�� because we want to control later the synchronisation
between operations on forks and those on philosophers� System operations to get the left and
right forks� and to drop both forks can now be de	ned�

GLF b� �'Table �GetLeftFork �Acquire � �n��m� � ���N j m� � n� �� n �%FORK �%PHIL�

���� UNIFYING VIEWPOINT SPECIFICATIONS IN Z ��

GRF b� �'Table � GetRightFork � Acquire � � n��m� � ���N j m� � �n� mod N & �� �� n
�%FORK �%PHIL�

DF b� �'Table �DropForks �Release � � n��m� � ���N j m� � n� �� n �%FORK �%PHIL�
The last schema in each conjunction performs the correct synchronisation between the individ�

ual object operations� For example� it forces operations GetLeftFork and Acquire to be performed
on phils�n�� and forks�n�� in GLF � whilst in GRF � GetRightFork will be performed on phils�n��
and Acquire on forks�n� modN & ���

Unifying the Philosophers and Forks Viewpoints

Since the fork and philosopher object descriptions are independent� ie there are no state or oper�
ation schemas in common� the uni	cation of these two viewpoints is just the concatenation of the
two speci	cations� We do not re�write that concatenation here�

Unifying the Table� Philosophers and Forks Viewpoints

The Table speci	cation does have commonality with the other two viewpoints� For each state or
operation schema de	ned in two viewpoints �ie the Table and one other�� we build one schema in
the uni	cation� In fact� the separation and object�based nature �in a loose sense� of this example
means that we will not make extensive use of uni	cation by pre� and post�conditions� This is
desirable� since it reduces the search for contradictions in the consistency checking phase� In fact�
our experiences with viewpoint speci	cations con	rms that such a viewpoint methodology is really
only feasible if one adopts this object�based approach�

For example� the schema FORK de	ned in the Table viewpoint is just a parameter from the
fork viewpoint� and consequently its uni	cation will just be�

FORK
fstatus � ForkStatus

Similarly the uni	cation of GetLeftFork from the Table and Philosophers viewpoint is

GetLeftFork
%PHIL

status � HasRightFork
status� � Eating

since the pre�condition of GetLeftFork in Table is just false� Notice that this provides a mechanism
in Z by which to achieve functionality extension across viewpoints in a manner previously not
supported�

The remaining schemas can be uni	ed in the obvious manner�

����� Example � � OSI Management

Our third example involves the application of Z in the ODP information viewpoint to the modelling
of OSI Management� which has been investigated by a number of researchers ���� ���� We show
here how uni	cation and consistency checking can be used with such modelling techniques by
considering viewpoint speci	cations of sieve managed objects and their controlling CME agent�

To illustrate some of the techniques we consider two viewpoint speci	cations of an event report�
ing sieve object together with a third viewpoint which describes a CME agent and its manipulation
of the sieve objects� In this simpli	ed model we have not considered the relationships between
managed objects� although a complete presentation would include their speci	cation�

Within ODP� an information object template is modelled by a Z speci	cation� An information
object instance is then modelled as a Z speci	cation instance �i�e� a speci	cation complete with
initialization of variables�� and an ODP action is described by a Z operation�

�
 CHAPTER �� CONSISTENCY CHECKING MECHANISMS IN Z

The variable declarations in a state schema represent the attributes of a managed object� The
state schema also describes the state invariant which constrains the values of the attributes� The
initialization schema �e�g� InitSieve� constrains the initial values of the state schema�

A managed object de	nition cannot include a Create operation� since before it is created a
managed object cannot perform any operation� including Create itself� However� by including
a Create operation in the CME agent viewpoint as we do below� we can describe formally the
interaction between Create and the sieve managed object de	nition�

We have not considered any particular �avours� or design considerations� to di�erentiate be�
tween the 	rst two viewpoints� Their purpose here is to represent to view of the system from
similar standpoints�

Viewpoint �
 Sieve object

To describe the sieve object� we 	rst declare the types� SieveConstruct is used in the event
reporting process� its internal structure is left unspeci	ed at this stage� hence it is de	ned as a
given set�

�SieveConstruct �

The remaining types are declared as enumerated types�

Operational ��� disabled j active j enabled j busy
Admin ��� locked j unlocked j shuttingdown
Event ��� nothing j enrol j deenrol
Status ��� created j deleted

Status models the life�cycle of the sieve object� and is used as an internal mechanism to con�
trol which operations are applicable at a given point within an object�s existence� The state
schema de	nes the attributes of the sieve object� here there are no constraints upon them� and
the initialization describes their initial values�

Sieve
opstate � Operational
sico � SieveConstruct
adminstate � Admin
status � Status

InitSieve
Sieve

opstate � active
adminstate � unlocked

We describe two of the operations available within a sieve object �for a full description of
operations see ������ The 	rst is an operation to delete a sieve� Upon deletion a sieve sends a
deenrol noti	cation to its environment� and moves into a state where no further operations can be
applied�

Delete
%Sieve
noti�cation� � Event

status � created
noti�cation� � deenrol
status� � deleted

We de	ne a relation �lter to represent criteria to decide which events to 	lter out and which
to pass on

�lter � Event � SieveConstruct

and the Filter schema represents the operation to perform the 	ltering�

���� UNIFYING VIEWPOINT SPECIFICATIONS IN Z ��

Filter
(Sieve
event� � Event
noti�cation� � Event

status 	� deleted
opstate � active � adminstate � unlocked
�event�� sico� � �lter � noti�cation� � event�
�event�� sico� 	� �lter � noti�cation� � nothing

Viewpoint �
 Sieve object

To illustrate some of the uni	cation techniques we now describe a second view of the same sieve
object� First of all we declare the types

�SieveConstruct �

Operational ��� disabled j active j enabled j busy
Admin ��� locked j unlocked j shuttingdown
Event ��� nothing j enrol j deenrol
Status ��� being created j created j deleted

Notice that in this viewpoint Status includes an additional value� being created� The state
schema and its initialization are then declared�

Sieve
opstate � Operational
sico � SieveConstruct
adminstate � Admin
status � Status

opstate � factive� disabledg
adminstate � flocked � unlockedg

InitSieve
Sieve

status � being created
opstate � active
adminstate � unlocked

The change of state of a sieve object from being created to created is governed by an internal
operation� which can occur spontaneously� This change in status allows other operations to be
invoked subsequently apart from the Enrol operation itself�

Enrol
%Sieve
noti�cation� � Event

status � being created
status� � created
noti�cation� � enrol

In this viewpoint a relation new�lter de	nes the 	ltering criteria� and the operation Filter
performs the 	ltering�

new�lter � Event � SieveConstruct

� CHAPTER �� CONSISTENCY CHECKING MECHANISMS IN Z

Filter
(Sieve
event� � Event
noti�cation� � Event

status � created
opstate � active � adminstate � unlocked
�event�� sico� 	� new�lter � noti�cation� � nothing

