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Viewpoints and Objects

John Derrick, Howard Bowman and Maarten Steen

Computing Laboratory, University of Kent, Canterbury, CT2 7NF, UK.
(Phone: + 44 1227 764000, Email: fjd1,hb5,mwasg@ukc.ac.uk.)

Abstract. There have been a number of proposals to split the specification of
large and complex systems into a number of inter-related specifications, called
viewpoints. Such a model of multiple viewpoints forms the cornerstone of the
Open Distributed Processing (ODP) standardisation initiative. We address two of
the technical problems concerning the use of formal techniques within multiple
viewpoint models: these are unification and consistency checking. We discuss the
software engineering implications of using viewpoints, and show that object en-
capsulation provides the necessary support for such a model. We then consider
how this might be supported by using object-oriented variants of Z.
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1 Introduction

With the increasing complexity of system specifications, the process of separation of
concerns is being applied to the design process in addition to the design itself. Consid-
eration of this and related issues has led to a number of proposals for partial specifi-
cation or viewpoints to be used to split the specification of large and complex systems
into a number of inter-related specifications, [1, 16, 12]. The purpose of decomposing
a system specification into viewpoints is to enable different participants in the require-
ments and specification process to observe a system from a suitable perspective and at
a suitable level of abstraction, [12]. One area where viewpoints are playing a prominent
role is in the Open Distributed Processing (ODP) standardisation initiative, which is a
natural progression from OSI, broadening the target of standardisation from the point
of interconnection to the end-to-end system behaviour. The objective of ODP [12] is to
enable the construction of distributed systems in a multi-vendor environment through
the provision of a general architectural framework that such systems must conform to.
There are five separate viewpoints presented by the ODP model: Enterprise, Informa-
tion, Computational, Engineering and Technology. Requirements and specifications of
an ODP system can be made from any of these viewpoints.

The ODP reference model (RM-ODP) recognises the need for formalism, with Part
4 of the RM-ODP defining an architectural semantics which describes the application of
formal description techniques (FDTs) to the specification of ODP systems. Z is likely to
be used for at least the information, and possibly the enterprise and computational view-
points. The first ODP compliant specification, the Trader [13], is being written using Z
for the information viewpoint.



Zave considers using partial specifications in [16] for specification of complex tele-
phone systems. Viewpoints have also arisen in connectionwith requirements analysis [1].
Although the terminology used in [16, 1] is different, their work reflects a similar set of
concerns to those within ODP.

Whilst it has been accepted that the viewpoint model greatly simplifies the develop-
ment of system specifications and offers a powerful mechanism for handling diversity
within a particular area of concern (e.g. ODP), the practicalities of how to make the ap-
proach work are only beginning to be explored. In particular, one of the consequences of
adopting a multiple viewpoint approach to development is that descriptions of the same
or related entities can appear in different viewpoints and must co-exist. Consistency of
specifications across viewpoints thus becomes a central issue.

In [8] we provided a mechanism, called unification, to describe the combination of
specifications from different viewpoints into a single specification, and to check the con-
sistency of them. Although our motivation arises from ODP, the mechanism we describe
is a general strategy for unifying two partial specifications of a system written in Z.

Although, there has been some initial work on developing techniques to combine dif-
ferent viewpoint descriptions or specifications, there has been little work on the software
engineering consequences of adopting a multiple viewpoint approach. In particular, al-
though the RM-ODP has adopted an object-oriented approach within viewpoints, there
has been no firm evidence that object encapsulation and viewpoint specification lead to a
satisfactory development scenario. Our aim here is to discuss some of the issues arising
from this, and to provide initial evidence that formal approaches to object encapsulation
provide the necessary support for viewpoint specification, their combination and conse-
quent consistency checking.

Section 2 of this paper briefly sketches the unification mechanism, and in section 3
we discuss the use of consistency checking within the mechanism. These discussions
are needed in order to motivate the material in sections 4 and 5. The former discusses
software engineering issues which arise from the use of viewpoint specification and the
latter presents a case study showing the application of these techniques to an object based
approach.

2 Unification

In a model of multiple viewpoints, descriptions of the same or related entities can appear
in different viewpoints and must co-exist. Clearly, the different viewpoints of the same
specification must be consistent, i.e. the properties of one viewpoint specification do not
contradict those of another. In addition, during the development process there must be
some way to combine specifications from different viewpoints into a single implemen-
tation specification. This process of combining two specifications is known as unifica-
tion in ODP (other terms used include amalgamation [1] and composition [16]). Because
detail and design decisions in a viewpoint specification should be preserved within the
complete system specification, a natural way to view unification is as the least refine-
ment of the component viewpoints, indeed this is the approach taken in ODP, [5, 12].
Unification can also be used, because of this least refinement, as a method by which to



check consistency. To check the consistency of two viewpoint specifications, we check
for contradictions within the unified specification.

