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Abstract

This thesis describes a novel method for the layout of undirected graphs. It

works by identifying certain patterns within the graph and drawing these in a

consistent manner. For graphs to be useful and of benefit to a user, the result

must clear and easy to understand. This process attempts to draw graphs in

such a manner.

Firstly, a background of graph problems and graph drawing is introduced,

before the benefits of patterns are explained. Following this, there is an in-

depth discussion of a number of existing graph drawing techniques, perceptual

theories and methods for subgraph isomorphism.

This pattern-based method is then explained in great detail. Firstly, the pat-

terns required are defined and examples given. Then, there is an explanation

of the methodology involved in identifying these patterns within a graph. Fol-

lowing on from this, the order in which patterns are drawn based on their con-

nection types to those already drawn is detailed, before a detailed description

of each drawing method.

Evaluation of this method follows, starting with analysis mainly based on

three real world data sources. This is in the form of side-by-side comparisons

of graphs drawn with this method and a force-directed method. Following this,

a metric based evaluation compares the two methods on edge crossings and

occlusion, while also detailing some pattern based metrics.
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Further evaluation continues in the form of an empirical study. The method-

ology of this study is detailed before results are displayed. Analysis of these

results follows, with conclusions drawn.

Finally, potential further work is detailed and possible implementations dis-

cussed. All study materials and results are provided in the Appendix for those

who wish to repeat the study or analysis.
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Chapter 1

Introduction

Graphs can be used to represent various forms of data. For these graphs to be of

benefit to a user, it is important that they are drawn in an aesthetically pleasing

manner. The process of creating a visual representation of a graph is known as

graph drawing. This work proposes a new method of drawing undirected graphs

using straight edges by identifying subgraphs (patterns) and drawing those in

a consistent manner. An empirical study was also conducted in order to answer

the research question: “Is a pattern based layout more effective than a force

based layout?” and the results of this are analysed and discussed.

There are several processes involved with this method: identifying patterns,

determining a drawing order, and drawing each pattern. Although there has

been considerable research in the field of graph drawing (See Chapter 2), this

method is a new approach to the problem. This thesis provides an introduction

to graph drawing and existing techniques before describing the new method in

detail in Chapter 3. An examination of the effectiveness of the new method will

follow in Chapter 4, and an empirical study will be described in Chapter 5. The

results of this study will be analysed and and conclusions made.

1
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1.1 History of Graph Problems and Graph Drawing

Graph problems have existed for many centuries. The first such problem was

considered by Leonhard Euler in 1736 when he attempted to find a path through

the city of Köningsberg by crossing each of the 7 bridges once and only once

[44]. By imaging the two islands and the two river banks as nodes and the

bridges as edges, a more general problem was developed. Euler proved that no

path could be found as some of the nodes had an odd number of edges.

Figure 1.1: Euler’s Seven Bridges of Köningsberg

Graph theory further developed with a textbook by Dénes Kőnig in 1936

[71] and by Frank Harary in 1969 [52]. These were both considered to be semi-

nal pieces in the field [121]. Most graph problems are of a theoretical nature and,

until the development of computer technology, several (most notably the Four

Colour Problem 1) remained unsolved. An introductory summary of graph the-

ory is provided by Chartrand [24].

Graph drawing was started by William Tutte who in 1963 created a pioneer-

ing barycentre approach [120] (See Section 2.1.1). This was the first graph draw-

ing method and paved the way for many further developments, such as Peter

Eades’ 1984 spring embedder [38]. There have been numerous developments in

the field of graph drawing since then, and a number of these are described in

1Separating a plane into contiguous regions (a map), no more than four colours are needed
to colour each region so that no two adjacent regions share the same colour.
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Figure 1.2: Key Players and Notable Relationships in the Middle East [81]

Chapter 2.

However, graph drawing has not just remained in the field of academia;

it has begun to appear in mass media too. For example, a visualization (Fig-

ure 1.2 [81]) appeared on a number of news websites detailing the complicated

relationships between several of the interested parties in conflicts in the Middle

East. Also, a popular website [23] was developed to allow users to discover

new artists they may enjoy by drawing graphs of their current favourite artists.

In the example of Figure 1.3, if a user were to search for Frank Sinatra, Dean

Martin and Sammy Davis Jr., they would discover other similar artists, such as

Nat King Cole and Bing Crosby.
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Figure 1.3: MusicRoamer: Suggested artists for some of the Rat Pack [23]

1.2 Why Patterns?

Despite there being a large number of different graph drawing techniques, none

so far have identified patterns within a graph and drawn them in a consistent

manner. This section will describe the reasoning behind choosing to identify

and draw patterns.

The patterns used in this research are all drawn as regular polygons wher-

ever possible (see Chapter 3 for details of the implementation). Most children

learn to recognise basic shapes such as circles, triangles and rectangles before

they start school [27] and thus regular polygons should be familiar to most of

the population. For example, when processing an image, humans segment that

imagine into simple geometric shapes [14]. It is therefore sensible to attempt to

draw subgraphs in a manner that is familiar to many: using regular shapes.
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Although regular shapes are familiar and common, that does not necessar-

ily mean they improve understanding of a graph. Dunne and Shneiderman

[36] found that highlighting particular subgraphs “can help biologists spot the

locations of particular processes, but does little to reduce the clutter of a com-

plex network visualization and can even reduce readability”. However, they

did note that “the spatial layout of a node-link diagram can have a profound

impact on the detection of communities in the network and the perceived im-

portance of actors”. McGrath et al. [83] concur with this by discovering that

“the number of perceived groups changes when nodes are spatially clustered

to hide or highlight a clique”. This shows that a user’s perception of the un-

derlying data may be affected by the emphasis of features or groups within the

layout, even if the graph is not drawn to emphasise such features.

1.3 Summary of Chapters

This thesis is divided into a number of chapters:

Chapter 2 This chapter details existing work in the fields of graph drawing,

graph aesthetics and subgraph isomorphism. Various graph drawing methods

are described in detail, with comparisons between them identified. An in-depth

comparison of this work and that of Dunne and Schniedermann [36] is also pro-

vided. Detailed analysis of previous work in many areas of graph aesthetics are

considered. This enables the discussion of what makes a graph layout effective,

and justifies the decisions taken in the implementation and the design of the

empirical study.

Chapter 3 The research is described in detail in this chapter. Patterns will

be defined, before their identification is explained. The determination of the
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drawing order follows, before detailed explanations of the many drawing algo-

rithms. Examples and pseudocode for each drawing type are provided.

Chapter 4 An analysis of generated layouts is performed in this chapter. An

explanation of various datasets begins the chapter, before examples from vari-

ous datasets drawn with this pattern based system and a force directed layout

are compared for interesting visual artefacts. Following this, various metrics are

used to quantitatively compare the pattern based and force directed layouts.

Chapter 5 This chapter describes the formal empirical study, conducted in or-

der to answer the research question: “Is a pattern based layout more effec-

tive than a force based layout?”. The methodology will be detailed before the

results are discussed and analysed. Any potential threats to validity are also

detailed.

Chapter 6 Conclusions from the research are present in this chapter. The re-

search is summarised and the effectiveness is discussed. Potential avenues for

future work are also discussed.



Chapter 2

Related Work

There has been much research in both graph drawing, aesthetics and subgraph

isomorphism (the process of identifying a subgraph within another graph). In

this chapter, related work in graph drawing and subgraph isomorphism is dis-

cussed. Previous work on graph aesthetics is also discussed as this work can

be used as a basis for implementing and evaluating the results of a particular

drawing method.

2.1 Graph Drawing Techniques

Graph drawing is a well researched area of data visualization. There are a num-

ber of existing reviews and surveys of current drawing techniques. The Hand-

book of Graph Drawing and Visualization, edited by Tamassia [115] in 2013, details

a large number of algorithms and research on a broad range of topics. Gibson

et al. [51] surveyed graph layout techniques, but only detailed methods for

the drawing of graphs in two-dimensions. Di Battista et al. [34] also described

a large number of techniques, including examples, in their survey. They did

7
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not focus on one particular area of graph drawing, including both application-

oriented and theoretical work, however the age of this research (having been

published in 1994) does mean a number of more recent techniques are missing.

Dı́az et al. [35] also compiled a review of literature in the field of graph drawing,

but heavily focus on the algorithms involved rather than any empirical work.

Herman et al. [56] created a review of methods for visualising graphs. Unlike

other work, this survey is only focussed on “structured data (i.e. where graphs

are the fundamental structural representation of the data)”. They also focus on

more particular issues that are relevant for visualisations, such as usability and

aesthetics. Kobourov [69] produced a thorough review of a number of graph

drawing techniques that use force directed methods. This starts with Tutte’s

method [120] and continues with descriptions of methods up to the present

day. Von Landesberg et al. [125] and Hu [60] both created reviews of drawing

methods with particular emphasis on techniques that are designed or optimised

for large graphs. In addition to these reviews, Chen [25], Spence [110] and Ware

[127] have all written detailed books on the subject of Information Visualisation,

of which graph drawing is a part.

There are a number of existing methods for drawing graphs, and these in-

clude the barycentre approach, force-directed methods, simulated annealing,

constraint based layouts and others. Many techniques for drawing graphs opti-

mise for a particular domain and restricted graph type, such as planar graphs,

however the methods detailed below are for drawing graphs with fewer restric-

tions.
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2.1.1 Barycentre Approach

Tutte was the first to propose a method for drawing graphs in 1963 [120]. The

method first creates a boundary polygon before using a system of linear equa-

tions to place nodes at the barycentre of their neighbouring nodes. Tutte proves

that this method can draw a crossing-free, straight line drawing for any 3-node

connected planar graph. This automatic layout is a big advantage, however it

does limit the type of graphs that can be drawn to planar graphs and is therefore

not suitable for drawing more general graphs. Some nodes must also be fixed

in location before drawing can begin. There is also the advantage of having a

global solution, rather than the potential to get stuck in local optima, as can be

the case with force-directed methods.

(0,0) (1,0)

(0,1) (1,1)

(⅔,⅔)

(⅔,⅓)

(⅓,⅔)

(⅓,⅓)

Figure 2.1: A graph drawn using Tutte’s Barycentre approach

2.1.2 Force-directed methods

Many graph drawing techniques are based on force-directed methods. This

approach was developed by Eades [38], and models nodes as charged particles
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which have a repulsive force against all other nodes. Edges are represented

as springs charged with attractive forces between the nodes they connect, and

both these forces relate to the distance between the respective nodes. In Eades’s

model, the attraction force is k log d, and the repulsive force is k
d2 , where k is an

experimentally found constant and d is the distance. These forces move their

respective nodes and when they reach an equilibrium, or a certain number of

iterations have been completed, a final layout is created.

(a) Attraction Forces (b) Repulsion forces

Figure 2.2: Example of the forces used in Peter Eades’s method [38]

Graphs drawn using this technique often have aesthetically pleasing lay-

outs (and symmetrical layouts [40]), but there can be some issues such as occlu-

sion and local optima. On particularly dense graphs, occlusion can be problem-

atic and force-directed methods often struggle to overcome local optima. This

means that a node cannot move to a less favourable position before eventually

reaching a better position. For example, as Figure 2.3a demonstrates, nodes 2

and 3 should be swapped, but the repulsive forces acting on each node prevent

them from moving closer together.

While Eades’s original principle is still used, it has been modified and im-

proved. Fruchterman and Reingold [48] introduced improvements such as sim-

plifying the calculations of the forces, as well as limiting the repulsive forces to
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(a) A poor layout

0

1
2

3 4

5

6
7

8

(b) A better layout

Figure 2.3: Example of Local Optima

act only on nodes nearby, rather than the entire graph. In the simplified cal-

culations, attraction is linearly proportional to the distance (following Hooke’s

Law1) whereas repulsion has a linear inverse proportion to the distance. This

differs to Eades’ work where computationally expensive logarithmic calcula-

tions are used.

(a) Eades’s method [38] (b) Fruchterman & Reingold’s method [48]

Figure 2.4: Example of the same graph drawn using two different force-directed
methods (Taken from Figures 75 and 76 in Fruchterman and Reingold [48])

1Hooke’s Law states that: “The force needed to stretch a spring is proportional to the exten-
sion of the spring from its natural length” [20]. Eades used his own formulae to calculate the
spring forces, whereas Kamada and Kawai maintained a closer relationship to Hooke’s Law.
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Kamada and Kawai [68] use partial differential equations to achieve an op-

timisation of this, as well as introducing the concept of an ideal distance be-

tween two non-connected nodes. Harel and Koren [54] adapted Kamada and

Kawai’s technique to approximate the final layout and allow nodes to deviate

from this approximation by a decreasing amount at each iteration. Gansner et

al [50] modified Kamada and Kawai’s technique by changing the energy func-

tion using a process known as stress majorisation. Sugiyama and Misue [113]

additionally apply magnetic forces to nodes to attempt to orientate edges in a

particular manner. Lin and Yen [76] also developed a modification to the basic

force-directed technique where edges also repel other nearby edges. This avoids

edge occlusion, but unfortunately results in node occlusion instead. Lipp et al.

[77] created an algorithm that draws large graphs in O(V log V + E) time com-

plexity rather than O(V2) time complexity taken by Fruchterman and Reingold

[48]. To achieve this, nodes are grouped and the barycentre of this group is used

in the force calculations for all nodes within the group. This enables the algo-

rithm to perform faster “without a significant influence on the quality of the

drawings (in terms of the number of crossings and deviation in edge lengths)”.

Hierarchical approaches based on force-directed methods have also been

developed. For example, Walshaw [126] suggested to cluster nodes together

to form smaller graphs. The smaller graphs are drawn with a force-directed

method and then expanded. Additional nodes are then drawn using a force-

directed method and the graph expanded again. This continues until the graph

has returned to the original topology. Barnes and Hut [9] created a hierarchi-

cal approach that ran in O(V log V) time (where V represents the set of nodes),

which was extended by Hu [59]. Gajer et al. [49] also developed a hierarchical

force-directed approach, but draw the graph in many dimensions, before pro-

jecting to 2 or 3 dimensions. Arleo et al [7] developed a system to draw graphs
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using a multi-level force-directed technique, but with the algorithm running

over a distributed system. This method is able to draw graphs with a million

edges in around an hour.

It is also possible to cluster edges as Holten and van Wijk [58] discovered.

Through bundling edges that are similar, it is possible to clearly identify com-

mon connections. Tunkelang [119] created a version of a force directed layout

based on more complex physical systems (such as those in astrophysics) and

through numerical optimisation. Coleman and Parker [28] combined Davidson

and Harel’s [32] method with Fruchterman and Reingold’s [48] method to create

a new layout mechanism that, depending on the domain, drew graphs accord-

ing to a number of aesthetics, for example avoiding nodes placed too close to

edges, and maintaining consistent edge lengths.

Force-directed methods can also be combined with other visualization tech-

niques. For example, combining force-directed methods and Euler diagrams

[8, 104] enables an aesthetically pleasing graph to be drawn, as well as high-

lighting groupings between nodes. In this method, the forces are similar to

those in Fruchterman and Reingold’s work [48]. However, an extra repulsive

force is applied which is proportional to the distance a node is from the bound-

ary of its group. This ensures that nodes remain in their correct groups and do

not cluster on the edges.

Further analysis on a collection of graph drawing algorithms was under-

taken by Brandenburg et al. [19], where a variety of different drawing methods

are compared.

2.1.3 Simulated annealing

Although force directed methods can sometimes produce aesthetically pleasing

graph layouts, they are susceptible to local optima. A local optimum is where
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an algorithm cannot move to a less favourable result in order to progress to an

overall better result. Therefore, force-directed methods may not always gen-

erate the best possible graph layout. Simulated annealing, however, is not so

severely affected by local optima.

Simulated annealing is analogous to annealing in metallurgy, where metals

are cooled slowly to improve their structural layout. Similarly, in simulated

annealing the graph initially moves large distances which are then “cooled”

slowly to allow smaller movements. This helps the system to avoid local op-

tima. Davidson and Harel [32] used this method to draw graphs and their re-

sults compared favourably with manually drawn graphs. However, simulated

annealing is computationally more expensive than force-directed methods, and

in order to compensate Davidson and Harel allow their algorithm to find solu-

tions that are only close to optimal. Although this does not produce the best

possible layouts, the results are aesthetically pleasing. Simulated annealing is

also used in other fields, such as materials science [10], map generalization [129]

and power generation [134].

2.1.4 Other Drawing Techniques

2.1.4.1 Constraint-based Layout

Force-directed methods can also be used in conjunction with other constraints.

Tamassia [114], for example, suggested that constraints such as pinning nodes

so they cannot move, clustering nodes, and the alignment of edges could be

used in conjunction with force-directed methods.

Tamassia implemented these constraints by adding new forces, or by cre-

ating “dummy” nodes that effect forces as any other node would, but do not

appear in the final layout. Tamassia concluded that force-based methods lend
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(a) Fruchterman & Reingold’s force-
directed method [48]

(b) Davidson and Harel’s simulated an-
nealing method [32]

Figure 2.5: Example of the same graph drawn using a force-directed method
and simulated annealing (Taken from Figures 54 and 55 in Fruchterman and
Reingold [48])

themselves well to additional constraints. This allows the use of force-directed

methods for a number of tasks with only slight modifications and extra con-

straints.

Böhringer and Paulisch [16] also modified a number of existing techniques

to allow a user to specify constraints in order to achieve a better layout.

2.1.4.2 Incremental Technique

Tunkelang [118] developed a new drawing technique based on an incremental

search. In this technique, nodes are ordered based on a minimal height span-

ning tree. For each node placing, 16 locations are checked and for each one an

aesthetic cost is calculated. This cost is based on attraction and repulsion forces

as well as the number of edge crossings and edge lengths. The location with the

lowest cost is then chosen for the node placement. After each individual node

has been inserted the layout is improved. This is done by checking the cost of
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neighbouring nodes.

Tunkelang compared this algorithm with both Fruchterman and Reingold’s

method [48] and Davidson and Harel’s method [32] on three quality measures:

• Edge lengths

• Node distribution

• Number of edge crossings

The algorithm performed favourably on both sparse and dense graphs, al-

though the other methods are not optimised for these test conditions. Compu-

tational time analysis was not performed.

2.1.4.3 Graph Embedder

A method known as the Graph Embedder was proposed by Frick et al [46]. This

method utilises cooling methods used in previous work [32, 48] but instead of

applying a temperature to the whole graph, it applies a different temperature

to each node.

The temperature calculated for each node reflects the temperature of previ-

ous iterations as well as the possibility of an oscillating or rotating node. If the

algorithm detects that the node is a larger distance from its intended destina-

tion, the temperature can rise. Force is also applied to the node to ensure that it

is attracted to the centre of the graph; this helps to minimise the surface area of

the graph.

Although this method successfully resolves foldings and minimizes edge

crossings, local optima can result in drawings with poor aesthetics. However,

on smaller graphs this method performs marginally better than that proposed

by Fruchterman and Reingold [48], and Davidson and Harel [32]. This is not

true for larger graphs where this method results in visually poorer layouts.
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2.1.4.4 Other Drawing Methods

Hobbs and Rodgers [57] created a genetic algorithm that drew a graph based on

a number of aesthetic criteria. Utech et al. [123] also used an evolutionary algo-

rithm to draw a directed graph, by layering and ordering nodes before drawing

them in turn.

Archambault et al [5, 6] created a multi-level drawing algorithm that identi-

fies topological features within a graph, and condenses them into a single node.

This continues until all features have been found, when each feature is then

drawn in an appropriate manner. Unlike the pattern based system described in

Chapter 3, this is multi-level and does not identify features on a single level.

2.2 Graph Aesthetics and Perceptual Theories

There has been considerable research into graph aesthetics and perceptual the-

ories in order to identify the features that improve a graph’s usability and aes-

thetics.

There are a number of standard measures used to quantitatively measure

the aesthetics of a graph. Eades et al [41] suggested a number of measures, as

did Tamassia et al [116] who also proposed centrally placing high degree nodes

(Figure 2.6). Further work on graph aesthetics was performed by Purchase [91,

97, 101] and Herman et al [56].

There are a number of perceptual theories that are the basis for aesthetic

principles. The Gestalt principle of proximity suggests that “objects that are

close to one another appear to form groups”. This means that similar nodes

should be clustered (so they appear as one group, but not so that they over-

lap), that other edge lengths should be maximised (so that unrelated nodes do

not appear too close) and that nodes should not overlap [133]. Edge crossings
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(a) Bad example (b) Good example

Figure 2.6: Good and Bad Examples of Centrally Placing High Degree Nodes

should be minimised (so that each edge can easily be identified) based on the

same principle, although one method [106] uses the Gestalt principle of closure

to place gaps where edges overlap, yet still maintain the usability of the visuali-

sation. Keeping the edge lengths uniform helps with the principle of similarity,

where stimuli that resemble each other are perceived as part of the same group

[133]. This principle also suggests that symmetry and clustering similar nodes

are important aesthetics. The physical limitation of human eyes is such that

edge angles should be maximised and nodes should not be located too close

together [31].

Bennett et al [13] described a large number of aesthetic principles and a mod-

ified version of their table (to remove unnecessary columns and rows inappli-

cable to general undirected graphs) is shown as Table 2.1. The authors who

proposed and evaluated various metrics are detailed, along with an example of

each. Only those metrics that are relevant to drawings of general undirected

straight-line graphs are displayed.
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Heuristic Proposed By Evaluated By Example

Node metrics

Cluster similar nodes [116, 117] [65] Fig. 2.7

Distribute nodes evenly [32, 53, 116, 117] — Fig. 2.8

Node-edge occlusion [32, 53] — Fig. 2.9

Node-node occlusion [132] — Fig. 2.10

Edge metrics

Minimise edge crossings [15, 32, 53, 116, 117] [65, 96, 98, 128] Fig. 2.11

Keep edge lengths uniform [15, 32, 117] — Fig. 2.12

Minimise edge length [53, 116, 117] — Fig. 2.13 & 2.14

Maximise edge angles [31, 101, 117] — Fig. 2.15

Overall Layout Metrics

Keep correct aspect ratio [117] — Fig. 2.16

Minimise area [116, 117] [96] Fig. 2.17

Maximise symmetry [15, 101, 116, 117] [96, 100] (local) Fig. 2.18

Table 2.1: A summary of various graph drawing aesthetics (Modified from Ben-

nett et al [13])

(a) Bad example (b) Good example

Figure 2.7: Good and bad examples of clustering similar nodes
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(a) Bad example (b) Good example

Figure 2.8: Good and bad examples of distributing nodes evenly

(a) Bad example (b) Good example

Figure 2.9: Good and bad examples of node-edge occlusion

(a) Bad example (b) Good example

Figure 2.10: Good and bad examples of node-node occlusion
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(a) Bad example (b) Good example

Figure 2.11: Good and bad examples of minimising edge crossings

(a) Bad example (b) Good example

Figure 2.12: Good and bad examples of minimising edge variance

(a) Bad example (b) Good example

Figure 2.13: Good and bad examples of minimising the length of the largest

edge
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(a) Bad example (b) Good example

Figure 2.14: Good and bad examples of minimising the total length of edges

(a) Bad example (b) Good example

Figure 2.15: Good and bad examples of maximising the minimum angle of

edges leaving a node
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(a) Original graph (b) Bad example (c) Good example

Figure 2.16: Good and bad examples of consistent aspect ratio

(a) Bad example (b) Good example

Figure 2.17: Good and bad examples of minimising area

(a) Bad example (b) Good example

Figure 2.18: Good and bad examples of maximising symmetry
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Formal methods to calculate these metrics were then developed. However,

it is made clear that these only focus on “good” numbers, not on how useful

humans perceive these metrics. Purchase [92] performed a number of empirical

studies on various graph layout mechanisms to determine which performs best

with users. Purchase [93] continues to discuss the virtue of such measures stat-

ing “designers . . . can benefit from . . . this human-centred approach, by adapt-

ing their methods to focus on user concerns, rather than computational ones”.

By taking a human-centric view of graph aesthetics, graph drawing methods

can be optimised for user understanding, rather than just low scores in metrics.

McGrath and Blythe [82] agree, adding that “visualization strategies must take

into account how viewers are likely to decode the information presented”. It is,

however, then necessary to perform user studies on the results. Additionally,

Purchase [95] also discovered that these current aesthetic measures are not nec-

essarily relevant for certain domains, for example UML diagrams (or, as Storrle

[112] discovered, a combination of aesthetic measures may be required): it is

possible that a graph layout may never be used by a human (for example in

PCB manufacture [45, 103]). It is indeed possible that users may create better

layouts than the best automated layout mechanisms [37]. There are also aes-

thetics to consider when creating dynamic visualisations. Bender-deMoll and

McFarland [12] discussed a number of issues with dynamic visualisations, one

of which is preserving the mental map [39, 99, 102]. The mental map is the concept

that the user gains insight and information from a diagram and that sudden and

large changes can destroy this [39].

While it is accepted that the measures above are useful in improving the

usability of a graph, there has also been work to demonstrate this. Huang [62]

performed eye tracking analysis on users in order to determine the effect of edge

crossing on the understanding of a graph. Huang found that increasing the
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angle at which edges cross will result in an improved layout. It is also important

to study the cognitive load caused by performing a task on particular graph

drawing layout. Huang et al [63, 64, 66] performed a number of studies in

order to determine the effect of cognitive load on a user. While it is useful that

the graph may appear “nice looking”, if the layout results in extra work from

the user, it may not be an effective solution.

There are several metrics to quantitatively measure the aesthetics of a graph,

however it is important that the performance of users in empirical studies is also

considered. As Bennett et al [13] eloquently concluded: “creating aesthetically

appealing graphs is more than a quest for the beautiful – it has the practical aim

of revealing underlying meaning and structure”.

2.3 Subgraph Isomorphism

Subgraph isomorphism is a computational problem where one must decide if

a subgraph can be found within a larger graph. More formally, it is determin-

ing whether a given graph, G, has a subgraph, g, that is isomorphic to another

given graph, H. If and only if an edge exists between two nodes in g, then there

must also be an edge existing between the corresponding two nodes in H. The

detection of subgraph isomorphism is an NP-complete problem, however ap-

proximate subgraph isomorphism can be completed in polynomial time [33].

There has been considerable research conducted on subgraph isomorphism, in-

cluding detecting subgraphs, and drawing large graphs which are based on

previously defined or drawn subgraphs.

Yuan et al [135] developed a system in which subgraphs were drawn ac-

cording to user input. In this system a human or non-human user defines and

manually draws a subgraph.
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(a) Graph G (b) Graph H

(c) Subgraph g in G that is isomorphic to H

Figure 2.19: Example of subgraph isomorphism

The system then creates a layout for the rest of the graph. This layout is

based around the subgraph and modifications to the user’s layout are kept to

a minimum. This allows subgraphs to be drawn manually by humans (which

often produces good layouts for small, sparse graphs) or by specific drawing

algorithms (i.e. tree drawing algorithms). Despite the algorithm’s success, the

“garbage in, garbage out” problem cannot be overlooked in that a poor layout

from the user can result in a poor overall layout.

Another algorithm, developed by Ullmann [122], detects subgraph isomor-

phism. This algorithm uses adjacency matrices for the graph and subgraphs. It

uses these matrices to detect isomorphism. C̆ibej and Mihelic̆ [26] investigated

the effectiveness of Ulmann’s technique on large datasets.

To overcome such issues as computational complexity, Messmer and Bunke
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[84, 86] developed an algorithm that runs in quadratic time. This model uses a

database to detect potential subgraphs and an arbitrary graph containing one

or more of these subgraphs. Through this database, all potential subgraphs are

converted into adjacency matrices and organised into a decision tree.

Messmer and Bunke’s algorithm has a lower time complexity in comparison

with Ullmann’s model, but it is possible that the decision tree’s size may grow

exponentially with the size of the graphs. The authors propose a solution to this

potential issue, but this comes at the cost of increased running time.

Messmer and Bunke created another method [85, 87] that decomposes graphs

into smaller subgraphs. Once a set of small subgraphs has been identified, the

main graph is examined to try to locate these subgraphs within it. If they do,

one instance is noted and the higher level of graph is then compared. If all levels

have been compared and exist, then the subgraph exists in the main graph. As

each subgraph is only matched once, the complexity of the algorithm is limited.

Performance rates for this algorithm are high but in some cases it can fail to deal

with highly connected graphs.

Another model, developed by Huan et al [61], successfully identifies con-

nected subgraphs within a larger graph. In this method, subgraphs are joined

and extended with potential subgraphs within the main graph. In comparison

with other isomorphism techniques, this system seems to perform favourably.

Cordella et al [30] implemented algorithms that test both subgraph and graph

isomorphism with an emphasis on larger graphs. This algorithm’s time com-

plexity is independent of the number of nodes and performs favourably in com-

parison with other methods.

