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Con�uence of Curried Term�Rewriting Systems

STEFAN KAHRSy

Department of Computer Science� University of Edinburgh�

Edinburgh EH� �JZ� United Kingdom

�Received �� July ����	

Term rewriting systems operate on �rst�order terms� Presenting such terms in curried
form is usually regarded as a trivial change of notation� However� in the absence of a
type�discipline� or in the presence of a more powerful type�discipline than simply typed
��calculus� the change is not as trivial as one might �rst think�

It is shown that currying preserves con�uence of arbitrary term rewriting systems�
The structure of the proof is similar to Toyama�s proof that con�uence is a modular
property of TRS�

�� Introduction

Currying is usually seen as an operation on types with a corresponding operation on
terms of those types� But even in the world of untyped Term Rewriting Systems �TRSs��
currying has a meaning� it allows the partial application of functions� In Functional
Programming� one can distinguish certain programming styles� e�g� in Standard ML�

datatype NAT � Z � S of NAT

fun add Z x � x

� add �S x� y � S�add x y�

fun plus�Z�x� � x

� plus�S x�y� � S�plus�x�y��

The functions add and plus are both addition operations for the datatype NAT� The
di�erence is� add is curried� plus is not� They have di�erent types and add can be applied
to a single natural number� i�e� add Z is a well�formed term �of a function type�� As long
as the programming style remains 	rst�order� currying is purely a matter of syntax� But
in the presence of functionals� the curried version has now a wider range of application�
for example�

datatype �a LIST � NIL � CONS of �a � �a LIST

fun map f NIL � NIL

� map f �CONS�x�xs�� � CONS�f x� map f xs�
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The operation map is a functional� its 	rst argument is expected to be a function� Such
a function can be obtained by providing add with only one argument� e�g� add�S�S�Z���
has the required form� and map�add�S�S�Z���� is then a function on lists� This is not
directly expressible with plus� one had to use a ��abstraction instead� for example
fn x�	plus�S�S�Z���x� is the same function as add�S�S�Z����

Since application can be expressed with a binary function symbol Apply� the curried
form of a TRS is still a TRS� Therefore� an interesting question is� to what extent is a
TRS equivalent to its curried form
 What happens to CR� SN and other properties� if
partial applications are allowed


At 	rst� one may think that the question is either meaningless or trivial� Meaningless�
because in a typed 	rst�order TRS the partial applications have function types and hence
cannot be terms� Trivial� because the absence of functionals such as map from TRSs seems
to make partial applications pointless� Both thoughts miss an important point� the type
problem has to do with the fact that the type system one usually considers for TRSs
comes from the simply typed ��calculus �Hindley and Seldin� ��
�� and one could well
consider more powerful type systems� the absence of functionals is disturbed by collapsing
rules �rules with a variable as right�hand side�� because they can act as functionals in a
curried untyped TRS� We can even observe both aspects in ML�

fun head�CONS�x�xs�� � x

The type of the function head is a polymorphic function type� the result type of which is
a bound type variable� it can be instantiated to any type� in particular to a function type�
Combining head with partial applications� we can form a term like head�CONS�S�NIL��Z
which is well�formed� well�typed� and which evaluates to S�Z�� Notice that the de	nition
of head is an ordinary term rewriting rule � in the corresponding curried TRS we indeed
have the reduction head�CONS�S�NIL��Z��S Z� An important feature of the example is
that the rule for head was collapsing � without collapsing rules� currying would indeed
be insigni	cant� see Breazu�Tannen and Gallier ���
���

We are going to prove that currying preserves con�uence for arbitrary TRSs� The tech�
nique to obtain this result is derived from Toyama�s proof that con�uence is a modular
property of TRSs� We split the proof into two parts� in section � we give an abstract
con�uence proof extracting the technique common to both proofs� and in section � we
instantiate this abstract proof with the data particular to the problem of currying� The
general idea behind the technique is that for certain properties of terms there are asso�
ciated co	nal reduction strategies�

This result 	rst appeared in my thesis �Kahrs� ������ At the time� I did not bother
to publish it separately� because the proof was rather tedious and the result appeared to
me as being too predictable to justify such complications�

I rapidly changed my mind when I came across a technical report by Kennaway� Klop�
Sleep and de Vries ������ on the same subject� In this ���� paper� the authors showed
that currying preserves a variety of rewrite properties� most notably termination and
completeness� but they also contradicted my thesis in claiming that con�uence is in gen�
eral not preserved by currying� and gave the construction of a counter�example� Besides
challenging my scienti	c integrity this incidence showed me that my preconception about
the predictability of the result was rather premature� I shall explain in section � where the
construction of the alleged counter�example goes wrong� A corrected and updated version
of their paper ������ is about to be published in the Journal of Symbolic Computation�
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�� Preliminaries

We identify total and partial functions �and relations� with their graphs and operate
on them with the usual set�theoretic operations� We write A� B for the set of functions
between A and B� and A � B for the corresponding set of partial functions� Dom f is
the domain of a partial function f � We take � for the disjoint union of sets� �A for the
powerset of the set A�

We write N for the set of natural numbers� and N� for N n f�g�
Given a set A� a relation R on A is a subset of A � A� We write xRy for �x� y� � R

and xRySz for xRy � ySz� For two relations R�S on A� the expression R�S denotes the
composition of the relations R and S� i�e� x R�S y � �z � A� xRz � zSy�
R�� is the inverse relation of R� xR��y � yRx� For the inverse of a relation called

�a �for various a� we write �a� A relation R on A is re�exive� i� 	x � A� xRx� R is
symmetric i� R � R�� and it is transitive i� R�R 
 R� We write R� for the re�exive�
R� for the transitive� and R� for the re�exive and transitive closure of R� Following
Klop ������� we write ��a for the re�exive and transitive closure of a relation called

�a� An equivalence relation is re�exive� symmetric and transitive� We write
�
�A for the

equivalence closure of a relation �A�
A relation R is antisymmetric if R � R�� 
 
�� A relation � is a partial order i� it

is re�exive� transitive and antisymmetric� A relation � on A is a total order i� it is a
partial order and if � � � � A � A� Given a partial order � on A� an antichain is a
subset A� 
 A such that 	x� y � A�� �x � y � �y � x with � � � n 
��

Given any set A� A� is the set of 	nite words over A �free monoid�� � is the empty word�
v �w denotes concatenation of the words v and w� Elements of A are also understood as
singleton words� A� is partially ordered by the pre	x ordering ��

p � q �� �w � A�� p �w � q

If p � q then p is called a pre�x of q� It is a proper pre�x� p � q� if additionally p �� q�
Two words p and q are independent� written p j q� i� neither is a pre	x of the other� i�e�
p �� q � q �� p�

Definition ���� Given an antichain M of words over A and a word v � A� we write �i�
M j v i� 	w �M� v j w� �ii� M � v i� �w �M� w � v� �iii� M � v i� �w �M� v � w�

Notice that M j v� M � v and M � v are mutually exclusive �an antichain in the set
of predicates on pairs of antichains and elements� ordered by ���� and cover all cases�

���� Abstract Reduction Systems

Definition ���� An Abstract Reduction System �short	 ARS� consists of a set A and
a sequence �i of binary relations on A� labelled by some set I� We often drop the label
if I is a singleton�

We write A j� P if the ARS A � �A��i� � � � �� i � I has the property P � Further we
write A j� P �Q i� A j� P and A j� Q�

An ARS A � �A��� has the diamond property � A j� �� i� ��� 
 ���� It has
the Church�Rosser property �is con�uent�� A j� CR� i� �A���� j� �� Given an ARS
A � �A���� we write CR�t� as shorthand for �fu j t�� ug��� j� CR�
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Under most circumstances� con�uence is a useful property of ARSs� mainly because� if
�A��� j� CR� and if two elements x� y � A are equivalent w�r�t� the smallest equivalence
containing �� then there is a z � A such that x�� z��y� Roughly� the ARS decides the
equivalence�

An ARS A � �A��a��b� commutes directly � A j� CD� i� �a��b 
 �b��a�
To prove con�uence of an ARS� it is sometimes useful to translate it into another� see

for instance Staples ������� We use here a slightly di�erent proposition�

Proposition ���� Let A � �A��A� and B � �B��B� be ARSs with B j� CR� Let
F � A� B� G � B � A be functions such that	

	x� y � A� x�A y � F �x�
�
�BF �y�

	x � A�y� � B� F �x���B y� � x��A G�y��

Then A j� CR�

Proof� If x
�
�Ay then F �x�

�
�BF �y� by the 	rst condition� We get a z � B with F �x���B

z and F �y� ��B z by the con�uence of B� Finally� we have x�� AG�z� and y�� AG�z�
by the second condition� �

Given an ARS A � �A��A�� t � A is a normal form if ��u � A� t �A u� We write
NFA for the set of normal forms of A� t has a normal form u � NFA if t��A u�

An ARS A � �A��� is strongly normalising� A j� SN� i� there is no non�empty
relation R on A satisfying the equation R � ��R� i�e� i� there are no in	nite chains of
��steps� It is weakly Church�Rosser� A j� WCR� i� ���
 ������

���� Terms and Occurrences

Definition ���� A tree domain D is a non
empty subset of N �
� satisfying the following

properties	

w � D� v � w � v � D
m�n � N�� v � n � D� m � n� v �m � D

v � D � �n � N�� v � n �� D

Given a tree domain D� last�D� is a natural number n � N � such that n � � �� D �
f�g and otherwise n � D� n � � �� D� A tree domain is �nite i� it is a �nite set� For a
�nite tree domain D� we de�ne depth�D� to be the length of the longest word in D�

The last property we required for a tree domain forces trees to be 	nitely branching�
In	nitely branching trees may be interesting for certain applications� but not in this
context� We assume the existence of a countably in	nite set V of variables�

Definition ���� A ranked alphabet � � �A��� consists of a set A and a function
� � A� N � A preterm over � is a partial function t � N �

� � A � V� where Dom t � D
is a tree domain and for any p � D with t�p� � V we have 	w� p � w � D � w � �� A
preterm t � D � A � V is called a term if it satis�es the following property	

p � D� t�p� � A� n � N � p � n � D �� n � ��t�p��

The set of preterms �or terms� over � is called Pre��� �or Ter���� respectively�� If
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D � Dom t� we say that p is an occurrence in t if p � D and write t�p for the preterm
t�p�w� � t�p �w� with domain D� � fw j p �w � Dg� If A 
 D� we write t�A to abbreviate
the set ft�p j p � Ag� If p is an occurrence in t and u is a preterm� we write t�p � u for
the preterm determined by	 t�p � u �p � u � 	q � Dom t� �p �� q � t�q� � t�p � u �q���

The idea of viewing a �pre�term as a function from a tree domain to a ranked alphabet
is fairly standard� see for instance Brainerd ������� Huet ���
��� Lloyd ���
��� and Rosen
������� The particular advantage is the simple addressing of a subterm�

Proposition ���� Let t be a preterm and p� q � Dom t with p j q�
We have t�p � a �q � b � t�q � b �p � a �

This observation motivates the following notation� If fp�� � � � � png 
 Dom t is an anti�
chain then t�p� � a�� � � � � pn � an is shorthand for t�p� � a� � � � �pn � an �

It is convenient for technical reasons to allow proper preterms� i�e� �terms� where
function symbols are used with the wrong arity� Since currying forgets the arity of a
function symbol� uncurrying naturally introduces such �terms��

For matters of presentation� we display preterms over the ranked alphabet �A��� as
words over the alphabet A � V � f�����g� in the following way� let !t denote the word
corresponding to a preterm t � D � A � V� then this has to satisfy�

!t � t��� if last�t� � �
!t � t��� � � � arg�t� n� � � if last�D� � n 	 �

arg�t� �� � ct��

arg�t� n� � arg�t� n� �� � � � dt�n if n 	 �

Notice that the commas and parentheses are necessary to distinguish di�erent pre�
terms� i�e� to make the function t �� !t injective� They would be redundant if we only
considered terms�

In the following we tacitly assume a 	xed ranked alphabet � � �A���� unless we
explicitly give di�erent ranked alphabets�

Definition ���� A prevaluation 
 is a function from variables to preterms� Given a
prevaluation 
� a presubstitution 
 is a map Pre��� � Pre��� with the properties	 let p
be an occurrence in t� then


�t��p� � t�p�� if t�p� � A

�t��p � 
�t�p��� if t�p� � V

Let Dom t � D� then the tree domain D� of the preterm 
�t� is the set D � fa � b j a �
D� t�a� � V� b � Dom
�t�a��g� A prevaluation is called a valuation if its codomain only
consists of terms� A substitution is a presubstitution that is a valuation on variables�

Definition ���� A context Chpi consists of a term C and an occurrence p � DomC�
We write C�t for C�p � t �

Definition ��	� A binary relation �R on preterms is substitutive� if t �R u �

�t� �R 
�u� for any prevaluation 
� It is called compatible� if for any context Chpi we
have	 t �R u � C�t �R C�u � If a relation is both substitutive and compatible� then it
is called a rewrite relation�
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Definition ��
� A Term Rewriting System �short	 TRS� R � ����� consists of a
ranked alphabet � and a binary relation � on terms over �� provided that	

l � r � l��� �� V
l � r � 	p � Dom r� r�p� � V � �q � Dom l� l�q� � r�p�

The relation�R denotes the smallest rewrite relation on terms over � such that���R�

In other words� we associate with a TRS R � ����� an abstract reduction system
R � �Ter�����R�� Occasionally we want to make the redex occurrence of a rewrite step

explicit� We write t
v
�R u as shorthand for� there exists a valuation 
 and a rule l � r

such that t�v � 
�l� and u � t�v � 
�r� �

�� Currying

The de	nition of currying strongly depends on the notion of signature for terms� The
signatures I have chosen ��ranked alphabets�� have the particular property of assigning
any function symbol its arity� This is not the only possible notion of signature�

Instead of the rank function� one could have a function mapping each natural number
to the set of symbols having this number as their arity� This approach seems to be
more fashionable in Universal Algebra �for example in Meinke and Tucker �������� and
within Term Rewriting it does not really make an important di�erence� In fact� it very
much corresponds to the de	nition of a TRS given above� with the only change that the
requirement � � Ter���� Ter��� is slightly weakened to �� Pre��� � Pre����

The technical di�erence is that having a family of arity�indexed sets of symbols allows
overloading� i�e� function symbols can have more than one arity� Concerning the present�
ation of terms �not preterms� as words� terms with overloading require parentheses and
commas for disambiguation� otherwise e�g� the word A B C could correspond to A�B�C�

and A�B�C��� if both A and B are accordingly overloaded� If we are interested in currying�
TRSs with overloading have very bad properties� because currying identi	es overloaded
symbols� Example�

F�x� � G�x�

G � F

F � H

G�x� � I�x�

The example is a con�uent and terminating TRS� but currying loses both properties� But
the example also shows the identi	cation of symbols� which is an undesirable side�e�ect�
Thus we stick to ranked alphabets� So far� we have used the word �currying� more or
less informally� we have not provided yet a formal de	nition� We shall consider two ways
to de	ne it formally as a map between TRSs� the 	rst one is called �currying� and the
second one �partial parameterisation�� They are strongly related� but not quite the same�

Definition ���� Let R � ����� be a TRS with � � �A���� Cu�R� is the curried

TRS of R with	 Cu�R� � �"���� " � Cu��� � �A� � fApplyg����� A� � fF� j F �
A���F � 	 �g � fF j F � A���F � � �g� The rank function �� is given by ���Apply� �
� and ���F � � � for F �� Apply� The relation � is the smallest relation satisfying
t � u � Cu�t� � Cu�u�� where Cu � Pre��� � Ter�"� is determined as follows	 Let



Currying and Con�uence 


t � D � A � V be a preterm over �� then Cu�t� is a term over " such that	

Cu�t���� � t��� if t��� � V � �t��� � A ���t���� � ��
Cu�t���� � t���� if t��� � A � last�D� � � ���t���� 	 �
Cu�t���� � Apply if last�D� 	 �
Cu�t��� � Cu�t�n� if last�D� � n 	 �
Cu�t��� � Cu�t�� if last�D� � n 	 �

where Dom t� � fw � D j n �� wg� 	p � Dom t�� t��p� � t�p�

Informally� the operation Cu is the identity on variables and constants� It maps a ��
term F�M�� � � ��Mn� with n 	 � to a "�term Apply�Cu�F�M�� � � ��Mn�����Cu�Mn���
This informal description uses the same recursive structure as the de	nition � which
explains why Cu is de	ned for preterms rather than just for terms�

In this particular de	nition of currying� I chose to label constants originating from
non�nullary symbols with � and to leave variables and other symbols unchanged� This is
not signi	cant for any of the results� it is just technically convenient within the proofs�

The given de	nition of currying resembles the idea of a di�erent programming style�
However� it has the disadvantage of �changing notation� and therefore arguing about
rewrite steps has to be done modulo the operation Cu and its inverse� An alternative
way of expressing Currying is to enrich a TRS� We call this� �partial parameterisation��

Definition ���� Let R � ����� be a TRS with � � �A���� PP�R� is the partially

parameterised TRS of R with	 PP�R� � �PP���������� where PP��� � �A�fApplyg�
A��� ����� A� is the set fFn j F � A���F � 	 n � �g� �� is de�ned as ���Apply� � �
and ���Fn� � n� The set �� consists of the following rules	

l�� r �� r is injective � l��� � Apply�
�n � N � F � A� n � last�Dom r� � l��� � Fn�� �
�r��� � Fn � r��� � F � � 	k � n� l�� � k � r�k �
l�� � r�n � 	k � n� r�k� � V

The last part of the de	nition is perhaps a bit cryptic� Informally� the rules in �� have
all the following form�

Apply�Fn�x�� � � ��xn��xn����
� Fn���x�� � � ��xn�xn��� if ��F � 	 n � �

Apply�Fn�x�� � � ��xn��xn����
� F�x�� � � ��xn�xn��� if ��F � � n� �

for arbitrary symbols F � A and distinct variables x� to xn���
Notice that PP�R� contains R as a proper subsystem� Notice also that PP��� contains

Cu��� as a subsignature� This makes it easier to reason about properties preserved by
currying� It is easy to check that the ARSs U � �U��U� and C � �C��C� associated
with the TRSs �PP������� and �PP�������� respectively� are both CR and SN�

It is easy to see that Cu�R� and PP�R� are closely related� e�g� Cu�R� can be seen as the
same as PP�R� quotiented by the congruence relation induced by ��� For the purposes of
a con�uence proof� we can instantiate proposition ��� and reduce the problem of showing
con�uence for Cu�R� to the problem of showing it for PP�R�� Notice that Cu�t� ��U t
for any term t � Ter����

Proposition ���� Let R be a TRS� Let A � �A��A� and B � �B��B� be the ARSs
associated with Cu�R� and PP�R�� respectively� Then B j� CR implies A j� CR�
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Proof� We instantiate proposition ��� by giving maps F � Ter�Cu���� � Ter�PP����
with F �x� � x and G � Ter�PP���� � Ter�Cu���� with x��C G�x�� G�x� � NFC � G is
well�de	ned since C j� CR� SN�

We have to show that F and G satisfy the two properties required in proposition ����
�i� suppose a �A b� We can assume a � D�
�Cu�l�� and b � D�
�Cu�r�� for some

valuation 
 and some context Dhpi� We have F �a� � a � D�
�Cu�l�� ��B D�
�l� �B

D�
�r� ��B D�
�Cu�r�� � b � F �b��
�ii� suppose a�B b� Since G distributes over the applications of contexts and substi�

tutions� we have either G�a� �A G�b� �if the applied rule is in R� or G�a� � G�b� �if the
applied rule is in���� Hence a��B b impliesG�a���BG�b�� For each term x � Ter�Cu����
we have G�x� � x� Now assume F �x���B y� we get x � G�F �x����A G�y���

�� A modular proof of CR

The proof that con�uence is preserved by currying follows very much the lines of
Toyama�s proof �Toyama� ��
�� Klop� Middeldorp� Toyama� and de Vrijer� ����� for
the con�uence of the disjoint union of con�uent TRSs� To make this proof more easily
re�usable� we abstract in this section from its common structure�

To some extent� this is in the spirit of Hindley�s abstract CR proof for ��calculus
and Combinatory Logic �Hindley� ������ although one could say that Hindley abstracts
di�erent aspects of the proof� I always felt that Hindley abstracted too much� making it
too di#cult to instantiate the proof for other applications � and I have not seen any
application of his proof since� On the other hand� Hindley�s abstract proof seems to have
limited use for TRSs� as it �unsurprisingly� does not address the problems implied by
non�left�linear rewrite rules� Another related paper is by Jean Gallier ������� in which he
abstracts common structure for proofs of con�uence or termination for various enriched
typed ��calculi�

Throughout this section we assume a 	xed rewrite system with ranked alphabet � and
rewrite relation �R�

Definition ���� Let P be predicate on terms� It is called subterm�closed if

	t � Ter���� 	v � Dom�t�� P �t� � P �t�v��

P is called reduction�closed if

	t� u � Ter���� P �t�� t��R u � P �u��

P is called a rewrite predicate if it is subterm
closed and reduction
closed�

Definition ���� A rewrite predicate P is called a pre�con�uence if it satis�es	

	t � Ter���� P �t� � CR�t�

At this point I should perhaps warn the reader that the technique used here has
not much in common with Girard�s reducibility candidates �Girard� Lafont� and Taylor�
��
��� In particular� I am not going to de	ne some pre�con�uence P which holds for all
terms� The proof idea is to show that �under certain conditions� �i� every term reduces
to a term satisfying P and that �ii� this reduction does not �disturb� other reductions�
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���� Induction via contexts

Definition ���� A function s � Ter��� � �N �
� is called a context selector� if s�t� 


Dom t is an antichain� A context selector is called proper if � �� s�t� for any t�

Justi	cation� since the occurrences in s�t� are independent� we can stratify t into an
n�ary context plus subterms� i�e� t � C�t�p�� � � � � t�pn for some context C�  � where
fp�� � � � � png � s�t�� This gives rise to some induction principle if s is proper�

Definition ���� Given a predicate P � we write P for the predicate

P �t�
def
�� 	v � Dom�t�� ���P �t�v�� �� v � ���

We also write bP for the function bP � Ter��� � �N �
� with bP �t� � fv � Dom t j P �t�v�g�

Lemma ���� Let P be a predicate on terms� Then for any �nite term t	

� P �t� � �P �t�


 	w � Dom t��	v � bP �t�� v j w � P �t�w���

Proof� First property�
P �t� � �	v � Dom t� �P �t�v� � v � �� � ��P �t��� � � � �� � �P �t��

Second property� 	v � bP �t�� v j w � 	v � Dom t� P �t�v� � v j w �
	v � Dom t� �	v� � Dom�t�v�� �P �t�v�v�� � v� � �� � v j w �
	v � Dom t���P �t�v� � 	v� � Dom�t�v� n f�g� P �t�v�v��� � v j w �
	v � Dom t� P �t�v� � �v j w� � �v� � Dom�t�v� n f�g� �P �t�v�v���
Taking v � w� the last formula implies P �t�w� � �v� � Dom�t�w� n f�g� �P �t�w�v����
Assume there is such a v� � Dom�t�w� with �P �t�w�v��� We obviously have �w � v�� �
Dom t� Because t�w�v� � t��w�v�� and because ��w j w � v��� specialisation of the formula
with w � v� gives us �v�� � Dom�t��w � v��� n f�g� �P �t��w � v���v����� We can repeat the
argument with w � v� � v��� generating words of arbitrary length in Dom t� But Dom t has
	nite depth � contradiction� Thus the assumption was wrong� i�e� P �t�w� holds� �

Throughout this paper� 	niteness of terms is tacitly assumed� I made the 	niteness
assumption explicit in lemma ���� because its proof makes use of this assumption and
indeed the lemma does not generalise to in	nite terms� Other proofs in this paper do not
directly depend on the assumption� but they may indirectly via lemma ����

Lemma ���� Let P be a predicate on terms� Then bP is a context selector�

Proof� Let t be a term and p� q � Dom t with p � q� We have to show� ��P �t�p� �
P �t�q��� Assume P �t�p�� We have p � p� � q for some p� �� � �because p � q� and
so p� � Dom�t�p�� By de	nition of P we have then P �t�p�p��� thus P �t�q� and also
P �t�q���� Thus �P �t�q�� �

Definition ���� A pre
con�uence P is called strong i� P � P is a pre
con�uence and
if the following property holds	

	t � Ter�����u � Ter���� P �t� � �t��R u� P �u��
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Intuitively� a pre�con�uence is some �preferably simple� property on terms which im�
plies con�uence and which is closed under reduction and taking subterms� The r!ole of
the predicate P is to serve as an induction step�

Definition ���� Let P be subterm
closed� We de�ne the ARS P � �Ter����BP � as

follows	 t BP u i� bP �t� �� 
 and if there is a function F � t� bP �t� � Ter��� such that the
following properties hold	

	p � Dom t� bP �t� j p � u�p � t�p

	p � Dom t� bP �t� � p � u�p� � t�p�

	p � bP �t�� t�p��R u�p � F �t�p� �P �F �t�p��

We say �t BP u with F� when we want to make F explicit�

Obviously� we have BP 
 ��R for any subterm�closed predicate P on terms� Without
the condition bP �t� �� 
� the relation BP would be re�exive on terms satisfying P � In the
given form� the normal forms of BP are exactly the terms satisfying P � provided P is a
strong pre�con�uence �see below�� The domain of F is t� bP �t� rather than bP �t� itself� This
makes sure that t�v � t�w implies F �t�v� � F �t�w�� for readers familiar with Toyama�s
proof� this condition has the same purpose as the � relation in Toyama ���
���

Proposition ���� Let P be subterm
closed� Then P j� SN�

Proof� Consider a sequence a� BP a� BP a� � � � � We assign to each ai the set Vi �
bP �ai�� Assume w�l�o�g� v � Vi�� �if Vi�� is empty� then ai�� � NFP�� We either have� �i�
Vi j v or �ii� Vi � v or �iii� Vi � v�

In case �i�� it is clear that ai�v � ai���v� Lemma ��� gives us P �ai�v�� thus P �ai���v��
But we have also P �ai���v� because v � Vi��� hence �P �ai���v�� Contradiction�

Case �ii�� let y � Vi with y � v� We know P �ai�y�� hence �P �ai�y� by lemma ���� By
de	nition of ai BP ai�� it follows that P �ai���y�� Because P is subterm�closed� we also
have P �ai���v�� But this means �P �ai���v�� i�e� v �� Vi��� Contradiction�

Thus only the third case applies� Because each Vi is 	nite� we can assign each ai a
natural number ni� the sum of the lengths of all v � Vi� The corresponding sequence of
numbers is strictly decreasing� �

It is interesting that it was not even necessary to require that P is reduction�closed
to obtain strong normalisation of BP � However� in some applications we need an even
stronger property of BP � it has to be �hyper�normalising�� i�e� its termination should
not be disturbed by intermediate �R steps� To obtain this property� we need further
conditions on �R and P � we shall come to that later�

Proposition ���� Let P be a strong pre
con�uence� Then CP �BP 
 ��R���R�

Proof� Let s BP t with Ft and s BP u with Fu� By de	nition of BP we have�

	v � bP �s�� Ft�s�v���R s�v��R Fu�s�v��

Because P is a strong pre�con�uence� P � P is a pre�con�uence� For any v � bP �s� we

have P �s�v� and thus CR�s�v�� i�e� 	v � bP �s���gv � Ter���� Ft�s�v���R gv��R Fu�s�v�
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We can now de	ne a term s� as follows�

	v � Dom s� bP �s� j v � s��v � s�v � t�v � u�v

	v � Dom s� bP �s� � v � s��v� � s�v� � t�v� � u�v�

	v � bP �s�� s��v � gv

By compatibility we get t��R s���R u��

Lemma ���� Let P be a strong pre
con�uence� Then	 	t � Ter���� P �t� �� t � NFP �

Proof� Let fp�� � � � � png � bP �t��
��� Assume P �t�� This implies P �t�v� for all occurrences v in t� because P is subterm�

closed� Consequently �P �t�v� by lemma ���� i�e� bP �t� � 
� violating one of the require�
ments for t to be in the domain of BP �

��� Assume �P �t�� Thus bP �t� �� 
� For any ti � t�pi� � � i � n� there is a ui with
ti��R ui and P �ui� �follows immediately from the de	nition of strong pre�con�uence��
We can simply take F �ti� � ui� �

Notice that neither the proof of lemma ��� nor the proof of proposition ��� depend
on the property that P implies con�uence� One can use the same construction to prove
other properties of rewriting systems�

Lemma ��� tells us that any term either satis	es P or is in the domain of BP � Pro�
position ��� also tells us that BP is strongly normalising� Together this means that for
every term t there is a term u which satis	es P and t��R u� This is almost but not quite
enough for a con�uence proof � theorem ��� makes this explicit�

���� A First Confluence Result

Theorem ���� Let P be a strong pre
con�uence�
If ��R�BP 
 ��R���R then �Ter�����R� j� CR�

Proof� Suppose t��Rs��Ru� If s � NFP then P �s� by lemma ���� i�e� CR�s�� Otherwise
there is an s� with s BP s�� Since BP is SN �by proposition ����� we can assume CR�s��
as induction hypothesis� The rest follows easily� see 	gure �� �

Theorem ��� has a snag� it still requires to prove the property ��R�BP 
 ��R���R

and the proofs of such properties are in general very similar to �that is� just as di#cult
as� con�uence proofs� Typically one would attempt to prove the somewhat stronger
property that �R and BP commute� which is su#cient because BP � ��R� However�
such an attempt is destined to fail as an �R step can destroy the property of a term
of being in the domain of BP � Instead we shall do the following� embed BP in another
relation IP � which still is contained in ��R� and then show that this relation �almost�
commutes with �R�

Definition ��	� Let P be subterm
closed� We de�ne two relations�i and IP on terms
as follows	

t�i u
def
�� P �t� � t��R u IP

def
� �i �BP
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Figure �� Induction step of theorem ���

The goal is now to prove that IP and ��R commute� preferably directly� For the �i

part� this is quite simple�

Lemma ���� Let P be a pre
con�uence� �Ter�����i���R� j� CD�

Proof� u��R s �i t implies P �s� by de	nition of �i� Since P is a pre�con�uence� we
have CR�s�� i�e� u��R s���R t for some s�� Because P is reduction�closed� we also have
P �u� and thus by de	nition ��� u�i s

�� �

���� A second confluence result

To eliminate the di#cult condition ��R�BP 
��R���R from the con�uence theorem
and to replace it by properties that are easier to prove �if things go well�� we need to
consider the relative position of redexes in a span of the form u�R s BP t�

If s
v
�R u� then v is either independent from all occurrences in bP �s�� or one of them

is a pre	x of v� or v is a pre	x of at least one of them� For each of these three cases we
have a lemma� see below�

Lemma ���� Let P be a rewrite predicate and let s� t� u be terms with u
v
�R s BP t for

some v � Dom s� If 	w � bP �s�� w j v then �s� � Ter���� u BP s� �R t�

Proof� We can choose s� to be t�v � u�v � Since v is independent from bP �s�� we have

u�v �R s�v � t�v� i�e� t �R s�� Since for all w � bP �s� we have u�w � s�w and

thus bP �s� 
 bP �u�� From lemma ��� we know that bP is a context selector� i�e� every

p� � bP �u� n bP �s� must be independent from bP �s�� Assume there is such a p��
Three cases� �i� If p� j v then s�p� � u�p� and lemma ��� gives us P �s�p�� and thus

�P �u�p��� Contradiction� �ii� If p� � v then P �s�p�� and s�p� �R u�p�� Because P is
reduction�closed� we conclude P �u�p��� Contradiction� �iii� If p� � v then P �s�v�� P �u�v��
because P is reduction�closed� and P �u�p��� because P is subterm�closed� Contradiction�

Therefore� the assumption was wrong and bP �s� � bP �u�� We conclude� u BP s�� �
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Lemma ���� Let P be a strong pre
con�uence and let s� t� u be terms with u
v
�R s BP t

for some v � Dom s� If �w � bP �s�� w � v then �s� � Ter���� uIP ���R s
���R t�

Proof� Because bP is a context selector �lemma ����� w is unique and v j v� for all v� �
bP �s�nfwg� We have P �s�w� and P �t�w� by de	nition of BP � We also have s�w �R u�w
by compatibility of �R� Because P is a strong pre�con�uence� P �P is a pre�con�uence�
i�e� we know CR�s�w� and there has to be a term r with t�w��R r��Ru�w� Because P is
reduction�closed� we also have P �r�� P �P is also reduction�closed� i�e� P �u�w��P�u�w��

Consider U � bP �u�� We obviously have bP �s� n fwg 
 U � There are three cases� �i�

U � � bP �s� n fwg� � fpg for some p � w and �ii�� U � bP �s� n fwg� In case �ii�� we know
P �u�w� from lemma ���� We further split case �ii�� into �ii� U �� 
 and �iii� U � 
�

Case �i�� we have u BP u� for some u�� For all q � bP �s�nfwg there are common reducts
cq of t�q and u��q by the pre�con�uence property of P � P � Similarly� we have P �u�p�
and thus a common reduct r� of u��p and u�p�p� � r � where w � p � p�� From this� we
conclude u BP u���R s� � u��p� � cp� � � � � � pn � cpn � p � r� and t��R s��

Case�ii�� since U �� 
 we have �P �u� and by lemma ��� there is a u� with u BP u�� We
also have U j w� hence u�w � u��w� By compatibility we get u���Ru

��w � r � Eventually�
we make the same construction as in case �i�� de	ning s� � u��p� � cp� � � � � � pn � cpn � w �
r with U � fp�� � � � � png�

Case �iii�� if U � 
 then bP �s� � fwg and t � s�w � t� for some term t�� As v � w �w�

for some w�� we also have u � s�v � u� � s�w � �s�v��w� � u�  for some u�� Let
u�� � �s�v��w� � u� � We have now t�w � r � s�w � t� �w � r � s�w � r � s�w �
u�� �w � r � s�w � r � We know t��R t�w � r and u��R u�w � r by compatibility�

From U � bP �u� � 
 we also know P �u�� Thus u �i u�w � r and we have u IP u�w �
r ��R u�w � r � t�w � r ��R t� �

For the remaining case� i�e� when the redex occurrence v of s
v
�R u is a proper pre	x

of at least one of the occurrences in bP �s�� we cannot establish such a general result� For
this� we need that BP does not �destroy� outermost redexes�

Definition ��
� Let P be a rewrite predicate� We call P redex�compatible� i� for all
valuations 
 and all rules t� r or l � t we have	

	w � bP �
�t��� w � � �w �� Dom t � t�w� � V

The important property of redex�compatibility is that rewrite rules do not �overlap�
with BP except at the root� Rewrite systems which only overlap at the root are called
�overlay systems�� Gramlich ������ shows that a locally con�uent �WCR� overlay system
is complete �CR�SN� i� it is innermost normalisable� The technique used here is related�
as BP can be seen as an innermost strategy to eliminate subterms that do not satisfy
P � similarly� the purpose of many of the little lemmas in this section is to establish a
WCR�like property for the combination of �R and BP �

Lemma ��	� Let P be a strong pre
con�uence and redex
compatible� Let 
�l� � s BP t

with bP �s� �� f�g and let there be a rule l � r� Then there is a substitution � with t � � �l�
and 
�x���R � �x� for all x in fl�v� j v � Dom l � l�v� � Vg�
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Proof� Let s BP t with F � We de	ne � as follows�

� �l�v�� � s�v�w� � F �s�v �w��� � � � � wn � F �s�v �wn� if v � Dom l � l�v� � V

where fw�� � � � � wng � fw j v �w � bP �s�g�
We have to show that � is well�de	ned� i�e� if l�v� � l�v�� � V� then � �l�v�� � � �l�v����

It is clear from the de	nition of BP that t � � �l� if � is well�de	ned �induction on
occurrences of l� and that 
 pointwise rewrites to � �

If l�v� � l�v�� � V then s�v � s�v� because 
�l� � s� Since fw�� � � � � wng � bP �s�v�� it
is the same for v and v�� SimilarlyF �s�v �wi� � F �s�v� �wi�� because s�v �wi � s�v� �wi��

Lemma ��
� Let P be a strong pre
con�uence and redex
compatible� and let s� t� u be
terms with u

v
�R s BP t for some v � Dom s� If �z � bP �s�� z � v then �s� �

Ter���� u IP ���Rs
���R t�

Proof� We can show that u�v
�
�R s�v BP t�v� because the premise of the lemma

ensures �P �s�v� and �P �s�v�� From lemma ��� we know that t�v � � �l� and s�v � 
�l�
and u�v � 
�r� for some valuation � and some rule l� r� Thus we have t�R t� � t�v �
��r� � We also have u��R t��

If u � NFP then P �u� by lemma ��� and thus u�i t
� and u IP t� � s��

Otherwise there is a u� with u BP u�� The terms u� and t� can only di�er at occurrences
bP �u�� �and �underneath��� Consider w � bP �u��

Case �i� w j v� We have �P �P ��s�w� and the pre�con�uence property gives us common
reducts cw for u��w and t��w � t�w�

Case �ii� w � v and w �w� � v� We have P �u�w� and u�w��Ru
��w� From u�v��R ��r�

we get u�w��R u�w�w� � � �r� � t�w�w� � � �r� � t��w� Because CR�u�w� we have a
common reduct cw of u��w and t��w�

Case �iii� w � v� We have P �u�w� and because P is subterm�closed ��P � P ��u�v��
Since u�v � 
�r� and because P is redex�compatible there has to be a variable occurrence
x � Dom r with �P �u�v �x� and v �x � w� assume v �x �w� � w� Notice u�v �x � 
�r�x���
There has to a variable occurrence x� � Dom l with l�x�� � r�x�� because all variables of
the right�hand side of a rewrite rule occur on the left as well� Then we have u�v � x �


�r�x�� � 
�l�x��� � s�v � x� and we know �P �s�v � x��� Hence v � x� �w� � bP �s�� From
s�v �x� � u�v �x we get u�w � s�v �x� �w� and thus u�w��Ru

��w and u�w��R t�v �x
� �w� �

��l��x� �w� � � �l�x����w� � � �r�x���w� � � �r��x �w� � t��v � x �w� � t��w� By CR�u�w�
we have again a common reduct cw of u��w and t��w� �

Lemma ���� Let P be a strong pre
con�uence and redex
compatible� Let t �R s BP u�
Then there is an s� such that t IP ���Rs

���R u�

Proof� Lemmas ���� ��� and ��
 cover all cases of redex positions v in s
v
�R t��

Definition ���� Given an ordinal �� an �
weight �or just weight� suppressing the upper
bound ordinal� is a function from Ter��� to f
 j 
 � �g�

The purpose of weight functions is to provide an induction principle� For that matter�
it is nice if they have the following property�

Definition ����� A weight s is called stable if t�R u implies s�t� � s�u��
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Each proper context selector gives rise to a weight function� the maximal nesting depth
�the �rank�� of context layers� Toyama�s proof for the con�uence of the disjoint union of
two con�uent TRS is based on a context selector which always picks the next symbol of
the other system� The rank function of this context selector is stable�

Definition ����� Let s be a weight and let P be subterm
closed� We say that s is in�

nermost reduced by P i� t BP u implies s�t� 	 s�u��

Proposition ���� Let P be subterm
closed� let s be a stable weight that is innermost
reduced by P � Then �Ter������R�BP ���R� j� SN�

Proof� Trivial� �

Theorem ���� Let P be a strong pre
con�uence and redex
compatible�
Let �Ter������R�BP ���R� j� SN� Then �Ter������R� j� CR�

Proof� We have to show that for any term s with t��Rs��Ruwe have t��R���Ru� Proof
by induction on��R�BP ���R� i�e� we assume CR�s�� for any s� with s��R�BP ���Rs

�� We
extend this to ��R�IP ���R� because anything in domain or codomain of �i satis	es P
and because P is reduction�closed and implies con�uence� The base case �normal forms�
is given by lemma ��� and the pre�con�uence property of P �

We 	rst prove the following auxiliary lemma� in which we use the induction hypothesis
of the theorem� notice that the metavariable s occurs free in the lemma� i�e� it comes
from the proof of theorem ����

Lemma ����� For all s� with s��R s� we have


�t
�
� u

�
� Ter�	�� t� ��R s

�
IP u

�
� t

�
��R
��Ru

�

Proof� The case s� �i u� is trivial �lemma ����� Proof by induction on the
number n of�R steps in s���Rt

�� Base case �n 
 �� is trivial� because BP � ��R�
Otherwise we have s� �R s�� ��R t��
We either have s�� BP x which implies s���R
BP ��Rx and allows us to apply
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the induction hypothesis of theorem ��� to x� as indicated in �gure �
 or s�� �i x
which implies P �x� and hence CR�x� by the pre�con�uence property of P �

End of proof of lemma ������

Since s��R s� lemma ���� is applicable to s� We can use exactly the same argument
as in the proof of theorem ���� see 	gure ��
End of proof of theorem ��� �

Corollary ���� Let P be a strong and redex
compatible pre
con�uence� Let s be a stable
weight which is innermost reduced by P � Then �Ter�����R� j� CR�

Proof� Follows immediately from theorem ��� and proposition �����

�� Instantiating the abstract proof

To exploit theorem ��� �or its corollary ���� for our problem that currying preserves
con�uence of TRSs� we have to 	nd a predicate on terms that satis	es all the nice prop�
erties that make it a strong pre�con�uence� etc� Therefore� this section consists mainly
of �a few de	nitions and� a string of lemmas establishing these properties�

We set out to prove that the rewrite relation of the partial parameterised TRS PP�R� is
con�uent� provided �R is con�uent � a property which we will assume throughout this
section� We will write �R� for �PP �R� and �� for PP���� We interpret the de	nitions
of section � using the rewrite relation �R� and the signature ��� e�g� �reduction�closed�
means �reduction�closed w�r�t� �R���

Recall the uncurrying system U � i�e� the ARS associated with the subsystem of PP�R�
containing only the rules l�� r with l��� � Apply�

Definition ���� We de�ne a predicate Noapp on terms as follows	

Noapp�t�
def
�� 	u � Ter����� t��R� u� u � NFU

The partial parameterised system PP�R� can behave like Cu�R� using the uncurrying
rules� If these rules are not applicable for a term then reduction exclusively operates
with the original rewrite system R �which is con�uent� and all remaining occurrences
of Apply are idle� To prove con�uence� we have to show that the strategy of making all
Apply occurrences idle succeeds and is co	nal in the reduction graph of a term�

Lemma ���� Noapp is a pre
con�uence�

Proof� Noapp is subterm�closed� if t�v ��R� u� �� NFU for some v � Dom t then by
compatibility t��R� t�v � u� �� NFU �

Noapp is reduction�closed� if t��R� u and u��R� u� �� NFU then t��R� u� �� NFU �
Noapp implies con�uence� if Noapp�s� and t��R� s��R�u then t��Rs��Ru by de	nition

of Noapp� We have assumed that �R is con�uent on Ter���� it remains con�uent on
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Ter����� because signature extensions preserve con�uencey � Hence t��R���Ru and so
t��R� ���R�u��

Lemma ���� Let t be a term with Noapp�t�i� for all i with � � i � last�Dom t� and
t��� �� Apply� Then Noapp�t��

Proof� No rule has an occurrence of Apply on the right�hand side� Thus any potential
���redex must originate from an occurrence v � Dom t with t�v� � Apply� But we
assumed Noapp�t�v� for v �� � and t�v� �� Apply for v � ���

Notice that lemma ��� does not generalise to Higher�Order Rewrite Systems �Nipkow�
������ For instance� �x�Apply�x�y� is in normal form� but by context application and
rewriting in the context we may instantiate x to something that �activates� the Apply

symbol�

Corollary ���� Let Noapp�t�� Then t��� � Apply�

Proof� Immediate consequence of lemma �����

Lemma ��� and its corollary may look rather simple� but their r!ole in the entire proof
is essential� if we apply one of the Apply rules to a term satisfying Noapp then the reduct
must satisfy Noapp� because all its proper subterms are proper subterms of the redex
�and therefore satisfy Noapp� and its root symbol is not Apply� so the lemma applies�

Definition ���� We de�ne a relation
�
� on terms as follows	

t
�
� u

def
�� �v � Dom t� t

v
�R� u � v �� �

Lemma ���� Let Noapp�s� and t
�
�� s

�
�� u� Then �s�� t

�
�� s�

�
�� u�

Proof� For all i with � � i � last�Dom t� we have� s�i ��R� t�i and s�i ��R� u�i�
Since Noapp�s�i� and Noapp is a pre�con�uence �lemma ����� we have terms s�i with
t�i��R� s�i��R� u�i and can construct s� as s���� � t��� � u��� � s��� and s��i � s�i��

Within this section we also abbreviate
�
�R� as

�
��

Lemma ���� Let Noapp�t� and t
�
� u� Then Noapp�u��

Proof� By corollary ��� we have t��� � Apply� Because t
�
� u� the applied rule l � r

also has l��� � Apply� i�e� we have l�� r� From this we know that all proper subterms of
u � 
�r� are proper subterms of t � 
�l�� i�e� Noapp�u�v� for all v � Domu n f�g� Since
u��� � r��� �� Apply we can apply lemma ��� and conclude Noapp�u���

Lemma ���� Let Noapp�t� and t
�
� u� Then Noapp�u��

y This is a special case of Toyama�s theorem and a rather trivial property for TRSs� But see Plump
�
���� and van Oostrom and van Raamsdonk �
���� for other rewrite formalisms for which this is not
true�
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Proof� From corollary ��� we have t��� � Apply� Since t
�
� u� we have u��� � Apply and

t�i��
R� u�i with Noapp�u�i� for i � f�� �g as Noapp is reduction�closed� From Noapp�t�

we know �Noapp�t� �lemma ����� i�e� there exist terms t�� t�� with t��R� t� �U t��� From

lemma ��� we also know t
�
�� t�� as otherwise Noapp�t�� and t� � NFU � From lemma ���

and the premise we 	nd then a u� with t�
�
�� u�

�
�� u� From t

�
�� t� we know t���� � Apply

and �for i � f�� �g� t�i��R� t��i and Noapp�t��i�� because Noapp is reduction�closed�
Since t� �U t�� and all proper subterms of t� are in NFU � we must have t���� � Fk for

some symbol Fk � A� �see de	nition ����� From t�
�
�� u� we know t�����R� u���� Since

Fk �� l��� for any rule l � r or l �� r� we also have t���
�
�� u���� Thus u� has the form

Apply�Fk�b�� � � ��bk��bk��� which is not in NFU ��

The last two lemmas show that Noapp �Noapp is reduction�closed� which should not
be too surprising� They also show something stronger� e�g�� if t��R� u and both t and
u satisfy Noapp� then t

�
�� u� This means� it is not possible to destroy an �innermost�

Apply�redex by inner reduction�

Lemma ���� Let Noapp�s� and t
�
�� s

�
� u� Then there is an s� such that t

�
� s�

�
�� u�

Proof� Corollary ��� gives us s��� � Apply and Noapp�s�i�� i � f�� �g� Since s
�
� u

we have s��� � Fk for some Fk � A�� From s
�
�� t we have s�� ��R� t�� and since

s��� � Fk �� l��� for any left�hand side l of a rule� we also have s��
�
�� t��� thus t has the

form Apply�Fk�t�� ��� � � ��t�� �k��t���� Let G � u��� �either G � Fk�� or G � F �� then

t
�
� s� � G�t�� � �� � � ��t�� � k�t���� Similarly we have u � G�s�� � �� � � ��s�� � k�s����

From s��
�
�� t�� and s

�
�� t we conclude u

�
�� s���

Lemma ��	� Let Noapp�t� and t
�
� u and t

�
� u�� Then u � u��

Proof� From corollary ��� we know t��� � Apply� Hence we have applied rules from
��� Since the left�hand sides of di�erent �� rules are not uni	able� we have applied the
same rule� �

Lemma ��
� Let Noapp�t�� There is a term u with t
�
���

�
� u and Noapp�u��

Proof� From Noapp�t� we know that there exists a t� with t��R� t� �U t��� From lemma

��� we know t
�
�� t� and from lemma ��� Noapp�t��� Thus all proper subterms of t� are in

NFU and we must have t�
�
� t��� By lemma ��� Noapp�t��� and we can choose u � t����

Lemma ���� Let Noapp�s�� Then CR�s��

Proof� Suppose t��R� s��R� u� Because of lemmas ��� and ��
 it is su#cient to consider
the case t��R� �

�
��

�
�� s

�
���

�
����R�u �otherwise s

�
�� t �or u� and we can extend the

span by lemma ��
 to s
�
�� t

�
���

�
� t� and reduce it to the mentioned case�� See Figure ��

The argument for each of the single rectangles is given as follows� �i� is lemma ����
�ii� follows from lemmas ��� and ���� �iii� follows from lemmas ��� and ���� Finally� �iv�
follows from lemmas ���� ��� and the pre�con�uence property of Noapp� i�e� lemma �����

Lemma ����� Noapp is a strong pre
con�uence�
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Figure �� Main case of lemma ��	

Proof� Noapp is a pre�con�uence �lemma ���� and since
�
� �

�
� � �R� � we have that

Noapp�Noapp is reduction�closed from lemmas ��� and ���� It is subterm�closed� because
P�P is subterm�closed for any subterm�closed P � That Noapp�Noapp implies con�uence
has been shown in lemmas ��� and ���� Lemma ��
 gives us the last required property��

Lemma ����� Noapp is redex
compatible�

Proof� Suppose t is left�hand or right�hand side of a rule in PP�R�� Let 
 be a valuation�

Consider an arbitrary w ��Noapp�
�t��� From de	nition of bP we know Noapp�t�w�� But
then we have by corollary ��� 
�t��w� � Apply� Since Apply only occurs as outermost
symbol of rules �in left�hand sides of ��� it can only be an occurrence in t if either w � �
or if t�w� � V and 
�t�w����� � Apply��
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Definition ���� Let t be a term and v � Dom t� We write jtjv for cardfw j w �
v� t�w� � Applyg� We de�ne j � j � Ter���� �N as follows	

jtj
def
� maxfjtjw j w ��Noapp�t�g

In the above de	nition� card is the function assigning a set its cardinality� Thus j � j
assigns a term the maximal number of occurrences of Apply which pre	x its subterms
satisfying Noapp�

It is worth noticing that the above construction �and the forthcoming lemmas� can be
made subject to further generalisations� For instance� one can think of the above jtj as
a modi	cation of a simpler weight function� which only requires w � Dom t rather than

w ��Noapp�t�� It it not di#cult to see that such a modi	cation preserves in general the
stability of a weight� provided the modifying predicate is subterm�closed�

Lemma ����� Let l � r or l �� r be a rule and 
 a valuation� Then j
�l�j � j
�r�j�

Proof� For all rules l � r we have j
�l�j � maxfj
�l�x��j j x � Dom l� l�x� � Vg�
analogously for r� Since all variables occurring in r also occur in l� the result follows�

Let l �� r� Clearly �Noapp�
�l��� If Noapp�
�l�� then Noapp�
�r�� by lemma ���� and
j
�l�j � � 	 � � j
�r�j� Otherwise j
�l�j � j
�r�j� �� because 
�l���� � l��� � Apply and

� is in the pre	x of any v ��Noapp�
�l����

Lemma ����� j � j is a stable �
weight�

Proof� Suppose t
v
�R� u� We know from lemma ���� that jt�vj � ju�vj� If Noapp�t�v�

then Noapp�u�v� and jtj � juj� Otherwise v is a pre	x of an occurrence w ��Noapp�t��

We have jtj � maxfjtjw j w ��Noapp�t�g � max�fjtjv � jt�vjg � fjtjw j w ��Noapp�t�� w j

vg� � max�fjujv � jt�vjg � fjujw j w ��Noapp�u�� w j vg� � max�fjujv � ju�vjg � fjujw j

w ��Noapp�u�� w j vg� � juj�

Lemma ����� j � j is innermost reduced by Noapp�

Proof� Suppose t BNoapp u� From corollary ��� we know t�v� � Apply for all v �

�Noapp�t�� Moreover� it is easy to check that jt�vj � � and ju�vj � �� Thus jtj � maxfjtjv j

v ��Noapp�t�g � maxfjtjv� � � j v ��Noapp�t�� v� � vg 	 maxfjtjv� j v ��Noapp�t�� v� �

vg � maxfjujv� j v ��Noapp�t�� v� � vg � maxfjujv j v ��Noapp�u�g � juj��

We have now instantiated all preconditions we need to be able to apply theorem ���
or its corollary ����

Theorem ���� Let �Ter�����R� j� CR� Then �Ter������R�� j� CR�

Proof� Follows directly from corollary ��� and lemmas ����� ����� ���� and ������

Theorem ���� Let R be a con�uent TRS� Then Cu�R� is con�uent�

Proof� Follows directly from theorem ��� and proposition �����
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�� Related work

Breazu�Tannen and Gallier ���
�� show how several properties �including CR� are
preserved by currying� provided the TRS in question is non�collapsing� Kennaway� Klop�
Sleep� and de Vries ������ go a step further� they show that currying preserves SN and
SN �CR for arbitrary TRSs�

However� the latter paper also shows that currying does in general not preserve con�
�uence � clearly the opposite of what is stated in theorem ���� They even construct a
counter�example� an in	nitary TRS which is CR� but for which the curried system does
not even satisfy the UN� property �uniqueness of normal forms�� �Allegedly� I hasten
to add� because the proof of lemma ��� in their paper has a major �unrepairable� �aw� I
brie�y repeat their construction here to show what went wrong� Apart from underlining
the correctness of the proof for theorem ���� this may give some useful insights into the
nature of currying�

The disjoint union of applicative TRSs is known not to preserve con�uence� Applicative
TRSs have a binary symbol Apply �shared among all ATRSs� and all other symbols have
arity �� The symbol Apply is notationally suppressed using the conventions of ��calculus
and Combinatory Logic �Hindley and Seldin� ��
��� Consider the following ATRS M �

M x x � 


M �Succ x� x � �

M is a con�uent ATRS� because �as a TRS� it has no critical pairs and it is terminating�
If we combine it with the rewrite system of Combinatory Logic �which is con�uent in
itself�� we lose con�uence� The ATRS of combinatory logic is the following system CL�

I x � x

K x y � x

S x y z � �x z� �y z�

Within CL� one can express a 	xpoint combinator� i�e� a term Y that has the property
Y x�� x �Y x�� In the combined system� we can rewrite the term M �Y Succ� �Y Succ�

to the normal form 
 but also to the normal form ��
Apart from the �implicit� symbol Apply� M and CL do not share any symbols� M is

in the image of Cu� but CL is not� because of the rule for the S combinator� The paper
de	nes a TRS CLfun whose image under Cu is very similar to CL� This system has an
in	nite signature and in	nitely many rules of the following forms�

In����k�x�� � � � � xk�� y�� � � � � yn� � �k�n�x�� � � � � xk� y�� � � � � yn�
Kn����k�x�� � � � � xk�� z� y�� � � � � yn� � �k�n�x�� � � � � xk� y�� � � � � yn�
Sn����k�x�� � � � � xk�� 
m�v�� � � � � vm�� z� y�� � � � � yn� �

�k�n���x�� � � � � xk� z� 
m���v�� � � � � vm� z�� y�� � � � � yn�

The metavariables � and 
 range over fS� K� Ig and some in	nite set of other symbols
which are in one�to�one correspondence to the set of variables V� The system CLfun

performs partial application explicitly for all symbols in its signature� CLfun can be
shown to be con�uent� The alleged counter�example is then constructed by disjointely
adding an uncurried version of M and CLfun �which is con�uent by Toyama�s theorem�
and then currying the result� This result appears to be more or less the same as M �CL�
which is not con�uent�

But this does not work� The giveaway was the remark that CLfun �performs par�
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tial application for all symbols in its signature�� This excludes the signature of M � in
particular it excludes partial parameterisation of Succ� For instance� the signature of
M � Cu�CLfun� allows the term �I� Succ x� which is in normal form� while the cor�
responding term �I Succ x� in M � CL rewrites to �Succ x�� Another clue why this
construction cannot work is the syntactic shape of M and CLfun� neither the uncurried
version of M nor CLfun has any collapsing rules � but in the absence of collapsing
rules there are much simpler proofs for the preservation of con�uence by currying� One
could argue that there are simply collapsing rules missing for K� and I�� but instead of
using Combinatory Logic� it would have been su#cient for the argument in the �counter�
example� to start from the �con�uent� ATRS

Y x � x �Y x�

and construct analogously to CLfun a TRS Yfun which is clearly non�collapsing anyway�
The mentioned paper used this �proof� not only for the wrong result about the non�

preservation of con�uence� but also to claim the non�preservation of NF� UN� and UN��
i�e� these claims become invalid as well� In their updated version� Kennaway et�al� ������
show that NF and UN� are indeed not preserved by giving proper counter�examples� on
the other hand� they show that currying does preserve UN by reducing the problem to
the preservation of con�uence� Interestingly� all properties that have been investigated so
far are preserved by currying if and only if they are preserved by signature extensions�

�� Conclusion

We have shown �theorem ���� that currying preserves con�uence for arbitrary TRSs�
The method we used should carry over to other con�uence proofs for TRSs � we stated
a con�uence theorem ����� independent from the particular systems we were interested
in� Toyama�s proof ���
�� is expressible as an application of this abstract theorem�

A remaining open problem is whether currying preserves con�uence of HRSs �Nipkow�
����� van Oostrom and van Raamsdonk� ������ since at least the very useful lemma
��� does not hold in this generalised setting� Similar problems exist with the method
employed by Kennaway et�al� ������ to prove the preservation of SN� One may think
that HRSs support currying anyway� but this is only true for the simply�typed variety�
It is possible to express �polymorphic� currying uniformly in HRS by adding a rule

Apply��x�t x� u�� t u

but this is nothing else but 
�reduction of untyped ��calculus� which �even if disjointly
added� can destroy con�uence of an HRS and does destroy its termination� Thus� general
positive results for currying of HRSs have to rely on a non�uniform method of currying�
in the style of explicit partial parameterisation�
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