Unification of Z specifications depends upon the Z refinement relation, which is given
in terms of two separate components - data refinement and operation refinement, [18].

Although ODP has adopted unification as being the least refinement, there are al-
ternatives, for example [1, 2]. However, the motivation behind work described in [1, 2]
comes from requirements capture, and consequently there are fundamental differences
to the ODP approach. In particular, there is no requirement on unification to be a re-
finement (let alone the least refinement) of the individual viewpoints. Hence, the tech-
niques developed are different from our work and cannot be adapted to provide consis-
tency checks. Recently, the approach has been formalized in terms of augmented co-
refinement [2], which is a weaker relation than the usual Z refinement relation. For the
purposes of this paper we shall retain the terminology and usage derived from ODP.

The unification algorithm we describe is divided into three stages: normalisation,
common refinement (which we usually term unification itself), and re-structuring. This
algorithm can be shown to produce the least refinement of both viewpoints, [8].

Normalisation identifies commonality between two different viewpoint specifica-
tions, and re-writes each specification into a normal form suitable for unification. Clearly,
the two specifications that are to be unified have to represent the world in the same way
(e.g. if an operation is represented by a schema in one viewpoint, then the other view-
point has to use the same name for its (possibly more complex) schema as well), and
that the correspondences between the specifications have to have been identified by the
specifiers involved.These will be given by mappings that describe the naming, and other,
conventions in force. Once the commonality has been identified, normalisation re-names
the appropriate elements of the specifications. Normalisation will also expand data-type
and schema definitions into a normal form. Examples of normalisation are given in [18,
20].

Unification itself takes two normal forms and produces the least refinement of both.
Because normalisation will hide some of the specification structure introduced via the
schema calculus, it is necessary to perform some re-structuring after unification to re-
introduce the structure chosen by the specifier.

2.1 State Unification

The purpose of state unification is to find a common state to represent both viewpoints.
The state of the unification must be the least data refinement of the states of both view-
points, since viewpoints represent partial views of an overall system description.

The essence of all constructions will be as follows. We unify declarations rather than
types, so non-identical types with name clashes are resolved by re-naming, then we unify
declarations as follows. If an element x is declared in both viewpoints as x : S and x :T
respectively, then the unification will include a declaration x : U where U is the least
refinement of S and T . The type U will be the smallest type which contains a copy of
bothS andT . For example, ifS andT can be embedded in some maximal type thenU is
just the union S �T . Given two viewpoint specifications both containing the following
fragment of state description given by a schema D :



D

x : S

predS

D

x : T

predT

we unify as follows:

D

x : S �T

x � S �� predS
x �T �� predT

whenever S �T is well founded. If S and T cannot be embedded in a single type
then the unification will declare x to be a member of the disjoint union of S and T , and
the mechanism to describe disjoint unions has to be included in the unification. In these
circumstances we again achieve the least refinement of both viewpoints. The correspon-
dence rules will relate the types across the viewpoint specifications, and in particular will
describe correspondences within the type hierarchy. Therefore the unification can con-
struct well formed unions for overlapping types as in the example in section 5.1.

Axiomatic descriptions are unified in exactly the same manner as state schemas.

2.2 Operation Unification

Once the data descriptions have been unified, the operations from each viewpoint need
to be defined in the unified specification. Unification of schemas then depends upon
whether there are duplicate definitions. If an operation is defined in just one viewpoint,
then it is included in the unification (with appropriate adjustments to take account of the
unified state).

For operations which are defined in both viewpoint specifications, the unified speci-
fication should contain an operation which is the least refinement of both, w.r.t. the uni-
fied representation of state. The unification algorithm first adjusts each operation to take
account of the unified state in the obvious manner, then combines the two operations to
produce an operation which is a refinement of both viewpoint operations.

The unification of two operations is defined via their pre- and post-conditions (which
can always be derived). Given two schemas A and B representing operations, both ap-
plicable on some unified state, then the unification of A and B is:

U�A�B�
...

pre A�pre B

pre A�� post A

pre B �� post B

where the declarations are unified in the manner of the preceding subsection.



We show, in [8], that this construction is the least refinement of the two viewpoint
specifications. It is also associative, allowing the natural extension of unification to an
arbitrary finite number of viewpoints.

3 A word about Consistency

What is consistency? A specification is consistent if it does not contain specifications of
entities which cannot possibly exist. That is, given a proof system for Z, with a validity
relation �, a specification is said to be consistent if it is not possible to prove S � false.
For example, a Z specification of a function will be inconsistent if the predicate part of its
axiomatic definition contradicts the fact that it was declared as a function. Another way
in which inconsistencies can arise in Z specifications is in the definition of free types.
Examples of how such inconsistencies can occur are given in [4, 25, 22]. In general,
it is undecidable whether or not a set of axioms given in a Z specification is consistent.
Sufficient conditions for the consistency of certain combinations of Z paragraphs, in par-
ticular axiomatic definitions, given sets and free types, are discussed in [4].

In addition, consistency usually refers to consistency of the state model, i.e. for a
given state there exists at least one possible set of bindings that satisfies the state invari-
ant, [18, 20]. With this consistency condition comes a requirement to prove the Initialisa-
tion theorem (see below), which asserts there exists a state that satisfies the initial condi-
tions of the model. Due to an ODP requirement associated with multiple viewpoints, we
also require operation consistency, because an ODP conformance statement in Z cor-
responds to an operation schema(s), [24]. A conformance statement is behaviour one
requires at the location that conformance is tested. Thus a given behaviour (i.e. occur-
rence of an operation schema) conforms if the post-conditions and invariant predicates
are satisfied in the associated Z schema. That is, operations defined in two viewpoints
are consistent if whenever both operations are applicable, their post-conditions are con-
sistent (in the logical sense). Hence, operations in a unification will be implementable
whenever each operation has consistent post-conditions on the conjunction of its pre-
conditions.

Thus a viewpoint consistency check in Z involves checking the unified specification
for contradictions, and has 5 components: axiom, axiomatic, state and operation con-
sistency in addition to the Initialisation theorem. Assuming the individual viewpoints
themselves are consistent, the components then take the following form.

Axiom Consistency Axioms constrain existing global constants. Hence, to check for
consistency of the two viewpoints, axioms from one viewpoint have to be checked
against the second viewpoint w.r.t. any terms appearing in the axioms which are
defined in the second viewpoint. If an axiom contains no terms appearing in other
viewpoints, its consistency checking requirements are discharged.

State Consistency Consider the general form of state unification given in Section 2.1:



D

x : S �T

x � S �� predS
x �T �� predT

This state model is consistent as long as both predS and predT can be satisfied for
x � S �T .

Axiomatic Consistency Similar to state consistency.

Operation Consistency Consistency checking also needs to be carried out on each op-
eration in the unified specification. The definition of operation unification means
that we have to check for consistency when both pre-conditions apply. That is, if
the unification of A and B is denoted U�A�B�, we have:

pre U�A�B� � pre A�pre B � post U�A�B� � �pre A� post A�� �pre B � post B�

So the unification is consistent as long as the post-conditions agree whenever �pre A
� pre B� is satisfied.

Initialisation Theorem The Initialisation Theorem is a consistency requirement of all
Z specifications. It asserts that there exists a state of the general model that satisfies
the initial state description, formally it takes the form:

� �State � InitState

For the unification of two viewpoints to be consistent, clearly the Initialisation The-
orem must also be established for the unification. [8] discusses how this can be ach-
ieved.

4 Software Engineering Issues

The previous section elucidated the consistency checking requirements for unified view-
point specifications. Given these requirements, it is necessary to seek software engineer-
ing strategies that make viewpoint decomposition feasible. By feasible we mean it is
possible to describe viewpoints which are consistent and that the effort involved in con-
sistency checking is minimised. In this section we explore some of the software engi-
neering consequences of the consistency checking requirements.

Either viewpoint description and analysis will work with arbitrary specifications and
specification styles; or some style guidelines or further methodology is needed for the
process to become feasible. In consideration of the former position there are some issues
which need to be addressed:

No encapsulation of state and operations When the state is unified, all operations act-
ing on that state are adjusted to take account of the unified state. Hence, during uni-
fication of an operation, two adjustments are made: the first due to the unified state



(declarations are updated to take account of the unified state) and the second due
to the change in pre- and post-conditions. Therefore, to keep track of the consis-
tency checking requirements the operations need to be encapsulated with the state
they affect. Without this consistency checking is possible, but unrealistic for larger
examples.

No operation set representation As Zave noted in [30], Z provides no means of repre-
senting the operation set of a specification (i.e. the set of operations visible by the en-
vironment). The consequences of this for unification are that if an operation schema
appears in both viewpoints, then it has to be unified, since there is no means to tell
whether it was defined (in either viewpoint) for internal structuring purposes only.
If there was such information available, then internal structuring schemas could be
re-named and just operations in the operational set unified.

For example, in the specification of the CME agent in section 5.1 below, the oper-
ations Select and CreateSelect are defined purely for internal structuring purposes.
Given another viewpoint which contains a specification of the CME agent, we re-
quire that only the external interface represented by the Create, Delete and Enrol op-
erations be unified, and that any internal operations with name clashes are resolved
instead of unified.

Correspondence rules In order to describe the relation between viewpoints, the RM-
ODP includes the concept of a correspondence rule. Part of their purpose is to iden-
tify the commonality between the specifications, and describe any possible renam-
ings between them. Any viewpoint methodologywill need to include mappings such
as these. The limited structure in an ordinary Z specification makes a succinct nam-
ing impossible for correspondences, since, for any non-trivial systems, it is likely
that a correspondence will wish to name more than one state/operation.

Viewpoint encapsulation The work of [1] indicates that in a non-object approach a
large number of re-namings and re-workings of the viewpoints have to be under-
taken during the unification process. This appears to be because the boundaries of
the decomposition are not well defined, leading to viewpoint specifiers referencing
and defining similar aspects of the same entity. Again this is a manifestation of the
lack of encapsulation when defining the area of concern for each viewpoint specifier.

From case studies undertaken and consideration of these issues it seems that view-
point description without any style guidelines is unlikely to be practical for anything
other than small examples. Encapsulation and identity are central to the practical real-
ization of the viewpoints model. Both of these facets could be provided by a number of
software engineering methodologies, however, object-orientation is an obvious choice.
Many of the problems identified above can be resolved if one adopts an object-oriented
approach.

Encapsulation of state and operation The over-riding advantage of object-oriented
methods is their encapsulation of state and operation. This will clearly delimit the
consistency checking requirements within a unification, with each unified object
generating local consistency checking requirements which do not escalate to global
consistency checking problems.



Operation set representation Some, although not all, object-orientedversions of Z pro-
vide the ability to specify an operation set, or visibility list, [17, 9], which partitions
all the defined operations into disjoint sets of visible and internal operations. If this is
provided, then the issue of operation set representation is completely resolved. Even
if such a visibility list is not provided by the language used, the encapsulation that
comes with object-orientation still provides the opportunity for partial resolution of
the problem.

In an object-based world it is likely that a viewpoint partitioning will include the in-
ternal specification of the behaviour of an object in only one of the viewpoints. The
other viewpoints will then (possibly) reference objects from viewpoints as parame-
ters, or place constraints on the use of those objects. Hence, in these circumstances
the unification of two internal representations is unlikely to occur, and so the issue of
operation set representation would not occur. Of course, if the internal specification
of an object’s behaviour did occur in more than one viewpoint (as in the example
below), the need for a visibility list would then arise again.

Correspondence rules Identity is a key propertyof an object, and will allow correspon-
dence rules to relate suitably complex parts and combination of parts of the view-
point descriptions in a manner which is not currently supported in Z.

These considerations naturally lead to a choice of an object-based or object oriented
language for viewpoint decomposition, where each viewpoint specifies a number of in-
teracting objects. Full object-orientation is not necessarily needed, however, if it is avail-
able then object-oriented facilities such as inheritance can be exploited. It is preferable
that only one viewpoint specifies the internal representation of a given object, and ref-
erences to objects from one viewpoint will appear as parameters, either as inheritance
within another object, or as an abstraction purely in terms of object or method names.
The next section investigates the support available in Z for this approach.

5 Using Object-Oriented Techniques

The previous section indicated that an object-oriented style of specification is particu-
larly suitable for viewpoint descriptions, and indeed the RM-ODP has adopted such an
approach. We now consider the use and consequences of using viewpoints with object-
oriented styles of Z specification. There have been a number of different approaches
proposed for providing Z with object-oriented facilities. These include the provision of
object-oriented style guidelines, and extensions to Z to allow fully object-oriented spec-
ifications. Examples of using Z in an object-oriented style include: Hall’s style [10, 11];
ZERO [29]; and the ODP architectural semantics [12]. Examples of object-oriented ex-
tensions to Z include: Object-Z [9]; ZEST [7]; MooZ [17]; OOZE [3]; Schuman & Pitt
[23]; and Smith [26]. See [27] for a summary and comparison of several approaches.

Z itself is not object-oriented because it does not provided sufficient support for ei-
ther encapsulation or inheritance. However, it is also possible for Z to be used in an ob-
ject based fashion, see [20] for a discussion, although there is nothing to keep the spec-
ifier within an object based style in contrast to the style guidelines above.



The ODP standardisation initiative requires the use of (near) standardised formal
methods, hence the architectural semantics uses Z as opposed to any object-oriented
variant of that language. However, given that ODP has adopted the object-oriented para-
digm, there is obvious interest in object-oriented variants that can support the required
ODP modelling concepts. In particular,Object-Z and ZEST are receiving attention within
the ODP community as a specification medium. However, all the object-oriented exten-
sions to Z have an unstable definition, or lack a full semantics, or both. Therefore, tech-
niques with a flattening (or approximate flattening) into Z are of considerable interest to
our work. By using such a technique we can define unification and consistency checking
of viewpoints without compromising the necessity of a standardised formal description
technique. Object-Z and ZEST are suitable from this perspective, however, it is unfor-
tunate that Object-Z is moving away from a flattening semantics.

Of the Z guidelines the work of Hall is the most general. The style adds no new fea-
tures to Z, however, there are conventions for writing an object-oriented specification.
He also provides conventions for modelling classes and their relationships, and, in ad-
dition, there is formal support for inheritance through subtyping, [11]. In order to sup-
port encapsulation, the RM-ODP has adopted conventions for the use of Z within ODP.
Here, encapsulation is achieved by letting each Z specification denote just one object.
This achieves the required encapsulation, but clearly any specification of an aggregate
of objects or interaction between objects cannot then be modelled within Z. There is a
clear need to extend the framework offered by ODP by considering further style guide-
lines for the specification of collections of objects.

Here we shall show how the unification techniques can be used with ZEST for the
specification of viewpoints. To do so we use ZEST to describe two viewpoints consist-
ing of objects or aggregates of objects. We can then flatten ZEST to Z, in order to gen-
erate the unification of the two viewpoints and to check for consistency. The unifica-
tion can then easily be re-assembled into a ZEST specification if further object oriented
development is required. Other object-oriented variants of Z could equally have been
used for the basis of this example, in particular, Object-Z would have provided a sim-
ilar set of facilities as those we have called upon. Although we have applied unifica-
tion by first flattening the ZEST, it is important to note that we do not lose the benefits
of using object-orientation by doing this. The encapsulation can be recovered, and the
consistency checking requirements still lie within the boundaries defined by the object
encapsulation.

5.1 Example

The application of Z in the ODP information viewpoint to the modelling of OSI Man-
agement has been investigated by a number of researchers, see [21, 28] for introduc-
tions. We show here how the object-based approach in [28] can be used within view-
point specifications by considering viewpoint specifications of sieve managed objects
and their controlling Common Management Environment (CME) agent. We shall con-
sider one viewpoint containing a specification of an event reporting sieve object together
with a second viewpoint which describes both a sieve object and a CME agent and its
manipulation of the sieve objects.



In ZEST a managed object class is described by a ZEST class, and a managed object
is an instance of a managed object class. An instance of a class is created through initial-
isation of the class specification, which assigns values to all fixed attributes of the class.
The initialisation schema provides predicates that must be satisfied on initialisation.

A managed object definition cannot include a Create operation, since before it is cre-
ated a managed object cannot perform any operation, including Create itself. However,
by including a Create operation in the CME agent viewpoint as we do below, we can de-
scribe formally the interaction between Create and the sieve managed object definition.

Viewpoint 1 To describe the sieve object, we first declare the types. ObjectId represents
a set of object identifiers, and SieveConstruct is used in the event reporting process, its
internal structure is left unspecified at this stage. The remaining types are declared as
enumerated types.

�SieveConstruct �ObjectId �

Operational ::� disabled j active j enabled j busy
Admin ::� locked j unlocked j shuttingdown
Event ::� nothing j enrol j deenrol
Status ::� created j deleted

Status models the life-cycle of the sieve object, and is used as an internal mechanism
to control which operations are applicable at a given point within an object’s existence.

The ZEST sieve class is then defined by:
Sieve

sieveid : ObjectId
destadd : ObjectId

opstate : Operational
sico : SieveConstruct
adminstate : Admin

status : Status

INIT
opstate � active

adminstate � unlocked

�lter : Event 	 SieveConstruct

Filter

event? : Event
noti�cation! : Event

status 
� deleted

opstate � active �adminstate � unlocked

�event?�sico� � �lter � noti�cation! � event?
�event?�sico� 
� �lter � noti�cation! � nothing



Within the class definition we have described just one of the operations available
within a sieve object (for a full description of operations see [21]). The relation filter
represents criteria to decide which events to filter out and which to pass on and Filter
represents the operation to perform the filtering.

Viewpoint 2 The second viewpoint contains a description of a controlling CME agent
together with a sieve object. For our purposes here we present a very simplified ver-
sion of an agent which consists of a number of sieve managed objects. The CME agent
promotes the Delete operation defined on individual sieve objects, and defines a Create
operation to instantiate sieve objects as required. First of all we declare the types

�SieveConstruct �ObjectId �

Operational ::� disabled j active j enabled j busy
Admin ::� locked j unlocked j shuttingdown
Event ::� nothing j enrol j deenrol
Status ::� being created j created j deleted

Notice that in this viewpoint Status includes an additional value, being created.
The ZEST sieve object is then specified in this viewpoint as shown in Figure 1.
Within this class definition an operation to delete a sieve is declared. Upon deletion

a sieve sends a deenrol notification to its environment, and moves into a state where
no further operations can be applied. A CMEagent is modelled as a collection of sieve
objects, where and initially no sieve objects have been created.

CMEagent

id : ObjectId

sieves : PSieve

INIT
sieves ��

Select

s? : Sieve

s? � sieves

CreateSelect

Δ�sieves�

s? : Sieve

s? 
� sieves

sieves � � sieves �fs?g

Delete b� Select � s?�Delete

Enrol b� Select � s?�Enrol

Create b� CreateSelect � s?�Init



Notice that the extra structuring available in ZEST does away with the need to define
framing schemas to achieve the promotion of operations from Sieve to the aggregate of
sieves used in the agent. The agent operation to delete a specific sieve object can now
be defined quite simply by referencing the method of the appropriate sieve object. The
other managed object operations are promoted in a similar fashion. It is situations such
as these where a visibility list is necessary, because we do not want operations Select and
CreateSelect to be visible to the environment. Ideally they should be declared as internal
operations. Recently, a small extension to ZEST included such a mechanism.

Notice that the Create operation is not part of the sieve specification, so we have pre-
served the concept that Create must occur before any operation in the sieve specification
can be applied.

Unification of Viewpoints To describe the unification of viewpoints, we decorate with
subscripts, so for exampleFilter1 is the schemaFilter from the first viewpoint. To apply
the unification of the two viewpoints we first flatten both ZEST specifications into Z
specifications. The flattening used is that defined in [19], and we do not repeat the details
here. However, the flattening of the CMEagent need not be calculated because no other
viewpoint contains a specification of the CMEagent’s behaviour. Therefore it suffices to
consider just the flattening of the ZEST sieve specifications. We give this here, and then
unify the two Z specifications, however, experience shows that it is straightforward to
factor the unification through the ZEST extended structuring in an obvious manner, and
that the unification can be derived just as easily from the ZEST specifications.

The flattening of the sieve object in the first viewpoint is:

Sieve

sieveid : ObjectId
destadd : ObjectId
opstate : Operational
sico : SieveConstruct
adminstate : Admin

status : Status

InitSieve

Sieve

opstate � active

adminstate � unlocked

�lter : Event 	 SieveConstruct

Filter

ΞSieve
event? : Event
noti�cation! : Event

status 
� deleted

opstate � active �adminstate � unlocked

�event?�sico� � �lter � noti�cation! � event?
�event?�sico� 
� �lter � noti�cation! � nothing



The equivalent Z sieve object in the second viewpoint can be derived in a similar
fashion. To unify the two specifications we first unify the state. The only conflict in the
declarations are due to differing types Status1 and Status2. To resolve this conflict, the
type Status in the unification is taken as the least refinement of Status1 and Status2 (i.e.
Status1�Status2, and this is well formed because the correspondence rules collapse the
type hierarchy), and state unification is applied to the schema Sieve. Hence, in addition
to the declarations which are not in conflict, the unification will contain the following:

Status ::� being created j created j deleted

Sieve

sieveid : ObjectId
destadd : ObjectId
opstate : Operational
sico : SieveConstruct
adminstate : Admin

status : Status

status � fcreated �deletedg � true

status � fbeing created �created �deletedg �

�opstate � factive�disabledg�adminstate � flocked �unlockedg�

Upon simplification the schema Sieve becomes:

Sieve

sieveid : ObjectId
destadd : ObjectId
opstate : Operational
sico : SieveConstruct
adminstate : Admin

status : Status

opstate � factive�disabledg

adminstate � flocked �unlockedg

In a similar fashion we unify InitSieve1 and InitSieve2, which simplifies to:

InitSieve

Sieve

status � being created

opstate � active

adminstate � unlocked

The Delete and Enrol schemas are defined in just one viewpoint. Hence, both these
schemas are included in the unification (with adjustments due to the unified state schema
Sieve). Similarly the unification contains both relations filter and newfilter.



To unify Filter1 and Filter2 we first adjust Filter1 due to the unified state schema.
The predicate part of Filter1 is then

status � fcreated �deletedg �

�status 
� deleted �opstate � active �adminstate � unlocked�

Calculation of the pre-conditions preFilter1 �preFilter2 then simplifies to:

�status � created �opstate � active �adminstate � unlocked�

Thus the unification of Filter1 and Filter2 is then given by:

Filter

ΞSieve
event? : Event
noti�cation! : Event

status � created �opstate � active �adminstate � unlocked

�event?�sico� � �lter � noti�cation! � event?
�event?�sico� 
� �lter � noti�cation! � nothing

�event?�sico� 
� new�lter � noti�cation! � nothing

Since we were unifying two Sieve objects, the unification can easily be re-written
into the equivalent ZEST class shown in Figure 2.

5.2 Conclusions from Case Studies

The above example illustrates the use of object specifications within viewpoints and
their unification. Although the example is simple, it clearly shows how viewpoints can
reference other objects and their methods, or contain a partial description of an object’s
behaviour. We have undertaken a number of case studies in order to test the hypothesis
that object-oriented description is the preferable viewpoint specification medium, and
our conclusions so far support this claim. The studies involving non-object based de-
scriptions were significantly harder to check for consistency and much harder to specify
in an independent fashion in the viewpoints, the specification in [1] is another indication
of the difficulty of non-object based viewpoint specifications.

Conversely, the object based viewpoint descriptions were much more successful.
When the viewpoints contain only references to objects defined in other viewpoints (as
opposed to specifying any of their behaviour) consistency checking is relatively straight-
forward (although the viewpoints can still be inconsistent). If two viewpoints both con-
tain (partial) descriptions of the same object, then there can be a non-trivial consistency
checking process, however, due to encapsulation the boundaries that inconsistency can
arise within are well defined.

Examples were undertaken using the following styles: Hall’s conventions; encapsu-
lation as defined by the ODP architectural semantics; ZEST and finally using Z speci-
fications produced from the object-oriented methodology described by Smith [26]. The



style of the object-oriented variant chosen did not significantly affect the success or oth-
erwise of the viewpoint specification or unification. There are clear merits in using Z
without extended syntax, particularly in the use within ISO initiatives. To that extent,
there are clear advantages in using the work of Hall and Smith. Hall in particular of-
fers formal and well-defined support for inheritance, which is lacking for some other Z
object-oriented variants. The extended syntax approaches have advantages for the de-
veloper, who is then not constrained by conventions for embedding object-orientation
in Z, but only if a clear semantics, and preferably a flattening into Z, can be given.

5.3 Relation between Unification and Inheritance

It is important to recognise that unification is a ’horizontal’ rather than ’vertical’ devel-
opment activity. By that we mean it is used to check development at a particular stage
(consistency checking) or possibly to combine development specifications (unification),
rather than a development activity that serves to define the implementation more closely
(as in refinement or inheritance). Given that unification is a horizontal activity, one needs
to describe the relationship between it and vertical development activities. The relation-
ship between unification and refinement is well known since unification is based upon
(least) refinement. We describe here the relation between inheritance and unification.

To do so we need a formal approach to inheritance and subtyping. In [11], Hall dis-
cusses known definitions in terms of both extensional and intensional semantics. Given
that we are interested in behaviour of specifications, we shall consider definitions due to
intensional semantics here. His intensional meaning of subclass is in terms of subclass
instances being valid implementations of the superclass, however, the definition is dif-
ferent from a refinement relation (as one would expect). To exhibit subtyping there must
exist a retrieve relation Abs between the superclass and subclass such that the following
are true.

S1 �Superstate; Substate � preSuperop �Abs 	 preSubop

S2 �Superstate; Substate; Substate � � preSuperop �Abs �Subop	
�
Superstate � �Abs ��Superop�

S3 �Substate � �
Superstate �Abs�

Only the third rule differs from the rules for refinement, see [11] for justification of
this. Hall also compares his definition with those of Cusack [6], Lano & Haughton [14]
and Liskov & Wing [15]. We are interested here in the relation between unification and
the individual viewpoints. In these circumstances the retrieve relations will be partial
functions (and only total if one viewpoint is degenerate). In this case Hall’s subtyping
implies subtyping in the sense of Cusack, Lano & Haughton and Liskov & Wing (ig-
noring the history predicates of the latter two). In particular, the rules S1-3 suffice for
subtyping in both Hall and ZEST, and we will thus work with this definition.

It is easy to construct examples to show that the unification of two viewpoints is
not in general a subtype of each viewpoint. However, this is unsurprising because one
viewpoint is only a partial description of an object’s behaviour. Instead the natural result
to seek is the following:



Theorem 1. LetPi �Oi be objects in viewpoint i . LetPi be a subtype ofOi . Then U�P1�

P2� is a subtype of U�O1�O2�, where U is the unification operator between viewpoints.

Proof
The full proof involves construction of appropriate retrieve relations between U�P1�P2�
and U�O1�O2� in a manner similar to the proof that unification is the least refinement,
see [8]. The outline of the proof is as follows:

The subtyping rules S1 and S2 between U�P1�P2� and U�O1�O2� are satisfied be-
cause unification is the least refinement.

For S3, note that every state in the U�O1�O2� unification appears in either O1 or
O2 or both. Thus every state in U�P1�P2� is related to some state in U�O1�O2� via the
retrieve relation defined for the least refinement. �

It is straightforward to construct examples to show the converse is not true, that is
U�P1�P2� being a subtype of U�O1�O2� does not imply that Pi is a subtype of Oi .

The theorem then provides a sound footing for the use of object-oriented techniques
in viewpoint descriptions. The relationship between unification and multiple inheritance
is clearly of importance (especially w.r.t method consistency), and is currently under in-
vestigation.

6 Conclusion

Formal description techniques are being employed extensively in ODP and have proved
valuable in supporting precise definition of reference model concepts. The use of view-
points to enable separation of concerns to be undertaken at the specification stage is a
cornerstone of the ODP model. Therefore two issues of importance to ODP and other
models of multiple viewpoints are unification and consistency checking.

We discussed the need for encapsulation of the consistency checking boundaries wi-
thin a unification, and showed how object-oriented methodologies provide the necessary
support for such a process. This was illustrated by providing a unification mechanism on
an object-oriented variant of Z, where we specified a number of viewpoints of an OSI
Management application.
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Sieve

sieveid : ObjectId
destadd : ObjectId

opstate : Operational
sico : SieveConstruct
adminstate : Admin

status : Status

opstate � factive�disabledg

adminstate � flocked �unlockedg

INIT
status � being created

opstate � active

adminstate � unlocked

Delete

Δ�status�

noti�cation! : Event

status � created

noti�cation! � deenrol

status � � deleted

Enrol

Δ�status�

noti�cation! : Event

status � being created

status � � created

noti�cation! � enrol

new�lter : Event 	 SieveConstruct

Filter

event? : Event
noti�cation! : Event

status � created

opstate � active �adminstate � unlocked

�event?�sico� 
� new�lter � noti�cation! � nothing

Fig. 1. ZEST sieve object specification



Sieve

sieveid : ObjectId
destadd : ObjectId

opstate : Operational
sico : SieveConstruct
adminstate : Admin

status : Status

opstate � factive�disabledg

adminstate � flocked �unlockedg

INIT
status � being created

opstate � active

adminstate � unlocked

Enrol

Δ�status�

noti�cation! : Event

status � being created

status � � created

noti�cation! � enrol

Delete

Δ�status�

noti�cation! : Event

status � created

noti�cation! � deenrol

status � � deleted

�lter �new�lter : Event 	 SieveConstruct

Filter

event? : Event
noti�cation! : Event

status � created �opstate � active �adminstate � unlocked

�event?�sico� � �lter � noti�cation! � event?
�event?�sico� 
� �lter � noti�cation! � nothing

�event?�sico� 
� new�lter � noti�cation! � nothing

Fig. 2. Equivalent ZEST class