An algorithm to detect subgraph ismorphism in planar graphs has been de-

veloped by Eppstein [43]. Eppstein developed an algorithm that detects isomor-

phism in linear time by finding subgraphs in a tree from each possible node.
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However, not all graphs are planar, so this method cannot be applied as a gen-

eral solution.

Bonnici et al [17] developed a subgraph isomorphism test utilising a search

based strategy, specifically to identify subgraphs in biochemical data. As with

other methods, the authors use a tree based search approach to detect isomor-

phism. If there is a statistically significant increase in the number of subgraphs

in a particular dataset compared to random graphs, then this set is of interest

to the user. These subgraphs are known as motifs and are discussed further in

Section 2.3.1.

Lambert et al [73] developed a method to identify patterns within graphs

and highlight them, as well as identify overlaps between these patterns. The

authors, however, make no attempt to draw the graph using these discovered

patterns. Lischka and Karl [78] developed a method to draw a graph using sub-

graph isomorphism and various constraints, using a backtracking algorithm.

Maier and Minas [80] developed an editing tool for visual languages that de-

tects various reusable patterns and allows the user to specify a layout for these.

Subgraph isomorphism has been used in various fields of research aside

from graph drawing and visualisation, as well as in a number of real world

applications. Such examples include: identifying molecular structures [105],

Chinese character recognition [79], interpreting schematic diagrams [22], se-

mantic networks with graph grammars [42], seal verification [74], and image

processing [11].

2.3.1 Motifs

There is a large interest in the identification and drawing of motifs. Motifs are

subgraphs which appear within a large graph more often than random proba-

blilty would suggest. The identification of motifs is relevant to both subgraph
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isomorphism and this work. However, most motif research has been in the

biological domain, with many implementations either simply highlighting the

subgraphs or replacing them with a glyph2.

Motif detection can be a useful tool to identify interesting subgraphs in com-

plex biological networks [88, 107, 108, 131], such as amino acid mutation graphs

[75], metabolic networks [72] and E. coli networks [109]. Vehlow et al. [124]

created a method to highlight motifs within a graph, but did not draw these

subgraphs. Huan et al. [61] developed a novel method for the identification

of motifs. Koenig et al. [70] developed a method that identifies user defined

subgraphs within a main graph, but it redraws the graph to fit within the user

defined subgraph layout. A summary of a number of algorithms designed for

“frequent subgraph” (i.e. motif) detection are described by Jiang et al [67].

2.3.1.1 Motif Simplification

Dunne and Schneidermann [36] developed a method called motif simplification

which identifies motifs and replaces these with glyphs in the final layout. They

claim that using glyphs to replace motifs can require less screen space, are eas-

ier to understand in the context of the network, can reveal otherwise hidden

relationships and preserve as much underlying information as possible. The

authors consider three types of glyphs: cliques, fans (similar to stars in this

work) and connectors. The glyphs grow larger as the number of nodes in the

respective motif increases (see Figure 2.20).

Dunne and Schneidermann discuss a number of problems with this approach.

One is that overlapping glyphs can be ambiguous and choosing one clique over

another to prioritise in the drawing can impact the user’s perception of the

2A symbolic representation of a group of nodes, e.g. Dunne and Schneidermann [36] replace
cliques with a petal shaped glyph
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(a) Cliques of size 4, 5 and 6 and their glyphs (Taken from Figure 6)

(b) Fan motif and two glyph variants (Taken from Figure 4)

(c) Connector motif and glyph (Taken from Figure 5)

Figure 2.20: Example of various motifs and glyphs (Taken from Figures 4–6 in
Dunne & Schneidermann [36])

graph. Instead, the largest non-overlapping clique is chosen, which is a sim-

ilar technique to that used in the pattern based system described in this thesis.

One of the main differences between this work and that of Dunne and Schnei-

dermann is that in this pattern based system, the underlying data is still always

displayed. Users can still see the individual members of cliques, stars, etc as

well as their full relationships.

There are also potential issues regarding a user judging the size of motifs and

thus the number of nodes in the particular motif. Consider Figure 2.21a, where
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two glyphs are shown. It is not clear whether these represent, for example,

motifs of size 4 and 5, or 6 and 12. In the pattern based system, however, it is

immediately obvious how many nodes exist within a pattern (see Figure 2.21b).

(a) Glyphs of two sizes (b) Patterns of two sizes

Figure 2.21: Glyphs and patterns representing graphs of two different sizes

This is because the patterns are drawn as regular polygons with the original

graph layout still displayed. Even if part of a pattern were to be obscured, the

Gestalt principle of good continuation suggests that a user could still determine

the number of nodes in the pattern based on the angles that edges intercept a

node (see Figure 2.22).

Figure 2.22: Example of an obscured clique

This ability to easily determine the size of a pattern while still displaying

the original graph layout is a key difference between the work of Dunne and

Schneidermann and the pattern based system described in this thesis.
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2.4 Summary

This chapter has discussed relevant work in the fields of graph drawing, graph

aesthetics, perceptual theories and subgraph isomorphism.

There are a large number of existing graph drawing techniques (see Sec-

tion 2.1), from the popular force directed method developed by Eades [38], im-

proved by Fruchterman and Reingold [48] and with many variations, to simu-

lated annealing [32] and other methods. Each of these drawing techniques have

their own advantages and weaknesses and many are tailored to particular types

of graph or use cases.

Much research has also taken place into identifying the features that improve

a graph drawing’s usability and aesthetics (see Section 2.2). The Gestalt princi-

ples suggest various concepts which will improve a layout and authors [41, 116]

have suggested various metrics to formally define a “good” layout. However,

other authors [92] have performed numerous empirical evaluations and anal-

ysis in order to understand the effects that enable a usable and aesthetically

pleasing graph layout.

The identification of patterns is closely related to the problem of subgraph

isomorphism (see Section 2.3). Various authors [84, 86, 122, 135] have created

methods of performing subgraph isomorphism, with some focussing on mo-

tifs. A similar piece of work creates the concept of motif simplifaction [36] (see

Section 2.3.1.1, which identifies motifs within a graph and replaces these with

glyphs.



Chapter 3

Description of Drawing Method

3.1 Introduction to the Drawing Method

This chapter describes the drawing method in great detail. In order to draw

patterns in a consistent layout and achieve an aesthetically pleasing final result,

several stages are required: definition of patterns (Section 3.2), identification of

patterns (Section 3.3), determining a drawing order (Section 3.4) and the draw-

ing of each pattern (Section 3.5). Each of these stages are described in their own

section, with examples given of the various drawing methods for each connec-

tion type. Accompanying these descriptions are pseudocode algorithms which

give a more formal definition of the process required. The overall method is

described in Algorithm 3.1, and follows a number of graph drawing conven-

tions, in this case a graph is a set of nodes and a set of edges1. Internally within

the software, each node has a list of edges, and each edge has two nodes – this

redundant data structure allows easier implementation and expandability for

1Often shown as G ← (V, E). Functions in bold are self-explanatory (such as accessing or
mutating properties of a node, edge or pattern), while those functions in all caps are detailed
elsewhere.

33
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other graph types. A pattern is considered to be a graph in itself, in that it has

its own list of nodes and list of edges, although during identification these may

be empty or the pattern is later discarded. Each node and edge also has a list of

patterns that it is contained within.

Algorithm 3.1: Overall Algorithm

01: function OVERALLALGORITHM
02: G ← (V, E) . Graph of Nodes and Edges
03: G ← largestConnectedComponent(G)

04: Pu ← [ ] . Undrawn Patterns
05: Pd ← [ ] . Drawn Patterns
06: Pu ← Pu ∪ IDENTIFYCIRCLES( ) . See Algorithm 3.2
07: Pu ← Pu ∪ IDENTIFYCLIQUES( ) . See Algorithm 3.3
08: Pu ← Pu ∪ IDENTIFYSTARS( ) . See Algorithm 3.4
09: Pu ← Pu ∪ IDENTIFYPATHS( ) . See Algorithm 3.5
10: Pu ← findDrawingOrder(Pu) . See Section 3.4
11: for each Pattern Gp ∈ Pu do
12: drawPattern(Gp) . Draw pattern according to connection type, see algorithms in Section 3.5
13: Pu ← Pu \ {Gp}
14: Pd ← Pd ∪ {Gp}
15: for each Pattern {Gp | Gp ∈ Pd, isPath(Gp) OR isRoute(Gp)} do
16: ADJUSTPATHS(Gp) . See Algorithm 3.19
17: if Pd = ∅ then
18: Let drawn(V[0])← true
19: . If there are no patterns, then set one node to be drawn for the Loose Nodes method
20: TIDYLOOSENODES(G) . See Algorithm 3.20

3.2 Definition of Patterns

To draw patterns in a consistent layout, it is first essential to define what pat-

terns are required. In this work, there are five types of subgraph that can be

defined and identified within many graphs. These are cliques, circles, stars,

paths and triangles. These patterns encompass the vast majority of nodes (as

can be seen in Section A.7). One piece of further work described in Chapter 6 is
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to define more patterns and potentially user-defined patterns. As terminology

and definitions of these patterns (with the exception of cliques) are not con-

crete within the field, it is important to clarify the definitions used within this

research. These definitions are as follows:

3.2.1 Circle

A circle:

• Must contain at least 4 nodes but no more than 8

• Each node must connect to exactly 2 other nodes in the pattern so that a

closed path is formed

• Each node may connect to any number of other nodes not in the circle

There is a maximum limit imposed on a circle’s size and this is to increase the

performance of the system: searching for large circles is computationally slow

and large circles are uncommon in graphs. The minimum limit is set at 4, as a

circle of size 3 is classed as a triangle. In figures throughout this work, circles

will be highlighted in blue and node labels will be prefixed with an o.

-oA -oA

-oA

-oA-oA

-oA

-oB

-oB

-oB

-oB

-oB

-oC

-oC

-oC

-oC

Figure 3.1: Example of circles of size 6, 5 and 4
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3.2.2 Clique

A clique:

• Must contain at least 4 nodes

• All nodes are connected to the others within the clique

• All nodes can connect to nodes not within the clique

The minimum size limit is set at 4, as a clique with 3 sides is classed as a triangle.

In figures throughout this work, cliques will be highlighted in pink and node

labels will be prefixed with a c.

-cA-cA

-cA

-cA -cA

-cA

-cB

-cB

-cB

-cB

-cB

-cC

-cC

-cC

-cC

Figure 3.2: Example of cliques of size 6, 5 and 4

3.2.3 Star

A star:

• Must contain at least 5 nodes

• There is one central node which connects to all other nodes in the pattern

• All other nodes must only connect to the central node in this pattern

• Any node can connect to nodes outside the star



CHAPTER 3. DESCRIPTION OF DRAWING METHOD 37

The minimum limit of 5 nodes is to allow 4 spokes and this retains consistency

with the other pattern types. In figures throughout this work, stars will be high-

lighted in red and node labels will be prefixed with an s.

-sA -sA

-sA

-sA-sA

-sA-sA

-sB

-sB

-sB

-sB

-sB

-sC

-sC

-sC

-sC-sC-sB

Figure 3.3: Example of stars of size 6, 5 and 4

3.2.4 Path

A path:

• Must contain at least 4 nodes

• The terminating nodes can connect to any other nodes outside of the pat-

tern

• Other nodes in the pattern must connect to only 2 other nodes; the previ-

ous and next node in the path

• Any paths that are also circles are only treated as circles

The minimum limit of 4 nodes is set because a path made of 3 nodes is a far too

common structure and can easily be drawn without a fixed method. In figures

throughout this work, paths will be highlighted in orange or green and node

labels will be prefixed with a p.
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-pA -pA -pA -pA

-pB -pB -pB -pB -pB

Figure 3.4: Example of paths of size 4 and 5

3.2.5 Triangle

A triangle:

• Must contain exactly 3 nodes

• All nodes must be connected to each other

Triangles are technically both small cliques and circles. However, for the pur-

poses of this work, they are treated as a separate pattern. This is because trian-

gles have a small number of nodes are therefore have a flexible layout. Triangles

will be highlighted in cyan and node labels will be prefixed with a t.

-tA

-tA

-tA

Figure 3.5: Example of a triangle

3.2.6 Other Notation

Within any graph there may be nodes that are not contained within any pat-

tern (although these are quite rare). These are left highlighted in black or grey

throughout figures in this work (See Figure 3.6).

Some nodes will have labels, consisting of pairs of letters. The first letter

denotes the pattern type, as described above. The second letter is a unique
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0-cA

1-cA

2

3

4

5-cA 6-cA

7

Figure 3.6: Other Nodes

identifier for that pattern, starting with A and continuing through the ASCII

character set. For example, Figure 3.6 has one pattern: clique cA. In some ex-

amples, node labels may begin with a number - this is a unique identifier for

each node. Figures in Chapters 4 and 5 have no highlighting, in order to make

a fairer comparison with other drawing methods. In other examples, the list of

patterns may be separated by a dash.

Many algorithms in this work have their time complexities displayed and

discussed and the notation used in these is that, V represents the nodes within

a the graph, E the edges within a graph, Vp the nodes within a pattern and Ep

the edges within a pattern.

3.3 Identification of patterns

Once patterns have been defined, they are then identified within a given graph.

Some graphs may have no patterns and not all patterns exist within all graphs.

The processes used to identify each type of pattern are described below:
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3.3.1 Circle

The first pattern to be identified is the circle, and the identification algorithm is

displayed in Algorithm 3.2. During the identification process, checks are under-

taken to ensure that no identical circles are found. For example, a circle of size

4 could be identified as 4 separate circles of the same size, depending on where

the “start” is (see Figure 3.7, where the “start” is highlighted in pale blue). As

all these patterns would be identical, it is necessary that only one is identified.

oD

oAoA

oB

oB

oB

oB

oA oC

oC

oC

oC oD

oD

oD

oA

Figure 3.7: Four identical circles

Initially, the identification algorithm creates an empty array of valid circles.

This is used to store identified circles. Then, for every node in the graph a

potential circle is created with the current node as the starting point and stored

in an array. Once this is complete, a breadth first search is performed over the

potential circles to build a list of probable circles. This search ensures that there

are potential circles in the array and the degree of the circle currently being

searched for is less than or equal to the maximum permitted size.

A holding array of circles is created but left empty for later use. Then, itera-

tion occurs over each potential circle and the start and end nodes are identified.

Every edge that connects to the end node is then investigated and several checks

are made.

The first check ensures that if the edge currently being investigated is al-

ready in the circle, then the algorithm is doubling back in its search trace, so

this edge is ignored. If the node at the other end of the edge has less than 2
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connections, then this search trace will come to an end, so again the edge is ig-

nored. If, however, the edge’s other connecting node (i.e. not the end node) is

the same as the starting node then a circle has been found. A check is performed

that ensures this circle is unique and is larger or equal in size to the minimum

allowed length, and if so, that circle is added to the list of probable circles. Fur-

ther checks are conducted to ensure that the connecting node is already part of

the circle. If this the case, the edge is ignored. To reduce the number of po-

tential circles, and to follow the definition of a circle, a check is performed to

ensure that the connecting node does not connect to any other nodes within the

circle; the start and end nodes are the exception. If additional connections are

discovered, the edge is ignored. However, if all of these tests prove to be false,

the connecting node and edge are added to the potential circle, and this circle is

added to the holding array. Once all iterations through each potential circle are

complete, the list of potential circles is cleared and made equal to the contents

of the holding array. The length being searched for is increased and the main

loop begins again.

Once the search has finished, either because there are no potential circles

or the search length is too large, any probable circles with internal links are

removed: those that remain are valid circles.

There is a maximum length on the size of circles allowed. This is mainly for

performance reasons because searching for large circles is computationally time

consuming and often yields very few results - in a number of random graphs

tested, circles containing more than 8 nodes are exceptionally rare.

The process of identifying all circles is defined in Algorithm 3.2. The time

complexity for this algorithm is O(V · log E · log V), as the algorithm must iter-

ate through all nodes (V, Line 6), connecting edges (log E, Line 13), and nodes

in the existing circles (log V, Line 25).
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Algorithm 3.2: Circle identification

01: function IDENTIFYCIRCLES
02: G ← (V, E)
03: minSize← 4
04: maxSize← 8
05: probableCircles← ∅ . Used for storing circles for testing
06: potentialCircles← {([v],∅) | v ∈ V} . A potentialCircle is created for every node in N
07: length← 1
08: while potentialCircles 6= ∅ AND length ≤ maxSize do
09: nextCircles← ∅
10: for each (Va, Ea) ∈ potentialCircles do
11: nstart ← firstNode(Va)
12: nend ← lastNode(Va)
13: for each Edge e ∈ connectingEdges(vend) do
14: vconnecting ← oppositeEnd(e, vend)

15: if e ∈ Ea then
16: Skip this edge . Search is doubling back on itself
17: if degree(vconnecting) < 2 then
18: Skip this edge . Dead end
19: if nconnecting = vstart then . Circle potentially found
20: if |Va| ≥ minSize AND uniqueCircle((Va, Ea)) then
21: probableCircles← probableCircles ∪ (Va, Ea)
22: Skip this edge
23: if vconnecting ∈ Va then . Node is already in the list
24: Skip this edge
25: for each Node va ∈ Va do
26: if edgesBetween(va, vconnecting) 6= ∅ then
27: Skip this edge . Check for internal connections
28: (Vb, Eb)← (Va ∪ vconnecting, Ea ∪ e)
29: nextCircles← nextCircles ∪ Gb
30: potentialCircles← nextCircles
31: length← length + 1
32: f oundCircles← {G f | G f ∈ probableCircles, internalLinks(G f ) = ∅} . Save all circles with no

internal links

3.3.2 Clique

Cliques are the next pattern to be identified. The algorithm attempts to find

the largest possible clique within a graph, which is the same size as the node

with the highest degree. If this cannot be found, cliques of decreasing size are



CHAPTER 3. DESCRIPTION OF DRAWING METHOD 43

searched for. It is preferable to identify a few large cliques than several smaller

ones. For example, a clique of size 5 also contains five cliques of size 4 (see

Figure 3.8 where a clique of 4, in yellow, is contained within a clique of size 5).

Therefore, the identification algorithm ignores cliques fully contained within

others. In effect, this algorithm discovers all the maximal cliques in the graph

[130].

cB

cB

cB

cB

cB

Figure 3.8: A clique within a clique

The algorithm considers every node as a potential starting point within a

clique of given size. However, if this node has either too few connections (i.e.

its degree is less than the required size of the clique minus 1) or is already in

a clique (it has a visited flag set), it is ignored. If a node is considered to be

a potential starting place then it is given a score of 1. Each child node of the

starter is then investigated in turn and each child must have a degree greater

than or equal to the required clique size minus 1 and the child must not have

a visited flag set. If this is the case then this child is given a score of 2, but if

not, this child is ignored as it is impossible that this node could form part of

a clique. Any children that have not been ignored have their children (i.e. the

grandchildren of the potential starter) investigated. These grandchildren must

also have a degree greater than or equal to the required clique size minus 1 or

have no visited flag set. If this is the case then their score is incremented by 1.
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Once various nodes have been given scores determined by the number of

times they have been visited, each node in the graph is checked to ensure it is

valid for inclusion in a clique. The starting node’s score is considered first and

if this is equal to, or greater than, the required clique size, the node is added to

the holding array. If this is not the case, all node scores are reset and another

starting point is considered. If the node meets the specified requirements, its

children are then tested in the same way. Again, the degrees of node’s children

must be at least the required clique size. If they are, they are also added to

the holding array. This can be seen in Figure 3.9, where the nodes within the

clique all have the correct score. The nodes in the star have either a score of 0

(because they do not have enough connections), or 1 where they are the child

of the connecting node. Neither of these scores meet the size of clique being

searched for and therefore those nodes cannot be considered part of the clique.

0

0

0

1 4

4

4

4

Figure 3.9: Example of the clique scoring identification method

After this process is complete, a comparison is made between the size of the

holding array and the required clique size. If they are equal, a new clique is

created and all nodes in the holding array and all edges that connect to another

node in the clique are added. Each node is set to have been “visited” to prevent

this clique being added multiple times.
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The final check ensures that the number of edges is equal to

|V|(|V| − 1)
2

where |V| represents the number of nodes in the clique. If the clique passes this

final test it has been identified correctly and is added to the list of patterns in

the graph. This process then repeats again with a search size 1 smaller, until a

minimum size of 4 is reached.

The process of identifying all cliques and triangles is defined in Algorithm 3.3.

The time complexity for this algorithm isO(V · (log V)2), as the algorithm must

iterate through all nodes (V, Line 9), connecting nodes (log V, Line 14), and

nodes that connect to those connecting nodes (log V, Line 18).

Algorithm 3.3: Clique & Triangle identification

01: function IDENTIFYCLIQUES
02: G ← (V, E)
03: searchSize← |V|
04: Pt ← ∅
05: Pc ← ∅
06: visited(G)← false
07: score(V)← 0
08: while searchSize ≥ 3 do . The minimum size allowed
09: for each Node va ∈ V do
10: if degree(va) < searchSize− 1 OR visited(va) then
11: score(V)← 0
12: Skip this node
13: score(va)← 1
14: for each Node vb ∈ connectedTo(va) do
15: if degree(vb) < searchSize− 1 OR visited(vb) then
16: Skip this node
17: score(vb)← score(vb) + 2
18: for each Node vc ∈ connectedTo(vb) do
19: if degree(vc) < searchSize− 1 OR visited(vc) then
20: Skip this node
21: score(vc)← score(vc) + 1
22: Vp = {v | score(v) = searchSize, v ∈ (va ∪ connectedTo(va))}
23: Ep = connectingEdges(Vp)
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24: Gp ← (Vp, Ep)

25: if |Vp| = searchSize AND |Ep| =
|Vp |(|Vp |−1)

2 then
26: visited(Vp) = true
27: if |Vp| = 3 then
28: Pt ← Pt ∪ Gp . Save as triangle
29: else
30: Pc ← Pc ∪ Gp . Save as clique
31: else
32: score(|Vp|)← 0
33: score(V)← 0
34: searchSize← searchSize− 1

3.3.3 Star

The third type of pattern identified is stars. Stars may also contain other stars.

For example a star with 5 branches is also 5 stars with 4 branches each with

the same centre, therefore only the largest is returned by the algorithm. The

psuedocode for the star identification algorithm is displayed in Algorithm 3.4.

The algorithm starts by iterating through every node in the graph and check-

ing that this node’s degree is greater than or equal to the valid minimum size of

a star. If this is the case, then this node is added to a list of potential centres.

Once complete, each potential centre is then investigated in turn and an ar-

ray of potential branches is created from this node’s connections. Every con-

necting edge of each branch is then investigated and if this connection is also a

branch, then both the original potential branch and the connection are removed

as potential branches. The size of the array of potential branches is then com-

pared to the minimum size of stars permitted and if the array’s size is greater

than or equal to the minimum size, a star is created. All branches (including

nodes and edges) are then added to the star and the next potential centre is

considered.

Potential branches are removed because all nodes (with the exception of the
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centre node, which must connect to all others) must only connect to the centre

node. It is this relationship of connections that forms the star.

The process of identifying all stars is defined in Algorithm 3.4. The time

complexity for this algorithm is O(V · log V), as the algorithm must iterate

through all nodes (V, Line 6), and connecting nodes (log V, Line 7).

Algorithm 3.4: Star identification

01: function IDENTIFYSTARS
02: G ← (V, E)
03: Ps ← ∅
04: minSize← 4 . The smallest number of spokes allowed
05: Vpc = {v | v ∈ V, degree(v) ≥ minSize} . Find potential centres
06: for each Node va ∈ Vpc do
07: Vbranches = {v | v ∈ V, v ∈ connectedTo(va), connectedTo(v) ∩ connectedTo(va) = ∅}
08: . All nodes connected to va, but not those that are connected to other branches
09: if |Vbranches| ≥ minSize then
10: Vp = va ∪Vbranches

11: Ep = connectingEdges(Vp)

12: Gp ← (Vp, EP)

13: Ps ← Ps ∪ Gp . Save as star

3.3.4 Path

Paths are the next pattern to be identified. Special care has been taken within

the identification algorithm to ensure that closed paths are not found: they are

instead represented as circles. As with other patterns, paths may contain ad-

ditional paths. For example, a path of length 5 contains two paths of length

4, therefore only the longest path is found. The algorithm starts in the middle

of a path and builds either side, rather than beginning the search at a start or

end point. The pseudocode for the path identification algorithm is displayed in

Algorithm 3.5.

The algorithm starts by iterating through every node within the graph. If
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this node has been visited, or has a degree that is not equal to 2 then it is ig-

nored. If this node does not, a path is created and this node is added to it. The

algorithm then searches one direction though the path (notionally “forward”).

The “forward” edge is added to the path, and the next node is set to be the start-

ing point. A loop is then run which terminates when the next node’s degree is

not 2, because this condition signals the end of the path. Inside the loop, the

next node is set to be the opposite end of the edge (to the current node) and is

added to the path. If this next node has a degree of 2, then the node is checked

to ensure it has at least one unvisited connecting edge. If not, this is a path and

the loop breaks. If the node satisfies this criteria, then the edge is set to be this

unvisited edge (the node can have only one), marked as “visited” and added to

the path.

When this loop breaks, it is run again, but this time searching the other di-

rection (i.e. “backwards”). The algorithm follows an identical process, except

nodes and edges are added to the start of the array to ensure the array order

matches that of the path. Once complete, checks are conducted to ensure the

first and last nodes are different. If they are the same, the last node is removed.

The potential path is only added to the list of patterns if the path is at least as

long as the minimum allowed length and is not identical to an already existing

circle.

The process of identifying all paths is defined in Algorithm 3.5. The time

complexity for this algorithm is O(V · log V), as the algorithm must iterate

through all nodes (V, Line 5), and connecting nodes (log V, Line 9).

Algorithm 3.5: Path identification

01: function IDENTIFYPATHS
02: G ← (V, E)
03: minSize← 4 . The smallest number of nodes allowed
04: visited(G)← f alse
05: for each Node v ∈ V do
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06: if degree(v) 6= 2 OR visited(v) then
07: Skip this node
08: (Vp, Ep)← ({v}, [ ]) . Empty path for later use
09: pathFound← BUILDPATH((Vp, Ep), n, minSize) . Build Path
10: if pathFound = true AND notACircle((Vp, Ep)) then
11: Save (Vp, Ep) as a path

12:
13: function BUILDPATH((Vp, Ep), v, minSize)
14: Ea ← [ ] . Stores edges for use later
15: Va ← [ ] . Stores nodes for use later
16: for i ∈ {0, 1} do . Searching forwards (0) or backwards (1)
17: e← connectingEdges(v)[i] . Start searching
18: visited(e)← true
19: Ea ← Ea ∪ e
20: vnext ← v . v will be used again later so overwriting is not possible
21: if i = 0 then
22: visited(vnext)← true
23: Va ← Va ∪ vnext

24: while degree(nnext) = 2 do
25: vnext ← oppositeEnd(e, vnext)
26: visited(vnext)← true
27: Va ← Va ∪ vnext
28: if degree(vnext) = 2 then
29: if unvisitedConnectingEdges(vnext) = ∅ then
30: Break while . Stop searching in this direction
31: e← unvisitedConnectingEdges(vnext)[0]
32: visited(e)← true
33: Ea ← Ea ∪ e
34: if Va[0] = Va[i] then . If the first and last nodes in Va are the same, then this is a closed path
35: Remove last node from Va

36: if |Va| < minSize then . If the path is too small
37: return f alse
38: Vp ← Vp ∪Va

39: Ep ← Ep ∪ Ea

40: return true . Path has been built

3.3.5 Triangle

The identification for triangles is performed at the same time as the identifica-

tion of cliques (See Section 3.3.2). Whereas the clique method ensures that all

patterns have more than 4 nodes, the triangle identification method ensures that

the pattern contains exactly 3 nodes.
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3.4 Determining the drawing order

Once all patterns have been identified, it is then necessary to determine the

order in which they should be drawn. When determining the order, several

considerations need to be made:

• The type of connection to the previously drawn patterns

– One Node shared

∗ The pattern and the drawn set have one node in common.

– Two Nodes shared

∗ The pattern and the drawn set have two nodes in common. This

will often include circles and paths connected to non-consecutive

nodes in circles. The pattern does not share any edges with the

drawn set.

– One Edge shared

∗ The pattern and the drawn set have one edge in common (and

therefore also 2 nodes).

– Two Edges shared

∗ The pattern and the drawn set have two edges in common (and

therefore also 3 or 4 nodes).

– Edge connection

∗ The pattern and the drawn set have one or more edges connect-

ing them. This edge is in neither the drawn set, nor the pattern.

– No connection

∗ The pattern and the drawn set have no nodes or edges in com-

mon, nor have any edges connecting them. This does not mean
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the pattern is disconnected from the drawn set - it could be con-

nected by a series of nodes and edges. This isn’t considered to be

a close connection, so this is treated as no connection.

• The amount of connectivity to the previously drawn patterns

– Number of nodes shared (if sharing nodes)

– Number of edges shared (if sharing edges)

• Degree of pattern

• Type of pattern

While it may appear that a pattern that shares an edge must also share two

nodes, there is a distinction used within this work. Patterns which only share

nodes (but not edges) with a drawn set are considered to be node sharing, while

those that also share edges are considered to be edge sharing.

It is also necessary to discard a number of patterns that are identified, be-

cause many graphs have an unfeasibly large number of patterns or patterns

which considerably overlap others. This is demonstrated in Figure 3.10, where

the thickness of each edge is dependent on the number of patterns which con-

tains this edge. Each individual pattern is shown in a distinctive colour, which

has no relation to the colours previously defined. Edges with no patterns are

shown as thin and in grey. This makes the process of drawing these patterns

infeasible, and therefore only a subset of patterns are chosen for drawing. As a

result of this, patterns which do not meet the connection type criteria above (i.e.

the pattern shares more than 2 edges or more than 2 nodes (and no edges)) with

the drawn set are disregarded.

The order for drawing has been identified based on the flexibility of pat-

terns. Cliques are less flexible as they have a large number of edges compared
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1

2

8

9

7

6

3

5

0

Figure 3.10: Graph with 10 nodes, but with 8 patterns

to other patterns, while stars are required to have every spoke connect back to

the centre. Circles have increased flexibility in that they often have space inside

themselves for drawing, while paths and triangles are very flexible. Patterns

which share 1 or 2 edges are also very closely related and there is less flexibility

with regards to location. They are therefore drawn earlier. A similar reasoning

also draws patterns with 1 or 2 shared nodes following this. Patterns with only

a connecting edge, or no connection at all are drawn last. This order can be

changed, but this is a subject for further work and is discussed in Section 6.2.5.

The patterns are drawn in the following order:

Cliques

1. Clique with 1 edge shared (see Figure 3.11)

2. Clique with 1 node shared (see Figure 3.12)

Stars

3. Star with 1 outside node shared (see Figure 3.13)



CHAPTER 3. DESCRIPTION OF DRAWING METHOD 53

4. Star with 1 edge shared (see Figure 3.14)

5. Star with centre node shared (see Figure 3.15)

Circles

6. Circle with 1 edge shared (see Figure 3.16)

7. Circle with 2 edges shared (see Figure 3.17)

8. Circle with 2 nodes shared (see Figure 3.18)

9. Circle with 1 node shared (see Figure 3.19)

Paths

10. Path with 2 edges shared (see Figure 3.20)

11. Path with 1 edge shared (see Figure 3.21)

12. Path with 2 nodes shared (see Figure 3.22)

13. Path with 1 node shared (see Figure 3.23)

Connecting Edges

14. Clique with connecting edges (see Figure 3.24)

15. Star with connecting edges (see Figure 3.25)

16. Circle with connecting edges (see Figure 3.26)

17. Path with connecting edges (see Figure 3.27)

Triangles

18. Triangle with 1 edge shared (see Figure 3.28)

19. Triangle with 2 nodes shared (see Figure 3.29)

20. Triangle with 1 node shared (see Figure 3.30)

21. Triangle with connecting edges (see Figure 3.31)

No connections

22. Clique with no connection (see Figure 3.32)

23. Star with no connection (see Figure 3.33)
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24. Circle with no connection (see Figure 3.34)

25. Path with no connection (see Figure 3.35)

26. Triangle with no connection (see Figure 3.36)

For connections where patterns are connected by edges, the largest pattern

with the most number of connections is chosen. For all other types of connec-

tion, simply the largest pattern is chosen.

-cA

-cA

-cA

-cA-cB

-cB

-cB

-cA-cB

Figure 3.11: Clique with 1 edge

shared

-cA

-cA-cA

-cA-cB

-cB

-cB

-cB

Figure 3.12: Clique with 1 node

shared

-sA

-sA

-sA

-sA

-sA-sB

-sB

-sB

-sB

-sB

Figure 3.13: Star with 1 outside

node shared

-sA

-sA

-sA

-sA

-sA-sB

-sB

-sB

-sA-sB

-sB

Figure 3.14: Star with 1 edge shared
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-cA
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-cA

-sB

-sB

-sB

-sB

-cA-sB

Figure 3.15: Star with centre node

shared
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-oB

-oA-oB

-oA

-oA

-oA-oB

Figure 3.16: Circle with 1 edge

shared

-sB

-sB

-sB

-oA-sB

-oA-sB

-oA

-oA

-oA-sB

Figure 3.17: Circle with 2 edges

shared

-oA

-oA

-oA-oB

-oB

-oA

-oA

-oA-oB

-oB

-oB

-oB

-oB

Figure 3.18: Circle with 2 nodes

shared
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-oA

-oA
-oA

-oA

-cB

-oA-cB

-cB-cB

Figure 3.19: Circle with 1 node

shared

-sA-pC

-sA-pC-sA -sB

-sB-pC

-pC

-pC

-pC-pC

-pC

-pC

-sA

-sB-pC-sA-sB

-sB

Figure 3.20: Path with 2 edges

shared

-sA -sA

-sA

-sA-pB

-pB

-pB

-pB

-pB

-sA-pB

Figure 3.21: Path with 1 edge
shared
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-cC-pD

-cA

-cA-cC

-cB

-cA-cB

-cA

-cB

-cC

-pD

-pD

-pD

-pD
-pD

-pD

-pD

-cB-pD

Figure 3.22: Path with 2 nodes
shared

-cA

-cA

-cA-pB -pB -pB -cA-pB

Figure 3.23: Path with 1 node
shared

-cA

-cA

-cA

-cB

-cB

-cB

-cB

-cA

Figure 3.24: Clique with connecting
edges
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-sA -sA

-sA

-sA

-sB

-sB
-sB

-sB

-sB

-sA

Figure 3.25: Star with connecting

edges

-oA

-oA -oA

-oB

-oB

-oB

-oB

-oA

Figure 3.26: Circle with connecting

edges

-pA -pA -pA

-pB

-pB

-pB

-pA

-pB

Figure 3.27: Path with connecting
edges

-cA

-cA

-cA-tB

-tB

-cA-tB

Figure 3.28: Triangle with 1 edge
shared
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-tC

-cA

-cA

-cA-tC

-cB

-cB

-cB-tC

-cA-pD -pD -pD -pD -pD -pD -cB-pD

Figure 3.29: Triangle with 2 nodes
shared

-cA

-cA

-cA

-cA-tB

-tB

-tB

Figure 3.30: Triangle with 1 node
shared

-cA

-cA

-cA

-tB

-tB -tB

-cA

Figure 3.31: Triangle with connect-

ing edges

-cA

-cA

-cA

-cA-r1

-cB

-cB

-cB

-cB-r1

-r1

Figure 3.32: Clique with no connec-

tion

-sA -sA

-sA

-sA

-sB-sB -sB

-sB

-sB-r1

-sA-r1

-r1

Figure 3.33: Star with no connection

-oA

-oA -oA

-oB

-oB

-oB

-oB-r1

-r1

-oA-r1

Figure 3.34: Circle with no connec-

tion
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-pA -pA -pA

-pB-r1
-pB

-pB
-pB

-r1

-pA-r1

Figure 3.35: Path with no connec-
tion

-tA

-tA

-tB

-tB

-tB-r1

-r1

-tA-r1

Figure 3.36: Triangle with no con-
nection

Once the order of drawing is established, certain cliques are manipulated.

This is necessary because it helps to improve the final layout. The nodes within

cliques that have a shared edge require reordering to ensure that this particular

edge is on the “outside” of the pattern. This helps avoid occlusion and to mini-

mize edge crossings. For example, the layout of Figure 3.37b, where the shared

edge is on the “outside”, is much preferable to the layout of Figure 3.37a where

the share edge is an “inside” edge.

cAcB

cA

cAcB

cB

cB

cA

(a) Two cliques joined on an “inside”
edge

cA

cA

cBcAcB

cAcB

cB

(b) Two cliques joined on an “outside”
edge

Figure 3.37: Comparison of 1 edge sharing cliques



CHAPTER 3. DESCRIPTION OF DRAWING METHOD 60

3.5 Drawing each pattern

Once the drawing order has been established, the patterns can be drawn. The al-

gorithms for drawing each pattern are different for each type of connection and,

in some cases, the type of pattern. Some connection types (Shared One Node,

Shared One Edge, Connected By One Edge) allow the possibility of swapping

the order of nodes or edges within the pattern to allow a better layout. Other

connection types do not allow this. While it is possible that swapping could

be implemented for these, it was decided against doing this based on the time

required for implementation and the relatively low occurrence of these connec-

tion types.

Cliques, circles, stars and triangles can be drawn according to an “ideal lay-

out” which is the default layout of a pattern if it had no connections. The default

layout also helps to ensure consistency when drawing patterns. Slight modifi-

cations may be required to enable the ideal layout to handle connections, but

these are kept at a minimum to maximise consistency. The layout of paths is

flexible. This means because that they do not have an ideal layout to follow, as

they are usually drawn later. This enables the drawing method to take advan-

tage of the available drawing space.

cB

cB

cB

oA

oA

oA sC

sC

sC sC

sC

oAcB

-tA

-tA

-tA

Figure 3.38: Ideal Layouts for a Clique, Circle, Star & Triangle

The first pattern drawn always follows its ideal layout. Patterns are drawn

according to the techniques listed below:
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3.5.1 Share One Edge

Circles, cliques and triangles share the same drawing algorithm when patterns

share one edge within the drawn set (Section 3.5.1.2), whereas stars have a

unique drawing method (Section 3.5.1.3). It is also possible for paths to share

an edge with another pattern.

3.5.1.1 Edge Swapping

Edges may be swapped in the pattern to produce a better layout. For exam-

ple, the order of nodes (and therefore edges) in a clique or spokes in a star is

irrelevant and by changing this order, a better drawing result may be obtained.

Therefore, a list of potential swaps is generated. If the shared edge has more

than one drawn pattern connecting to it, then the current order is used. This

prevents any already drawn nodes from being moved.

Both stars and cliques have similar methods for determining the potential

edges to be swapped. Any edges in the pattern which meet the following con-

ditions are considered to be potential swapping edges:

• Are in only one drawn pattern

• Both the start and finish nodes also are only in one drawn pattern

• (Cliques Only) Do not cross any of the other edges in the drawn pattern

(i.e. on the outside)

For each of these potential swapping edges, the locations of the start and finish

nodes are swapped with that of the shared edges. However, any nodes which

are the centre of a drawn star remain in their original locations. If the shared and

swapping edge happen to share a node, then the other two nodes are swapped.

The pattern is then drawn according to the methods detailed in Sections 3.5.1.2,
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3.5.1.3 and 3.5.8. Once drawn, a score is calculated based on node-node occlu-

sion, edge-node occlusion, edge crossings and symmetry (Section 3.6.3). When

all options have been tested, the swap with the best score is used for the final

layout.

The process of swapping edges is described in Algorithm 3.6. The time com-

plexity for this algorithm s dependent on the type of pattern being drawn. If the

pattern to be drawn is a clique or triangle then the complexity is O(Ep + Vp), if

the pattern is a star then the complexity is O(Ep + (V ·Vp)), or if the pattern is

a circle then the complexity is O(V · Vp). This is due to the algorithm iterating

through all edges in the pattern (Ep, Lines 9 and 14), if needed, and the time

complexity of Algorithm 3.7 (Vp) or Algorithm 3.8 (V ·Vp).

Algorithm 3.6: Edge Swapping (Share One Edge)

01: function EDGESWAPPINGSHAREONEEDGE
02: G ← (V, E)
03: Gp ← (Vp, Ep) . The pattern about to be drawn
04: eshared ← The Shared Edge
05: if patterns(eshared) = 2 then . Swapping can only occur if there’s one other pattern sharing this

edge
06: Gother ← sharedPattern(eshared) . The other pattern sharing the edge
07: Eswaps ← ∅
08: if isStar(Gother) then
09: for each Edge e ∈ Ep do
10: if drawnPatterns(e) = 1 AND e 6= eshared

11: AND drawnPatterns(connectedTo(e)) = 1 then . If e has only one drawn pattern, is not the shared
edge, and the nodes at either end also only have one drawn pattern, then this is a swap

12: Let Eswaps ← Eswaps ∪ e
13: else if isClique(Gother) then
14: for each Edge e ∈ Ep do
15: if drawnPatterns(e) = 1 AND e 6= eshared

16: AND drawnPatterns(connectedTo(e)) = 1 AND outsideEdge(e) then . If e has only one
drawn pattern, is not the shared edge, the nodes at either end also only have one drawn pattern, and
this edge is on the outside of a clique, then this is a swap

17: Eswaps ← Eswaps ∪ e
18: else
19: if isClique(Gp) OR isTriangle(Gp) then
20: DRAWPATTERN(Gp) . Draw pattern (Clique or Triangle. See Algorithm 3.7)
21: else
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22: DRAWPATTERN(Gp) . Draw pattern (Star. See Algorithm 3.8)

23: if Eswaps 6= ∅ then
24: bestScore← ∞
25: bestSwap← null
26: for each e ∈ Eswap do
27: if isStar(Gother) then
28: swapNodes(outsideNode(e), outsideNode(eshared)) . Don’t swap the centre of a

star
29: else
30: swapEdges(e, eshared) . Swap the edges of a clique

31: if isClique(Gp) OR isTriangle(Gp) then
32: DRAWPATTERN(Gp) . Draw pattern (Clique or Triangle. See Algorithm 3.7)
33: else
34: DRAWPATTERN(Gp) . Draw pattern (Star. See Algorithm 3.8)

35: Let currentScore← CALCULATESCORE(drawnPatterns) . See Algorithm 3.26
36: if currentScore < bestScore then
37: bestScore← currentScore
38: bestSwap← (e, eshared)

39: Swap back

40: if isStar(Gother) then . Swap Best Pairing
41: swapNodes(outsideNodes(bestSwap))
42: else
43: swapEdges(bestSwap)
44: if isClique(Gp) OR isTriangle(Gp) then
45: DRAWPATTERN(Gp) . Draw pattern (Clique or Triangle. See Algorithm 3.7)
46: else
47: DRAWPATTERN(Gp) . Draw pattern (Star. See Algorithm 3.8)

48: else
49: if isClique(Gp) OR isTriangle(Gp) then
50: DRAWPATTERN(Gp) . Draw pattern (Clique or Triangle. See Algorithm 3.7)
51: else
52: DRAWPATTERN(Gp) . Draw pattern (Star. See Algorithm 3.8)

53: else
54: if isClique(Gp) OR isTriangle(Gp) then
55: DRAWPATTERN(Gp) . Draw pattern (Clique or Triangle. See Algorithm 3.7)
56: else
57: DRAWPATTERN(Gp) . Draw pattern (Star. See Algorithm 3.8)
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3.5.1.2 Circle, Clique & Triangle

Circles, cliques and triangles currently share the same algorithm for drawing.

In this algorithm, the pattern is first drawn in its ideal layout, centred on the

origin of the graph. The pattern is then scaled so all outside edges match the

same length as the shared edge. This ensures the pattern does not distort the

currently drawn set and that this pattern is drawn in a consistent manner. For

example, in Figure 3.39, the clique is still drawn as a square, rather than being

stretched by the circle into a trapezium.

oA

oA

cC

oAcC

cC

oAcC

(a) Without scaling the circle

oA

oA cB

oAcB cB

oAcB

(b) With scaling the circle

Figure 3.39: Comparison of a drawn pattern with and without scaling

The pattern is then rotated to match the original orientation of the shared

edge and moved into the correct location. After rotation, the shared edge and

nodes have been returned to the correct position. However, the remaining pat-

tern may be inside the drawn set. This could mean the pattern is positioned in

a way that creates unnecessary edge crossings or occlusions. This is shown in

Figure 3.40 where reflection has taken place along the edge connecting the two

nodes labelled oAcB). To overcome such issues, the pattern may be reflected. Re-

flection enables incorrectly placed nodes to move to a more aesthetically pleas-

ing position.

When reflection has been completed, the pattern sits in the correct location.

Examples of various patterns drawn with this connection type are displayed in
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cB
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cB

oAcB

oA

oA

oAcB

(a) Before reflection

cB

cB

cB

oAcB

oA

oA

oAcB

(b) After reflection

Figure 3.40: Comparison of a drawn pattern before and after reflection

Figure 3.41. The process of drawing a circle, clique or triangle is described in

Algorithm 3.7. The time complexity for this algorithm is O(log Vp), due to the

algorithm iterating through all nodes in the pattern in order to determine their

new location (Line 10).

Algorithm 3.7: Share One Edge - Circle, Clique and Triangle

01: function DRAWPATTERN(Gp)
02: G ← (V, E)
03: drawnPatterns← {g | g ∈ G, drawn(g)}
04: Gp ← (Vp, Ep) . The pattern about to be drawn
05: eshared ← The Shared Edge
06: originalEdgeLocation← currentLocation(eshared)

07: originalEdgeAngle← currentAngle(eshared)

08: originalEdgeSize← currentLength(eshared)

09: originalEdgeCrossings← edgeCrossings(drawnPatterns)
10: drawInIdealLayout(Gp) . Draw pattern in ideal layout
11: scalePattern(Gp, originalEdgeSize)
12: rotatePattern(Gp, originalEdgeAngle)
13: movePattern(Gp, originalEdgeLocation)
14: drawnPatterns← drawnPatterns ∪ Gp

15: f inalEdgeCrossings← edgeCrossings(drawnPatterns)
16: if originalEdgeCrossings 6= f inalEdgeCrossings then . Gp may be drawn inside the drawn

patterns
17: reflectPattern(Gp, eshared) . Reflect Gp along the shared edge
18: if f inalEdgeCrossings ≤ edgeCrossings(drawnPatterns) then . If there are more edge

crossings now, then the best location was the previous one
19: reflectPattern(Gp, eshared) . Reflect back
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(a) Two circles
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(b) Circle & clique
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(c) Two cliques
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cD
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oAcE

oAcE

oCcE

oCcE

oCcF

cF

cF

oCcF

oBoC
oBoC

oB
oB

(d) Multiple cliques & circles

Figure 3.41: Examples of the One Edge Sharing algorithm for Circles & Cliques

3.5.1.3 Star

Although the ideal layout of stars is different, it follows a similar drawing

method to that used for cliques and circles.

The ideal layout arranges stars at an appropriate distance from the centre.

The spokes of stars are also evenly spaced around the centre. However, the ideal

layout cannot always follow this format if other patterns cause occlusions. To

overcome and make provision for this, the drawing algorithm identifies invalid

areas which are used to restrict the range in which spokes can be drawn.

Once the best valid area has been identified according to the method de-

tailed in Section 3.6.1, the star is drawn in its ideal layout. This layout arranges
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the spokes of the star consistently within the valid area, excepting shared edges.

Once the spokes have been arranged, the drawing is complete. An example of

a star drawn with this method is shown in Figure 3.42. The process of drawing

a star is described in Algorithm 3.8. The time complexity for this algorithm is

O(V · Vp), due to the algorithm iterating through all nodes in order to deter-

mine the valid drawing area (V, Line 9), and all nodes in the pattern in order to

determine their new location (Vp, Line 15 or 17).

sBsA

sA

sAsB

sA sB

sAsB

sB

Figure 3.42: Example of the Edge Sharing algorithm for Stars

Algorithm 3.8: Share One Edge - Star

01: function DRAWPATTERN(Gp)
02: G ← (V, E)
03: nodePadding← 10, anglePadding← 5◦

04: drawnPatterns← {g | g ∈ G, drawn(g)}
05: Gp ← (Vp, Ep) . The pattern about to be drawn
06: eshared ← The Shared Edge
07: vcentre ← centreNodeOfStar(Gp)

08: drawableAreas← ∅ . Empty list of Drawing Areas
09: for each Node {v | v ∈ V, v /∈ Vp, distance(v, vcentre) ≤ length(eshared) + nodePadding} do
10: angle← angle(v, vcentre)
11: drawableAreas← drawableAreas ∪ (angle− anglePadding, angle + anglePadding)
12: drawableAreas← JOININVALIDAREAS(drawableAreas) . See Algorithm 3.23
13: bestArea← FINDBESTAREA(drawableAreas) . See Algorithm 3.24
14: if drawableAreas 6= ∅ then
15: drawInIdealLayout(Gp, bestArea) . Draw pattern in ideal layout in the bestArea
16: else
17: drawInIdealLayout(Gp) . Draw pattern in ideal layout

18: drawnPatterns← drawnPatterns ∪ Gp
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3.5.2 Share Two Edges

It is only possible for circles, stars and paths to share two edges. There are two

separate methods for drawing circles sharing two edges, depending on if these

edges are consecutive. Paths may also share two edges with the drawn set.

3.5.2.1 Consecutive Shared Edges

This scenario exists where a circle shares two spokes of a star. A decision had

to be made regarding the order in which the star or circle should be drawn.

One possible option is to draw the patterns in a similar way to Figure 3.43a.

However, this requires changing the main drawing order (as stars are drawn

before circles). It was felt that it was unwise to change the order, as this could

have a large number of implications. It was also decided that it was not sensible

to introduce an exception for this type, as that defeats the object of having a

fixed drawing order. Therefore, the drawing order had to be such that circles

are drawn after stars, which produces a similar layout to Figure 3.43b.

oA oAsB

sB

oAsB

oAsB

sB

(a) Star drawn around a Circle

oA

oAsB

oAsB

sBoAsBsB

(b) Circle drawn around a Star

Figure 3.43: Possible drawing methods for patterns sharing two edges

The method follows a process similar to the One Edge Sharing drawing

method (see Section 3.5.1.2) for Circles. Firstly, the middle node of the star is

found and a virtual edge is created between the other two shared nodes (i.e. the

outside nodes). This is used to enable compatibility with the One Edge Shared

method. The pattern (with the exception of the centre node) is then drawn in its
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ideal layout, centred on the origin of the graph (i.e. the point (0, 0)). The circle is

then scaled so that the virtual edge is the same length as it was before the circle

was drawn. This ensures that the pattern does not distort the currently drawn

set.

The pattern is then rotated to match the original orientation of the virtual

edge and then moved into the correct location. Once this is complete, an ori-

entation check is completed. A measure of the edge crossings and occlusion is

taken (see Section 3.6.3). If there are no edge crossings or occlusion, then the

drawing is complete. If not, the pattern is reflected along the virtual edge. An-

other calculation of the edge crossings and occlusion is taken. If this is lower

than the previous calculation, then this layout is chosen. If not, the pattern is

reflected back and the method is complete. This completes the algorithm, ex-

amples of which can be seen in Figure 3.44 and is detailed in Algorithm 3.9. The

time complexity of this algorithm is O(Vp) as it must iterate through all nodes

in the pattern in order to determine their new location (Line 13).
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Figure 3.44: Examples of the Multiple Edge Sharing algorithm

Algorithm 3.9: Share Two Edges - Consecutive Shared Edges

01: function DRAWPATTERN(Gp)
02: G ← (V, E)
03: drawnPatterns← {g | g ∈ G, drawn(g)}
04: Gp ← (Vp, Ep) . The pattern about to be drawn
05: Es ← {e | e ∈ E, e ∈ Ep} . Shared Edges
06: vm ← {v | v ∈ Vp, connectedTo(Es[0]), connectedTo(Es[1])} . The middle node between the

two shared edges
07: middleNodeLocation← location(vm)

08: evirtual ← (oppositeEnd(Es[0], vm), oppositeEnd(Es[1], vm)) . Virtual edge between the two
non-connected ends of the shared edges

09: originalEdgeLocation← currentLocation(evirtual)

10: originalEdgeAngle← currentAngle(evirtual)

11: originalEdgeSize← currentLength(evirtual)

12: originalScore← CALCULATESCORE(drawnPatterns) . See Algorithm 3.26
13: drawInIdealLayout(Gp \ vm) . Draw pattern in ideal layout, ignoring vm

14: scalePattern(Gp, originalEdgeSize)
15: rotatePattern(Gp, originalEdgeAngle)
16: movePattern(Gp, originalEdgeLocation)
17: location(vm)← middleNodeLocation
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18: drawnPatterns← drawnPatterns ∪ Gp

19: f inalScore← CALCULATESCORE(drawnPatterns) . See Algorithm 3.26
20: if originalScore 6= f inalScore then . Gp may be drawn around the drawn patterns
21: reflectPattern(Gp, evirtual) . Reflect Gp along the shared edge
22: if f inalScore ≤CALCULATESCORE(drawnPatterns) then . If there is a worse score now, then

the best location was the previous one, See Algorithm 3.26
23: reflectPattern(Gp, evirtual) . Reflect back

3.5.2.2 Non-Consecutive Shared Edges

When the shared edges are not consecutive, a different approach is taken. Firstly,

all the nodes between the two shared edges are identified (i.e. in Figure 3.45,

nodes 8-oA-oC & 11-oA-oC (highlighted in green) and 13-oB-oC & 15-oB-oC

(highlighted in yellow)). These nodes are then drawn in a straight line between

the shared edges. Once drawn, these are adjusted in a similar way to paths (see

Section 3.5.8), with several curves being attempted before the curve with the

lowest score is accepted. The algorithm is detailed in Algorithm 3.10, with a

time complexity of O(Vp), due to the algorithm iterating through all nodes in

the pattern several times order to determine the correct location (Lines 45 and

46).

Algorithm 3.10: Share Two Edges — Non-Consecutive Shared Edges

01: function DRAWPATTERN(Gp)
02: G ← (V, E)
03: drawnPatterns← {g | g ∈ G, drawn(g)}
04: Gp ← (Vp, Ep) . The pattern about to be drawn
05: Es ← {e | e ∈ E, e ∈ Ep} . Shared Edges
06: Pair1, Pair2 ← (null, null) . Node Pairs for use later
07: Vm1 , Vm2 ← [ ] . Nodes between these pairs
08: iA ← indexOf(Vp, startNode(Es[0]))
09: iB ← indexOf(Vp, endNode(Es[0]))
10: iC ← indexOf(Vp, startNode(Es[1]))
11: iD ← indexOf(Vp, endNode(Es[1]))
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Figure 3.45: Example of Two Shared Non-Consecutive Edges

12: if ((iA + 1) mod |Vp|) = iB then . Search forwards
13: i← iB

14: while (i mod |Vp|) 6= iA do
15: Vm1 ← Vm1 ∪Vp[i mod |Vp|]
16: if (i mod |Vp|) = iC then
17: Pair1 ← (Vp[iB], Vp[iC])
18: Pair2 ← (Vp[iD], Vp[iA])

19: Vm2 ← {v | v ∈ Vp, v /∈ Vm1}
20: Break while
21: else if (i mod |Vp|) = iD then
22: Pair1 ← (Vp[iB], Vp[iD])

23: Pair2 ← (Vp[iC], Vp[iA])

24: Vm2 ← {v | v ∈ Vp, v /∈ Vm1}
25: Break while
26: i← i + 1
27: else . Search backwards
28: i← iB + |Vp|
29: while (i mod |Vp|) 6= iA do
30: Vm1 ← Vm1 ∪Vp[i mod |Vp|]
31: if (i mod |Vp|) = iC then
32: Pair1 ← (Vp[iC], Vp[iB])

33: Pair2 ← (Vp[iA], Vp[iD])

34: Vm1 ← reverseOrder(Vm1 ) . Searching backwards, but drawing forwards
35: Vm2 ← {v | v ∈ Vp, v /∈ Vm1}
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36: Break while
37: else if (i mod |Vp|) = iD then
38: Pair1 ← (Vp[iD], Vp[iB])

39: Pair2 ← (Vp[iA], Vp[iC])
40: Vm1 ← reverseOrder(Vm1 ) . Searching backwards, but drawing forwards
41: Vm2 ← {v | v ∈ Vp, v /∈ Vm1}
42: Break while
43: i← i− 1
44: drawnPatterns← drawnPatterns ∪ Gp

45: DRAWBETWEENNODES(Pair1, Vm1 ) . See Below
46: DRAWBETWEENNODES(Pair2, Vm2 ) . See Below

47:
48: function DRAWBETWEENNODES((vstart, v f inish), Vm)
49: G ← (V, E)
50: drawnPatterns← {g | g ∈ G, drawn(g)}
51: Gp ← (Vp, Ep) . The pattern about to be drawn
52: bestScore← CALCULATESCORE(drawnPatterns) . See Algorithm 3.26
53: bestLayout← 0
54: ∆x ← (v f inishx − vstartx )÷ (|Vm| − 1)
55: ∆y ← (v f inishy − vstarty )÷ (|Vm| − 1)
56: for each v ∈ Vm, {i | i ≥ 0, i < |Vm|} do . Draw nodes in a straight line
57: vx ← vstartx + (i× ∆x)

58: vy ← vstarty + (i× ∆y)

59: oldLocation(n)← currentLocation(n)
60: for j ∈ {1, 2, .., 6} do . 7 different locations to test (Location 0 is the current one)
61: TRYPATHLOCATIONS(vstart, v f inish, Vm, j) . See Algorithm 3.19
62: currentScore← CALCULATESCORE(drawnPatterns) . See Algorithm 3.26
63: if currentScore < bestScore then
64: bestLayout← j
65: bestScore← currentScore
66: TRYPATHLOCATIONS(vstart, v f inish, Vm, bestLocation) . Draw in best location. See Algorithm 3.19

3.5.3 Share One Node

Circles, cliques, triangles and stars (when sharing an outside node) all share the

same drawing algorithm (Section 3.5.3.2) when patterns share one node with

the drawn set. Stars which have their centre node shared (Section 3.5.3.3) and

paths (Section 3.5.8) have separate methods.
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3.5.3.1 Node Swapping

Nodes may be swapped in the pattern to produce a better layout. For exam-

ple, the order of the spokes of a star or nodes in a clique are irrelevant and by

changing this order, a better drawing result may be obtained. Therefore, a list of

potential swaps is generated. If the shared node has more than one drawn pat-

tern connecting to it, then the current order is used. This prevents any already

drawn nodes from being moved. If not, then all nodes in the already drawn

pattern which also have only one drawn pattern (and not the centre of a star)

are identified. For each of these potential swapping nodes, the location of the

shared node and swapping node are switched, and the pattern is drawn accord-

ing to the algorithms detailed in Sections 3.5.3.2, 3.5.3.3 and 3.5.8. Once drawn,

a score is calculated based on node-node occlusion, edge-node occlusion, edge

crossings and symmetry (Section 3.6.3). When all options have been tested, the

swap with the best score is used for the final layout.

The process of swapping nodes is described in Algorithm 3.11. The time

complexity for this algorithm is dependent on the type of pattern being drawn.

If drawing a star sharing its centre node, the complexity is O(log (V) + (V ·

Vp)), if drawing a clique the complexity is O(log V + Vp), or if drawing all

other pattern types the complexity is O(Vp). This is due to the algorithm iter-

ating through some nodes in the graph to find swaps (log (V), Line 11 or 13),

if needed, and the time complexity of Algorithm 3.12 (Vp, Line 39) or Algo-

rithm 3.13 (V ·Vp, Line 41).

Algorithm 3.11: Node Swapping (Share One Node)

01: function NODESWAPPINGSHAREONENODE
02: G ← (V, E)
03: Gp ← (Vp, Ep) . The pattern about to be drawn
04: vs ← Shared Node
05: Gop ← drawnPatterns(vs) . All drawn patterns sharing the shared node
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06: if |Gop| = 1 then
07: Gother ← Gop[0] . The other pattern
08: if isStar(Gother) OR isClique(Gother) then
09: Vswaps ← ∅ . Swapping Nodes
10: if isStar(Gother) then
11: Vswaps ← {v | v ∈ Vother, drawnPatterns(n) = 1, v 6= centreNode(Gother)}
12: else if isClique(Gother) then
13: Vswaps ← {v | v ∈ Vother, drawnPatterns(v) = 1}
14: if Vswaps 6= ∅ then
15: bestScore← ∞
16: bestSymmetry← ∞
17: bestSwap← null
18: for each v ∈ Vswaps do
19: swapNodes(v, vs) . Swap the nodes
20: DRAWASREQUIRED(Gp, v) . See Below
21: currentScore← CALCULATESCORE(drawnPatterns) . See Algorithm 3.26
22: currentSymmetry← SYMMETRYMEASURE(drawnPatterns) . See Algorithm 3.25
23: if (currentScore < bestScore) OR (currentScore = bestScore AND currentSymmetry <

bestSymmetry) then
24: bestScore← currentScore
25: bestSymmetry← currentSymmetry
26: bestSwap← (v, vs)
27: swapNodes(v, vs) . Swap back
28: swapNodes(bestSwap) . Swap the best nodes
29: DRAWASREQUIRED(Gp, v) . See Below
30: else
31: DRAWASREQUIRED(Gp, v) . See Below

32: else
33: DRAWASREQUIRED(Gp, v) . See Below

34: else
35: DRAWASREQUIRED(Gp, v) . See Below

36:
37: function DRAWASREQUIRED(Gp, v)
38: if isStar(Gp) AND centreNode(Gp) = vs then
39: DRAWPATTERN(Gp) . Draw (Star (Centre Node)). See Algorithm 3.13)
40: else
41: DRAWPATTERN(Gp) . Draw (All except Star (Centre Node). See Algorithm 3.12)

3.5.3.2 Circles, Cliques, Triangles & Stars (Outside Node)

Circles, cliques, triangles and stars that share an outside node all have the same

algorithm for drawing. In this algorithm, the pattern is first drawn in its ideal
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layout, centred on the origin of the graph, before being moved so that the shared

node is back in its original location.

A search based approach is then taken in order to find the best layout. The

pattern is rotated 5◦ and a fitness score based on the number of occlusions and

edge crossings is calculated and compared to the current best. If the new score

is lower, then rotation is chosen. If this rotation is equal to the previous best,

then a symmetry score is calculated and the more symmetrical layout is cho-

sen. The rotation step of 5◦ is chosen to reduce the number of iterations of this

method and to avoid the need for a complicated algorithm which has no knowl-

edge of any other patterns that may be cause occlusion or edge crossings. The

pattern is then reflected along the line between the shared node and the centre

of the pattern and the same calculations and comparisons are performed. The

process then continues until the pattern has completed a full rotation and the

pattern is then redrawn with the best rotation and reflection found. This com-

pletes the algorithm, examples of which can be seen in Figure 3.46 and which is

detailed in Algorithm 3.12. This algorithm has a time complexity ofO(Vp), due

to the algorithm iterating through all nodes in the pattern several times order

to determine the correct location (Lines 7 and 32).
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Figure 3.46: Examples of the Shared Node algorithm for Cliques, Circles, and

Stars (outside node)

Algorithm 3.12: Share One Node - Circle,
Clique, Triangle, Star (Outside)

01: function DRAWPATTERN(Gp)
02: G ← (V, E)
03: drawnPatterns← {g | g ∈ G, drawn(g)}
04: Gp ← (Vp, Ep) . The pattern about to be drawn
05: Vs ← {v | v ∈ V, v ∈ Vp} . The shared node
06: originalLocation← currentLocation(vs)

07: drawInIdealLayout(Gp) . Draw pattern in ideal layout
08: drawnPatterns← drawnPatterns ∪ Gp

09: movePattern(Gp, originalLocation)
10: bestScore← CALCULATESCORE(drawnPatterns) . See Algorithm 3.26
11: bestAngle← 0
12: bestRe f lection← f alse
13: bestSymmetry← SYMMETRYMEASURE(drawnPatterns) . See Algorithm 3.25
14: for i← {5, 10, 15, . . . , 355} do
15: rotatePattern(Gp, i) . Rotate Pattern
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16: newScore← CALCULATESCORE(drawnPatterns) . See Algorithm 3.26
17: newSymmetry← SYMMETRYMEASURE(drawnPatterns) . See Algorithm 3.25
18:
19: if (newScore < bestScore) OR (newScore = bestScore AND newSymmetry < bestSymmetry)

then
20: bestScore← newScore
21: bestAngle← i
22: bestRe f lection← f alse
23: bestSymmetry← newSymmetry
24: reflectPattern(Gp, (ns, centreOf(Gp))) . Reflect pattern
25: if (newScore < bestScore) OR (newScore = bestScore AND newSymmetry < bestSymmetry)

then
26: bestScore← newScore
27: bestAngle← i
28: bestRe f lection← true
29: bestSymmetry← newSymmetry
30: reflectPattern(Gp, (ns, centreOf(Gp))) . Reflect back
31: rotatePattern(Gp,−i) . Rotate back to reduce compound rounding errors

32: drawInIdealLayout(Gp) . Draw pattern again, to mitigate any rounding errors
33: movePattern(Gp, originalLocation) . Move pattern back
34: rotatePattern(Gp, bestAngle) . Rotate Pattern
35: if bestRe f lection then
36: reflectPattern(Gp, (ns, centreOf(Gp))) . Reflect pattern

3.5.3.3 Stars (Centre Node)

Stars that share their central node with another pattern are drawn differently to

stars sharing an outside node.

The method for drawing stars is similar to that for stars sharing an edge

(Section 3.5.1.3). The largest valid area for drawing is calculated, using the

method described in Section 3.6.1 and once found, the nodes of the star are

drawn evenly spaced in this area. This algorithm is detailed in Algorithm 3.13

and an example given in Figure 3.47. This algorithm has a time complexity of

O(V +Vp), due to the algorithm iterating through all nodes in the graph to find

the best drawable area (V, Line 10), and the nodes in the pattern to determine

their new location (Vp, Line 16 or 18).
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Figure 3.47: Example of Shared Node algorithm for Stars (centre node)

Algorithm 3.13: Share One Node - Star (Centre Node)

01: function DRAWPATTERN(Gp)
02: G ← (V, E)
03: drawnPatterns← {g | g ∈ G, drawn(g)}
04: Gp ← (Vp, Ep) . The pattern about to be drawn
05: Vs ← {v | v ∈ V, v ∈ Vp} . The shared node
06: vc ← centreNodeOfStar(Gp) . The centre node
07: drawnPatterns← drawnPatterns ∪ Gp

08: vcentre ← centreNodeOfStar(Gp)

09: drawableAreas← ∅ . Empty list of Drawing Areas
10: for each Node {v | v ∈ V, v /∈ Vp, distance(v, vcentre) ≤ (|Vp| × 20) + nodePadding} do
11: angle← angle(v, vcentre)
12: drawableAreas← drawableAreas ∪ (angle− anglePadding, angle + anglePadding)
13: drawableAreas← JOININVALIDAREAS(drawableAreas) . See Algorithm 3.23
14: bestArea← FINDBESTAREA(drawableAreas) . See Algorithm 3.24
15: if drawableAreas 6= ∅ then
16: drawInIdealLayout(Gp, bestArea) . Draw pattern in ideal layout in the bestArea
17: else
18: drawInIdealLayout(Gp) . Draw pattern in ideal layout

19: . Check if pattern is inside the drawn set
20: bestScore← CALCULATESCORE(drawnPatterns) . See Algorithm 3.26
21: bestSymmetry← SYMMETRYMEASURE(drawnPatterns) . See Algorithm 3.25
22: rotatePattern(Gp, 180◦) . Rotate Pattern
23: newScore← CALCULATESCORE(drawnPatterns) . See Algorithm 3.26
24: newSymmetry← SYMMETRYMEASURE(drawnPatterns) . See Algorithm 3.25
25: if newScore > bestScore OR (newScore = bestScore AND newSymmetry ≥ bestSymmetry) then
26: rotatePattern(Gp, 180◦) . Rotate back
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3.5.4 Share Two Nodes

It is only possible for circles, triangles and paths to share two nodes, but no

edges.

3.5.4.1 Circles

The method for drawing circles with this type of connection is very similar to

patterns which share one edge. A imaginary edge is created between the two

shared nodes, and the process runs as in Section 3.5.1.2. In the example of Fig-

ure 3.48 below, the imaginary shared edge is represented with a dashed line,

while the other edges ensure no stars are created. The algorithm is defined be-

low in Algorithm 3.14 and has a time complexity ofO(Vp), due to the algorithm

iterating through all nodes in the pattern several times order to determine the

correct location (Line 11).
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Figure 3.48: Example of two circles sharing two nodes
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Algorithm 3.14: Share Two Nodes - Circle

01: function DRAWPATTERN(Gp)
02: G ← (V, E)
03: drawnPatterns← {g | g ∈ G, drawn(g)}
04: Gp ← (Vp, Ep) . The pattern about to be drawn
05: Vs ← {v | v ∈ V, v ∈ Vp} . Shared Nodes
06: Vother ← {v | v ∈ Vp, v /∈ Vs}
07: ev ← (Vs[0], Vs[1]) . Create a virtual edge
08: oldLocation← currentLocation(ev)

09: oldAngle← currentAngle(ev)

10: oldLength← length(ev)

11: drawInIdealLayout(Gp) . Draw pattern in ideal layout
12: drawnPatterns← drawnPatterns ∪ Gp

13: scalePattern(Gp, oldLength)
14: rotatePatern(Gp, oldAngle)
15: movePattern(Gp, oldLocation)
16: f inalScore← CALCULATESCORE(drawnPatterns) . See Algorithm 3.26
17: if originalScore 6= f inalScore then . Gp may be drawn around the drawn patterns
18: reflectPattern(Gp, ev) . Reflect Gp along the virtual edge
19: if f inalScore ≤ CALCULATESCORE(drawnPatterns) then . If there is a worse score now, then

the best location was the previous one, See Algorithm 3.26
20: reflectPattern(Gp, ev) . Reflect back

3.5.4.2 Triangles

If a triangle shares two nodes, there only remains one node left to draw. This

node is drawn in such a way to make an isosceles triangle. This location is then

tested by altering the distance of this node and reflecting it along the line be-

tween the two other nodes. The best location (determined by the edge crossing

and occlusion score) is found and this is where the remaining node is drawn.

The algorithm is defined below in Algorithm 3.15 and has a time complexity of

O(Vp), due to the algorithm iterating through all nodes in the pattern several

times order to determine the correct location (Line 13).
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Figure 3.49: Example of a triangle sharing two nodes

Algorithm 3.15: Share Two Nodes - Triangles

01: function DRAWPATTERN(Gp)
02: G ← (V, E)
03: drawnPatterns← {g | g ∈ G, drawn(g)}
04: Gp ← (Vp, Ep) . The pattern about to be drawn
05: Vs ← {v | v ∈ V, v ∈ Vp} . Shared Nodes
06: vother ← {v | v ∈ Vp, v /∈ Vs}
07: votherx ← (Vs[0]x + Vs[1]x)÷ 2
08: vothery ← (Vs[0]y + Vs[1]y)÷ 2
09: drawnPatterns← drawnPatterns ∪ {Gp}
10: bestLayout← 0
11: bestScore← ∞ . The current layout has node-edge occlusion
12: for j ∈ {1, 2, ..., 6} do . 7 different locations to test (Location 0 is the current one)
13: TRYPATHLOCATIONS(vstart, v f inish, vother, j) . See Algorithm 3.19
14: currentScore← CALCULATESCORE(drawnPatterns) . See Algorithm 3.26
15: if currentScore < bestScore then
16: bestLayout← j
17: bestScore← currentScore
18: TRYPATHLOCATIONS(nstart, n f inish, nother, bestLocation) . Draw in best location. See

Algorithm 3.19
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3.5.5 Connected by an Edge

The algorithm for drawing patterns connected to the drawn set of patterns by

one edge is the same for every pattern (Section 3.5.5.2).

3.5.5.1 Node Swapping

Nodes may be swapped in the pattern to produce a better layout. For example,

the order of nodes in a clique or spokes in a star is irrelevant and by changing

this order, a better drawing result may be obtained. Therefore, a list of potential

swaps is generated. If the total number of patterns that share the start and end

nodes of the connecting edge is exactly 2 (i.e. the already drawn pattern and

the one about to be drawn), then swapping is possible. If not, then the current

order is used, as this prevents any already drawn nodes from being moved.

Both cliques and stars share the same method for determining the potential

nodes to be swapped. A list of nodes in the drawn pattern which only have one

pattern (i.e. this drawn pattern) are identified as potential swaps (the centre

of stars is also excluded). There is no need to swap nodes within the pattern

about to be drawn, as this will be rotated and reflected as part of the drawing

procedure.

For each of these potential swapping nodes, the location is swapped with

that of the connecting node (i.e. the node at which the connecting edge con-

nects to the pattern about to be drawn). The pattern is then drawn according to

the methods detailed in Sections 3.5.5.2 and 3.5.8. Once drawn, a score is calcu-

lated based on node-node occlusion, edge-node occlusion, edge crossings and

symmetry (Section 3.6.3). When all options have been tested, the swap with the

best score is used for the final layout.

The process of swapping nodes is described in Algorithm 3.16. The time

complexity for this algorithm is dependent on the type of pattern being drawn.
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If drawing a star or clique, the complexity isO(log (V)+Vp + log E), or if draw-

ing all other pattern types the complexity is O(Vp + log E). This is due to the

algorithm iterating through some nodes in the graph to find swaps (log (V),

Line 20), if needed, and the time complexity of Algorithm 3.17 (Vp + log E,

Lines 22 and 31–37).

Algorithm 3.16: Node Swapping (Connected By an Edge)

01: function NODESWAPPINGEDGECONNECTING
02: G ← (V, E)
03: Gp ← (Vp, Ep) . The pattern about to be drawn
04: ec ← Connecting Edge
05: vc ← {v | v ∈ Vp, ec ∈ connectingEdges(v)} . Attaching node
06: Gop ← patterns(startNode(ec)) ∪ patterns(endNode(ec)) . All patterns sharing the start and

end nodes of the connecting edge
07: drawnPatterns← drawnPatterns ∪ Gp

08: if |Gop| = 2 then . Swapping can only occur if there’s one other pattern sharing the nodes at
either end of this edge

09: Gother ← {g | g ∈ Gop, g 6= Gp} . The other pattern
10: if isStar(Gother) OR isClique(Gother) then
11: Nswaps ← ∅ . Swapping Nodes
12: if isStar(Gother) then
13: Vswaps ← {v | v ∈ Vother, drawnPatterns(v) = 1, n 6= centreNode(Gother)}
14: else if isClique(Gother) then
15: Vswaps ← {v | v ∈ Vother, drawnPatterns(v) = 1}
16: if Vswaps 6= ∅ then
17: bestScore← ∞
18: bestSymmetry← ∞
19: bestSwap← null
20: for each v ∈ Vswaps do
21: swapNodes(v, vc) . Swap the nodes
22: DRAWPATTERN(Gp) . Draw pattern (See Algorithm 3.17)
23: currentScore← CALCULATESCORE(drawnPatterns) . See Algorithm 3.26
24: currentSymmetry← SYMMETRYMEASURE(drawnPatterns) . See Algorithm 3.25
25: if (currentScore < bestScore) OR (currentScore = bestScore AND currentSymmetry <

bestSymmetry) then
26: bestScore← currentScore
27: bestSymmetry← currentSymmetry
28: bestSwap← (v, vc)

29: swapNodes(v, vc) . Swap back

30: swapNodes(bestSwap) . Swap the best nodes
31: DRAWPATTERN(Gp) . Draw pattern (See Algorithm 3.17)
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32: else
33: DRAWPATTERN(Gp) . Draw pattern (See Algorithm 3.17)
34: else
35: DRAWPATTERN(Gp) . Draw pattern (See Algorithm 3.17)
36: else
37: DRAWPATTERN(Gp) . Draw pattern (See Algorithm 3.17)

3.5.5.2 Cliques, Circles, Triangles & Stars

The algorithm for drawing a pattern connected by an edge to the drawn set

utilises a search based approach. A grid of possible options is created and for

each of this options, various combinations of rotations and reflections are tested.

Numerous metrics are calculated to represent this and each is then tested in the

order below:

1. Distance between the pattern and the currently drawn set

2. The sum of the number of edge crossings in the graph and any occluded

nodes (See Section 3.6.3)

3. Length of the connecting edge

4. A measure of symmetry (See Section 3.6.2)

For a combination to be considered, the separation distance must be larger

than a constant value. If it is valid for consideration, the total of the number of

edge crossings and occluded nodes are examined and if lower than the previous

best, the current combination is considered to be the current best.

However, the values may be equal. When this happens, the length of the

connecting edge is compared. If this length is less than the previous best length,

this combination is ranked as the best. If this metric is also equal, then a calcu-

lation of symmetry is made (see Section 3.6.2). If this measure is lower (i.e. the
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pattern is more symmetrical to the currently drawn patterns), then this combi-

nation is considered to be the current best.

This process is repeated a further two times (reflection is not performed after

the first iteration) with the search space being a factor of ten smaller each time

(See Figure 3.50). This means that the spacing between each combination and

the overall search space is ten times smaller. Once this process is complete, the

pattern is drawn in the best location and combination of rotation and reflection.

The algorithm is defined below in Algorithm 3.17 and has a time complexity of

O(Vp + log E), due to the algorithm iterating through all nodes in the pattern

several times order to determine their new location (Vp, Line 26), and to identify

the length of connecting edges (log E, Line 94).

cB

cB

cB

cB
cA

cA cA

cA

Figure 3.50: Example of the grid based search algorithm
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Figure 3.51: Example of the Edge Connected algorithm

Algorithm 3.17: Connected By ≥ 1 Edges -

Clique, Circle, Triangle, Star

01: function DRAWPATTERN(Gp)
02: G ← (V, E)
03: Gp ← (Vp, Ep) . The pattern about to be drawn
04: Ec ← Connecting Edges
05: Vc ← {v | v ∈ Vp, ec ∈ connectingEdges(v)} . Attaching nodes
06: gridPoints← 10 . Define search parameters
07: rotationPoints← 8
08: minseparation ← 50
09: paddingx ← width(Gp) + 100
10: paddingy ← height(Gp) + 100
11: minx ← minX(Gp)− paddingx

12: maxx ← maxX(Gp) + paddingx

13: miny ← minY(Gp)− paddingy

14: maxy ← maxY(Gp) + paddingy

15: minangle ← 0◦

16: maxangle ← 360◦

17: width← maxx −minx
18: height← maxx −minx
19: angleSweep← maxangle −minangle
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20: gridSpacingx ← width÷ (gridPoints− 1)
21: gridSpacingy ← height÷ (gridPoints− 1)
22: angleIncrease← angleSweep÷ rotationPoints
23: bestx ← −1
24: besty ← −1
25: bestrotation ← 0
26: drawPatternInIdealLayout(Gp)

27: drawnPatterns← drawnPatterns ∪ Gp

28: PERFORMSEARCH(true) . Perform a search. See Below
29: while gridSpacingx ≥ 10 OR gridSpacingy ≥ 10 do
30: width← width÷ (gridPoints− 1) . Resize search area
31: height← height÷ (gridPoints− 1)
32: angleIncrease← angleSweep÷ rotationPoints
33: minx ← bestx − (width÷ 2)
34: maxx ← bestx + (width÷ 2)
35: miny ← besty − (height÷ 2)
36: maxy ← besty + (height÷ 2)
37: if |Nc| = 1 then
38: angleSweep← angleSweep÷ 3
39: minangle ← bestrotation − (angleSweep÷ 2)
40: maxangle ← bestrotation + (angleSweep÷ 2)
41: PERFORMSEARCH( f alse) . Perform a search. See Below

42:
43: function PERFORMSEARCH( f irstIteration)
44: bestx ← −1
45: besty ← −1
46: bestrotation ← ∞
47: bestedgeLength ← ∞
48: bestsymmetry ← ∞
49: bestscore ← ∞
50: bestre f lection ← f alse
51: for each x ∈ {minx, minx + gridSpacingx, ..., maxx} do
52: for each y ∈ {miny, miny + gridSpacingy, ..., maxy} do
53: for each rotation ∈ {minangle, minangle + angleIncrease, ..., maxangle} do
54: for each re f lection ∈ {true, f alse} do
55: if |Nc| = 1 then
56: if f irstIteration AND re f lection then
57: reflectPattern(Gp)

58: else
59: Break reflection loop
60: else . Reflect every time if there’s more than 1 connecting edge
61: currentRe f lection← re f lection
62: if re f lection then
63: reflectPattern(Gp)

64: centrePattern(Gp, x, y)
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65: rotatePattern(Gp, rotation)
66: currentedgeLength ← CALCULATEEDGELENGTH(Ec) . See Below
67: currentscore ← CALCULATESCORE(drawnPatterns) . See Algorithm 3.26
68: currentsymmetry ← SYMMETRYMEASURE(drawnPatterns) . See Algorithm 3.25
69: currentdistance ← closestDistance(Gp, drawnPatterns)
70: if currentdistance ≥ minseparation then . Do not draw too close to existing patterns
71: if currentscore < bestscore then
72: SAVEBESTLOCATION . See Below
73: else if currentscore = bestscore then
74: if currentedgeLength < bestedgeLength then
75: SAVEBESTLOCATION . See Below
76: else if currentedgeLength = bestedgeLength then
77: if currentsymmetry < bestsymmetry then
78: SAVEBESTLOCATION . See Below

79: drawPatternInIdealLayout(Gp) . Draw pattern in best location
80: centrePattern(Gp, bestx, besty)

81: if bestre f lection then
82: reflectPattern(Gp)
83: rotatePattern(Gp, bestrotation)

84:
85: function SAVEBESTLOCATION
86: bestx ← x
87: besty ← y
88: bestrotation ← rotation
89: bestre f lection ← re f lection
90: bestscore ← currentscore

91: bestsymmetry ← currentsymmetry

92: bestedgeLength ← currentedgeLength

93:
94: function CALCULATEEDGELENGTH(Ec)
95: x ← 0
96: for each Edge e ∈ Ec do
97: x ← x + (length(e)2)

98: return x

3.5.6 Connected by Multiple Edges

Some patterns may be connected to the currently drawn set by more than one

edge. The drawing algorithm for this is identical to that for one edge (See Sec-

tion 3.5.5), with one exception. The pattern is reflected each time, rather than
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on the first iteration. This enables the possibility of uncrossing the connecting

edges, (a condition which does not exist when only one edge is connected). Al-

though it has no effect on the layout of a pattern connected by one edge, the

metric for calculating edge length totals the squared length of each edge: this

enables more balanced edge lengths to be given a lower score than highly mis-

matched edges. This method is described in Algorithm 3.17 and an example

given in Figure 3.52.

0cA

1cA

3cB

4cB

6cB

7cA

5cB

2cA

Figure 3.52: Example of patterns connected by multiple edges

3.5.7 No connections

Patterns may not be connected to the currently drawn set by any of the above

methods. These are said to have “no connection”, although they are not dis-

connected graphs - these patterns have no direct connection to the drawn set.

To find a sensible location for these patterns, any routes between the pattern

and the drawn set are found using a breadth first search. Virtual edges are cre-

ated between the start and finish of these routes, and the process of drawing

is similar to the multiple edges approach. The ideal distance of these edges is
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dependent on the number of nodes contained within the route. Routes are then

drawn according to the method detailed in Section 3.5.8 and are highlighted

in solid grey, as can be seen in Figure 3.53. The algorithm is defined below in

Algorithm 3.18 and has a time complexity of O(Vp + Ep), due to the algorithm

performing a breadth first search.

-cA

-cA

-cA

-cA-r1

-cB

-cB

-cB

-cB-r1

-r1

Figure 3.53: Example of two cliques having no connection

Algorithm 3.18: No connections

01: function DRAWPATTERN(Gp)
02: G ← (V, E)
03: Gp ← (Vp, Ep) . The pattern being drawn
04: Epairs ← ∅
05: Pr ← ∅ . List of routes
06: for each Node v ∈ Vp do
07: (Vr, Er)← new Route
08: Vr ← v
09: Qr ← [ ] . List of routes
10: Qr ← Qr ∪ (Vr, Er)

11: while Qr 6= ∅ do
12: (Vr, Er)← Qr[0]
13: Qr ← Qr ∪ (Vr, Er)

14: nlast ← lastNode(Vr)

15: if inAnotherPattern(vlast, Gp) then
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16: Pr ← Pr ∪ (Vr, Er)

17: Skip this route
18: for each Node {vc | vc ∈ connectingNodes(vlast), vc 6∈ Vp, vc 6∈ Vr} do
19: Rr ← (Vr ∪ vc,∅)

20: Qr ← Qr ∪ Rr

21: for Route (Vr, Er) ∈ Pr do
22: for i ∈ {0, 1, 2, ..., |Vr| − 1} do
23: e← edgesBetween(Vr[i], Vr[i + 1])
24: Er ← Er ∪ e
25: epair ← (Vr[i], Vr[i + 1])
26: Epairs ← Epairs ∪ epairs
27: sepDistance← 0
28: for Route (Vr, Er) ∈ Pr do
29: sepDistance← sepDistance + (|Vr| × 50)
30: CONNECTEDBYEDGES(Gp, sepDistance) . Draw using Connected By Edges (See Algorithm 3.17)
31: drawn(Pr)← true
32: destroyEdges(Epairs)

3.5.8 Paths & Routes

Paths and routes (the series of nodes that joins two patterns which are classed as

having no connection, as described in Section 3.5.7) have no ideal layout, due to

their flexibility and varied nature. Instead, they must be drawn using a different

method to other patterns. Paths and routes are initially drawn as a straight line,

either emanating from a node, or connecting two nodes. Once all other patterns

are drawn, this straight line is then investigated to find a more suitable layout.

Several options of curve are tested, and an occlusion & edge crossing score is

calculated, as can be seen in Figure 3.54. The layout with the best score is chosen

as the final drawing location. The algorithm is defined below in Algorithm 3.19

and has a time complexity of O(Vp), due to the algorithm iterating through

every node in the pattern in order to determine its new location (Line 33).
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Figure 3.54: Example of various possible path locations

Algorithm 3.19: Path and Route Adjustment

01: function ADJUSTPATHS(Gp)
02: G ← (V, E)
03: Gp ← (Vp, Ep) . The pattern being modified
04: bestScore← CALCULATESCORE(drawnPatterns) . See Algorithm 3.26
05: bestLayout← 0
06: for j ∈ {1, 2, .., 6} do . 7 different locations to test (Location 0 is the current one)
07: TRYPATHLOCATIONS((Vp, Ep), j) . See Below
08: currentScore← CALCULATESCORE(drawnPatterns) . See Algorithm 3.26
09: if currentScore < bestScore then
10: bestLayout← j
11: bestScore← currentScore
12: TRYPATHLOCATIONS((Vp, Ep), bestLocation) . Draw in best location. See Below

13:
14: function TRYPATHLOCATIONS((Vp, Ep), j)
15: v f irst ← Vp[0]
16: vlast ← Vp[|Vp| − 1]
17: Vm ← Vp

18: if j = 0 then
19: MOVEPATH((Vp, Ep), 0, Vm, v f irst, vlast, 1) . See Below
20: else if j = 1 then
21: MOVEPATH((Vp, Ep), 50, Vm, v f irst, vlast, 1) . See Below
22: else if j = 2 then
23: MOVEPATH((Vp, Ep), 50, Vm, v f irst, vlast,−1) . See Below
24: else if j = 3 then
25: MOVEPATH((Vp, Ep), 75, Vm, v f irst, vlast, 1) . See Below
26: else if j = 4 then
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27: MOVEPATH((Vp, Ep), 75, Vm, v f irst, vlast,−1) . See Below
28: else if j = 5 then
29: MOVEPATH((Vp, Ep), 100, Vm, v f irst, vlast, 1) . See Below
30: else if j = 6 then
31: MOVEPATH((Vp, Ep), 100, Vm, v f irst, vlast,−1) . See Below

32:
33: function MOVEPATH((Vp, Ep), amount, Vm, v f irst, vlast, f lip)
34: gap← 2
35: patternAngle← angle(v f irst, vlast)

36: rotationAngle← (patternAngle + 90◦) mod 360◦

37: if isPath(Vp, Ep) then
38: if patterns(Vm[1]) > 1 then
39: Vm ← Vm \ v f irst . Ignore the first node if this is a path sharing an edge
40: if patterns(Vm[|Vm| − 2]) > 1 then
41: Vm ← Vm \ vlast . Ignore the last node if this is a path sharing an edge
42: for each v ∈ Vm, {i | i ≥ 1, i < |Vm| − 1} do
43: f romFirst← i
44: f romLast← |Vm| − 1− i
45: d← min( f romFirst, f romLast)
46: distance← gap · amount · log(d + 1) · f lip
47: height← −distance · sin(rotationAngle)
48: width← distance · cos(rotationAngle)
49: vx ← vx + width
50: vy ← vy + height

3.5.9 Loose nodes

It is also necessary to draw any nodes that do not belong to patterns. These

nodes are assigned to two groups: singles and multiples. Singles are those nodes

which connect to either none or one node that belongs in a pattern and may

connect to any number of other loose nodes. Multiples are nodes which connect

to 2 or more patterns and these may connect to any number of other loose nodes.

Although these restrictions may suggest a large number of nodes will be classed

as loose, in practice most nodes are actually contained within patterns, and thus

not loose.
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3.5.9.1 Identifiying and Drawing Loose Nodes

Once all patterns have been drawn, loose nodes may be identified and drawn.

If no patterns have been drawn (because none were identified), then the most

connected node is considered to have been drawn as a “starter” node. To iden-

tify any potential loose nodes, every drawn node is considered. For each of

these, every connected node that has not been drawn is considered to be a loose

node; if the loose node is connected to one drawn node then it is a single (and

the node connecting to this is stored), if not, it is a multiple.

Once a list of loose nodes is identified, all multiples are drawn first using a

simple barycentre approach [120], where the centre of all the connecting nodes

is found and the loose node is drawn there. However, this location may be

occluded, so a small grid is checked to find a better location if needed. Once

complete, all single nodes are drawn. The list of nodes containing singles is

iterated through, with the best drawable area found (See Section 3.6.1) and the

single loose nodes are arranged within that area.

Once this list is complete, the identification and drawing process starts again

until all nodes within the graph are drawn. This iterative process has the effect

of building tree-like structures if there are a number of single loose nodes con-

nected together. The identification process is shown in Algorithm 3.20 and has

a time complexity of O(V · (log V)2). This is due to the identification process

((log V)2, Line 16), and the drawing of multiples (Algorithm 3.21, log V) and

singles (Algorithm 3.22, V · log V), both of which are run log V times.

In a previous version of the method, a list of single loose nodes was identi-

fied, and sorted after each node was drawn. This list of singles was then sorted

in order of greater number of patterns connecting and greater number of con-

nections. Once sorted, the largest drawable area around the centre was found
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Figure 3.55: Example of Loose Nodes - Multiples
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Figure 3.56: Examples of Loose Nodes - Singles

and the single loose nodes are arranged within that. This method was unfortu-

nately both poor at identifying all loose nodes and had an unnecessarily com-

plicated implementation. An improved system of identifying single nodes was

therefore completed instead.

Algorithm 3.20: Loose Nodes Identification

01: function TIDYLOOSENODES(Gp)
02: G ← (V, E)
03: visited(G)← f alse
04: Vs ← ∅ . Nodes with singles
05: Vm ← ∅ . Multiple Loose Nodes
06: FINDLOOSENODES((V, E), Vs, Vm) . See Below
07: while Vs 6= ∅ OR Vm 6= ∅ do
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08: for each Node v ∈ Vm do
09: DRAWMULTIPLE(v) . See Algorithm 3.21

10: for each Node v ∈ Vs do
11: DRAWSINGLES(v) . See Algorithm 3.22

12: Vs ← ∅
13: Vm ← ∅
14: FINDLOOSENODES((V, E), Vs, Vm) . See Below

15:
16: function FINDLOOSENODES((V, E), Vs, Vm)
17: for each Node {v | v ∈ V, drawn(v)} do
18: for each Node {vc | v ∈ V, ¬drawn(vc), vc ∈ connectingNodes(v)} do
19: if connectingDrawnNodes(vc) = 1 AND v 6∈ Vs then . Single found
20: Vs ← Vs ∪ v
21: singles(v)← singles(v) ∪ vc

22: else if connectingDrawnNodes(vc) > 1 AND v 6∈ Vm then . Multiple found
23: Vm ← Vm ∪ v

Algorithm 3.21: Drawing Loose Nodes (Multiples)

01: function DRAWMULTIPLE(v)
02: G ← (V, E)
03: visited(v)← true
04: drawn(v)← true
05: drawn(connectingEdges(v))← true
06: totalx ← 0
07: totaly ← 0
08: totalnodes ← 0
09: for each Node {vc | vc ∈ V, vc ∈ connectingNodes(v), patterns(vc) 6= ∅} do
10: totalx ← totalx + vcx

11: totaly ← totaly + vcy

12: totalnodes ← totalnodes + 1

13: newx ← totalx ÷ totalnodes

14: newy ← totaly ÷ totalnodes

15: location(v)← (newx, newy)

16: currentLocation← (newx, newy)

17: minValue← −100 . Define the search area
18: maxValue← 100
19: step← 10
20: bestScore← CALCULATESCORE(drawnPatterns) . See Algorithm 3.26
21: best∆x ← 0
22: best∆y← 0
23: for ∆x ∈ {minValue, minValue + step, ..., maxValue} do
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24: for ∆y ∈ {minValue, minValue + step, ..., maxValue} do
25: vx ← currentLocationx + ∆x
26: vy ← currentLocationy + ∆y
27: currentScore← CALCULATESCORE(drawnPatterns) . See Algorithm 3.26
28: if currentScore < bestScore then
29: bestScore← currentScore
30: best∆x ← ∆x
31: best∆y← ∆y
32: location(v)← (currentLocation + best∆x, currentLocation + best∆y)

Algorithm 3.22: Drawing Loose Nodes (Singles)

01: function DRAWSINGLES(vc)
02: G ← (V, E)
03: Vs ← singles(vc) . The single loose nodes attached to this node
04: idealDistance← 120
05: drawableAreas← ∅ . Empty list of Drawing Areas
06: for each Node {v | v ∈ V, v 6∈ Vs, v 6= vc, drawn(v), distance(v, vc) ≤ (idealDistance× 1.2)} do
07: padding← 5◦

08: angle← angle(v, vc)

09: drawableAreas← drawableAreas ∪ (angle− padding, angle + padding)
10: drawableAreas← JOININVALIDAREAS(drawableAreas) . See Algorithm 3.23
11: bestArea← FINDBESTAREA(drawableAreas) . See Algorithm 3.24
12: startAngle← startAngle(bestArea)
13: endAngle← endAngle(bestArea)
14: angleStep← (endAngle − startAngle) ÷ (|Vs| + 1)
15: for each Node v ∈ Vs do
16: angle ← (angleStep · (indexOf(Vs, v) + 1)) + startAngle
17: ∆x ← (idealDistance · cos(−thisAngle))
18: ∆y ← (idealDistance · sin(−thisAngle))
19: vx ← vcx + ∆x

20: vy ← vcy + ∆y

21: visited(Vs)← true
22: drawn(Vs)← true
23: drawn(connectingEdges(Vs))← true
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3.6 Methods Used in Numerous Drawing Techniques

Throughout the implementation, it has been necessary to create a number of

methods with specific jobs that may be used by a number of the drawing tech-

niques.

3.6.1 Drawable Areas

Certain patterns require that they be drawn in areas that are currently uninhab-

ited by other nodes. For example, when drawing a star that shares one edge, the

outer nodes may only be drawn in areas where they would not cause occlusion

or unnecessary edge crossings. To avoid this, the concept of drawable areas is

introduced.

Any nodes within the entire graph that exist within range of the centre node

(and that are not part of this pattern) have an invalid area created around them

(with padding of 5◦ either side to avoid occlusion). Once all nodes have been

considered, invalid areas are then processed. Areas may need processing be-

cause they meet any of the following conditions:

1. The area overlaps the origin (See Figure 3.57a)

2. The two areas are in the same location and have the same size (See Fig-

ure 3.57b)

3. The two areas are adjacent (where the join is not the origin) (See Fig-

ure 3.57c)

4. One area is contained within another (See Figure 3.57d)

5. One area partially overlaps another (See Figure 3.57e)
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(a) Area overlap origin (b) Areas are the same size (c) Areas are adjacent

(d) Area contained within
another

(e) Areas overlap

Figure 3.57: Examples of Area Intersections

In a previous version of the method, areas which had nodes connecting to

nodes in other areas were joined, so that edge crossings were considered when

picking the best area. However, the best area was also only ever then chosen

based on size. Since the best area is now calculated using the number of edge

crossings and occlusions, it is not necessary to join areas connected by edges.

This process ensures that a list of non-contiguous areas is identified. Once a

list of invalid areas has been created, the system then finds the best valid area,

according to the formula below:

(10 ∗ occlusionAndEdgeScore)− sizeO f Region

To identify the best area, the occlusion and edge crossing score is calculated

(See Section 3.6.3). This is then multiplied by 10 and subtracted from the size

of the region. This allows the system to pick an area which is not necessarily
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the biggest, but will allow a better result to be drawn. The area is then returned

to the drawing technique for use. The concept is shown in Figure 3.58, where

invalid areas are shown in yellow and the best valid area is shown in green.

-cA

-cA

-cA

-sB

-sB

-cA-sB

-sB

-sB

Figure 3.58: The invalid areas and the best valid area when drawing pattern sB

The process of finding the best valid area is shown in Algorithms 3.23 and

3.24. Algorithm 3.23 has a time complexity ofO(A2), where A is the set of areas,

while Algorithm 3.24 has a time complexity of O(A ·V)
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Algorithm 3.23: Join Drawing Areas

01: function JOINDRAWINGAREAS(A)
02: G ← (V, E)
03: changed← f alse
04: while changed do
05: changed← f alse
06: Aa ← ∅ . Areas to add
07: Ar ← ∅ . Areas to remove
08: changed← CHECKDRAWINGAREAS(A, Aa, Ar) . See Line 12
09: A← (A \ Ar) ∪ Aa

10: return A

11:
12: function CHECKDRAWINGAREAS(A, Aa Ar, minValue = 0, maxValue = 360)
13: for each Area (astart, a f inish) ∈ A do
14: a← (astart, a f inish)

15: if a f inish > maxValue then . See Condition 1 (Figure 3.57a)
16: Aa ← Aa ∪ {(astart, maxValue), (minValue, a f inish mod maxValue)}
17: Ar ← Ar ∪ a
18: return true
19: else if astart < minValue then . See Condition 1 (Figure 3.57a)
20: Aa ← Aa ∪ {(astart + maxValue, maxValue), (minValue, a f inish mod maxValue)}
21: Ar ← Ar ∪ a
22: return true
23: else if astart > a f inish then . See Condition 1 (Figure 3.57a)
24: Aa ← Aa ∪ {(astart, maxValue), (minValue, a f inish)}
25: Ar ← Ar ∪ a
26: return true

27: for each Area (astart, a f inish) ∈ A do
28: for each Area (bstart, b f inish) ∈ A do
29: a← (astart, a f inish)

30: b← (bstart, b f inish)

31: if a = b then
32: Skip this area b
33: if astart = bstart AND a f inish = b f inish then . See Condition 2 (Figure 3.57b)
34: Aa ← Aa ∪ (astart, a f inish)

35: Ar ← Ar ∪ {a, b}
36: return true

37: if a f inish = bstart AND (a f inish 6= minValue OR a f inish 6= maxValue) then . See
Condition 3 (Figure 3.57c)

38: Aa ← Aa ∪ (astart, b f inish)

39: Ar ← Ar ∪ {a, b}
40: return true

41: if b f inish = astart AND (b f inish 6= minValue OR b f inish 6= maxValue) then . See
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Condition 3 (Figure 3.57c)
42: Aa ← Aa ∪ (bstart, a f inish)

43: Ar ← Ar ∪ {a, b}
44: return true

45: if astart < bstart AND a f inish > b f inish then . See Condition 4 (Figure 3.57d)
46: Aa ← Aa ∪ (astart, a f inish)

47: Ar ← Ar ∪ {a, b}
48: return true

49: if bstart < astart AND b f inish > a f inish then . See Condition 4 (Figure 3.57d)
50: Aa ← Aa ∪ (bstart, b f inish)

51: Ar ← Ar ∪ {a, b}
52: return true

53: if astart < bstart AND a f inish < b f inish AND a f inish > bstart then . See Condition 5
(Figure 3.57e)

54: Aa ← Aa ∪ (astart, b f inish)

55: Ar ← Ar ∪ {a, b}
56: return true

57: if bstart < astart AND b f inish < a f inish AND b f inish > astart then . See Condition 5
(Figure 3.57e)

58: Aa ← Aa ∪ (bstart, a f inish)

59: Ar ← Ar ∪ {a, b}
60: return true

61: return false

Algorithm 3.24: Find Best Drawing Areas

01: function FINDBESTAREA(Ai, minValue = 0, maxValue = 360)
02: G ← (V, E)
03: if Ai = ∅ then
04: return (minValue, maxValue)
05: Av ← FINDVALIDAREAS(Ai, minValue, maxValue) . Valid Drawing Areas. See Below
06: abest ← null . Best Drawing Area
07: bestScore← −∞
08: for each Area (astart, a f inish) ∈ Av do
09: a← (astart, a f inish)

10: if abest = null then
11: abest ← a
12: bestScore← −(10 × CALCULATESCORE(drawnPatterns)) + (a f inish − astart) . See

Algorithm 3.26
13: Skip this area

14: currentScore← −(10 × CALCULATESCORE(drawnPatterns)) + (a f inish − astart) . See
Algorithm 3.26
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15: if currentScore > bestScore then
16: abest ← a
17: bestScore← currentScore
18: return abest

19:
20: function FINDVALIDAREAS(Ai, minValue, maxValue)
21: Av ← ∅ . Valid Areas
22: f irstStart← maxValue
23: for each Area {(astart, a f inish) | (astart, a f inish) ∈ Ai, a f inish 6= maxValue} do
24: a← (astart, a f inish)

25: closestStart← maxValue
26: if astart < f irstStart then
27: f irstStart← astart

28: for each Area {(bstart, b f inish) | (bstart, b f inish) ∈ Ai, a 6= (bstart, b f inish)} do
29: b← (bstart, b f inish)

30: if bstart < closestStart AND bstart > a f inish then
31: closestStart← bstart
32: if closestStart = maxValue then
33: Av ← Av ∪ (a f inish, maxValue)
34: else
35: Av ← Av ∪ (a f inish, closestStart)
36: if f irstStart 6= minValue then
37: (astart, a f inish)← {(astart, a f inish) | (astart, a f inish) ∈ Av, a f inish = maxValue}
38: if (astart, a f inish) = ∅ then
39: Av ← Av ∪ (minvalue− (maxValue− astart), f irstStart)
40: Av ← Av \ (astart, a f inish)

41: else
42: Av ← Av ∪ (minvalue, f irstStart)
43: return Av

3.6.2 Symmetry Score

A number of drawing algorithms require the calculation of a score to represent

the symmetry of the newly drawn pattern. Calculating such a score is not im-

mediately obvious and several versions were created.

The first method was to compare the distance between the centre of the cur-

rently drawn set and the newly drawn pattern. This method did not return an
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adequate representation, and resulted in solutions similar to Figure 3.59.

2sA

4sB

5sB

6sB 7sB

8sAsB
1sA

0sA 3sA

Figure 3.59: Poor symmetry (1)

An improvement was made to this where the distance between every node

connected to the shared node or edge in both the currently drawn set and the

newly drawn pattern was calculated. In order to avoid occlusion, if any node

was less than a fixed distance from another, then the maximum score would

be returned. This, however, also provided an inadequate representation, with

results similar to Figure 3.60.

0cA

1cA

2cA

3sB

4cAsB

5sB

6sB

7sB

Figure 3.60: Poor symmetry (2)

A third method was then implemented, which focussed on angles rather

than distance and this is the method currently used (see Algorithm 3.25). The

angle between the horizontal and the imaginary line connecting the centre of

the newly drawn pattern and the shared edge or node and the angle between

the centre of each shared pattern and the shared edge or node was calculated
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(i.e. in Figure 3.61, the angle between the centre of pattern A and node 6cAcB is

compared to the angle between the centre of pattern B and node 6cAcB).

0cA

1cA

2cA

3cA

4cB

5cB
6cAcB

7cB

Figure 3.61: Good symmetry

The most symmetrical score would be that where the difference between the

angle of the new pattern that of the connecting patterns is zero. This produces

symmetrical layouts and is demonstrated in Figure 3.62. Pattern tA is drawn

first, in a horizontal position. Pattern tB is drawn second, and the angle be-

tween the imaginary line connecting the centre of this pattern and the shared

node (shown as a dashed blue line) and the horizontal is identical (with some

rounding errors) to the angle between the imaginary line connecting the cen-

tre of pattern tA and the shared node (in this case, the same as the horizontal).

Therefore, this is the best symmetrical location for pattern tB. The two varieties

of symmetry score are described in Algorithm 3.25 and share the time complex-

ity of O(P), where P is the set of currently drawn patterns.

Algorithm 3.25: Symmetry Score

01: function SYMMETRYSCORE(Gp, v) . Shared Node
02: result← 0
03: patternAngle← angle(v, centre(Gp))

04: for each Pattern Gpa ∈ patterns(v) do
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-tA

-tA
-tB

-tB

Ns

Figure 3.62: Symmetry Example

05: angle← angle(centre(Gpa), v) . Note reversed order
06: result← result + |patternAngle− angle|
07: return result

08:
09: function SYMMETRYSCORE(Gp, e) . Connecting Edge
10: vp ← {vp | vp ∈ Gp, vp ∈ e} . Pattern Node
11: vo ← {vo | vo ∈ e, vo 6= vp} . Other Node
12: centre← centre(e)
13: result← 0
14: patternAngle← angle(centre, centre(Gp))

15: for each Pattern Gpa ∈ patterns(v) do
16: angle← angle(centre(Gpa), centre) . Note reversed order
17: result← result + |patternAngle− angle|
18: return result

3.6.3 Occlusion & Edge Crossing Score

There are a number of circumstances where certain metrics need to be calcu-

lated. The metrics used in this system are edge crossings (Ec), node-node oc-

clusion (Onn) and node-edge occlusion (One). All three are only calculated with

respect to nodes or edges that have been drawn. To create a score for the current
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layout, the following formula is used:

2(Onn + One) + Ec

The node-node and node-edge occlusion values are both multiplied by two as

it is more important to reduce occlusion than edge crossings. The occlusion

and edge crossing score calculation are described in Algorithm 3.26 and has the

time complexity of O(V + E log E), where both occlusion scores have the time

complexity of O(V) (Lines 2 and 3) and the edge crossing calculation has the

complexity of O(E log E) (Line 4).

Algorithm 3.26: Occlusion and Edge Crossing Score

01: function OCCLUSIONSCORE(drawnPatterns)
02: nnOccScore← nodeNodeOcclusion(drawnPatterns)
03: neOccScore← nodeEdgeOcclusion(drawnPatterns)
04: edgeCrossings← edgeCrossings(drawnPatterns)
05: score← (2× (nnOccScore + neOccScore)) + edgeCrossings
06: return score



Chapter 4

Analysis of Generated Layouts

4.1 Introduction

This chapter contains various examples of real world data. Firstly, the collection

of the data is discussed (see Section 4.2), before a side-by-side comparison of

examples drawn with this pattern based layout and a force-directed layout (see

Section 4.3). Following this, a number of metrics are compared for the earlier

examples and discussed (see Section 4.4).

4.1.1 Force Directed Method

Force directed layout methods are amongst the most popular drawing tech-

niques for graphs. It is a very common method as it produces good results, is

relatively easy to implement and implementations exist in variety of platforms

and languages. There are many variations of force directed methods and a num-

ber are described in Section 2.1.2. However, the version used for the examples

in this chapter and the empirical study (see Chapter 5) is a modified version

of Fruchterman and Reingold’s [48] version of a spring embedder. The main

109
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variation is the difference in force calculations, with the attractive force being

defined as kd and the repulsive forces being defined as r
d2 , with d representing

the distance between two nodes, k = 0.05 and r = 10, 000. The layout method is

complete once every force calculation is below 0.1. Fruchterman and Reingold’s

implementation is a highly common version of the force directed method and is

also simple to implement. The chosen constant values were also used initially

within the underlying graph creation software and produced good layouts. It

was therefore considered not necessary to change these.

4.2 Data Collection

Described here are the real world data sources that are needed to provide real

world examples for evaluating the system. All of these data sources were used

to generate the examples used in the formal empirical study, which is described

in Chapter 5.

4.2.1 Academy Award Nominees

One source of data was a social network based on Yahoo’s “People also search

for“ section [4] for results of celebrities. This is an infobox on the side of the

search results that suggests a number of other items based on the results of other

users’ searches1. For each year from 1996 (the 69th) to 2014 (the 87th) the Best

Actor and Best Actress nominees in the Academy Awards were compiled. Each

of these were searched on Yahoo and an connection was created between them

and any person Yahoo suggested. For example, in Figure 4.1, Steven Seagal

1At the time, both Google and Bing altered the number of results by screen size, so scraping
their sites only result in a maximum of 3 suggestions returned, as opposed to Yahoo’s then
maximum of 5. A maximum of 3 is likely to generate sparse graphs with very few patterns, so
Yahoo was chosen as opposed to the more popular search engines
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would be connected to Adrienne La Russa, Danny Trejo and so on. This process

was repeated for the Best Actor, Best Actress, Best Supporting Actor and Best

Supporting Actress to generate 38 examples.

Figure 4.1: Yahoo’s suggested “People also search for” for Steven Seagal [4]

4.2.2 Formula One Teammates

Another source of data was connecting Formula One drivers to their team-

mates. For each 3-year group between 1995 to 2015 (generating 19 examples),

drivers were connected if they competed as team-mates in a Formula One race.
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This does not result in a series of paired connections, as drivers often move be-

tween teams at the end of (or sometimes during) a season, and each example is

taken over a three year period.

More formally, drivers were connected if they entered a FIA Formula One

World Championship event for the same entrant. Drivers are also connected

if they did not participate in the race, but took part in any qualifying (but not

practice) sessions. The reason for not connecting drivers who were simply at the

same team in a season is the example shown in Table 4.1. Here, the rounds that

each Lotus-Renault driver participated in from the 2012 and 2013 seasons are

shown [89, 90]. Connections would exist between Kimi Räikkönen and Romain

Grosjean (based on 19 rounds in 2012 and 17 in 2013), but not between Kimi

Räikkönen and Heikki Kovalainen as they never competed as team-mates (and

indeed were in rival teams in 2012).

Table 4.1: Rounds competed by Lotus-Renault drivers in the 2012 and 2013 For-

mula One seasons [89, 90]

2012 Season 2013 Season

Kimi Räikkönen 1–20 1–17

Heikki Kovalainen - 18–19

Romain Grosjean 1–12, 14–20 1–19

Jérôme d’Ambrosio 13 -

4.2.3 Character Relations in Novels

One further source of data is identifying character relationships in novels. Clas-

sic novels were obtained from the Project Gutenberg website [2], had their copy-

right information (and any contents pages) removed and grouped into 5 line

sections (in the form of 1–5, 2–6, 3–7, etc). Separately, a list of characters is
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compiled manually, including all possible names of each character. Each 5 line

section is then investigated and if two or more characters appear within that sec-

tion, the characters are said to be connected. There are a number of challenges

to the extraction of this data. Firstly, it is very difficult to draw context from the

use of names within a passage of text. For example, in A Christmas Carol, Bob

Cratchit is referred to using “Bob”, “Mr. Cratchit” and just “Cratchit”. Unfor-

tunately, simply searching for “Crachit” would also create connections between

his wife and children (when they are referred to by their full name). Treasure Is-

land takes this even further with four characters called “John” and three called

“Tom” all mentioned at various points in the novel. In these cases, any ambigu-

ous names are not used and ignored. Secondly, partly because of the first point,

obtaining the character lists can take some time, hence why only 15 examples

were obtained.

4.3 Examples of Drawing

Below are a number of examples of both the pattern based system and a force

directed layout. Data from the sources described in Section 4.2 and others are

used for a visual comparison. For both drawing methods, the largest connected

subgraph is chosen. For the spring embedder examples, the layout starts with

a random starting position. Labels have been removed to improve the clarity

of the drawings (unless needed for reference), as no work has gone into sen-

sible label placing. Colours have also been removed, so as not to draw unfair

attention to the patterns, while some images have been rotated to allow better

positioning on the page.
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4.3.1 Academy Award Nominees

The examples from Academy Award nominees (see Section 4.2.1) are often drawn

in structures similar to trees. As neither drawing method is optimised for tree

layouts, nor considers the overall area of the drawing, it is interesting to note

the similarities between results from the two layouts.

(a) Force Directed Layout (b) Pattern Based System

Figure 4.2: 1998 Best Leading and Supporting Actor and Actress Academy

Award Nominees

In the example of the 1998 Best Leading and Supporting Actor and Ac-

tress nominees (Figure 4.2), the two layout methods have similar results. The

force directed layout produces a longer, thinner layout while the pattern based

method method bends back upon itself, reducing the overall size of the layout

and creating a more balanced aspect ratio.
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(a) Force Directed Layout (b) Pattern Based System

Figure 4.3: 1997 Best Leading and Supporting Actor and Actress Academy

Award Nominees

The layout of the 1998 Best Leading and Supporting Actor and Actress nom-

inees (Figure 4.3) contains a triangle. Both layouts draw a node inside this tri-

angle, however the force directed layout draws the triangle large enough that

nearby spokes do not create edge crossings or occlusion. The pattern based

method again draws a more compact layout, which does cause the unnecessary

edge crossings.
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(a) Force Directed Layout (b) Pattern Based System

Figure 4.4: 2007 Best Leading Actor and Actress Academy Award Nominees

The 2007 Best Leading Actor and Actress nominees (Figure 4.4) example re-

sults in a similar layout from both methods. The pattern based system has cre-

ated a tighter layout, and this has required three spokes of a star to be drawn

close together. However, the force directed layout has resulted in a very long

and thin example, which is a poor aspect ratio.

(a) Force Directed Layout (b) Pattern Based System

Figure 4.5: 2006 Best Leading and Supporting Actor and Actress Academy

Award Nominees
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In the example of the 2006 Best Leading and Supporting Actor and Actress

nominees (Figure 4.5), again the two layout methods have drawn the graphs in

a similar manner to the previous example. The pattern layout again has created

a tighter layout, which de-emphasises the chain of nodes that can be clearly seen

on the force directed layout. Again, the force directed method has produced a

very long and thin layout.

(a) Force Directed Layout (b) Pattern Based System

Figure 4.6: 2004 Best Leading and Supporting Actor and Actress Academy

Award Nominees

The layout of the 2004 Best Leading and Supporting Actor and Actress nom-

inees (Figure 4.6) contains two triangles and a circle, as well as many stars.

The force directed layout has continued to produce a long, thin example while

the aspect ratio is much more even for the pattern based layout. However, the

pattern based layout has created a very small angle between edges near the

bottom, and two overlapping triangles near the top. The pattern based layout

has drawn many of the stars in a very regular fashion, compared to the force

directed layout.
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4.3.2 Formula One Teammates

The results from the various Formula One team-mates (see Section 4.2.2) datasets

contain a wide variety of patterns.

(a) Force Directed Layout (b) Pattern Based System

Figure 4.7: Formula One team-mates, 1996–1998

Team-mates from 1996 to 1998 (Figure 4.7) contains two circles, both of which

share two nodes. As can be seen in the pattern layout, these are drawn in reg-

ular shapes, with the largest being particularly distinctive. The star is also well

laid out, although the loose node connecting to it is drawn with a poor angle.

The force directed layout also performs well on this example, although the ir-

regularity of the shapes is noticeable.
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(a) Force Directed Layout (b) Pattern Based System

Figure 4.8: Formula One team-mates, 2006–2008

In example of team-mates from 2006 to 2008 (Figure 4.8), both drawing meth-

ods produce similar layouts. However, as in the previous example, the pattern

based layout produces another very good layout, with the regular shapes of

pattern being particularly noticeable.

(a) Force Directed Layout (b) Pattern Based System

Figure 4.9: Formula One team-mates, 1995–1997

The layout of 1995 to 1997 team-mates (Figure 4.9), is radically different be-

tween the two layouts. The pattern based system has drawn a large circle, while
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clustering nodes to the left, whereas the force directed layout has resulted in a

more even density. The pattern based layout introduces a long edge that crosses

the diagram. The circle is much more noticeable in the pattern based layout.

(a) Force Directed Layout (b) Pattern Based System

Figure 4.10: Formula One team-mates, 2013–2015

The team-mates from 2013 to 2015 (Figure 4.10) example contains a circle,

triangle and path. The two methods also draw this in a similar manner, al-

though the regular polygon layout of the circle in the pattern based system is

noticeable. The regular spacing between nodes in the path is also aesthetically

pleasing.

(a) Force Directed Layout (b) Pattern Based System

Figure 4.11: Formula One team-mates, 2002–2004
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In the example of team-mates from 2002 to 2004 (See Figure 4.11), there are

two stars, a circle and triangle. The pattern based method draws this example

particularly well and emphasises the regular shapes of the stars, and draws

these in a consistent manner. The force directed method introduces an edge

crossing while it also has an irregular aspect ratio. The force based method also

creates an unnecessarily dense area, resulting in an additional edge crossing.

(a) Force Directed Layout (b) Pattern Based System

Figure 4.12: Formula One team-mates, 2009–2011

The layout of 2009 to 2011 team-mates (Figure 4.12), has a significant vari-

ation between the two methods. The large circle is strongly emphasised with

two triangles being equally prominent. The triangles are not as noticeable in the

force directed layout with the path drawing the eye. The pattern based layout

also maintains a consistent density of nodes, while also ensuring a consistent

distance between nodes. However, the path and some loose nodes are drawn at

unsymmetrical angles.
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(a) Force Directed Layout (b) Pattern Based System

Figure 4.13: Formula One team-mates, 2005–2007

The layout of 2005 to 2007 team-mates (Figure 4.13) is vastly different be-

tween the two layout systems. The circle that is prominent in the force directed

layout is not visible in the pattern based system. In this case, the circle is too

large to be detected. The pattern layout does emphasise two lines of nodes, but

introduces unnecessary edge crossings and occlusion.

(a) Force Directed Layout (b) Pattern Based System

Figure 4.14: Formula One team-mates, 1998–2000

The team-mates from 1998 to 2000 (Figure 4.14) example contains a path,
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star and circle. The force directed method produces a long, thin layout without

any edge crossings. The pattern based layout, however does introduce these,

by choosing a poor angle for a node, although draws the path in a perfectly

straight line.

4.3.3 Character Relations in Novels

The results from the various character relation analysis of novels (see Section 4.2.3)

datasets contain a wide variety of patterns, although mostly cliques.

(a) Force Directed Layout (b) Pattern Based System

Figure 4.15: The Jungle Book, by Rudyard Kipling (1894)

The characters in The Jungle Book (Figure 4.15) are represented as a very

dense graph with two main cliques. Neither system draws this layout with

any excellence, although the regular layout of the cliques can be seen in the

pattern based system. It seems to have abandoned one node to the top left of

the diagram. The particularly noticeable feature, and one that demonstrates an

advantage of the pattern based system, is that although the layout is dense, it
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is immediately obvious that there are two cliques of size 6, as these are repre-

sented with two regular hexagons. This is not observable in the force directed

layout, and it does take great difficulty to even determine if there are any cliques

present in this layout.

(a) Force Directed Layout (b) Pattern Based System

Figure 4.16: Pride and Prejudice, by Jane Austen (1813)

The characters in Pride and Prejudice (Figure 4.16) are represented as a large

clique, a small clique and some scattered nodes. Again, neither system handles

such a dense graph well and the nodes contained within the clique are almost

impossible to identify in both layouts. However, again the regular structure of

a large clique is immediately obvious in the pattern based layout, whereas it is

not clear in the force directed layout.
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(a) Force Directed Layout (b) Pattern Based System

Figure 4.17: Strange Case of Dr Jekyll and Mr Hyde, by Robert Louis Stevenson

(1886)

The characters in Strange Case of Dr Jekyll and Mr Hyde (Figure 4.17) are rep-

resented by two cliques, a circle and one remaining node. This much smaller

example draws well in both methods, and again the regular layout of the pat-

tern based method makes the clique much easier to identify.
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(a) Force Directed Layout

(b) Pattern Based System

Figure 4.18: Great Expectations, by Charles Dickens (1860-1861)
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The characters in Great Expectations (Figure 4.18) are drawn very poorly with

both methods. The force directed method creates a layout where any type of

connection is difficult to spot. The pattern based layout identifies a circle within

two nodes some distance apart and therefore creates an enormous circle. To

display this large circle results in the other nodes being impossible to identify.

4.3.4 Other Data Sources

While the previous datasets have all been used in the empirical study discussed

in Chapter 5, a number of other datasets have been obtained to provide some

interesting test and display examples.

4.3.4.1 Rome Graphs

The Rome Graphs are a set of over 11,000 undirected graphs ranging in size from

10 to 100 nodes, available online [1]. 100 of these were selected at random for

analysis. The layouts from these graphs contain a variety of patterns, often cir-

cles and stars. Figures 4.27 and 4.28 show that although these randomly selected

graphs have, on average, more nodes and edges than the other datasets, they

have comparable edge densities.
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(a) Force Directed Layout (b) Pattern Based System

Figure 4.19: Graph 693.16

The layouts for Graph 693.16 (Figure 4.19) are similar. However, the force

based layout has introduced edge occlusion and edge crossings. The regular

structure of the pattern layout is particularly noticeable and results in a very

clear and aesthetically pleasing layout.

(a) Force Directed Layout (b) Pattern Based System

Figure 4.20: Graph 4037.35

Graph 4037.35 (Figure 4.20) produces two different layouts. The force di-

rected layout is much clearer than the pattern based layout, which introduces

a number of node-edge occlusions and edge crossings. However, the regular

shape of stars, and the straight path are also noticeable.
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(a) Force Directed Layout (b) Pattern Based System

Figure 4.21: Graph 6028.36

The force directed method for Graph 6028.36 (Figure 4.21) produces a much

more compact layout than the pattern based method. Both systems have edges

that cross the layout, and the pattern based system also chooses angles which

are too small. Such a layout decision would not be made by the force directed al-

gorithm as those nodes would be considered “too close” and would have strong

repulsive forces. The circles and path are much clearer on the pattern based lay-

out than on the force directed layout.
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(a) Force Directed Layout

(b) Pattern Based System

Figure 4.22: Graph 6952.39
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The layouts of Graph 6952.39 (Figure 4.22) result in some interesting differ-

ences. The force directed layout produces another long, thin layout, whereas

the pattern based method produces a layout with a better aspect ratio. Oddly,

the pattern based method has drawn a number of patters over to the left, result-

ing in a very long edge that almost occludes a node. The large circle dominates

in a way that it does not in the force directed layout, and the collection of paths

and stars towards the right is drawn with each node evenly spaced between its

neighbours. There is a tight angle on a loose node on the top of the circle - this

is drawn in this manner to avoid an edge crossing with the long edge. A bet-

ter placement of the right-hand cluster of patterns would have allowed a larger

and more symmetrical angle for edge between the loose node and the circle.
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(a) Force Directed Layout

(b) Pattern Based System

Figure 4.23: Graph 11669.39

Graph 11669.39 (Figure 4.23) also produces two layouts which are substan-

tially different. The force directed method produces a smaller and denser draw-

ing, with one node-edge occlusion and a few edge crossings. The pattern based

method interestingly draws a circle and a number of stars inside a large circle.

It also draws a large path, which results in a long edge - this is due to a circle be-

ing too large to detect, and is represented in a more aesthetically pleasing way

in the force directed layout.
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4.3.4.2 1960s and 1970s NASA Space launches

An example can be found creating a connection between NASA astronauts

that have launched on space missions together in the 1960s and 1970s (Fig-

ure 4.24). With the pattern method, the 3-man Apollo missions can easily be

seen as triangles, all of similar size, with other connections being the 2-man

Gemini launches. The triple person missions are not so clear in the force di-

rected layout.

(a) Force Directed Layout (b) Pattern Based System

Figure 4.24: Crew of 1960s & 1970s NASA Space Launches

4.3.4.3 Chemicals

Chemicals are often drawn in a skeletal layout. This has a specific notation

in the field of chemistry, and although neither method are optimised for the

specific rules for this field, it is interesting to compare some results from the

two drawing methods (See Section 6.2.3).
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(a) Force Directed Layout (b) Pattern Based System

Figure 4.25: Skeletal Layout of Aspirin

Aspirin is a common painkiller and the force directed and pattern based

layouts both return similar results. The benefit of drawing patterns in regular

shapes is clear with the circle being strongly emphasised.

(a) Force Directed Layout (b) Pattern Based System

Figure 4.26: Skeletal Layout of Citric Acid

Citric acid is another common substance found in citrus fruit such as lemons

and oranges. The pattern based system results in two visually strong lines, one

horizontal and the other vertical. Otherwise, the force directed method draws

in a similar manner.



CHAPTER 4. ANALYSIS OF GENERATED LAYOUTS 135

4.4 Quantitative Analysis of Examples

Displayed below are aggregate charts that various metrics for each of the datasets

described in Section 4.2 and the Rome graphs described in Section 4.3.4.1, when

drawn by the two methods. Full charts of every example in the datasets are

available in Appendix A and all averages are have been calculated using the

arithmetic mean.

Figure 4.27 shows the average number of nodes and edges in each of the

datasets. As can be seen, many have a similar number of nodes and edges,

although Books have considerable more edges.

From the previous graph, it is no surprise that Figure 4.28 shows that the

Books dataset has a higher density than the others. For this example, density is

measured using a common definition in the field [29]:

2|E|
|V|(|V| − 1)

Figure 4.29 shows a summary of the time taken for each dataset when drawn

with the pattern based system. Most examples are completed within 5 seconds,

however there are some outliers which can take longer to complete. There is

no comparison with the force directed layout as that method typically runs for

a certain number of iterations. The timing data was calculated on a machine

running Windows 10, with an AMD X4 965 3.4GHz Quad-core processor with

8GB of RAM.

Shown in Figure 4.30 is the time taken and number of nodes for every ex-

ample in all the datasets. As can be seen, the time taken remains roughly con-

stant until around 60 nodes are reached, when the time taken begins to increase

rapidly.

Figure 4.31 is the time taken and number of edges for every example in all
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the datasets. In a similar manner to Figure 4.30, the time taken remains roughly

constant until around 60 edges are reached, at which point the time taken in-

creases.

The average number of patterns for each dataset is shown is Figure 4.32,

grouped by type. The Books dataset is the only to contain cliques, while the

Academy Awards datasets contain numerous stars. The Rome graphs contain a

wide variety of different patterns.

Figure 4.33 shows the average percentage of found patterns that are drawn

or discarded. Discarded patterns are those which do not match any of the con-

nection types. As can be seen, the Books and Rome datasets both discard over

half the identified patterns.

The average percentage of nodes in drawn patterns, nodes only in discarded

patterns, and nodes in no patterns are shown in Figure 4.34. Around 1 in 3

nodes in the Formula One dataset are not included in patterns. Interestingly,

although a large number of patterns are discarded (see Figure 4.33) for the

Books and Rome datasets, most nodes are in patterns which are drawn. This

suggests these datasets contain a large number of overlapping patterns, some-

thing which is to be expected considering the edge densities of these datasets

(see Figure 4.28).

Figure 4.35 shows the average number of instances of node-node occlusion

in each dataset for the pattern based and force directed methods. Both sys-

tems are comparable in the Books dataset, where the high connectivity results

in difficult layouts. In the other datasets, the pattern based system results in

node-node occlusions whereas the force directed method does not. However,

these values are relatively low, with the highest being just over 0.7 instances of

occlusion for the Rome dataset.

The average number of instances of node-edge occlusion in each dataset for
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the force directed and pattern based methods are shown in Figure 4.36. The

force directed method performs worse than the pattern based method for the

Books dataset, while the reverse is true for the Rome dataset. It is interesting to

note this, as unlike the pattern based system, the force directed method makes

no attempt to optimise for this metric.

Figure 4.37 shows the average number of edge crossings for each dataset

when drawn with the two layout methods. Both methods produce comparable

results, with the Books dataset having a large number of edge crossings. This

is due to its density and smaller number of nodes which limits the potential

number of layouts.
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Figure 4.27: Average Number of Nodes and Edges
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Figure 4.28: Average Edge Density
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Figure 4.33: Average Percentage of Patterns Drawn or Discarded
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Figure 4.35: Average Number of Instances of Node-Node Occlusion
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Figure 4.36: Average Number of Instances of Node-Edge Occlusion
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Figure 4.37: Average Number of Edge Crossings
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4.5 Summary

This chapter has detailed the methodology used to create a number of datasets

for comparing this pattern based layout to a force directed method. Such exam-

ples were discussed before a comparison was performed using various metrics.

From the numerous examples in Section 4.3, the pattern based system cre-

ates some interesting and aesthetically pleasing graph layouts. Many have

more even aspect ratios, although the pattern based method is prone to cre-

ating “tighter” layouts that result in unnecessary occlusions or edge crossings.

The angles between nodes are also, at times, unnecessarily small and this can

also lead to issues. However, the consistent ideal layouts of patterns are very

noticeable in most examples, with the regular shape of cliques particularly no-

ticeable on very dense graphs. This allows the user to determine the size of

clique even if there are large numbers of edge crossings. The regular spacing

and straight lines of paths are also a common feature. The pattern based method

does perform well, although it appears to make poor decisions at times that can

compromise the rest of the layout.

As can be seen in Section 4.4, the pattern based system performs favourably

to a force directed method when comparing node-node occlusion, node-edge

occlusion and edge crossings. It is interesting to note that the pattern based

system has more node-edge occlusions for Rome dataset, but fewer instances

in the Books dataset. It is also clear the Books and Rome datasets have a large

number of overlapping patterns. This is shown by a large number of discarded

patterns (see Figure 4.33), yet a large percentage of nodes were contained within

drawn patterns (see Figure 4.34).



Chapter 5

Formal Empirical Study

It is important to investigate the effectiveness of this layout method, and there-

fore it was compared to the most widely used general graph drawing method:

a force based layout. To fairly and accurately measure the relative effectiveness,

a lab-based empirical study was performed.

5.1 Introduction to Study

In order to answer the research question

• “Is a pattern based layout more effective than a force based layout?”,

a formal study was completed. The hypothesis for the experiment was that

drawing a graph using a pattern based layout rather than a force based layout

improves the understanding of the graph. Two ways of calculating the under-

standing are by measuring the time taken to complete certain tasks and the

accuracy of the completion of these tasks.

150



CHAPTER 5. FORMAL EMPIRICAL STUDY 151

5.2 Methodology

5.2.1 Methodology Details

The study was conducted on a within-subject basis, with University of Kent

students who had replied to an advert. Upon entering the study room, subjects

were given a list of instructions, which were also read aloud. Users were asked

8 practice multiple choice questions, 4 of which were simple examples and 4

were examples from medium-sized real world data.

In the pilot study, users completed the practice questions on their own, how-

ever there were large error rates for Task Type 2 (around 70%). It is believed

this was because a number of participants did not understand the question.

Therefore, the methodology was changed such that the study leader would talk

through the practice questions with the participant to ensure they understood

all questions. This was scripted to minimise the risk of different participants

having different instructions (See Appendix B.1.2.1). The answers to the prac-

tice questions were shown to the user after each question and the results of these

were discarded.

This practice session was followed by 24 multiple choice questions (4 task

types, 3 sizes from 12 pieces of data, each drawn with both methods). The

order of questions was randomised, with the exception that the graphs used for

the same task and size did not appear within 6 questions of each other. This

semi-random order and practice questions help to minimise any learning effect

that may be present. For each question, any nodes and labels referenced in

the question were highlighted in blue, in order to remove any time taken to

find nodes, as labels were placed manually. The nodes used in questions were

picked at random from a subset that matched certain conditions, as this reduces

the likelihood of any bias when selecting questions. For example, for Task Type
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1, only nodes with between 3 and 6 connections were considered for selection;

this was applied consistently as much as possible so that, for example, all Task

Type 1 questions had the answers 3, 4, 5, or 6. A full list of questions and their

respective graphs is provided in Appendix B.

Participants were allowed to take as long as they wished to complete each

question, although they were aware the time was being recorded (but this was

not displayed to the user). The study was completed by participants using cus-

tom software, a screenshot of which is shown in Figure 5.11. Participants were

free to move the mouse, keyboard, monitor and chair to their preferred posi-

tions in order to be as comfortable as possible. The software ran using Google

Chrome in fullscreen mode, with no other distractions on screen, and was dis-

played on a large high definition monitor in order to make the examples as clear

as possible.

All participants performed the study in the same location in the same room

(see Figure 5.2). The lighting was kept to similar levels through the study, by

closing blinds and using artificial light, and other environmental conditions

were kept as consistent as possible.

1Available to download from: http://www.eulerdiagrams.com/pattern
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Figure 5.1: Screenshot of Study Software

Figure 5.2: Study Room
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5.2.2 Task types

Two of the task types were developed upon some existing standard tasks for

studies of this type [91]. Task Type 1 was a general question about graph con-

nectivity that is also common in the field, whereas Task Type 4 was more specific

to patterns. The questions for the 4 task types were as follows:

1. “How many people directly connected to Name (shown in blue)?”

• One node with 3 or more connections was picked at random.

2. “What is the minimum number of people that must be removed in order

to disconnect Name 1 & Name 2 (both shown in blue) so that there is no

route between them?”

• One node was picked at random from the graph and chosen for use

as Name 1. Every node that has a minimum separation of 3 from this

node was then identified and one of these was picked at random to

be Name 2. If there were no possible choices for Name 2, then another

node to be Name 1 was chosen. This question was taken from [91].

3. “How many other people are there in the shortest route between Name 1

& Name 2 (both shown in blue)?”

• One node was picked at random from the graph and chosen for use

as Name 1. Every node that has a minimum separation of 3 from this

node was then identified and one of these was picked at random to

be Name 2. If there were no possible choices for Name 2, then another

node to be Name 1 was chosen. This question was taken from [91].

4. “How many triangles are there in the diagram? (A triangle is where three

people are connected to each other)”
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• There was always at least one triangle in the diagram. This ques-

tion was chosen to discover if patterns were easier to identify in one

layout over another. Triangles were chosen as they have a simple to

understand definition compared to the other pattern types.

5.2.3 Survey and Preference Information

Once the main section of the study was complete, participants were asked to

complete a short questionnaire. This collected details including age, gender,

education level, as well as qualitative data such as previous experience and any

additional comments. Once complete the participant was then asked for their

preferences. 3 pairs of graphs were shown (1 drawn with the force method, the

other with the pattern method) and the participant was asked to select which

one they preferred (given as an A or B choice)..

5.2.4 Participant Information

From the 40 participants, 29 (72.5%) were female and 11 (27.5%) were male.

All were University of Kent students, with 27 (67.5%) saying they had post-

18 education and 13 (32.5%) a degree. The participants were of a similar age

range, between 18 and 24, with the mean being 20.2. Participants were given £7

for their time. They were aware they were participating in a study in the School

of Computing, but not of the topic nor any other details.

5.2.5 Data Sources

For this, data was obtain from a three sources, Oscar nominees (See Section 4.2.1),

Formula One team mates (See Section 4.2.2) and character analysis from classic

novels (See Section 4.2.3). Although real data is being used, the labels will be
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changed to those of a consistent length to avoid adding any further factors to

the experiment [94, 102]. The labels were chosen from a list of 1000 most popu-

lar US baby names [3], with an attempt to have an equal number of traditionally

male and female names. Consideration was also made to avoid homophonous

or similar names, for example, neither Khloë and Chloë, nor Larry and Barry,

would appear on the same example.

72 items of data were generated (38 items from the Oscars, 19 Formula One

relations and 15 character relations in books) from which 12 were chosen. All

the potential datasets were ordered by number of items (the total number of

nodes and edges) and from this the estimates for small (40-45 items), medium

(60-65 items) and large (80-85 items) graphs were chosen. Some datasets had

more items than this, so some nodes (and therefore edges) were removed. In

order to remove any element of bias, nodes were sorted according to the fol-

lowing categories and removal continued until the example was in the required

range of items:

1. Node contained in the fewest number of patterns

2. Node with the fewest connections

An investigator then selected the 12 datasets needed based on these group-

ings. Only a meaningless identifier and the number of items were made avail-

able - the chooser did not know the type of data, the name of the example, nor

how the example drew with either system. This was a deliberate choice to avoid

any potential bias towards either system or dataset. Four datasets surrounding

the chosen medium-sized datasets were used for the final four practice ques-

tions - the first four being trivial examples.
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5.3 Results

Table 5.1 details the mean, standard deviation and p-value for the overall time

and error rate for each method. As can be seen, the mean time for force exam-

ples is lower than for pattern examples. This result is significant as the p-value

is lower than 0.05. However, there is no significance for the error rate, although

pattern examples have a higher error rate.

Table 5.1: Statistical Analysis of Force vs Pattern

Mean SD p-value

Time (ms)
Pattern 18 249 11 713

3.27× 10−5

Force 16 535 13 950

Error Rate (%)
Pattern 11.04 0.27

0.149
Force 8.54 0.3
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Figure 5.3: Data grouped by Method
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To analyse the results, Friedman two-way analysis was used as the data was

not normally distributed. The analysis produces a χ2 value for task type vs

method and size vs method. The results are shown in Table 5.2. For neither

pairing are the calculated χ2 values larger than the critical χ2 values which sug-

gests there is no significant difference in performance. This is further confirmed

by p-values being larger than 0.05.

Table 5.2: χ2 values from Friedman Analysis for Time and Accuracy

Critical

χ2 Value

Degrees of

Freedom

Calculated

Value
p-value

Task Type vs

Method (Time)
7.8 3 (p = 0.05) 6 0.116

Task Type vs

Method (Accuracy)
7.8 3 (p = 0.05) 3.9 0.111

Size vs Method

(Time)
5.99 2 (p = 0.05) 4 0.135

Size vs Method

(Accuracy)
5.99 2 (p = 0.05) 3 0.223

Figure 5.3 shows the overall mean time taken and error rates for both meth-

ods (force method in red, pattern method in blue). Figure 5.4 shows the mean

time taken and error rates for both methods (force method in red, pattern method

in blue) when grouped by task type. Figure 5.5 shows the mean time taken and

error rates for both methods (force method in red, pattern method in blue) when

grouped by graph size. Figure 5.6 shows the time taken split by method, task

type and size (i.e. by question) in box plot form. This will show any questions

that perform better or worse than others. One large outlier for the Large Force
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Task Type 2 has been removed from the display of Figure 5.6, as this improves

the clarity of the scale for all the sub-charts.
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Figure 5.4: Data grouped by Task

Table 5.3: p-values for Force vs Pattern when grouped by Task Type

p-values Task Type 1 Task Type 2 Task Type 3 Task Type 4

Time 1× 10−5 0.027 0.02 0.023

Error Rate 0.71 0.005 0.72 No Errors
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Figure 5.5: Data grouped by Size

Table 5.4: p-values for Force vs Pattern when grouped by Size

p-values Small Medium Large

Time 0.65 0.0005 0.001

Error Rate 0.18 0.64 0.33
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64% of the preferences were in favour of the force directed layout (with a

0.36 standard deviation) and with a significant p-value of 2.2 × 10−16. Most
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participants had no previous experience of graphs, although a few said they

had seem similar graphs “in maths A-Level”2, in “chemistry” and “on a map”.

One suggested the graphs were “similar to [the] non-verbal reasoning [ques-

tions] in [the] 11+ exam”3. The vast majority offered no additional comments,

although one remarked the questions were “challenging but good” while an-

other thought the “really webbed ones [were] hard to trace”. The full results of

the study, including questions and anonymised user data is in Appendix B and

available in CSV format online4.

5.4 Analysis

The hypothesis can be rejected due to significance in the time analysis. Our

study shows that, with this data and questions, performance with graphs drawn

with a force method is significantly quicker than performance with those drawn

using a pattern based method. However, the effect size is not large, with the

pattern based questions taking on average 1.7 seconds longer to complete than

force based questions. There was no significance when comparing the error

rates. The time may well imply that the force based method is a better layout

technique than the pattern based technique. However, there are some factors

to consider. The pattern method is in initial stages of development, and more

development may see better performance. Further work in this area is given in

Section 6.2.

When performing analysis on time taken or error rate compared to task type

& method there is a lack of significance from the large p-value. This could be

2Exams taken at the age of 18 in some parts of the UK and a few other countries
3An exam taken in some parts of the UK by pupils aged 10 or 11 to decide whether they are

eligible for a grammar school (i.e. selective based on ability)
4http://www.eulerdiagrams.com/pattern
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due to there being a floor effect for error in all Task Types, except 2, as these

all had error rates of less than 10% (and no errors for Force drawn Task Type

4 examples). There is also a floor effect in the time taken for Task 1, with the

mean time being around 10 seconds. There is also some issues regarding Task

Type 4, in that the choice of pattern used (a triangle) is also typically well drawn

by a force directed layout. This means that both layout types draw a triangle

in a similar manner, so potentially making any result for this question simi-

lar. However, using a different pattern for these questions is problematic as the

definitions of the other pattern types are fairly complicated and it would be dif-

ficult to ensure that every participant fully understood them. This level of un-

derstanding is perhaps also an issue for Task Type 2, although discussing and

working through the practice questions with the participant mitigate against

this: it should be noted that the error rate for Task Type 2 is substantially re-

duced from the pilot study.

There was also no significance between time taken or error rate and size &

method. However, there is significance between each task type and the time

taken, but not for accuracy. There is also significance for time taken on medium

and large graphs. It is perhaps unsurprising that the time taken and error rate

increases as the size of the graph increases.

5.5 Threats to Validity

Threats to validity are those effects or decisions that may affect the outcome.

Purchase [94] describes validity as “the extent to which the experiment correctly

addresses the specified research question. Has the experiment been conducted

in a manner that allows appropriate conclusions to be made?”.
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5.5.1 Internal Validity

Internal validity relates to the experimental design. Purchase [94] defines this

as “Has [the experiment] been designed appropriately with respect to the ran-

domisation, controls, data collection methods, and experimental process?”.

Learning effect Participants may improve their performance throughout the

study as they learn the techniques and question types. To mitigate this, ques-

tions were asked in a semi-random order with practice questions as to reduce

any potential learning effect. Questions were selected at random for each par-

ticipant, with the exception that questions of the same task type and size but

different methods must not appear within 6 questions of each other. Partici-

pants were given instructions during the practice period to reinforce their un-

derstanding.

Carry-over effect Participants may remember questions or data if that partic-

ular appeared previously in the study. Each data set was used twice - drawn

using a force based method or a pattern method and each of these examples

also shared the same labels. However, these two examples would never appear

within 6 questions of each other and had a different layout. None of the labels

are reused in other questions (except in the practice section). This reduces the

risk of a carry-over effect.

5.5.2 Construct Validity

Construct Validity is defined as “the degree to which a test measures what it

claims, or purports, to be measuring” [21]. This ensures that the measures used

in the study are relevant in answering the research question.
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Time Collecting the time taken to complete a task is a valid measure of per-

formance [94]. The time taken is calculated automatically. While it does not

take into account the user’s reading speed, all labels were 5 characters long,

did not have similar written names (e.g. Lenny and Jenny). Labels were also

placed in unambiguous positions where possible (names used in the question

were always in clear positions). Nodes which were relevant in the question

were highlighted in blue, to aid the discovery of these nodes and reduce any

effect this may take.

Error Rate Error Rate is also a valid measure of performance [94]. Users had

a choice of four answers, with the answers being consistent for each task type

(Task Type 3 had one question with a different set of answers). All answers were

numeric and in numerical order. The user had to select and an answer and click

“Next”, reducing the chance of them selecting an incorrect answer by mistake.

Data Sources The data used for the questions were taken from 3 real-world

datasets (see Section 4.2). These all consisted of social network style data and

were only chosen based on their number of nodes and edges. The final 4 prac-

tice questions were also chosen from these data sources. The data sources se-

lected were of three sizes, and all of these were of sufficient size to be challeng-

ing enough to answer.

5.5.3 External Validity

External validity is concerned with the generalisation of the results. Purchase

[94] defines this as “Would these results hold for other participants, or to other

experimental objects and tasks?”. This ensures that the study could be repeated

on other participants, with modified tasks, or a different selection of datasets.
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In this study, there were 4 task types, each offering a different cognitive task.

One was specifically relating to the identification of patterns. There were 3 sizes

of graphs used, which offered a range of complexity. There were 40 participants,

none selected by the investigators, and all of whom completed the study.

5.6 Summary

A formal empirical study was performed in order to answer the research ques-

tion:

• “Is a pattern based layout more effective than a force based layout?”

Two ways of calculating the understanding are by measuring the time taken to

complete certain tasks and the accuracy of the completion of these tasks. Forty

participants completed four task types (see Section 5.2.2) on 12 real world data

examples drawn by both a force directed method and the pattern based system.

Participants were presented with an instruction sheet and practice questions

before performing the study, and a preference sheet once completed.

There was a significant result for the time taken to complete a task in favour

of the force based system (see Section 5.3). There was no such statistical sig-

nificance for the error rate for completing all tasks. This result in favour of the

force based system could be due to the questions asked (which may not have

provided enough differentiation between the two systems), or the relative ma-

turity of force based drawing algorithms (see Section 5.4).



Chapter 6

Conclusion and Further Work

This chapter provides a summary of the body of research and the contributions

made. A number of potential areas of further research are also discussed.

6.1 Contributions

This thesis has detailed the creation of a new method for drawing graphs by

identifying and ordering patterns and then drawing these in a consistent man-

ner. There are a number of patterns used throughout this work that are defined

in Section 3.2: Circles, Cliques, Stars, Paths, and Triangles. These patterns are

then identified in the starting graph (see Section 3.3). Once identified, the pat-

terns are ordered based on a number of criteria (see Section 3.4): type of pattern,

size of pattern and type of connection with the already drawn patterns (such as

One Node Shared, Two Nodes Shared, One Edge Shared, and so on). Once or-

dered, each pattern is then drawn using a particular method dependent on its

connection type and pattern type (see Section 3.5). Once all patterns have been

drawn, paths may be modified (see Section 3.5.8) and any remaining nodes are

drawn (see Section 3.5.9).

167
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To evaluate the effectiveness of this method, it was compared to a force-

directed method on a number of real world examples (see Chapter 4). Data ob-

tained from connections between Academy Award nominees (see Section 4.2.1),

Formula One teammates (see Section 4.2.2), and character analysis in classic

novels (see Section 4.2.3). Numerous examples of these data sets were com-

pared for both visual curiosities (see Section 4.3) and through a number of met-

rics (see Section 4.4), including node-node occlusion, node-edge occlusion and

edge crossings. Metrics relating to patterns (e.g. number of patterns drawn or

discarded, types of patterns, and so on) were also detailed and compared.

An empirical study was also performed using the real world datasets (see

Chapter 5), in order to answer the research question: “Is a pattern based layout

more effective than a force based layout?”. Forty participants were asked ques-

tions using four tasks, on small, medium and large examples of graphs drawn

in using both a force directed mechanism and this pattern based system (see

Section 5.2). Participants performed questions based using the force directed

method examples slightly faster than those drawn with this pattern based sys-

tem (see Sections 5.3 and 5.4). There was no significance with the comparison

between the two methods when investigating error rates. There were also no

statistically significant findings when the results where broken down into task

type versus method, nor size versus method.

6.2 Further Work

There are many areas which could be researched and developed to extend and

improve this method, or tailor it to a particular domain. As the method has

been designed to draw undirected general graphs, further modifications could

be made to generate layouts for directed, planar or orthogonal graphs.
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6.2.1 Increased Number of Defined Patterns

It is possible to introduce further pattern types. For example, a clique with one

or two missing edges (i.e. a partial clique) may be a pattern to identify and

draw in a similar manner to the existing clique method. Such patterns would

require justification in the existing literature for their inclusion and would need

a sensible ranking in the drawing order. Implementing patterns for a particular

domain (see Section 6.2.3) or allowing the user to create custom patterns and

layout is also a possible addition (see Section 6.2.6).

6.2.2 Increased Number of Connection Types

It could be possible to add in further connection types. For example, patterns

sharing 3 nodes or edges could have individual layout mechanisms. Such strong

sharing or connections would, however, result in the ideal layouts of patterns

having large amounts of distortion. This would have the effect of reducing the

benefits gained from drawing patterns in a consistent manner.

However, other, more specific connection types could be added, for exam-

ple a star which shares 3 nodes, but not the centre. This would enable more

complex connection types to be drawn, without necessarily encompassing all

the remaining patterns. Such connection types could be specific to a particular

domain or user.

6.2.3 Tailoring to a Particular Domain

It is also possible to tailor the drawing method towards a particular domain.

For example, a skeletal formula is often used in chemistry to represent bonding

and geometry of molecules, as shown in Figure 6.1. While the drawing method

already emphasises cliques, modifications could be made to ensure that edges
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with certain properties (e.g. hydrogen bonds) are represented with the correct

symbols (in this case, a dotted line). Such modifications could allow the au-

tomatic drawing of skeletal formulae using this pattern based technique and

comparison to an existing method, such as the one developed by Fricker et al.

[47].

Figure 6.1: Skeletal Formula of vitamin C (ascorbic acid)

Another possible domain is related to the Predicative Toxicology Evaluation

Challenge [111] where Borgelt and Berthold developed an algorithm to identify

fragments within a set of molecules [18]. Such an algorithm could be incorpo-

rated within this pattern based method to layout the resulting graph in such a

way to highlight certain fragments and draw these in a consistent manner.

6.2.4 Multi-level approach

A possible area of further work is to introduce a multi-level approach in a sim-

ilar manner to Archambault et al [5, 6] and Hendrickson and Leland [55]. Pat-

terns would be identified within the graph and reduced to a single node. This

process would continue until at most one pattern was found, with each level

being drawn in the reverse order of discovery. For example, an original graph

such as Figure 6.2a could have each clique condensed into a single node (e.g.

clique A becomes node A) resulting in a graph such as Figure 6.2b. This circle

would then be drawn and the level complete. The next level consisting of the
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four cliques would then be drawn, resulting in a layout similar to Figure 6.2a.

This would create a hierarchical approach that may improve the final layout of

the graph, but increase the implementation complexity of the method.

A

A

A

B

B B

DD

D

C

C

C

B

A

D

C

(a) Original Graph and Final Layout

D

A

B

C

(b) Top level layout

Figure 6.2: Example of a potential multi-level approach

6.2.5 Flexible Drawing Order

A piece of further work that could be implemented is to create a flexible draw-

ing order. Currently, the drawing order is fixed and the order is decided upon

the complexity of patterns and their ability to have a flexible layout. However,

that could be changed in two ways.

Firstly, a user may want to emphasise a particular pattern, e.g. stars. There-

fore, the user may wish that stars are placed higher in the drawing order, and

thus are drawn earlier and have their ideal layouts less distorted. A user may

also wish that their custom pattern (see Section 6.2.6) appears high within the

drawing order.

The second concept for a flexible layout is a dynamic drawing order. Based

upon a number of heuristics, the algorithm could change the drawing order
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during execution. This could be when the graph is drawn, as the system could

naı̈vely try every order and compare occlusion, edge crossing and symmetry

scores. Instead, it may identify areas of occlusion in the final layout and change

the order based on some knowledge of the problematic area. For example, a

star connected to a circle may have spokes that occlude other nodes. The sys-

tem may then decide to draw stars before circles, in an attempt to remove such

occlusion. The drawing method may also abandon particularly bad layouts

while in the process of drawing, if it identifies significant improvements may

be possible with a different drawing order. However, it would need to ensure

that such a bad move will not ultimately end up with a better layout and that

the improvement is significant enough to start again.

6.2.6 Custom Patterns and Layouts

One potential piece of further work is to allow a user to create and define a

custom pattern. An ideal layout would need to be specified, along with any

allowed, or disallowed connection types. Using the example in Figure 6.3a, a

user may create the ideal layout for a new pattern, in this case a triangle with

one edge radiating from each corner. They may then specify that the blue colour

represents nodes and edges that must exist, with red being edges that must

not exist (similar to how star spokes may not connect) and pink representing

nodes or edges of which the user has no opinion (as are any nodes or edges not

explicitly drawn). The user would also then specify what connection types may

exist (say, 1 edge sharing but not 2 edge sharing, see Figure 6.3b), with designs

for the modified layout if needed. The user would then also specify where in

the drawing order such a pattern should appear (see Figure 6.3c).

Using such a design, the system would have to identify all of these patterns
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(a) Custom pattern definition: a triangle with nodes radiating from each corner

Share 1 Node Yes
Share 2 Nodes No

Share 1 Edge Yes
Share 2 Edges No

Connected by Edges Yes
No connection Yes

(b) Custom pattern connection types

Circle 1
Clique 2

Star 3
Triangle-Star -

Path 4
Triangle 5

(c) Custom pattern drawing order

Figure 6.3: Suggestion for the definition of a user defined pattern

which exist in the graph. This would be a big challenge. Currently the identifi-

cation methods are very specific to the pattern definitions - with no such defini-

tions existing for the custom layouts, nor a requirement from the user to imple-

ment any algorithms, another approach must be taken. Subgraph isomorphism

could be used to identify all the custom subgraphs that exist within the main

graph and use them in the drawing method. However, subgraph isomorphism

is an NP-complete problem, and therefore approximate subgraph isomorphism

would be required.

There are also issues surrounding the judgement of the user, regarding the

pattern’s relevance, definition, ideal layout, and order. The user may well select

suboptimal choices for each of these and this would have an adverse effect on
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the final layout. However, if techniques such as those described in Section 6.2.5

were implemented, this would mitigate such poor choices.

6.2.7 Hybrid System

One piece of further work could be to combine this pattern based system with a

force directed layout. For example, when drawing a pattern which connected to

the drawn set by one of more edges (or has no connection), the current search

based strategy could be replaced by a force directed model. In this case, at-

tractive forces (shown in Figure 6.4 in green) could exist between the nodes in

pattern about to be drawn and the nodes in the drawn set a the opposite end

of the connecting edges. Repulsive forces (shown in Figure 6.4 in red) could

exist between the nodes in pattern about to be drawn and all (or those within a

certain distance) nodes in the drawn set. Each iteration would have to ensure

that the pattern about to be drawn maintained its correct layout.

B

B

B

B

Figure 6.4: Potential Force-Directed Placement of Patterns
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Other uses could be in placing loose nodes, or the spokes of stars using

a force directed system. While this may weaken the regular layouts of stars,

it could allow better placement in that spokes could be spread amongst open

spaces, rather than all being clustered in one location. For example, Figure 6.5a

shows a star sharing a centre node as drawn by the current pattern based sys-

tem. Under a hybrid system, the nodes could be more evenly distributed into

the available space (see Figure 6.5b), even perhaps having different edge lengths

if required. However, the force directed system does not optimise to avoid edge

crossings, so extra forces or penalty scores may need to be added.

-cA

-cA-cA

-cB

-cB

-cB -sC

-sC

-sC-cA-cB-sC

-sC

(a) Current Pattern Based Layout

-cA

-cA-cA

-cB

-cB

-cB

-sC

-sC

-cA-cB-sC

-sC

-sC

(b) Possible Force-Directed Layout

Figure 6.5: Example of a potential multi-level approach
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trices and graph coloring blems. SIAM journal on Numerical Analysis,

20(1):187–209, 1983.

[30] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A

(sub)graph isomorphism algorithm for matching large graphs. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 26(10):1367–72,

2004. ISSN 0162-8828.

http://musicroamer.com/{#}/search?artist=frank sinatra{&}nodes=1{&}nodes=5
http://musicroamer.com/{#}/search?artist=frank sinatra{&}nodes=1{&}nodes=5


BIBLIOGRAPHY 180

[31] Isabel F Cruz and Roberto Tamassia. Graph Drawing Tutorial, 2003. ISBN

0012200603. Accessed: 2015-04-03.

https://cs.brown.edu/courses/csci2520/misc/slides/gd-

constraints.pdf

[32] Ron Davidson and David Harel. Drawing graphs nicely using simulated

annealing. ACM Transactions on Graphics, 15(4):301–331, oct 1996. ISSN

07300301.

[33] Fred DePiero and David Krout. An algorithm using length-r paths to

approximate subgraph isomorphism. Pattern recognition letters, 24(1):33–

46, 2003.

[34] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G Tol-

lis. Algorithms for drawing graphs: an annotated bibliography. Compu-

tational Geometry, 4(5):235–282, oct 1994. ISSN 09257721.

[35] Josep Dı́az, Jordi Petit, and Maria Serna. A survey of graph layout prob-

lems. ACM Computing Surveys, 34(3):313–356, 2002. ISBN 0360-0300.

[36] Cody Dunne and Ben Shneiderman. Motif Simplification: Improving Net-

work Visualization Readability with Fan, Connector, and Clique Glyphs.

In CHI ’13: Proc. 2013 International Conference on Human Factors in Comput-

ing Systems, pages 3247–3256, 2013. ISBN 9781450318990.

[37] Tim Dwyer, Bongshin Lee, Danyel Fisher, Kori Inkpen Quinn, Petra

Isenberg, George Robertson, and Chris North. A comparison of user-

generated and automatic graph layouts. IEEE Transactions on Visualization

and Computer Graphics, 15(6):961–968, 2009. ISSN 10772626.

[38] Peter Eades. A Heuristic for Graph Drawing. Congressus Numerantium,

42:149–160, 1984.

https://cs.brown.edu/courses/csci2520/misc/slides/gd-constraints.pdf
https://cs.brown.edu/courses/csci2520/misc/slides/gd-constraints.pdf


BIBLIOGRAPHY 181

[39] Peter Eades, Wei Lai, Kazuo Misue, and Kozo Sugiyama. Preserving the

Mental Map of a Diagram. Technical report, International Institute for

Advanced Study of Social Information Science, 1991.

[40] Peter Eades and Xuemin Lin. Spring algorithms and symmetry. Theoreti-

cal Computer Science, 240(2):379–405, 2000. ISSN 03043975.

[41] Peter Eades, Xuemin Lin, and Roberto Tamassia. An Algorithm For

Drawing A Hierarchical Graph. International Journal of Computational Ge-

ometry & Applications, 6(2):145–56, 1996.

[42] Hartmut Ehrig, Annegret Habel, and Hans-Jörg Kreowski. Introduction

to Graph Grammars with Applications to Semantic Networks. Computers

& Mathematics with Applications, 23(6):557–572, 1992.

[43] David Eppstein. Subgraph isomorphism in planar graphs and related

problems. In Proceedings of the Sixth Annual ACM-SIAM Symposium on

Discrete Algorithms, volume 95, pages 632–640, 1995.

[44] Leonhard Euler. Solutio problematis ad geometriam situs pertinentis (The

solution of a problem relating to the geometry of position). Commentarii

academiae scientiarum Petropolitanae, 8:128–140, 1741.

[45] Clifford J Fisk, David L Caskey, and Leslie E West. ACCEL: Automated

circuit card etching layout. Proceedings of the IEEE, 55(11):1971–1982, 1967.

ISBN 0018-9219.

[46] Arne Frick, Andreas Ludwig, and Heiko Mehldau. A fast adaptive layout

algorithm for undirected graphs. In Graph Drawing, pages 388–403, 1995.



BIBLIOGRAPHY 182

[47] Patrick C Fricker, Marcus Gastreich, and Matthias Rarey. Automated

drawing of structural molecular formulas under constraints. Journal of

chemical information and computer sciences, 44(3):1065–1078, 2004.

[48] Thomas M J Fruchterman and Edward M Reingold. Graph Drawing by

Force-directed Placement. Software: Practice and experience, 21(11):1129–

1164, 1991.

[49] Pawel Gajer, Michael T Goodrich, and Stephen G Kobourov. A multi-

dimensional approach to force-directed layouts of large graphs. Compu-

tational Geometry: Theory and Applications, 29(1):3–18, 2004. ISBN 3-540-

41554-8.

[50] Emden R Gansner, Yehuda Koren, and Stephen North. Graph Drawing

by Stress Majorization. In 12th International Symposium, Graph Drawing,

pages 239–250, 2004.

[51] H. Gibson, J. Faith, and P. Vickers. A survey of two-dimensional graph

layout techniques for information visualisation. Information Visualization,

12(3-4):324–357, 2012. ISSN 1473-8716.

[52] Frank Harary. Graph Theory. Addison-Wesley, 3rd edition, 1969.

[53] David Harel. On the Aesthetics of Diagrams (Summary of Talk). In MPC

’98 Proceedings of the Mathematics of Program Construction, pages 1–5, Lon-

don, 1998. Springer-Verlag. ISBN 3-540-64591-8.

[54] David Harel and Yehuda Koren. A Fast Multi-Scale Method for Drawing

Large Graphs. Journal of Graph Algorithms and Applications, 6(3):179–202,

2002. ISBN 1581132522.



BIBLIOGRAPHY 183

[55] Bruce Hendrickson and Robert Leland. A Multi-Level Algorithm For Par-

titioning Graphs. In Proceedings of the IEEE/ACM SC95 Conference, pages

1–14. IEEE, 1995. ISBN 0-89791-816-9.
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Appendix A

Full Analysis of Generated Layouts

A.1 Size of graphs

The following charts show the number of nodes and edges in each graph.
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A.2 Time taken

The following charts show the time taken vs the number of nodes and edges,

split by dataset.
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A.3 Density of graphs

The following charts show the edge density.
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Figure A.12: Edge Density (Formula One)
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Figure A.13: Edge Density (Academy Awards) (1)
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Figure A.14: Edge Density (Academy Awards) (2)
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Figure A.15: Edge Density (Rome) (1)
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Figure A.16: Edge Density (Rome) (2)
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Figure A.17: Edge Density (Rome) (3)
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Figure A.18: Edge Density (Rome) (4)
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A.4 Size of Largest Clique

Only one dataset contains cliques, and the largest clique in each example is

shown in the following chart.
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A.5 Patterns by Type

The following charts detail the types of pattern found within each dataset.
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Figure A.20: Number of patterns by type (Books)
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Figure A.21: Number of patterns by type (Formula One)
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Figure A.22: Number of patterns by type (Academy Awards) (1)
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Figure A.23: Number of patterns by type (Academy Awards) (2)
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Figure A.24: Number of patterns by type (Rome) (1)
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Figure A.25: Number of patterns by type (Rome) (2)
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Figure A.26: Number of patterns by type (Rome) (3)
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Figure A.27: Number of patterns by type (Rome) (4)
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A.6 Discarded and Drawn Patterns

The following charts display the number of patterns that have been drawn and

discarded.
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Figure A.28: Percentage of Patterns Drawn & Discarded (Books)
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Figure A.29: Percentage of Patterns Drawn & Discarded (Formula One)
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Figure A.30: Percentage of Patterns Drawn & Discarded (Academy Awards) (1)
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Figure A.31: Percentage of Patterns Drawn & Discarded (Academy Awards) (2)
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Figure A.32: Percentage of Patterns Drawn & Discarded (Rome) (1)
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Figure A.33: Percentage of Patterns Drawn & Discarded (Rome) (2)
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Figure A.34: Percentage of Patterns Drawn & Discarded (Rome) (3)
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Figure A.35: Percentage of Patterns Drawn & Discarded (Rome) (4)
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A.7 Discarded and Drawn Nodes

The following charts display the number of nodes which have been drawn, are

only within discarded patterns, or are in no pattern.
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Figure A.36: Percentage of Nodes Drawn, in Discarded Patterns and in No Pat-
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Figure A.37: Percentage of Nodes Drawn, in Discarded Patterns and in No Pat-
tern (Formula One)
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Figure A.38: Percentage of Nodes Drawn, in Discarded Patterns and in No Pat-
tern (Academy Awards) (1)
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Figure A.39: Percentage of Nodes Drawn, in Discarded Patterns and in No Pat-
tern (Academy Awards) (2)
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Figure A.40: Percentage of Nodes Drawn, in Discarded Patterns and in No Pat-
tern (Rome) (1)
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Figure A.41: Percentage of Nodes Drawn, in Discarded Patterns and in No Pat-
tern (Rome) (2)
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Figure A.42: Percentage of Nodes Drawn, in Discarded Patterns and in No Pat-
tern (Rome) (3)
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Figure A.43: Percentage of Nodes Drawn, in Discarded Patterns and in No Pat-
tern (Rome) (4)
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A.8 Node-node Occlusion

The following charts show the number of nodes who occlude other nodes in

the graph, both for the pattern based system, and a force-directed layout. There

were no instances of node-node occlusion in the datasets where only the Lead-

ing Actor and Actress nominees were selected when drawn by either the force

directed method or the pattern based method.
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Figure A.44: Instances of Node-Node Occlusion (Books)
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Figure A.45: Instances of Node-Node Occlusion (Formula One)
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Figure A.46: Instances of Node-Node Occlusion (Academy Awards)
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Figure A.47: Instances of Node-Node Occlusion (Rome) (1)
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Figure A.48: Instances of Node-Node Occlusion (Rome) (2)
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Figure A.49: Instances of Node-Node Occlusion (Rome) (3)
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Figure A.50: Instances of Node-Node Occlusion (Rome) (4)
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A.9 Node-edge Occlusion

The following charts show the number of nodes who occlude edges in the

graph, both for the pattern based system, and a force-directed layout.
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Figure A.51: Instances of Node-Edge Occlusion (Books)
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Figure A.52: Instances of Node-Edge Occlusion (Formula One)
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Figure A.53: Instances of Node-Edge Occlusion (Academy Awards) (1)
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Figure A.54: Instances of Node-Edge Occlusion (Academy Awards) (2)
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Figure A.55: Instances of Node-Edge Occlusion (Rome) (1)
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Figure A.56: Instances of Node-Edge Occlusion (Rome) (2)
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Figure A.57: Instances of Node-Edge Occlusion (Rome) (3)
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Figure A.58: Instances of Node-Edge Occlusion (Rome) (4)
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A.10 Edge Crossings

The following charts show the number of edge crossings in the graph, both for

the pattern based system, and a force-directed layout.
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Figure A.59: Instances of Edge Crossings (Books)
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Figure A.60: Instances of Edge Crossings (Formula One)
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Figure A.61: Instances of Edge Crossings (Academy Awards) (1)
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Figure A.62: Instances of Edge Crossings (Academy Awards) (2)
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Figure A.63: Instances of Edge Crossings (Rome) (1)
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Figure A.64: Instances of Edge Crossings (Rome) (2)
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Figure A.65: Instances of Edge Crossings (Rome) (3)
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Figure A.66: Instances of Edge Crossings (Rome) (4)
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A.11 Time taken

The following charts show the time taken for the pattern based system to com-

plete a drawing.
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Figure A.67: Time taken (s) (Books)
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Figure A.68: Time taken (s) (Formula One)
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Figure A.69: Time taken (s) (Academy Awards) (1)
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Figure A.70: Time taken (s) (Academy Awards) (2)
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Figure A.71: Time taken (s) (Rome) (1)
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Figure A.72: Time taken (s) (Rome) (2)
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Figure A.73: Time taken (s) (Rome) (3)
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Figure A.74: Time taken (s) (Rome) (4)



Appendix B

Empirical Study Data

Detailed below are all the information provided to participants, along with the

pictures and questions used. Also displayed are the raw and anonymised re-

sults for both the main study and the preference sheet. Demographic and in-

dividual comments have been removed. All of this information and the study

software is available online 1 for download in more useful formats.

In this Appendix, Question IDs are used to link pictures, questions and an-

swers. These are in the form t1mf, where t1 represents Task Type 1, m represents

the size (l for large, m for medium, and s for small) and f represents the method

(f for force-directed and p for the pattern-based technique).

B.1 Information Provided to Participants

Throughout the study, a number of pieces of information were given to the

participants. These are detailed below.

1http://www.eulerdiagrams.com/pattern

279
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B.1.1 Introduction

This introduction was presented to the participant and read aloud by the person

running the study.

B.1.1.1 Introduction Script

We are going to present you with a number of graphs that represent people and

their connections. A person may be connected to many people. People are rep-

resented with circles. People are connected by lines.

You are now about to start the computer based test. Please feel free to adjust

the chair, screen, mouse and keyboard so you are comfortable.

You can take as long as you like to answer each question, but we are record-

ing the time taken to complete the tasks.

You will be given 8 practice questions, where the answer will be shown after

each one. I will talk you through these, so please feel free to ask any questions.

There will be a break once the practice is completed. You will then be given 24

questions.

After the test, you will be asked to complete a short questionnaire.

After this is completed, a sheet will be given with 3 pairs of graphs on to obtain

your preferences.

Answers to all the questions asked will be treated anonymously.
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You do not have to participate in this test if you do not wish to. You are free

to leave now, or at any time during the test.

If you feel uncomfortable at any time, please let me know.

Are you happy to start the test now?

B.1.2 Practice Questions

The following was read to each participant during the practice questions. Bold

text indicates instructions to the person running the study, some of which are

based on the participant’s response. Italics indicates a button on the software

which must be clicked.

B.1.2.1 Practice Question Script

When you are ready, click Begin.

Question 1: How many people are directly connected to Billy (shown in

blue)? We can see that (pointing) Carla, Edith and Doris are all connected to

Billy, so the answer is 3.

Is that okay? (Wait for response)

Click on 3, then Next.

As it says, Billy is connected to Carla, Edith and Doris. Click Next.

Question 2: What is the minimum number of people that must be removed

in order to disconnect Flynn & Emile (both shown in blue) so that there is no

route between them?

There are two routes between Flynn and Emile. One is via Harvy (pointing),
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and the other via Drake & Isiah (pointing). If we removed Harvy and one of

Drake or Isiah, there would be no connection between Flynn and Emile, so the

answer is 2.

Is that okay? (Wait for response)

Click on 2, then Next

As it says, Harvy and one of Drake or Isiah need to be removed. Click Next.

Question 3: How many other people are there in the shortest route between

Elgin & Marco (both shown in blue)?

There are two main routes from Elgin to Marco. One is on the left here (point-

ing) and the other on the right (pointing). The right hand side has 5 people,

whereas the left hand side has only two people, who are Bambi and Harry. So

the shortest route between the two has 2 other people.

Is that okay? (Wait for response)

Click on 2, then Next.

As it says, Bambi and Harry are the two other people in the shortest route. Elgin

and Marco themselves are not counted. Click Next.

Question 4: How many triangles are there in the diagram? (A triangle is

where 3 people are connected to each other)

There is a triangle made up from Carla, Freda and Ellen (pointing).