Viewpoint �
 CME agent

The 	nal viewpoint is a description of a controlling CME agent� For our purposes here we present
a very simpli	ed version of an agent which consists of a number of sieve managed objects� We then
show how we can promote the Delete operation de	ned on individual sieve objects� and de	ne a
Create operation to instantiate sieve objects as required�

This viewpoint has a number of schemas from the other viewpoints as parameters� these are
given as empty schema de	nitions� Upon uni	cation the under�speci	cation of these parameters
in this viewpoint will be resolved by the other viewpoint speci	cations� and thus uni	cation will
allow functionality extension of these parameters� The parameters we require are�

Sieve InitSieve

Delete
%Sieve

We declare types to represent the set of object classes and set of object identi	ers respectively�
A CMEagent is then modelled as a collection of sieve objects� and initially no sieve objects have
been created� so the range of sieves cannot include a state described by Sieve

�Class� Id �

CMEagent
sieves � Class � Id �� Sieve

InitCMEagent
CMEagent

	 � Sieve � Sieve � ran sieves

In order to de	ne CME agent operation� we de	ne a schema 'CMEagent which will allow
individual object operations to be de	ned in this viewpoint�

'CMEagent
%CMEagent
%Sieve
objectclass� � Class
sieveid� � Id

sieves�objectclass�� sieveid�� � Sieve
sieves� � sieves � fsieves�objectclass�� sieveid�� � Sieve�g

An agent operation to delete a speci	c sieve object can now be de	ned by promotion of the
Delete parameter speci	ed in another viewpoint� The other managed object operations are pro�
moted in a similar fashion�

DeleteSieve b� �'CMEagent �Delete� n �%Sieve�

���� UNIFYING VIEWPOINT SPECIFICATIONS IN Z �

Finally the Create operation can be de	ned� Notice this is not part of the sieve speci	cation� so
we have preserved the concept thatCreatemust occur before any operation in the sieve speci	cation
can be applied�

Create
%CMEagent
%Sieve�%InitSieve
objectclass� � Class
sieveid� � Id

sieves�objectclass�� sieveid�� 	� Sieve
sieves� � sieves � fsieves�objectclass�� sieveid�� � InitSieve �g

Uni�cation of Viewpoints

To describe the uni	cation of viewpoints� we decorate with subscripts� so for example Filter� is
the schema Filter from the 	rst viewpoint� To unify viewpoints � and � we 	rst unify the state�
The only con�ict in the declarations are due to di�ering types Status� and Status�� To resolve this
con�ict� the type Status in the uni	cation is taken as the least re	nement of Status� and Status�
�i�e� Status� � Status��� and state uni	cation is applied to the schema Sieve� Hence� in addition
to the declarations which are not in con�ict� the uni	cation will contain the following�

Status ��� being created j created j deleted

Sieve
opstate � Operational
sico � SieveConstruct
adminstate � Admin
status � Status

status � fcreated � deletedg � true
status � fbeing created � created � deletedg �

�opstate � factive� disabledg � adminstate � flocked � unlockedg�

Upon simpli	cation the schema Sieve becomes

Sieve
opstate � Operational
sico � SieveConstruct
adminstate � Admin
status � Status

opstate � factive� disabledg
adminstate � flocked � unlockedg

In a similar fashion we unify InitSieve� and InitSieve�� which simpli	es to

InitSieve
Sieve

status � being created
opstate � active
adminstate � unlocked

� CHAPTER �� CONSISTENCY CHECKING MECHANISMS IN Z

The Delete and Enrol schemas are de	ned in just one viewpoint� Hence� both these schemas are
included in the uni	cation �with adjustments due to the uni	ed state schema Sieve�� Similarly
the uni	cation contains both relations �lter and new�lter�

To unify Filter� and Filter� we 	rst adjust Filter� due to the uni	ed state schema� The
predicate part of Filter� is then

status � fcreated � deletedg � �status 	� deleted � opstate � active � adminstate � unlocked�

Calculation of the pre�conditions preFilter� � preFilter� then simpli	es to

�status � created � opstate � active � adminstate � unlocked�

Thus the uni	cation of Filter� and Filter� is then given by�

Filter
(Sieve
event� � Event
noti�cation� � Event

status � created � opstate � active � adminstate � unlocked
�event�� sico� � �lter � noti�cation� � event�
�event�� sico� 	� �lter � noti�cation� � nothing
�event�� sico� 	� new�lter � noti�cation� � nothing

To complete the uni	cation we must unify this speci	cation with the third viewpoint which
speci	ed the CME agent� The parameters in the third viewpoint have their functionality extended
upon uni	cation� For example� the schema InitSieve de	ned in the third viewpoint is just a
parameter from the other viewpoints� and consequently its uni	cation will just be�

InitSieve
Sieve

status � being created
opstate � active
adminstate � unlocked

The complete uni	cation is then achieved in the obvious manner� by expanding Sieve� InitSieve
and Delete and including Enrol and Filter along with the CME agent operations�

��� Consistency Checking of Viewpoint Speci�cations in

Z

The mechanism for unifying two Z speci	cation yields a consistency checking process� A speci�
	cation is consistent if it does not contain speci	cations of entities which cannot possibly exist�
That is� given a proof system for Z� with a validity relation �� a speci	cation is said to be con�
sistent if it is not possible to prove S � false� For example� a Z speci	cation of a function will
be inconsistent if the predicate part of its axiomatic de	nition contradicts the fact that it was
declared as a function� Another way in which inconsistencies can arise in Z speci	cations is in the
de	nition of free types� Examples of how such inconsistencies can occur are given in ��� �
� ����
In general� it is undecidable whether or not a set of axioms given in a Z speci	cation is consistent�
��� discusses su�cient conditions for the consistency of certain combinations of Z paragraphs� in
particular axiomatic de	nitions� given sets and free types�

In addition� consistency usually refers to consistency of the state model� i�e� for a given state
there exists at least one possible set of bindings that satis	es the state invariant� ���� ���� With

���� CONSISTENCY CHECKING OF VIEWPOINT SPECIFICATIONS IN Z �

this consistency condition comes a requirement to prove the Initialisation theorem �see below��
which asserts there exists a state that satis	es the initial conditions of the model� Due to an ODP
requirement associated with multiple viewpoints� we also require operation consistency� because
an ODP conformance statement in Z corresponds to an operation schema�s�� ����� A conformance
statement is behaviour one requires at the location that conformance is tested� Thus a given
behaviour �i�e� occurrence of an operation schema� conforms if the post�conditions and invariant
predicates are satis	ed in the associated Z schema� That is� operations de	ned in two viewpoints
are consistent if whenever both operations are applicable� their post�conditions agree� Hence�
operations in a uni	cation will be implementable whenever each operation has consistent post�
conditions on the conjunction of its pre�conditions�

Thus a viewpoint consistency check in Z involves checking the uni	ed speci	cation for contra�
dictions� and has � components� axiom� axiomatic� state and operation consistency in addition
to the Initialisation theorem� Assuming the individual viewpoints themselves are consistent� the
components then take the following form�

Axiom Consistency
 Axioms constrain existing global constants� Hence� to check for
consistency of the two viewpoints� axioms from one viewpoint have to be checked against the
second viewpoint w�r�t� any terms appearing in the axioms which are de	ned in the second
viewpoint� If an axiom contains no terms appearing in other viewpoints� its consistency checking
requirements are discharged�

State Consistency
 Consider the general form of state uni	cation given earlier�

D
x � S �T

x � S �� predS
x � T �� predT

This state model is consistent as long as both predS and predT can be satis	ed for x � S �T �

Axiomatic Consistency
 Similar to state consistency�

Operation Consistency
 Consistency checking also needs to be carried out on each oper�
ation in the uni	ed speci	cation� The de	nition of operation uni	cation means that we have to
check for consistency when both pre�conditions apply� That is� if the uni	cation of A and B is
denoted U�A�B�� we have�

pre U�A�B� � pre A � pre B � post U�A�B� � �pre A� post A� � �pre B � post B�

So the uni	cation is consistent whenever the post conditions agree on the conjunction of the
pre�conditions� �pre A � pre B��

Initialisation Theorem
 The Initialisation Theorem is a consistency requirement of all Z
speci	cations� It asserts that there exists a state of the general model that satis	es the initial
state description� formally it takes the form�

� �State � InitState

For the uni	cation of two viewpoints to be consistent� clearly the Initialisation Theorem must
also be established for the uni	cation�

The following result can simplify this requirement� Let State be the uni	cation of State� and
State�� and InitState be the uni	cation of InitState� and InitState�� If the Initialisation Theorem
holds for State� and State�� then state consistency of InitState implies the Initialisation Theorem
for State� In other words� it su�ces to look at the standard state consistency of InitState�

If� however� InitState is a more complex description of initiality �possibly still in terms of
InitState� and InitState��� the Initialisation Theorem expresses more than state consistency of
Initstate� and hence will need validating from scratch�

� CHAPTER �� CONSISTENCY CHECKING MECHANISMS IN Z

����� Example � � The classroom

State Consistency
 The uni	ed state in this example was given by

Class
d � Pf�� �g� Pf�� �� �g

d � Pf�� �g �� $d Max
d � Pf�� �� �g�� $d � Min

To show consistency� we need to show that if d � Pf�� �g � Pf�� �� �g� then both $d Max
and $d � Min hold� Suppose the class consisted of just the element �� i�e� d � f�g� Both pre�
conditions in the uni	ed state� d � Pf�� �g and d � Pf�� �� �g� now hold giving the state invariant
Min $d Max � Thus the consistency of the viewpoint speci	cations of the classroom requires
that Min � Max � This type of consistency condition should probably fall under the heading
of a correspondence rule in ODP� ����� that is a condition which is necessary but not necessarily
su�cient to guarantee consistency�

Operation Consistency
 In this example� this amounts to checking the operation Leave
when

�p� � d � f�� �g�� �p� � d � f�� �� �g�$d 	 Min & ��

In these circumstances� the two post�conditions are d � � d n fp�g and d � � d n fp�� �g� These
two pre�conditions apply when p� � � and � � d � A consistency check has to be applied for all
possible values of d � For example� let d � f�� �g� then d � � d n fp�g� If further $d 	 Min & ��
then in addition we have d � � d n fp�� �g� These two conditions are consistent �since p� � ��
regardless of Max or Min�

Let d � f�g� then both pre�conditions apply i� Min � �� in which case the post�conditions are
d � � d n f�g and d � � d n f�g� and thus consistent�

Hence the two viewpoint speci	cations are consistent whenever the correspondence rule Min
� Max holds�

����� Example � � Dining Philosophers

Inspection of the uni	cation in the Dining Philosophers example shows that both state and opera�
tion consistency is straightforward �note� however� that with non�object based viewpoint descrip�
tions of this example� consistency checking is a non�trivial task� this points the need for further
work on speci	cation styles to support consistency checks�� Hence� consistency will follow once
we establish the Initialization Theorem for the uni	cation�

The Initialization Theorem for the uni	cation is

� �Table� � InitTable

which expands to

� � forks� � ���N � FORK � phils� � ���N � PHIL � � InitFORK � InitPHIL �

ran forks� � fInitFORKg � ran phils� � fInitPHILg

Upon simpli	cation this becomes

� � forks� � ���N � FORK � phils� � ���N � PHIL � ran forks� � fFreeg � ran phils� � fThinkingg

which clearly can be satis	ed� Hence the viewpoint descriptions given for the dining philosophers
are indeed consistent�

���� CONSISTENCY CHECKING OF VIEWPOINT SPECIFICATIONS IN Z �

����� Example � � OSI Management

State Consistency
 Consider the state schema Sieve� The uni	ed schema across all three
viewpoints was given by�

Sieve
opstate � Operational
sico � SieveConstruct
adminstate � Admin
status � Status

status � fcreated � deletedg � true
status � fbeing created � created � deletedg �

�opstate � factive� disabledg � adminstate � flocked � unlockedg�

From this it can be seen that both predicates true and �opstate � factive� disabledg�adminstate �
flocked � unlockedg� can be satis	ed for status � fcreated � deletedg�fbeing created � created � deletedg�
which is the requirement for consistency for this state schema�

Operation Consistency
 Consider the uni	cation of the Filter operation schema� From the
uni	cation we found that

preFilter� � preFilter� � �status � created � opstate � active � adminstate � unlocked�

Thus to show operation consistency we have to show that under this pre�condition� we have

���event�� sico� � �lter � noti�cation� � event�� � ��event�� sico� 	� �lter � noti�cation� � nothing��

� ��event�� sico� 	� new�lter � noti�cation� � nothing�

It is easy to show that a necessary� but not su�cient� condition for the consistency of this
operation is

�event�� sico� � Event�Event � �event�� sico� � �lter � �event�� sico� 	� new�lter � event� � nothing

Thus the consistency of Filter requires this condition to be maintained� By giving speci	ers
explicit noti	cation of which relationships between objects in the viewpoints need preserving� this
constraint can then be used by the individual viewpoint speci	ers to ensure that any further
re	nement of the viewpoints do not violate consistency�

Inspection of the uni	cation of the CME agent with the sieve object shows that both state
and operation consistency carry over from the state and operation consistency of the uni	cation
of viewpoints � and �� Hence� consistency will follow once we establish the Initialization Theorem
for the uni	cation of all three viewpoints�

The Initialization Theorem for the uni	cation is

� �CMEagent � InitCMEagent

which expands to

� � sieves � Class � Id �� Sieve �	 � Sieve � Sieve � ran sieves

Upon simpli	cation this becomes

� � sieves � Class � Id �� Sieve � hstatus� opstate� adminstate� sicoi 	� ran sieves

The 	nal term describes a set of bindings� and it is clear that such a function sieves exists�
Hence� the viewpoint descriptions given for the CME agent and sieve objects are indeed consistent�

The consistency checking mechanismworks well for small to medium sized Z speci	cations� For
larger speci	cations additional structure is needed in order that the consistency checking strategy
can be scaled up� ���� shows how support for this can be provided by using object oriented
variants of Z� These object based methodologies look likely to provide su�cient structure for the
consistency checking to remain feasible� this is an area of ongoing research and is discussed brie�y
below�

 CHAPTER �� CONSISTENCY CHECKING MECHANISMS IN Z

��� Software Engineering Issues

The previous section elucidated the consistency checking requirements for uni	ed viewpoint spec�
i	cations� Given these requirements� it is necessary to seek software engineering strategies that
make viewpoint decomposition feasible� By feasible we mean it is possible to describe viewpoints
which are consistent and that the e�ort involved in consistency checking is minimised� In this
section we explore some of the software engineering consequences of the consistency checking
requirements� There are two initial possibilities for how to write viewpoint speci	cations�

�a� viewpoint description and analysis will work with arbitrary speci	cations and speci	cation
styles�
�b� some style guidelines or further methodology is needed for the process to become feasible�

If one adopts position �a�� then there are some issues which need to be addressed�

No encapsulation of state and operations When the state is uni	ed� all operations acting
on that state are adjusted to take account of the uni	ed state� Hence� during uni	cation
of an operation� two adjustments are made� the 	rst due to the uni	ed state �declarations
are updated to take account of the uni	ed state� and the second due to the change in pre�
and post�conditions� Therefore� to keep track of the consistency checking requirements the
operations need to be encapsulated with the state they a�ect� Without this consistency
checking is possible� but unrealistic for larger examples�

No operation set representation As Zave noted in ���� Z provides no means of representing
the operation set of a speci	cation �i�e� the set of operations visible by the environment��
The consequences of this for uni	cation is that if an operation schema appears in both
viewpoints� then it has to be uni	ed� since there is no means to tell whether it was de	ned
�in either viewpoint� for internal structuring purposes only� If there was such information
available� then internal structuring schemas could be re�named and just operations in the
operational set uni	ed�

Correspondence rules In order to describe the relation between viewpoints� the RM�ODP in�
cludes a notion of correspondence rule� Part of their purpose is to identify the commonality
between the speci	cations� and describe any possible renamings between them� Any view�
point methodology will need to include mappings such as these� The limited structure in an
ordinary Z speci	cation makes a succinct naming impossible for correspondences� since� for
any non�trivial systems� it is likely that a correspondence will wish to name more than one
state operation�

Viewpoint encapsulation The work of ��� indicates that in a non�object approach a large num�
ber of re�namings and re�workings of the viewpoints have to be undertaken during the uni�
	cation process� This appears to be because the boundaries of the problem are not well
de	ned� leading to viewpoint speci	ers referencing and de	ning similar aspects of the same
entity� Again this is a manifestation of the lack of encapsulation when de	ning the area of
concern for each viewpoint speci	er�

From case studies undertaken and consideration of these issues it seems that viewpoint de�
scription without any style guidelines is unlikely to be practical for anything other than small
examples� Encapsulation and identity are central to the practical realization of the viewpoints
model� Both of these facets could be provided by a number of software engineering methodologies�
however� object orientation is an obvious choice� Many of the problems identi	ed above can be
resolved if one adopts an object oriented approach�

Encapsulation of state and operation The over�riding advantage of object oriented methods
is their encapsulation of state and operation� This will clearly delimit the consistency check�
ing requirements within a uni	cation� with each uni	ed object generating local consistency
checking requirements which do not escalate to global consistency checking problems�

���� USING OBJECT ORIENTED TECHNIQUES �

Operation set representation Some� although not all� object oriented methodologies in Z pro�
vide the ability to specify an operation set� or visibility list� ���� ���� which partitions all the
de	ned operations into disjoint sets of visible and internal operations� If this is provided�
then the issue of operation set representation is completely resolved� Even if such a visi�
bility list is not provided by the language used� the encapsulation that comes with object
orientation still provides the opportunity for partial resolution of the problem� In an object�
based world it is likely that a viewpoint partitioning will include the internal speci	cation
of the behaviour of an object in only one of the viewpoints� The other viewpoints will then
�possibly� reference objects from viewpoints as parameters� or place constraints on the use
of those objects� Hence� in these circumstances the uni	cation of two internal representa�
tions is unlikely to occur� and so the issue of operation set representation would not occur�
Of course� if the internal speci	cation of an object�s behaviour did occur in more than one
viewpoint� the need for a visibility list would then arise again�

Correspondence rules Identity is a key property of an object� and will allow correspondence
rules to relate suitably complex parts and combination of parts of the viewpoint descriptions
in a manner which is not currently supported in Z�

These considerations naturally lead to a choice of an object�based or object oriented language
for viewpoint decomposition� where each viewpoint speci	es a number of interacting objects� Full
OO is not necessarily needed� however� if it is available then OO facilities such as inheritance can
be exploited� It is preferable that only one viewpoint speci	es the internal representation of a
given object� and references to objects from one viewpoint will appear as parameters� either as
inheritance within another object� or as an abstraction purely in terms of object or method names�
The next section investigates the support available in Z for this approach�

��� Using Object Oriented Techniques

The previous section indicated that an object oriented style of speci	cation is particularly suitable
for viewpoint descriptions� and indeed the RM�ODP has adopted such an approach� There have
been a number of di�erent approaches proposed for providing Z with object oriented facilities�
These include the provision of object oriented style guidelines� and extensions to Z to allow fully
object oriented speci	cations� Examples of using Z in an object oriented style include� Hall�s
style ���� ���� ZERO ����� and the ODP architectural semantics ����� Examples of object oriented
extensions to Z include� Object�Z ����� ZEST ����� MooZ ����� OOZE ���� Schuman) Pitt ����
and Smith ����� See ���� for a summary and comparison of several approaches�

Z itself is not object oriented because it does not provided su�cient support for either encap�
sulation or inheritance� However� it is also possible for Z to be used in an object based fashion�
see ���� for a discussion� although there is nothing to keep the speci	er within an object based
style in contrast to the style guidelines above�

The ODP standardisation initiative requires the use of �near� standardised formal methods�
hence the architectural semantics uses Z as opposed to any object oriented variant of that lan�
guage� However� given that ODP has adopted the object oriented paradigm� there is obvious
interest in object oriented variants that can support the required ODP modelling concepts� In
particular� Object�Z and ZEST are receiving attention within the ODP community as a speci	ca�
tion medium� However� all the object oriented extensions to Z have an unstable de	nition� or lack
a full semantics� or both� Therefore� techniques with a �attening �or approximate �attening� into
Z are of considerable interest to our work� By using such a technique we can de	ne uni	cation and
consistency checking of viewpoints without compromising the necessity of a standardised formal
description technique� Object�Z and ZEST are suitable from this perspective�

Of the Z guidelines the work of Hall is the most general� The style adds no new features to
Z� however� there are conventions for writing an object oriented speci	cation� He also provides
conventions for modelling classes and their relationships� and� in addition� there is formal support
for inheritance through subtyping� ����� In order to support encapsulation� the RM�ODP has

 CHAPTER �� CONSISTENCY CHECKING MECHANISMS IN Z

adopted conventions for the use of Z within ODP� Here� encapsulation is achieved by letting each
Z speci	cation denote just one object� This achieves the required encapsulation� but clearly any
speci	cation of an aggregate of objects or interaction between objects cannot then be modelled
within Z� Thus there is clearly a need to extend the framework o�ered by ODP by considering
further style guidelines for the speci	cation of collections of objects�

The uni	cation techniques described above can be used with ZEST for the speci	cation of
viewpoints� To do so� use ZEST to describe viewpoints consisting of objects or aggregates of
objects� The ZEST can then be �attened to Z� in order to generate the uni	cation of the two
viewpoints and to check for consistency� The uni	cation can then easily be re�assembled into
a ZEST speci	cation if further object oriented development is required� Other object oriented
variants of Z could equally have been used for the basis of this example� in particular� Object�Z
would have provided a similar set of facilities as those we have called upon� Although uni	cation
is applied by 	rst �attening the ZEST� it is important to note that the bene	ts of using object
orientation are not lost by doing so� The encapsulation can be recovered� and the consistency
checking requirements still lie within the boundaries de	ned by the object encapsulation�

We have undertaken a number of case studies in order to test the hypothesis that object ori�
ented description is the preferable viewpoint speci	cation medium� and our conclusions so far
support this claim� The studies involving non�object based descriptions were signi	cantly harder
to check for consistency and much harder to specify in an independent fashion in the viewpoints�
the speci	cation in ��� is another indication of the di�culty of non�object based viewpoint speci�
	cations�

Conversely� the object based viewpoint descriptions were much more successful� When the
viewpoints contain only references to objects de	ned in other viewpoints �as opposed to specifying
any of its behaviour� consistency checking is relatively straightforward �although the viewpoints
can still be inconsistent�� If two viewpoints both contain �partial� descriptions of the same object�
then there can be a non�trivial consistency checking process� however� due to encapsulation the
boundaries that inconsistency can arise within are well de	ned�

Examples were undertaken in a number of styles� The style of the object oriented variant chosen
did not signi	cantly a�ect the success or otherwise of the viewpoint speci	cation or uni	cation�
There are clear merits in using Z without extended syntax� particularly in the use within ISO
initiatives� To that extent� using the work of Hall and Smith have clear advantages� Hall in
particular o�ers formal and well�de	ned support for inheritance� which is lacking for some other Z
object oriented variants� Smith�s work at the moment is not su�ciently mature or accepted� The
extended syntax approaches have advantages for the developer� who is then not constrained by
conventions for embedding object orientation in Z� but only if a clear semantics� and preferably a
�attening into Z� can be given�

����� Relation between Uni�cation and Inheritance

It is important to recognise that uni	cation is a �horizontal� rather than �vertical� development
activity� By that we mean it is used to check development at a particular stage �consistency check�
ing� or possibly to combine development speci	cations �uni	cation�� rather than a development
activity that serves to de	ne the implementation more closely �as in re	nement or inheritance��
Given that uni	cation is a horizontal activity� one needs to describe the relationship between it
and vertical development activities� The relationship between uni	cation and re	nement is well
known since uni	cation is based upon �least� re	nement� We describe here the relation between
inheritance and uni	cation�

To do so we need a formal approach to inheritance and subtyping� Hall� ����� contains a
discussion of known de	nitions in terms of both extensional and intensional semantics� Given that
we are interested in behaviour of speci	cations� we shall consider de	nitions due to intensional
semantics here� His intensional meaning of subclass is in terms of subclass instances being valid
implementations of the superclass� however� the de	nition is di�erent from a re	nement relation
�as one would expect�� To exhibit subtyping there must exist a retrieve relation Abs between the
superclass and subclass such that the following are true�

���� USING OBJECT ORIENTED TECHNIQUES �

S�
 Superstate� Substate � pre Superop �Abs � pre Subop

S�
 Superstate� Substate� Substate� � pre Superop � Abs � Subop � �� Superstate � � Abs � �
Superop�

S�
 Substate � �� Superstate � Abs�

Only the third rule di�ers from the rules for re	nement� see ���� for justi	cation of this� Hall
also compares his de	nition with those of Cusack ����� Lano) Haughton ���� and Liskov) Wing
��
�� We are interested here in the relation between uni	cation and the individual viewpoints� In
these circumstances the retrieve relations will be partial functions �and only total if one viewpoint
is degenerate�� In this case Hall�s subtyping imply subtyping in the sense of Cusack� Lano)
Haughton and Liskov) Wing �ignoring the history predicates of the latter two�� In particular�
the rules S��� su�ce for subtyping in both Hall and ZEST� and we will thus work with this
de	nition�

It is easy to construct examples to show that the uni	cation of two viewpoints is not in general
a subtype of each viewpoint� However� this is unsurprising because one viewpoint is only a partial
description of an objects behaviour� Instead the natural result to seek is the following�

Theorem � Let Pi �Oi be objects in viewpoint i� Let Pi be a subtype of Oi � Then U�P��P�� is a
subtype of U�O��O��
 where U is the uni�cation operator between viewpoints�

Proof
The full proof involves construction of appropriate retrieve relations between U�P��P�� and U�O��O��
in a manner similar to the proof that uni	cation is the least re	nement� see ���� The outline of
the proof is as follows�

The subtyping rules S� and S� between U�P��P�� and U�O��O�� are satis	ed because uni	ca�
tion is the least re	nement�

For S�� note that every state in the U�O��O�� uni	cation appears in either O� or O� or both�
Thus every state in U�P��P�� is related to some state in U�O��O�� via the retrieve relation de	ned
for the least re	nement� �

It is straightforward to construct examples to show the converse is not true� that is U�P��P��
being a subtype of U�O��O�� does not imply that Pi is a subtype of Oi �

The theorem then provides a sound footing for the use of object oriented techniques in viewpoint
descriptions� The relationship between uni	cation and multiple inheritance is clearly of importance
�especially w�r�t method consistency�� and is currently under investigation�

�� CHAPTER �� CONSISTENCY CHECKING MECHANISMS IN Z

Chapter �

Conclusion

In conclusion of this deliverable we summarise the results so far and describe the key open problems
that remain�

	�� Summary of results

We have reported on three major areas of investigation�

�� De	ning consistency�

�� Consistency checking in LOTOS� and

�� Consistency checking in Z�

	���� De�ning consistency

The RM�ODP contains three di�erent de	nitions of consistency� These de	nitions have been
formalised and related to one another �see chapter ��� The di�erent de	nitions seem incomparable
unless they had been instantiated with a particular FDT� To resolve this de	ciency a more general
de	nition of consistency was formulated that can incorporate all three RM�ODP de	nitions�

In general terms� a number of viewpoint speci	cations are consistent if and only if a new
speci	cation can be found that is a development of all viewpoint speci	cations� In addition� the
new speci	cation is required to be internally valid �i�e� can be implemented�� We distinguish
between balanced consistency� where one development relation is used in all viewpoints� and
unbalanced consistency� where di�erent development relations can be used in di�erent viewpoints�

If a number of viewpoint speci	cations are consistent with respect to certain development
relations� then a common development can be found� which we call uni	cation� Conversely� the
existence of an internally valid uni	cation implies consistency of the viewpoint speci	cations�

Although the de	nition of consistency is general enough to cope with inter language consistency
checking� we have initially considered intra language consistency checking only�

	���� Consistency checking in LOTOS

In chapter �� we describe techniques to check for binary� balanced consistency of LOTOS speci	�
cations with respect to four di�erent development relations� trace preorder� reduction� extension
and testing equivalence� Techniques to construct uni	cations of two LOTOS speci	cations with
respect to these development relations are considered�

In LOTOS it is possible to 	nd necessary and su�cient conditions to show that two speci	ca�
tions are consistent� Once consistency has been established� it is possible to construct a uni	cation�
However� the generated uni	cation is usually not the least common development�

��

�� CHAPTER 	� CONCLUSION

	���� Consistency checking in Z

In chapter �� techniques are given to unify Z viewpoint speci	cations with respect to the Z re	ne�
ment relation� It also describes how the internal validity of the derived uni	cation can be veri	ed�
Since the derived uni	cation is always the least uni	cation� internal validity of the uni	cation
implies the consistency of the original speci	cations�

The use of object oriented speci	cation techniques was also considered� Initial evidence indi�
cates such techniques can reduce the complexity of the consistency checking process�

	�� Open problems

This deliverable has outlined a number of issues relating to consistency checking mechanisms for
ODP� There clearly remains much work to be done� we discuss brie�y here some of the future
directions for research in this area�

	���� Inter language consistency checking

It is commonly recognised that di�erent FDTs will be applicable to di�erent viewpoints� In this
respect� to be of practical use� inter language consistency checking mechanisms have to be built
upon intra language mechanisms� An approach could be envisaged where to check the consistency
of two di�erent FDT viewpoint speci	cations� one speci	cation is translated into the language of
the other� after which an intra language mechanism is applied� If this is possible then checking
across language boundaries becomes feasible�

Translation is discussed brie�y below� languages to be considered include LOTOS� Z and IDLs�
The translation between IDLs and Z clearly has practical signi	cance� and we will investigate this
as resources allow� The translation between LOTOS and Z would be a fundamentally important
result� given the di�erent semantic bases for the two languages� and we are considering to what
extent this can be achieved�

	���� Translation

There has been some success in relating formal languages that have similar underlying semantics�
e�g� ���� ��� However� the common semantics used in these approaches is typically very ugly�
ODP consistency checking requires translation across FDT families� Some directions that could
be pursued to make such translations possible are discussed below�

Syntactic translation Translation based upon a direct relation of syntactic terms in one FDT
to terms in another FDT is one possible approach� However� it is di�cult to envisage how such an
approach could o�er a general solution� In particular� a lot of semantic meaning will certainly be
lost in such a crude translation of FDTs� Partial syntactic translations may� however� be feasible�

Common underlying semantics Another� more promising� approach is to de	ne a common
underlying semantic model for the required FDTs� Speci	cations could then be translated into the
common semantic domain� in which a consistency check can be performed� Such translation could
either use the semantics of one of the FDTs as the intermediate semantics or use a third semantics�
The former of these is not fully general� for example� Z and LOTOS are so fundamentally di�erent
that relating one to the others semantic model is very di�cult to envisage� Relating FDTs using
a third intermediate form is a more likely approach�

A su�ciently general semantic model has been developed in ����� One�sorted 	rst�order pred�
icate logic is proposed to capture the semantics of speci	cations in di�erent formalisms� The
proposed semantic model is very general� but it does not necessarily have the same properties as
the standard semantics of the FDTs� Also� there are certain features of speci	cation languages
which cannot be captured in 	rst�order logic� Nevertheless� the proposed method presents a
promising step towards a general technique for consistency checking�

	��� OPEN PROBLEMS ��

There have been several other attempts to relate di�erent formal languages�

� A link between model based action systems �and thereby Z� and CSP has been made by
showing that re	nements �forwards and backwards simulation� in an action system are sound
and jointly complete with respect to the notion of re	nement in CSP �����

� The requirement for highly expressive intermediate semantics suggests that logical notations
may be appropriate� ���� and ��� consider logical characterisations of LOTOS in temporal
logic� However� relating temporal logic to the Z 	rst order logic remains an open issue�
Categorical approaches and the theory of institutions o�er a possible solution ����

� A 	nal alternative which has the bene	t of being ODP speci	c is suggested by the work
of ����� This work o�ers a direct denotational semantics for the computational viewpoint
language� This semantics could� theoretically� be used to relate di�erent FDT interpretations
of the computational viewpoint language� Clearly� this work does not give a complete solution
to consistency as the semantics are restricted to a single viewpoint� However� it may be
possible to extrapolate this approach to a general solution�

It is clear� though� that a usable translation mechanism is likely to represent a pragmatic�
compromise solution� In particular� complete preservation of semantic meaning during translation
will not be possible� In addition� di�erent viewpoints describe di�erent sets of features and thus
may not be directly translatable between each other�

	���� ODP speci�c concepts

The work presented in this deliverable has concentrated on a general framework for consistency
checking mechanisms and� in particular� we have not considered speci	c ODP viewpoints� Con�
sideration of the viewpoints will include discussion of the role of the ODP architectural semantics�
Speci	cally� part � should provide a basis for relating FDTs� ODP concepts� in particular view�
point languages� are de	ned in di�erent FDTs in the architectural semantics� Thus� when relating
complete viewpoint speci	cations in di�erent FDTs these de	nitions can be used as components
of a consistency check�

However� it is important to note that the architectural semantics will only provide a framework
for consistency checking� Actual viewpoint language speci	cations will extend the ODP architec�
tural semantics� which are non�prescriptive by nature� with FDT speci	c behaviour� There is then
a need to combine the framework provided by the architectural semantics with actual consistency
checking relationships arising from FDTs� Such cross viewpoint consistency checks will clearly
involve correspondence rules� and further work is required on identifying appropriate correspon�
dences between the viewpoints in order to provide formal support for cross viewpoint mappings�

	���� Tool Development

Work on tool development based upon consistency checking mechanisms is clearly important if this
work is to move into application areas� We envisage roles for uni	cation tools �in particular for Z��
coupled to semi�automatic consistency checkers which will aim to provide support for consistency
checks� The extent of such tool development will be considered in the light of available resources�

	���� Object orientation

The ODP viewpoint languages are object based� Current consistency checking and uni	cation
algorithms do not take the object oriented nature of the speci	cations into consideration� Further
research is necessary to assess in which way object orientation will e�ect the consistency checking
process� Some experiments with object oriented Z speci	cations suggest that the encapsulation
property of objects will simplify the consistency checking mechanisms�

�� CHAPTER 	� CONCLUSION

	�� Future plans

In this section� we list the activities planned for the future� In the short term� we plan to consider
the following tasks�

� Identi	cation and characterisation of ODP correspondence rules�

� Building a uni	cation and consistency checking tool for Z�

� Extending the LOTOS consistency checking techniques to unbalanced and global consis�
tency�

� Starting work on a LOTOS tool for uni	cation and consistency checking�

� Investigation of inter language consistency checking between LOTOS and Z speci	cations�

� Identi	cation of case studies for intra language consistency checking in LOTOS and Z� and

� Provision of input to RM�ODP Part � on consistency checking�

For the long term we envisage the following activities�

� Completion of uni	cation and consistency checking tools for both Z and LOTOS�

� Building a tool for consistency checking and or translation between Z and LOTOS�

� Performing several case studies on both intra language and inter language consistency check�
ing� and

� Dissemination of 	nal results to the ODP community�

Bibliography

��� M� Ainsworth� A� H� Cruickshank� L� J� Groves� and P� J� L� Wallis� Formal speci	cation
via viewpoints� In J Hosking� editor� Proc� �	th New Zealand Computer Conference� pages
��
*���� Auckland� New Zealand� �
th*��th August ����� New Zealand Computer Society�

��� M� Ainsworth� A� H� Cruickshank� L� J� Groves� and P� J� L� Wallis� Viewpoint speci	cation
and Z� Information and Software Technology� �������*��� February �����

��� A� J� Alencar and J� A� Goguen� OOZE� An object oriented Z environment� In P� America�
editor� ECOOP ��� � Object�Oriented Programming� LNCS ���� pages �
�*���� Springer�
Verlag� �����

��� R� D� Arthan� On free type de	nitions in Z� In J� E� Nicholls� editor� Sixth Annual Z User
Workshop� pages ��*�
� York� December ����� Springer�Verlag�

��� D� Bert� M� Bidoit� C� Choppy� R� Echahed� J��M� Hu+en� J��P� Jacquot� M� Lemoine�
N� L,evy� J��C� Reynaud� C� Roques� F� Voisin� J��P� Finance� and M��C� Gaudel� Op,eration
SALSA� Structure d�Accueil pour Sp,eci	cations Alg,ebriques� Rapport 	nal� PRC Program�
mation et Outils pour l�intelligence Arti	cielle� �����

�� T� Bolognesi and E� Brinksma� Introduction to the ISO Speci	cation Language LOTOS�
Computer Networks and ISDN Systems� ��������*��� ��

�

��� H� Bowman and J� Derrick� Formalizing conformance in ODP� In R�Wieringa and R� Feenstra�
editors� Working papers of IS�CORE���
 International Workshop on Information Systems �
Correctness and Reusability� pages ���*���� September �����

�
� H� Bowman and J� Derrick� Modelling distributed systems using Z� In K� M� George� editor�
ACM Symposium on Applied Computing� pages ���*���� Nashville� February ����� ACM
Press�

��� H� Bowman� J� Derrick� and M� Steen� Some results on cross viewpoint consistency checking�
In IFIP International Conference on Open Distributed Processing� Chapman Hall� �����

���� E� Brinksma� A theory for the derivation of tests� In S� Aggarwal and K� Sabnani� editors�
Protocol Speci�cation
 Testing and Veri�cation
 VIII� pages �*��� Atlantic City� USA� June
��

� North�Holland�

���� E� Brinksma and G� Scollo� Formal notions of implementation and conformance in LOTOS�
Technical Report INF�
���� Dept of Informatics� Twente University of Technology� ��
�

���� E� Brinksma� G� Scollo� and C� Steenbergen� Process speci	cation� their implementation and
their tests� In B� Sarikaya and G� V� Bochmann� editors� Protocol Speci�cation
 Testing and
Veri�cation
 VI� pages ���*��� Montreal� Canada� June ��
� North�Holland�

���� AFNOR cont� A direct computational language semantics for Part � of the RM�ODP�
ISO IEC JTC� SC�� WG� approved AFNOR contribution� July �����

��

� BIBLIOGRAPHY

���� E� Cusack� Inheritance in object oriented Z� In P� America� editor� ECOOP ��� � Object�
Oriented Programming� LNCS ���� pages ��*���� Springer�Verlag� �����

���� E� Cusack and G� H� B� Rafsanjani� ZEST� In S� Stepney� R� Barden� and D� Cooper� editors�
Object Orientation in Z� Workshops in Computing� pages ���*��� Springer�Verlag� �����

��� J� Derrick� H� Bowman� and M� Steen� Maintaining cross viewpoint consistency using Z� In
IFIP International Conference on Open Distributed Processing� Chapman Hall� �����

���� J� Derrick� H� Bowman� and M� Steen� Viewpoints and Objects� In Ninth Annual Z User
Workshop� Limerick� September ����� Springer�Verlag� To appear�

��
� E� W� Dijkstra� Cooperating sequential processes� In F� Genuys� editor� Programming Lan�
guages� Academic Press� ��
�

���� R� Duke� P� King� G� A� Rose� and G� Smith� The Object�Z speci	cation language version
�� Technical Report ����� Software Veri	cation Research Centre� Department of Computer
Science� University of Queensland� May �����

���� A� Fantechi� S� Gnesi� and G� Ristori� Compositional logic semantics and LOTOS� In L� Lo�
grippo� R� L� Probert� and H� Ural� editors� Protocol Speci�cation
 Testing and Veri�cation

X� Ottawa� Canada� June ����� North�Holland�

���� J� F� Groote� Transition system speci	cations with negative premises� In J� C� M� Baeten and
J� W� Klop� editors� CONCUR ��� LNCS ��
� pages ���*���� Amsterdam� ����� Springer�
Verlag�

���� A� J� Hall� Using Z as a speci	cation calculus for object�oriented systems� In D� Bjorner�
C� A� R� Hoare� and H� Langmaack� editors� VDM ��� VDM and Z � Formal Methods in
Software Development� LNCS ��
� pages ���*��
� Kiel� FRG� April ����� Springer�Verlag�

���� J� A� Hall� Specifying and interpreting class hierarchies in Z� In J� P� Bowen and J� A� Hall�
editors� Eighth Annual Z User Workshop� pages ���*��
� Cambridge� July ����� Springer�
Verlag�

���� C� A� R� Hoare� Communicating Sequential Processes� Prentice Hall� ��
��

���� H� Ichikawa� K� Yamanaka� and J� Kato� Incremental Speci	cation in LOTOS� In L� Logrippo�
R� L� Probert� and H� Ural� editors� Protocol Speci�cation
 Testing and Veri�cation X� pages
�
�*��� Ottawa� Canada� �����

��� ISO� Information Processing Systems * Open Systems Interconnection * Basic Reference
Model� ��
�� IS ���
�

���� ISO� Information processing systems * Open Systems Interconnection * LOTOS * A formal
description technique based on the temporal ordering of observational behaviour� ��
�� IS

���

��
� ISO� LOTOS description of the Session Protocol� ��
�� ISO IEC TR�����

���� ISO� LOTOS description of the Session Service� ��
�� ISO IEC TR�����

���� ITU Recommendation X�������� ! ISO IEC ���� ���� Open Distributed Processing � Ref�
erence Model � Parts ���� July �����

���� F� Khendek� G� v� Bochmann� and R� Gotzhein� Multiple inheritance in the form of reduction�
Technical report� D,epartement d�informatique et de recherche op,erationnelle� Universit,e de
Montr,eal� Montreal� Canada� �����

BIBLIOGRAPHY ��

���� F� Khendek and G� von Bochmann� Merging speci	cation behaviours� Technical Report
��
D,epartement d�informatique et de recherche op,erationnelle� Universit,e de Montr,eal� �����

���� S� King� Z and the re	nement calculus� In D� Bjorner� C� A� R� Hoare� and H� Langmaack�
editors� VDM ��� VDM and Z � Formal Methods in Software Development� LNCS ��
� pages
��*�

� Kiel� FRG� April ����� Springer�Verlag�

���� K� Lano and H� Haughton� Reuse and adaption of Z speci	cations� In J� P� Bowen and J� E�
Nicholls� editors� Seventh Annual Z User Workshop� pages �*��� London� December �����
Springer�Verlag�

���� G� Leduc� On the Role of Implementation Relations in the Design of Distributed Systems
using LOTOS� PhD thesis� University of Li-ege� Li-ege� Belgium� June �����

��� G� Leduc� A framework based on implementation relations for implementing LOTOS speci�
	cations� Computer Networks and ISDN Systems� �����*��� �����

���� P� F� Linington� Introduction to the Open Distributed Processing Basic Reference Model� In
J� de Meer� V� Heymer� and R� Roth� editors� IFIP TC� International Workshop on Open
Distributed Processing� pages �*��� Berlin� Germany� September ����� North�Holland�

��
� B� Liskov and J� M� Wing� A new de	nition of the subtype relation� In O� M� Nierstrasz�
editor� ECOOP ��	 � Object�Oriented Programming� LNCS ���� pages ��
*���� Springer�
Verlag� �����

���� S� L� Meira and A� L� C� Cavalcanti� Modular object oriented Z speci	cations� In J� E�
Nicholls� editor� Fifth Annual Z User Workshop� pages ���*���� Oxford� December �����
Springer�Verlag�

���� R� Milner� Communication and Concurrency� Prentice�Hall� ��
��

���� B� Potter� J� Sinclair� and D� Till� An introduction to formal speci�cation and Z� Prentice
Hall� �����

���� B� Ratcli�� Introducing speci�cation using Z� McGraw�Hill� �����

���� R� Reed� W� Bouma� J� D� Evans� M� Dauphin� and M� Michel� Speci�cation and Programming
Environment for Communication Software� North Holland� �����

���� S� Rudkin� Modelling information objects in Z� In J� de Meer� V� Heymer� and R� Roth�
editors� IFIP TC� International Workshop on Open Distributed Processing� pages ��*�
��
Berlin� Germany� September ����� North�Holland�

���� M� Saaltink� Z and Eves� In J� E� Nicholls� editor� Sixth Annual Z User Workshop� pages
���*���� York� December ����� Springer�Verlag�

��� S� A� Schuman� D� H� Pitt� and P� J� Byers� Object�oriented process speci	cation� In C� Rat�
tray� editor� Speci�cation and Veri�cation of Concurrent Systems� Workshops in Computing�
pages ��*��� Springer�Verlag� �����

���� R� Sinnott� An Initial Architectural Semantics in Z of the Information Viewpoint Language
of Part 	 of the ODP�RM� ISO IEC SC�� WG� N���� July ����� BSI Input document to
the ODP Plenary meeting in Southampton�

��
� A� Smith� On recursive free types in Z� In J� E� Nicholls� editor� Sixth Annual Z User
Workshop� pages �*��� York� December ����� Springer�Verlag�

���� G� Smith� An object�oriented development framework for Z� In J� P� Bowen and J� A� Hall�
editors� Eighth Annual Z User Workshop� pages
�*���� Cambridge� July ����� Springer�
Verlag�

�
 BIBLIOGRAPHY

���� J� M� Spivey� The Z notation� A reference manual� Prentice Hall� ��
��

���� S� Stepney� R� Barden� and D� Cooper� editors� Object Orientation in Z� Workshops in
Computing� Springer�Verlag� �����

���� C� A� Vissers� G� Scollo� M� van Sinderen� and E� Brinksma� On the use of speci	cation styles
in the design of distributed systems� Theoretical Computer Science�
��������*��� October
�����

���� C� Wezeman and A� J� Judge� Z for managed objects� In J� P� Bowen and J� A� Hall� editors�
Eighth Annual Z User Workshop� pages ��
*���� Cambridge� July ����� Springer�Verlag�

���� P� J� Whysall and J� A� McDermid� An approach to object oriented speci	cation using Z�
In J� E� Nicholls� editor� Fifth Annual Z User Workshop� pages ���*���� Oxford� December
����� Springer�Verlag�

���� J� C� P� Woodcock and C� C� Morgan� Re	nement of state�based concurrent systems� In
D� Bjorner� C� A� R� Hoare� and H� Langmaack� editors� VDM ��� VDM and Z � For�
mal Methods in Software Development� LNCS ��
� pages ���*���� Kiel� FRG� April �����
Springer�Verlag�

��� P� Zave and M� Jackson� Techniques for partial speci	cation and speci	cation of switching
systems� In J� E� Nicholls� editor� Sixth Annual Z User Workshop� pages ���*���� York�
December ����� Springer�Verlag�

���� P� Zave and M� Jackson� Conjunction as composition� ACM Transactions on Software Engi�
neering and Methodology� ��������*���� October �����

