
Hill, Steve and Thompson, Simon (1995) Miranda in Isabelle. In: Paulson,
Lawrence C., ed. Preceedings of the first Isabelle Users Workshop. University
Of Cambridge Computer Laboratory Technical Reports Series (397). pp.
122-135.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21247/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21247/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Miranda in Isabelle

Steve Hill & Simon Thompson
Computing Laboratory

University of Kent at Canterbury
fS�A�Hill�S�J�Thompsong�ukc�ac�uk

July 26, 1995

Abstract

This paper describes our experience in formalising arguments about the Miranda functional
programming language in Isabelle. After explaining some of the problems of reasoning about
Miranda, we explain our two different approaches to encoding Miranda in Isabelle. We conclude
by discussing some shorter examples and a case study of reasoning about hardware.

Miranda1[Turner, 1990, Thompson, 1995b] is a modern functional programming language, al-
lowing type polymorphism and higher-order functions in a similar way to ML[Milner et al., 1990].
It differs from ML in being lazy — arguments to functions are only evaluated when and to the extent
that they are needed — and in being side-effect free. It has long been an article of faith in the func-
tional programming community that languages like this are ideal candidates for program verification
because of their ‘declarative’ nature. This is clearly true for idealised languages, but real languages
like Miranda bring their own complexities which we have discussed in the past[Thompson, 1989,
Thompson, 1995a].

In this paper we discuss our approaches to formalising proof about Miranda in Isabelle, specifically
Isabelle92, after a brief description of the language and how it is given a logical description.

1 Miranda

In this section we give a short survey of the main features of Miranda, and how we translate the
definitions into logical statements. Full details of a translation can be found in [Thompson, 1989,
Thompson, 1995a].

Equations

The simplest definitions in Miranda resemble equations. In defining a constant function we say
con �� � �� num ���

con x 	 �

where the � is a type variable in the type of the function, indicating that the function can be given an
argument of any type, and 	 is used to give a definition. If we write� for logical equality, then con e

� �
 for any expression e, including an expression whose value is undefined. We therefore translate
the definition ��� by the equation

con x � �

1Miranda is a trademark of Research Software Limited

Sequencing

In general Miranda definitions are more complex than the equation we have just seen. The definitions
are written in sequence, and this ordering is significant.

We distinguish between different cases using guards, giving an equation multiple clauses on the
right hand side. For instance in comparing two numeric lists element by element we might say

compare �� �num� �� �num� �� �num�

compare �a�x� �b�y� 	 a � compare x y
 if a �	 b ���

	 b � compare x y
 if True

The second right hand side does not hold in all circumstances, despite having the guard True; the
clause applies only if the first guard is False. In general a clause applies only if all the preceding
guards are False. Logically we have

��a�	b��True � compare �a�x� �b�y� � a � compare x y� �

��a�	b��False � compare �a�x� �b�y� � b � compare x y�

A definition may well consist of more than one equation; ��� only applies when the two list arguments
to compare are non-nil. We complete the definition by giving the result in case either list is empty:

compare x y 	 �� ���

This equation will only apply if the preceding equations fail to apply; in terms of patterns, it only
applies to the complement of the preceding patterns. In this case, we have

compare �� y � �� �

compare �a�x� �� � ��

When combined with complex guards and repeated variables in expressions, the translation of defini-
tions can become complex; we give a complete treatment in [Thompson, 1995a].

Local definitions

Each equation can carry with it a collection of local definitions, whose scope is restricted to the right
hand side of the equation. For example, to substitute at the front of a list we can write

frontSubst �� ��� �� ��� �� ��� �� � ���
 bool �

so that
frontSubst �cat� �dog� �catalyst� 	 ��dogalyst�
True�

frontSubst �bat� �dog� �catalyst� 	 ��catalyst�
False�

The first element of the result is got by substituting the second argument (�dog�) for the first argument
(�cat�) when it occurs at the front of the third (�catalyst�); the second component of the result is a
flag signalling whether the substitution has been successful. The definition of the function follows:

frontSubst �� rep st 	 � rep��st
 True �

frontSubst �a�x� rep �� 	 � ��
 False �

frontSubst �a�x� rep �b�y�

	 � b�y
 False �
 if a ˜	 b �� ˜ok
	 � out
 True �
 otherwise

where

�out
ok� 	 frontSubst x rep y

The local definition of �out
ok� is used to make a recursive call to frontSubst and to select its
components.

In translating the final equation, we introduce the locally defined objects by means of an existential
quantifier and so translate it thus:

��a
x
rep
b
y����out
ok��

�out
ok� � frontSubst x rep y �

� �a ˜	 b �� ˜ok� � True �

frontSubst �a�x� rep �b�y� � � b�y
 False � �

�a ˜	 b �� ˜ok� � False �

frontSubst �a�x� rep �b�y� � � out
 True � �

The order of the quantifiers in the logical translation shows that out and ok depend on the parameters
of the function a, x, rep, mi b and y as would be expected.

When local definitions combine with the sequential features above, translation becomes compli-
cated; see [Thompson, 1995a] for further details.

Types

Miranda types include characters, booleans, numbers (integers and floats combined into a single type)
and algebraic types. Because Miranda is a lazy language, the structured types (like lists) contain
partial elements such as ��
�
�� and ‘infinite’ objects defined as follows:

ones 	 � � ones

primes 	 sieve �����

where

sieve �a�x� 	 a � sieve � b � b��x � b mod a � � �

and we therefore have to be careful in stating the exact rules for induction over algebraic types. Details
of the various approaches can be found in [Paulson, 1987].

2 Miranda in Isabelle

We have given a translation of Miranda into Isabelle92, and in this section we comment on how the
translation uses some of the features of the system.

� The Miranda logic is defined to be an extension of first-order logic; Miranda functions are
taken to be Isabelle functions. This has some advantages: type checking and other facilities are
inherited from Isabelle, but also drawbacks which we come to presently.

� Miranda is a polymorphic language. We have an Isabelle class mirawhich is defined to represent
the class of Miranda types. We are also assisted by being able to declare types as belonging to
a default class, in this case the class mira.

� Miranda also contains some built-in overloaded operations, in particular the boolean operations
of equality, ordering and so on as well as the printing functions. The classes are again useful
here; for example we define 	�	 for the Miranda equality operation in Isabelle, since 	 is used
for identity, which we have denoted by � thus far in the paper. We also use overloading to
define a predicate def, for the fully-defined elements of each type.

� The syntax of Miranda differs from that of Isabelle. Function application is denoted by
juxtaposition, with function application binding most tightly among the operations. We use the
mixfix facility to give expressions the same appearance that they have in Miranda. For instance,
in translating the frontSubst function we declare
frontSubst �� ���a list
�a list
�a list� 	� ��a list � bool��

��frontSubst _ _ _� ����
���
���� ����

frontSubst �� ���a list
�a list
�a list� 	� ��a list � bool��

��frontSubst _ _ _� ����
���
���� ����

fs� �frontSubst �� rep st 	 � rep��st
 true ��

fs� �frontSubst �a�x� rep �� 	 � ��
 false ��

fsBlock

�EX out ok �� �out
ok� 	 frontSubst x rep y

� � not �a 	�	 b� \\/ not ok 	 true

��� frontSubst �a�x� rep �b�y� 	 � b�y
 false � � �
�

� � not �a 	�	 b� \\/ not ok 	 false

��� frontSubst �a�x� rep �b�y� 	 � out
 true � �

� � not �a 	�	 b� \\/ not ok 	 _�_
��� frontSubst �a�x� rep �b�y� 	 _�_ ���

Figure 1: Translation of the function frontSubst

The full translation of the frontSubst function appears in Figure 1.
Note from figure 1 that some minor syntactic changes have to be made. We use the prefix type

constructor list rather than the Miranda square brackets, and we have to use true and false for
the Boolean constants since their capitalised counterparts are used for the valid and contradictory
propositions.

What are the drawbacks of this approach? Principally, we are unable to reflect the fact that
Miranda functions are curried, so that a function of two (or more) arguments like

mult �� num �� num �� num

mult a b 	 a�b

can legitimately be given a single argument, returning a function:
mult �
 �� num �� num

To model these partial applications in Isabelle, we need to write a lambda term
� b� mult �
 b

which is rather more unwieldy than the original.

A Second Approach

In this section we explore a second approach to coding Miranda in Isabelle.

The Basic Theory

For the final case-study, an alternative approach was adopted addressing the concerns regarding
curried functions. Again, the theory is based on the theory of first-order logic provided as a standard
component of the Isabelle system. In a departure from the previous study, a new type constructor and
constant app are introduced to support the Miranda function space.

types

���� � �infixr ���

arities

���� �� �mira
mira�mira

consts

app �� ����a �� �b�
�a� 	� �b� ��� �� ����
���� ����

This facilitates reasoning about higher-order Miranda terms. For example the rule for extensional
equality might be couched as:

ALL x� f x 	 g x 		� f 	 g

However, one drawback (with Isabelle92) is that the parser is not able in all circumstances to parse
function applications correctly. In particular, if a function is applied to an expression in parentheses,
the parse will fail. To circumvent this problem, an explicit infix application operator, denoted � is
provided and must be inserted in all places where the problem would arise. A parse-translator converts
these to the standard application operator, so they never appear in printed terms.

For convenience, each built-in Miranda operator is described via two Isabelle constants. For
example, for function composition we have:

��� �� ����a���b�
��c���a�� 	� �c���b� �infixl ���

Dot�op �� ���a���b� �� ��c���a� �� ��c���b�� ���������

The former allows expressions to be written in the familiar Miranda syntax, whereas the second can
be used if it is ever necessary to reason with a curried operator. Two rules are given: the first defines
the operator, and the second relates the two constants:

comp ��f � g� x 	 f � �g x��

Dot�op ���� f g 	 f � g�

The core theory is extended to provide support for the fundamental Miranda datatypes. With each
new type we introduce:

� a type constructor,

� constants representing the constructors,

� a set of standard functions,

� proof rules, including rules for definedness and uniqueness,

� where appropriate, rules defining a computational equality.

For example, the theory of lists, given in Figure 2, defines:

� the type constructor list,

� the constructors � and ��,

� standard functions hd, tl, �� and map,

� an induction rule for lists (the rule presented is only sound for chain-complete predicates); rules
for definedness of lists; rules asserting the uniqueness of the constructors,

� a definition of computational equality for lists.

Other standard theories include the following:

� Booleans: true, false, cond the usual operators and computational equality,

� Natural numbers: succ, zero, �, �, � etc.,

types

list �

arities

list �� �mira�mira

consts

��� �� ���a
 �a list� 	� �a list� �infixr ���

nil �� ��a list� ������

hd �� ��a list �� �a�

tl �� ��a list �� �a list�

���� �� ���a list
 �a list� 	� �a list� �infixr ���

map �� ���a �� �b� �� �a list �� �b list�

rules

listInd

��� ALL a x� P�x� ��� P�a�x�� P����� P����� �� 		�

ALL x���a list�P�x��

nilCons ��� 	 �a�x� ��� False�

nilBot ��� 	 ��� ��� False�

consBot ��a�x� 	 ��� ��� False�

defNil �def���� ��� True�

defCons �def�a�x� ��� def�a� � def�x��

eqList� ��� 			 �� 	 true�

eqList� ��a�x� 			 �� 	 false�

eqList� ��� 			 �b�y� 	 false�

eqList� ��a�x� 			 �b�y� 	 a 			 b �� x 			 y�

eqList
 ���� 			 y 	 ����

eqList� �x 			 ��� 	 ����

hd� �hd �� 	 ����

hd� �hd � �a�x� 	 a�

hd� �hd ��� 	 ����

tl� �tl �� 	 ����

tl� �tl � �a�x� 	 x�

tl� �tl ��� 	 ����

conc� ��� �� y 	 y�

conc� ��a�x� �� y 	 a � �x �� y��

conc� ���� �� y 	 ����

map� �map f �� 	 ���

map� �map f � �a�x� 	 f a � map f x�

map� �map f ��� 	 ����

Figure 2: The Theory of Lists

� Tuples (currently up to 6-tuples),

� Association lists derived from the theory of lists.

The theory of natural numbers represents our first departure from the Miranda system. No attempt has
been made to account for the Miranda num type which is a conflation of arbitrary precision integers
and floating point numbers.

Translation to Isabelle

In this exercise, no attempt has been made to address the whole of the Miranda language. In particular,
the following restrictions have been introduced:

� definitions are restricted to non-overlapping patterns,

� guards must be converted to conditional expressions,

� local definitions must be lifted to the top level.

These restrictions are intended to bring the language closer to a logic. In particular definitions
can be converted directly to equations without the complications described in the previous section.
Extra rules covering the case of undefined arguments are required for functions that perform pattern
matching.

Algebraic types are translated according to the scheme described for lists. Synonym and abstract
data types seem to be most conveniently represented as a one-constructor type in Isabelle. An
alternative scheme would have been to expand synonyms, but in practice this leads to an unwieldy
theory.

The translation of function type signatures is straightforward simply requiring the replacement
of Miranda’s star notation for type variables with Isabelle’s more conventional identifier names, for
example:

consts

id �� ��a �� �a�

const �� ��a �� �b �� �a�

apply �� ���a �� �b� �� �a �� �b�

Currently, the translation process is done by hand. However, the method is entirely mechanical
and could be automated.

3 Examples

We have developed a series of smaller examples, and a larger case study which we explore in the next
section. In developing these smaller examples, we have often had to develop supporting libraries of
proofs concerning the behaviour of elementary operations over simple data types. As we look at the
examples we make some observations about our approach and the Isabelle system.

The second and third of the examples here were developed in collaboration with Gerald Nelson
of the University of Kent.

Substitution

We chose the frontSubst function as an example since has many of the features of Miranda definitions,
including pattern matching, guards and a where clause. We can specify one aspect of its behaviour in
a high-level way, thus:

�ALL x y z ans �

def�x� ��� def�y� ��� def�z� ��� def�ans� ��� ���

�frontsubst x y z 	 �ans
true� ���

�EX w� x��w	z � y��w	ans����

and we chose to prove this using Isabelle. The proof takes some 100 elementary steps, and proceeds
by induction over finite lists. Much of the proof involves reasoning forward from comparatively large
sets of assumptions. Some of the assumptions come from stripping off the definedness hypotheses
from ���, and others from opening up the existentially quantified formula in Figure 1,�
�.

Using these assumptions and a case analysis on the result of comparing elements under the ordering
we apply modus ponens to close this assumption set. It was our experience that this needed hand
guidance, and that we would find it difficult using the available tools to automate this ‘closure under
modus ponens’ as a tactic. Clearly this would be desirable to support larger-scale proof development
in a context like this.

Sorting

We have automated a proof of correctness of insertion sort,
sort �� 	 ��

sort �a�x� 	 insert a �sort x�

insert a �� 	 �a�

insert a �b�x� 	 a�b�x
 if a�	b

	 b � insert a x
 otherwise

by proving the following two propositions for all finite lists x
sorted �sort x� � True

perm �x
 sort x� � True

where sorted expresses the fact that its argument is sorted, and perm the fact that its arguments are
permutations of each other. The proof proceeds by induction at the top level, but also uses some twenty
lemmas about elementary properties of orderings. We also have to introduce a function smallest

which takes the smallest element of a list, and many of the lemmas involve proving simple properties
of this function.

Simulation

Our third case study concerns a simulation of a bank, in which on arrival customers are placed in
a single queue. A customer goes to a clerk when the clerk becomes free. Our proof shows that
increasing the number of clerks will reduce the total waiting time of the customers, if it is initially
non-zero. Details of the simulation can be found in Chapter 13 of [Thompson, 1995b].

The proof involves manipulating sums of lists of numbers; as in the previous example, it was
necessary to develop a substantial foundation in order to build the required proof.

We also tried to prove that under a round-robin scheduling mechanism the total waiting time was
reduced, but discovered that this was not the case. Increasing the number of clerks in this case can
increase the total waiting time. The scenario in which this happens is when there are two customers

requiring a long time to be served; with two queues they are allocated to one server, whereas with three
they will be allocated to different servers, this means that they delay more people, and so increase the
overall delay.

4 Case study – Hardware Description

This case study describes an experiment in verifying the refinement of a processor description/simulation
written in Miranda which is described more fully in [Hill, 1994]. The subject of this experiment is a
step in the design of a simple microprocessor. There are two executable descriptions of the machine
addressing two levels of abstraction. The aim of the verification is to show that these two descriptions
behave in essentially the same way.

The first machine, dubbed m�, has the following components:

� a memory – implemented as an association between locations and contents

� a register set – implemented as an association between register number and contents

� a statistics field

� a halt flag

The operation of the machine is described by transitions from one state to another, similar in style
to that used in [Peyton Jones, 1992]. For example the transition that reads data from memory into a
register is given by:

memToReg �� regnum �� regnum �� m� �� m�

memToReg rs rd �m
 r
 s
 h�

	 �m

aBind rd �aLookup �aLookup rs r� m� r

s
 h�

The second machine, dubbed m�, is more explicit about some of the internal structure. Its state is
given by the following:

� a memory – as in m�,

� a memory interface – implemented as a pair of values corresponding to a Memory Data Register
(MDR) and Memory Address Register (MAR).

� a register set – as in m�,

� a set of four buses – implemented as a quadruple of values,

� a statistics field,

� a halt flag.

The transitions of this machine are more restricted. Data must pass from a register to a bus (A or B),
and thence via the ALU to another bus (C). Data on the C-bus may be placed in a register or into the
memory interface which is the only route to the memory. So, a typical transition might be:

regToAbus n �m
 i
 r
 �a
 b
 c
 d�
 s
 h� 	

�m
 i
 r
 �aLookup n r
 b
 c
 d�
 s
 h�

The machine is depicted in Figure 3.

ALUMAR MDR R0 R1

A−Bus

B−Bus

C−Bus

D−Bus

Memory

Figure 3: Machine Architecture

Both machines define three combinators to construct compound transitions from the basic opera-
tions.

� comma – combines two transitions sequentially; a derived combinator do takes a list of transitions
and combines them sequentially.

� switch – selects a transition according to the contents of a register

� passReg – passes the contents of a register to a transition

The behaviour of the full machine is ultimately implemented in terms of the basic transitions. The
simulation has been used to describe a simple register machine, a memory-based stack machine and
a register-based stack machine. The register machine is the subject of this verification, and supports
an instruction set of some eight instructions supporting four addressing modes. A flavour of the
implementation is given in Figure 4.

Verification

The aim of the verification is to show that m� is a faithful refinement of m�. The relationship that we
wish to hold is depicted in Figure 5 and is rendered in Isabelle as:

t� refines t� 		

�ALL m� spec �t� m� 	m� t� �spec m��

spec �m� � �m
r
s
h�� 	

m� �m
 ���
 r
 ���
 ���
 h�

m� � �mm�
i�
rr�
b�
s�
h�� 	m�

m� � �mm�
i�
rr�
b�
s�
h�� ���

mm� 	 mm� � rr� 	 rr� � h� 	 h��

The specialisation function spec takes an m� state and creates an m� state, placing undefined values in
the new fields. The predicate 	m� tests for equality of the m� components of two m� states.

The following simple example shows that the halt instruction in m� is indeed a refinement of
the equivalent m� transition. It gives a flavour of the style of the goal directed proofs within this
framework.

goal Machine���thy �halt� refines halt���

by �rewrite�goals�tac �refines���

br m� ��

fetch

	 do �

regToMar pc

memRead

mdrToReg ir

op� pc AluIncA pc

�

execute

	 switch ir �

�moveW
 moveI�

�addW
 addI�

�subW
 subI�

�jumpW
 jumpI�

�jumpeqW
 jumpeqI�

�jsrW
 jsrI�

�rtsW
 rtsI�

�haltW
 haltI�

�

moveI

	 do �

srcOpTo tmp�

dbusToReg ccr

destOpFrom tmp�

�

srcOpTo r

	 do �

fetch

switch ir

�

�litW
 do �fetch
 regToReg ir r��

�absW
 do �fetch
 regToMar ir
 memRead
 mdrToReg r��

�regW
 do �fetch
 passReg ir ��flip regToReg� r���

�indW
 do �fetch
 passReg ir regToMar
 memRead
 mdrToReg r��

�

�

Figure 4: Sample of Machine Implementation

m0 m0’

m1 m1’

t0 :: m0 −> m0

t1 :: m1 −> m1

spec spec

Figure 5: Refinement

m1

m0’

m1’

specspec

m0

spec

ta0 :: m0 −> m0

ta1 :: m1 −> m1

tb0 :: m0 −> m0

tb1 :: m1 −> m1

m0’’

m1’’

Figure 6: Composing Transitions

br tup
Ind ��

by �REPEAT �SIMP�TAC machine���ss ����

The first step expands the definition of refines. The next two steps apply the appropriate rule
for reasoning about the type of the leading quantified variable. Finally, the simplification rules are
sufficient to complete the proof.

Figure 6 shows the situation when two transitions are composed using the combinator comma. The
corresponding theorem is:

ALL ta� tb� ta� tb��

ta� refines ta� ��� tb� refines tb� ��� respect tb� ���

�comma� ta� tb�� refines �comma� ta� tb��

that is, if we have two transitions in the m� world that are refinements of transitions in the m� world,
then the composition of the two should be a refinement of the composition in the m� world. We
have one further hypothesis which is required to ensure that the functions are well-behaved which is
formulated as:

respect t� 		 �ALL x y� x 	m� y ��� t� x 	m� t� y�

This guarantees that the second machine can make no distinctions between states on the basis of
information held in the fields not present in m�.

The proof of the composition theorem makes use of the first-order logic theorem prover and an

elimination tactic, but follows broadly the same shape as the halt proof given earlier:
goal Machine���thy

�ALL ta� tb� ta� tb��

ta� refines ta� ��� tb� refines tb� ��� respect tb� ���

�comma� ta� tb�� refines �comma� ta� tb����

by �rewrite�goals�tac �refines
 respect���

by �MACH�TAC �comma�
 comma�� ���

by �step�tac FOL�cs ���

by �REPEAT �etac allE ����

br eq��trans ��

be impE ��

by �REPEAT �assume�tac ����

The work has reached a point where the proof is nearly complete. The proof is modular, and in
most parts quite tedious. Fortunately, most proofs follow a simple pattern which can almost be cut
and pasted to produce the next one.

The rewriting tactics of Isabelle are sufficiently powerful, that many of the larger proofs could be
conducted for the most part automatically. However, Isabelle is too slow on our systems too make this
practical. Instead the proof is decomposed into smaller elements which are combined using tools such
as the composition theorem. This also has the benefit of offering theorems which might be re-used
later in the verification.

During this exercise, it has proved useful to provide some tactics to support rewriting. These are
built on top of the existing rewriting mechanism. The proof of the composition theorem uses one of
these called MACH TAC defined as:

fun MACH�TAC rules

	 SIMP�TAC �holmAll�ss addcongs machine���congs

addrews rules��

It is useful when a proof requires rewriting with only a small number of equations. A similar tactic is
provided to use the rules in the opposite direction:

fun RMACH�TAC rules

	 MACH�TAC �map �fn r 	� r RS sym� rules��

More work could be done in this area, for example to select induction principles according to the type
of a quantified variable.

5 Conclusions

Our experiments with Isabelle have proved to be successful. The proof of the machines’ equivalence is
almost complete. The extension of Isabelle to support reasoning about Miranda was straightforward,
requiring little expert assistance. The support for an extensible parser/unparser makes it possible to
express terms using the Miranda syntax directly. This makes the process of translation less prone
to error, and makes the job of the verifier simpler since the theorems and goals are presented in a
familiar style. In the case study, there were few creative steps in the proofs. Much of the “hard” work
is managed by use of the FOL theorem prover and the simplification package.

The marriage, however, is not perfect. We found that the treatment of synonyms was somewhat
clumsy and would advocate the inclusion of some sort of type synonym mechanism in Isabelle. In
some cases, there seems to be a tension between the object and meta levels. Often, in different parts
of a proof a theorem may be needed in either the FOL form, or in the meta form. Whilst there is no

technical difficulty in moving between the two, there can be a confusing increase in the number of
theorems.

Reasoning about Miranda programs often involves very simple rewriting of terms. Although the
simplification mechanism provides tools to support rewriting, it is sometimes not possible to obtain
the desired effect, for example rewriting one instance of a pattern whilst leaving a second. There is
scope here for development of our own tactics.

We were gratified that the experiment showed that even if one were neither an experienced verifier
nor logician one would still be able to render a significant Miranda script as an Isabelle theory and to
construct a reasonably large proof.

However, in our case study we have dealt with a quite small subset of the Miranda language and
have chosen a regular and flat problem. The proofs to-date are mostly goal directed, with little cause
for forwards reasoning. This was exercised more in the substitution example, which raised the issue
of how to ‘close up’ a set of hypotheses under deduction.

Isabelle’s generality makes our experiments possible, but can also make Miranda-specific reason-
ing more complex that one might hope of a tailor made tool. It is to be hoped that appropriate tactics
should bridge the gap.

References

[Hill, 1994] Steve Hill. The functional simulation of a simple microprocessor. Technical Report
17-94, UKC Computing Laboratory, 1994. Available by ftp from unix�hensa�ac�uk in the directory
pub�misc�ukc�reports�comp�sci�reports as the file ������ps�Z.

[Milner et al., 1990] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.
MIT Press, 1990.

[Paulson, 1987] Laurence C. Paulson. Logic and Computation — Interactive proof with Cambridge
LCF. Cambridge University Press, 1987.

[Peyton Jones, 1992] Simon L. Peyton Jones. Implementing Functional Languages. Prentice-Hall,
1992.

[Thompson, 1989] Simon J. Thompson. A Logic for Miranda. Formal Aspects of Computing, 1,
1989.

[Thompson, 1995a] Simon J. Thompson. A Logic for Miranda, Revisited. Formal Aspects of
Computing, to appear, 1995.

[Thompson, 1995b] Simon J. Thompson. Miranda The Craft of Functional Programming. Addison-
Wesley, 1995.

[Turner, 1990] David A. Turner. An overview of Miranda. In David A. Turner, editor, Research
Topics in Functional Programming. Addison Wesley, 1990.