This is the only one in this example, so the answer is 1.

Is that okay? (Wait for response).

Click on 1, then Next.

As it says, Carla, Freda and Ellen are all in a triangle. Click Next.
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Question 5: How many people are directly connected to Emily (shown in

blue)? How many people do you think are connected to Emily? (Wait for re-

sponse)

If 6 B Good, there are indeed 6 people.

If not B Okay, let’s count. There are (pointing) 1 Philo, 2 Lexus, 3 Gregg, 4

Trent, 5 Vesla and 6 Sandy. So there are 6 people. Is that okay? (Wait for re-

sponse).

Click on 6, then Next.

As it says, there are 6 people connected to Emily. Click Next.

Question 6: What is the minimum number of people that must be removed

in order to disconnect Ottis & Wyman (both shown in blue) so that there is no

route between them?

How many people do you think need to be removed so there is no route be-

tween Ottis and Wyman? (Wait for response)

If 1 B Who?

If Caryn or Brody B Good, one of Caryn or Brody needs to be removed.

If not B Okay, either Caryn or Brody (pointing) need to be removed. If

one of them is removed, there’s no route between Ottis and Wyman. Is that

okay? (Wait for response)

If not B Okay, let’s work it out. If we removed Brody, there is no possible route

from Ottis to Wyman. The same goes for if we removed Caryn. Either one can

be removed. So the answer is 1. Is that okay? (Wait for response)

Click on 1, then Next
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As it says, one of Caryn or Brody would need to be removed. Click Next.

Question 7: How many other people are there in the shortest route between

Deana & Texas (both shown in blue)? How many people do you think there are

in the shortest route between Deana and Texas?

If 4 B Good. Who are they?

If Vance, Freda, Marge & Jayne B Good, they are the people in the route.

If either Deana or Texas B Remember, Deana and Texas aren’t included

in the route. Is that okay? (Wait for response)

If something else B Okay, let’s work it out. There’s a route here (point-

ing) between Vance, Freda, Marge, and Jayne. Is that okay? (Wait for response)

If not B Okay, let’s work it out. There’s a route here (pointing) between Vance,

Freda, Marge and Jayne. Is that okay?

(Wait for response)

Click on 4, then Next.

As it says, Jayne, Freda, Marge and Vance are in the route, and that is 4 people.

Click Next.

Question 8: How many triangles are there in the diagram? (A triangle is

where 3 people are connected to each other) How many triangles do you think

are in the diagram?

If 2 B Good. Who are in those triangles?

If Irene, Galen & Nelle + Haley, Dante & Irene B Good, they are in the

two triangles.
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If not B Okay, let’s work it out. A triangle is 3 people all connected to-

gether. There is a triangle here (pointing), formed of Irene, Galen & Nelle, and

also one here (pointing) formed of Irene again, Haley and Dante. Is that okay?

(Wait for response)

If not B Okay, let’s work it out. A triangle is 3 people all connected together.

There is a triangle here (pointing), formed of Irene, Galen & Nelle, and also one

here (pointing) formed of Irene again, Haley and Dante. Is that okay? (Wait for

response)

Click on 1, then Next

As it says, Irene, Galen and Nelle are in a triangle, as are Irene again, Haley and

Dante. Click Next.

I shall now move over the other side of the table (move to other side of

the table) and allow you to complete the rest of the study. If you have any

questions, please let me know now. If you have no questions then when you

are ready, click Begin.

B.1.3 Conclusion

The following was read to each participant once they had completed their pref-

erence sheet, and they were told they could keep this debriefing document. It

was also read aloud to the participants. Once completed, they signed a form as

receipt of collecting their payment and were given with £7.

B.1.3.1 Conclusion Script

Thank you for participating in this research.
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You were presented with a number of graphs which were drawn using two

different drawing methods. One method was a forced based method, with the

other being a pattern layout system. We wanted to find out how the drawing

method alters people’s understanding of these diagrams.

The purpose of this research is to evaluate the effectiveness of the pattern based

system compared to another drawing mechanism.

We would appreciate it if you did not discuss this experiment with other stu-

dents in the university. These experiments will be continuing through the next

few weeks, and having subjects who have prior knowledge of what the tests are

about makes the data less useful.

Thank you again for your contribution.

B.2 Examples Used

The Question IDs used in the following examples correlate with the Question

IDs in SectionsB.3 and B.5.

B.2.1 Practice
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B.2.2 Task Type 1
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Figure B.9: t1sf - 1998 Best Leading and Supporting Actor and Actress Nomi-
nees
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Figure B.10: t1sp - 1998 Best Leading and Supporting Actor and Actress Nomi-
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Figure B.11: t1mf - The Jungle Book, by Rudyard Kipling (1894)
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Figure B.12: t1mp - The Jungle Book, by Rudyard Kipling (1894)
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Figure B.13: t1lf - A Tale of Two Cities, by Charles Dickens (1859)
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Figure B.14: t1lp - A Tale of Two Cities, by Charles Dickens (1859)



APPENDIX B. EMPIRICAL STUDY DATA 296

B.2.3 Task Type 2
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Figure B.15: t2sf - Formula One team-mates, 1997-1999
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Figure B.16: t2sp - Formula One team-mates, 1997-1999
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Figure B.17: t2mf - 2000 Best Leading Actor and Actress Nominees
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Figure B.18: t2mp - 2000 Best Leading Actor and Actress Nominees
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Figure B.19: t2lf - Jane Eyre, by Charlotte Brontë (1847)
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Figure B.20: t2lp - Jane Eyre, by Charlotte Brontë (1847)
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B.2.4 Task Type 3
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Figure B.21: t3sf - Formula One team-mates, 2009-2011
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Figure B.22: t3sp - Formula One team-mates, 2009-2011
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Figure B.23: t3mf - 2002 Best Leading and Supporting Actor and Actress Nomi-
nees



APPENDIX B. EMPIRICAL STUDY DATA 304

Agnes

Bruno

Chyna

Denis

Ellie

Flint

Greta

Henry

India

Judah

Linus

Mabel

Noble

Paula

Reese

Sheri

Tariq
Vikki

WallyAhmed

Betty

Caleb

Dolly

Edgar

Flora

Glenn

Helga

Jamie

Karol

Lloyd

Katie

Figure B.24: t3mp - 2002 Best Leading and Supporting Actor and Actress Nom-
inees
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Figure B.25: t3lf - Formula One team-mates, 2004-2006
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Figure B.26: t3lp - Formula One team-mates, 2004-2006
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B.2.5 Task Type 4
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Figure B.27: t4sf - Formula One team-mates, 2010-2012
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Figure B.28: t4sp - Formula One team-mates, 2010-2012
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Figure B.29: t4mf - Formula One team-mates, 1996-1998
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Figure B.30: t4mp - Formula One team-mates, 1996-1998



APPENDIX B. EMPIRICAL STUDY DATA 310

Myles

Norah

Orion

Perri

Randy

Stacy

Taryn

Uriah

Zelia

Verne

Bilal

Ceola

Davin

Elois

Frank

Giana

Hideo

Janet

Karim

Leigh

Maeve

North

Olena

Peter

Queen

Romeo

Sofia

Tarik

Zelda

Adina

Allan

Belle

Carlo

Delta

Elroy

Frida

Guido

Hanna

Isham

Kaley

Lance

Figure B.31: t4lf - 2005 Best Leading and Supporting Actor and Actress Nomi-
nees
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Figure B.32: t4lp - 2005 Best Leading and Supporting Actor and Actress Nomi-
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B.3 Questions and Answers

These are the questions asked for both the practice and main questions. All

the answers presented to the participant, along with the correct answer. The

Question IDs refer to the images used in Section B.2.

B.3.1 Practice Questions

Unlike in the main study, the answer and an explanation is shown to the user

once they have confirmed an answer in the practice section.

Table B.1: Practice Questions Asked

Question

ID
Text A1 A2 A3 A4 Correct Answer

p1

(Fig B.1)

How many peo-

ple are directly

connected to Billy

(shown in blue)?

3 4 5 6 The correct answer is

3. Billy is directly

connected to Carla,

Doris & Edith.

Continued on next page
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Table B.1 – continued from previous page

Question

ID
Text A1 A2 A3 A4 Correct Answer

p2

(Fig B.2)

What is the mini-

mum number of peo-

ple that must be re-

moved in order to

disconnect Flynn &

Emile (both shown in

blue) so that there

is no route between

them?

1 2 3 4 The correct answer is

2. Harvy would need

to be removed, plus

one of Drake or Isiah.

p3

(Fig B.3)

How many other

people are there in

the shortest route

between Elgin &

Marco (both shown

in blue)?

2 3 4 5 The correct answer is

2 (Bambi & Harry).

You do not include

Elgin & Marco in the

count.

Continued on next page
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Table B.1 – continued from previous page

Question

ID
Text A1 A2 A3 A4 Correct Answer

p3a

(Fig B.4)

How many triangles

are there in the di-

agram? (A trian-

gle is where 3 people

are connected to each

other)

1 2 3 4 The correct answer is

1. Carla, Freda &

Ellen are in a trian-

gle.

p4

(Fig B.5)

How many people

are directly con-

nected to Emily

(shown in blue)?

3 4 5 6 The correct answer is

6. Emily is connected

to Philo, Lexus,

Gregg, Trent, Vesla &

Sandy

p5

(Fig B.6)

What is the mini-

mum number of peo-

ple that must be re-

moved in order to

disconnect Ottis &

Wyman (both shown

in blue) so that there

is no route between

them?

1 2 3 4 The correct answer is

1. One of Caryn or

Brody would need to

be removed.

Continued on next page
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Table B.1 – continued from previous page

Question

ID
Text A1 A2 A3 A4 Correct Answer

p6

(Fig B.7)

How many other

people are there in

the shortest route

between Deana &

Texas (both shown in

blue)?

2 3 4 5 The correct answer is

4. (Jayne -¿ Marge -¿

Freda -¿ Vance). You

do not include Deana

& Texas in the count.

p7

(Fig B.8)

How many triangles

are there in the di-

agram? (A trian-

gle is where 3 people

are connected to each

other)

1 2 3 4 The correct answer is

2. Irene, Galen &

Nelle are in a tri-

angle, as are Haley,

Dante & Irene.

B.3.2 Main Study

The correct answer is not shown to the user, and refers to the correct option

rather than the actual value.
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Table B.2: Questions Asked

Question

ID
Text A1 A2 A3 A4

Correct

Answer

t1sf

(Fig B.9)

How many people are directly

connected to Zayne (shown in

blue)?

3 4 5 6 A3

t1sp

(Fig B.10)

How many people are directly

connected to Jamal (shown in

blue)?

3 4 5 6 A3

t1mf

(Fig B.11)

How many people are directly

connected to Timmy (shown in

blue)?

3 4 5 6 A2

t1mp

(Fig B.12)

How many people are directly

connected to Micah (shown in

blue)?

3 4 5 6 A4

t1lf

(Fig B.13)

How many people are directly

connected to Orene (shown in

blue)?

3 4 5 6 A1

Continued on next page
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Table B.2 – continued from previous page

Question

ID
Text A1 A2 A3 A4

Correct

Answer

t1lp

(Fig B.14)

How many people are directly

connected to Annie (shown in

blue)?

3 4 5 6 A1

t2sf

(Fig B.15)

What is the minimum number

of people that must be removed

in order to disconnect Dolph &

Vince (both shown in blue) so

that there is no route between

them?

1 2 3 4 A1

t2sp

(Fig B.16)

What is the minimum number of

people that must be removed in

order to disconnect Ariel & Gerry

(both shown in blue) so that there

is no route between them?

1 2 3 4 A2

Continued on next page
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Table B.2 – continued from previous page

Question

ID
Text A1 A2 A3 A4

Correct

Answer

t2mf

(Fig B.17)

What is the minimum number

of people that must be removed

in order to disconnect Dejon &

Rusty (both shown in blue) so

that there is no route between

them?

1 2 3 4 A1

t2mp

(Fig B.18)

What is the minimum number

of people that must be removed

in order to disconnect Naomi &

Hilda (both shown in blue) so

that there is no route between

them?

1 2 3 4 A1

t2lf

(Fig B.19)

What is the minimum number

of people that must be removed

in order to disconnect Ruben &

Glynn (both shown in blue) so

that there is no route between

them?

1 2 3 4 A3

Continued on next page
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Table B.2 – continued from previous page

Question

ID
Text A1 A2 A3 A4

Correct

Answer

t2lp

(Fig B.20)

What is the minimum number

of people that must be removed

in order to disconnect Andre &

Owens (both shown in blue) so

that there is no route between

them?

1 2 3 4 A3

t3sf

(Fig B.21)

How many other people are there

in the shortest route between

Tegan & Nelly (both shown in

blue)?

3 4 5 6 A2

t3sp

(Fig B.22)

How many other people are there

in the shortest route between

Isaac & Doris (both shown in

blue)?

3 4 5 6 A1

t3mf

(Fig B.23)

How many other people are there

in the shortest route between

Helga & Sherri (both shown in

blue)?

3 4 5 6 A3

Continued on next page
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Table B.2 – continued from previous page

Question

ID
Text A1 A2 A3 A4

Correct

Answer

t3mp

(Fig B.24)

How many other people are there

in the shortest route between

Glenn & Lloyd (both shown in

blue)?

3 4 5 6 A4

t3lf

(Fig B.25)

How many other people are there

in the shortest route between

Abdul & Maria (both shown in

blue)?

4 5 6 7 A2

t3lp

(Fig B.26)

How many other people are there

in the shortest route between El-

gin & Jason (both shown in blue)?

4 5 6 7 A2

t4sf

(Fig B.27)

How many triangles are there in

the diagram? (A triangle is where

3 people are connected to each

other)

1 2 3 4 A2

Continued on next page
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Table B.2 – continued from previous page

Question

ID
Text A1 A2 A3 A4

Correct

Answer

t4sp

(Fig B.28)

How many triangles are there in

the diagram? (A triangle is where

3 people are connected to each

other)

1 2 3 4 A2

t4mf

(Fig B.29)

How many triangles are there in

the diagram? (A triangle is where

3 people are connected to each

other)

1 2 3 4 A1

t4mp

(Fig B.30)

How many triangles are there in

the diagram? (A triangle is where

3 people are connected to each

other)

1 2 3 4 A1

t4lf

(Fig B.31)

How many triangles are there in

the diagram? (A triangle is where

3 people are connected to each

other)

1 2 3 4 A1

Continued on next page
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Table B.2 – continued from previous page

Question

ID
Text A1 A2 A3 A4

Correct

Answer

t4lp

(Fig B.32)

How many triangles are there in

the diagram? (A triangle is where

3 people are connected to each

other)

1 2 3 4 A1

B.4 Preference Sheet

Shown below are the three pairings shown to participants to indicate their pref-

erence.

B.4.1 Pair 1

Figure B.33: Preference Pair 1, Pattern - Formula One team-mates, 2002-2004
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Figure B.34: Preference Pair 1, Force - Formula One team-mates, 2002-2004

B.4.2 Pair 2

Figure B.35: Preference Pair 2, Pattern - Formula One team-mates, 2005-2007
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Figure B.36: Preference Pair 2, Force - Formula One team-mates, 2005-2007

B.4.3 Pair 3

Figure B.37: Preference Pair 3, Pattern - 2007 Best Leading Actor and Actress
Nominees
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Figure B.38: Preference Pair 3, Force - 2007 Best Leading Actor and Actress
Nominees

B.5 Results

Listed below are all the results for the main and preference study. Personal

information has been removed. The user IDs in the main study results relate

to the user IDs in the preference study. The question IDs and answers in the

main study results correlate to the examples and questions given in Sections B.2

and B.3.

B.5.1 Main Study

Table B.3: Main study results

Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t2lf a3 4 27370 1 2 l f

t3lf a2 2 34921 1 3 l f

t2sf a1 1 24610 1 2 s f

Continued on next page
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Table B.3 – continued from previous page

Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t1lf a1 1 14983 1 1 l f

t1sf a3 3 7168 1 1 s f

t3sf a2 2 12472 1 3 s f

t3mp a4 4 14322 1 3 m p

t4mf a1 1 14984 1 4 m f

t1mp a4 4 14095 1 1 m p

t2sp a2 2 19496 1 2 s p

t4lf a1 1 15244 1 4 l f

t3lp a2 2 20622 1 3 l p

t2mp a1 1 15088 1 2 m p

t2lp a3 3 23393 1 2 l p

t3sp a1 1 9313 1 3 s p

t1sp a3 3 7087 1 1 s p

t4sp a2 2 6977 1 4 s p

t4lp a1 1 8264 1 4 l p

t1lp a1 1 7168 1 1 l p

t2mf a1 1 10311 1 2 m f

t3mf a3 3 11331 1 3 m f

t1mf a2 2 7455 1 1 m f

t4mp a1 1 8505 1 4 m p

t4sf a2 2 5327 1 4 s f

t2lp a3 1 22754 2 2 l p

t3lf a2 2 18159 2 3 l f

Continued on next page
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Table B.3 – continued from previous page

Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t1mf a2 2 12536 2 1 m f

t3mf a3 3 10792 2 3 m f

t2mf a1 4 16352 2 2 m f

t3sf a2 2 10616 2 3 s f

t4lp a1 1 18599 2 4 l p

t1lp a1 1 7337 2 1 l p

t2sf a1 2 17488 2 2 s f

t1mp a4 4 14312 2 1 m p

t1sp a3 3 6953 2 1 s p

t4mp a1 1 11224 2 4 m p

t2mp a1 4 55098 2 2 m p

t4sp a2 2 12049 2 4 s p

t4lf a1 1 13087 2 4 l f

t3mp a4 4 15512 2 3 m p

t2lf a3 2 20491 2 2 l f

t1sf a3 3 6784 2 1 s f

t3sp a1 1 13056 2 3 s p

t4mf a1 1 11632 2 4 m f

t1lf a1 1 5832 2 1 l f

t2sp a2 2 14768 2 2 s p

t4sf a2 2 7080 2 4 s f

t3lp a2 2 18192 2 3 l p

t3sp a1 1 13666 3 3 s p

Continued on next page
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Table B.3 – continued from previous page

Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t4lf a1 1 7728 3 4 l f

t4sf a2 2 14407 3 4 s f

t2mf a1 1 26960 3 2 m f

t2sp a2 1 46708 3 2 s p

t1sf a3 3 9281 3 1 s f

t2lf a3 3 26671 3 2 l f

t3mf a3 3 9528 3 3 m f

t3lp a2 2 23578 3 3 l p

t1mf a2 2 9801 3 1 m f

t4mp a1 1 14087 3 4 m p

t2sf a1 1 23872 3 2 s f

t1lp a1 1 6928 3 1 l p

t1sp a3 3 6554 3 1 s p

t2mp a1 1 15729 3 2 m p

t3sf a2 2 13695 3 3 s f

t1mp a4 4 12721 3 1 m p

t2lp a3 3 14632 3 2 l p

t4sp a2 2 12490 3 4 s p

t4lp a1 1 20865 3 4 l p

t3mp a4 4 14183 3 3 m p

t1lf a1 1 9176 3 1 l f

t4mf a1 1 17274 3 4 m f

t3lf a2 2 19096 3 3 l f

Continued on next page



APPENDIX B. EMPIRICAL STUDY DATA 329

Table B.3 – continued from previous page

Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t3lp a2 2 27800 4 3 l p

t4lf a1 1 12719 4 4 l f

t3mp a4 4 18864 4 3 m p

t2mf a1 1 20168 4 2 m f

t4sf a2 2 9951 4 4 s f

t4mp a1 1 12673 4 4 m p

t1sp a3 3 7896 4 1 s p

t2sf a1 1 18288 4 2 s f

t3sp a1 1 12039 4 3 s p

t2lp a3 3 20256 4 2 l p

t1lf a1 1 11839 4 1 l f

t4sp a2 2 9737 4 4 s p

t4mf a1 1 13055 4 4 m f

t1mf a2 2 10264 4 1 m f

t2mp a1 1 13632 4 2 m p

t1sf a3 3 10920 4 1 s f

t3mf a3 3 14833 4 3 m f

t3sf a2 2 9160 4 3 s f

t2sp a2 2 39030 4 2 s p

t1lp a1 1 8224 4 1 l p

t4lp a1 1 20264 4 4 l p

t3lf a2 4 12919 4 3 l f

t2lf a3 3 32160 4 2 l f

Continued on next page
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Table B.3 – continued from previous page

Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t1mp a4 4 8592 4 1 m p

t4sf a2 2 11024 5 4 s f

t2lf a3 3 49347 5 2 l f

t2mf a1 1 12952 5 2 m f

t3mf a3 3 12168 5 3 m f

t2sp a2 2 43566 5 2 s p

t3sf a2 2 14440 5 3 s f

t1mf a2 2 9192 5 1 m f

t1lf a1 1 7584 5 1 l f

t2lp a3 4 81763 5 2 l p

t3lp a2 2 28663 5 3 l p

t4mf a1 1 8505 5 4 m f

t4lf a1 1 8935 5 4 l f

t2mp a1 1 15202 5 2 m p

t4sp a2 2 11865 5 4 s p

t3mp a4 4 24831 5 3 m p

t2sf a1 1 11401 5 2 s f

t1sp a3 3 6799 5 1 s p

t1mp a4 4 15879 5 1 m p

t4mp a1 1 10288 5 4 m p

t1lp a1 1 5200 5 1 l p

t4lp a1 1 36264 5 4 l p

t3lf a2 2 29083 5 3 l f

Continued on next page
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Table B.3 – continued from previous page

Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t3sp a1 1 15712 5 3 s p

t1sf a3 3 6927 5 1 s f

t4sf a2 2 11704 6 4 s f

t1sf a3 3 10272 6 1 s f

t2lf a3 1 28073 6 2 l f

t2mp a1 2 36663 6 2 m p

t4lp a1 1 29694 6 4 l p

t2sp a2 2 61152 6 2 s p

t1mf a2 2 15743 6 1 m f

t3mp a4 4 25637 6 3 m p

t4mf a1 1 9889 6 4 m f

t3sf a2 2 17752 6 3 s f

t2mf a1 1 18247 6 2 m f

t1sp a3 3 7463 6 1 s p

t3lf a2 2 28807 6 3 l f

t4lf a1 1 15048 6 4 l f

t1lp a1 1 9871 6 1 l p

t4mp a1 1 12270 6 4 m p

t2sf a1 1 40256 6 2 s f

t3sp a1 1 18442 6 3 s p

t2lp a3 2 52095 6 2 l p

t3lp a2 2 26101 6 3 l p

t1mp a4 4 19376 6 1 m p

Continued on next page
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Table B.3 – continued from previous page

Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t3mf a3 3 11695 6 3 m f

t4sp a2 2 7616 6 4 s p

t1lf a1 1 9605 6 1 l f

t1mf a2 2 20384 7 1 m f

t2lf a3 1 45350 7 2 l f

t4mf a1 1 19167 7 4 m f

t2mp a1 1 33495 7 2 m p

t1lp a1 1 14232 7 1 l p

t4sp a2 2 13823 7 4 s p

t1sf a3 3 14856 7 1 s f

t2sp a2 2 25056 7 2 s p

t1mp a4 4 18216 7 1 m p

t4lp a1 1 35598 7 4 l p

t3lf a2 3 44023 7 3 l f

t2mf a1 1 18230 7 2 m f

t3sf a2 3 24008 7 3 s f

t3mp a4 4 38207 7 3 m p

t4sf a2 2 16135 7 4 s f

t2lp a3 3 42919 7 2 l p

t4lf a1 1 22872 7 4 l f

t1sp a3 3 8744 7 1 s p

t4mp a1 1 21151 7 4 m p

t2sf a1 1 11848 7 2 s f
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Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t3sp a1 1 23591 7 3 s p

t3lp a2 2 27065 7 3 l p

t1lf a1 1 8743 7 1 l f

t3mf a3 3 15408 7 3 m f

t1lf a1 1 7759 8 1 l f

t2lp a3 2 25583 8 2 l p

t4sf a2 2 7063 8 4 s f

t2mf a1 1 14504 8 2 m f

t3lp a2 2 18319 8 3 l p

t1lp a1 1 8601 8 1 l p

t4lp a1 1 14541 8 4 l p

t2sf a1 3 15272 8 2 s f

t3mp a4 4 13232 8 3 m p

t1sf a3 3 6391 8 1 s f

t3sp a1 1 16289 8 3 s p

t3lf a2 2 16609 8 3 l f

t4mp a1 1 13056 8 4 m p

t2lf a3 2 23327 8 2 l f

t4lf a1 1 11013 8 4 l f

t1mp a4 4 8392 8 1 m p

t2sp a2 2 13064 8 2 s p

t2mp a1 1 14224 8 2 m p

t1sp a3 3 8104 8 1 s p
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Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t3mf a3 3 10748 8 3 m f

t3sf a2 2 11224 8 3 s f

t4mf a1 1 9007 8 4 m f

t1mf a2 2 7873 8 1 m f

t4sp a2 2 11599 8 4 s p

t2mp a1 1 20050 9 2 m p

t1lp a1 1 13617 9 1 l p

t1sp a3 3 7385 9 1 s p

t3sf a2 2 19485 9 3 s f

t4sf a2 2 10436 9 4 s f

t1mp a4 4 8596 9 1 m p

t3mf a3 3 13651 9 3 m f

t4mf a1 1 10432 9 4 m f

t3lp a2 2 24870 9 3 l p

t2mf a1 1 21901 9 2 m f

t4lf a1 1 14218 9 4 l f

t1lf a1 1 9157 9 1 l f

t2lf a3 4 41877 9 2 l f

t1mf a2 2 7949 9 1 m f

t2sp a2 2 25037 9 2 s p

t3mp a4 4 24267 9 3 m p

t4mp a1 1 9763 9 4 m p

t3sp a1 1 15765 9 3 s p
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Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t3lf a2 3 26485 9 3 l f

t4lp a1 1 29561 9 4 l p

t1sf a3 3 9385 9 1 s f

t4sp a2 2 14799 9 4 s p

t2sf a1 1 21049 9 2 s f

t2lp a3 2 30249 9 2 l p

t1mf a2 2 10194 10 1 m f

t3sp a1 1 9895 10 3 s p

t1lf a1 1 12113 10 1 l f

t2sp a2 2 34179 10 2 s p

t2lf a3 4 31671 10 2 l f

t1sp a3 3 11825 10 1 s p

t3lp a2 2 30405 10 3 l p

t4sf a2 2 13271 10 4 s f

t4lp a1 2 30315 10 4 l p

t1lp a1 1 10111 10 1 l p

t2mp a1 1 16057 10 2 m p

t3sf a2 2 10457 10 3 s f

t3mp a4 4 11478 10 3 m p

t4mp a1 1 15486 10 4 m p

t3lf a2 2 17583 10 3 l f

t1mp a4 1 8735 10 1 m p

t2lp a3 4 42485 10 2 l p
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Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t2sf a1 1 22592 10 2 s f

t4lf a1 1 8847 10 4 l f

t4sp a2 2 10001 10 4 s p

t3mf a3 3 12540 10 3 m f

t1sf a3 3 7632 10 1 s f

t2mf a1 1 17959 10 2 m f

t4mf a1 1 11400 10 4 m f

t3lp a2 2 28679 11 3 l p

t2sf a1 1 27519 11 2 s f

t3mp a4 4 15011 11 3 m p

t1lp a1 1 17079 11 1 l p

t1mf a2 2 7519 11 1 m f

t2mp a1 1 42844 11 2 m p

t4sf a2 2 13279 11 4 s f

t1sf a3 3 10768 11 1 s f

t3lf a2 2 36741 11 3 l f

t2lp a3 3 13472 11 2 l p

t3sp a1 1 20080 11 3 s p

t4mf a1 1 16016 11 4 m f

t2sp a2 2 30659 11 2 s p

t4lp a1 1 27359 11 4 l p

t1lf a1 1 8888 11 1 l f

t3mf a3 3 15664 11 3 m f
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Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t2lf a3 3 24283 11 2 l f

t3sf a2 2 12912 11 3 s f

t1mp a4 4 13608 11 1 m p

t4sp a2 2 7832 11 4 s p

t4mp a1 1 16192 11 4 m p

t2mf a1 1 12340 11 2 m f

t1sp a3 3 7160 11 1 s p

t4lf a1 1 27056 11 4 l f

t3lp a2 2 16943 12 3 l p

t1sf a3 2 4689 12 1 s f

t2mp a1 1 9976 12 2 m p

t1lf a1 1 4936 12 1 l f

t3sp a1 1 11211 12 3 s p

t1sp a3 3 5160 12 1 s p

t2sp a2 1 11816 12 2 s p

t2lp a3 1 7280 12 2 l p

t4sf a2 2 7960 12 4 s f

t4lp a1 2 20669 12 4 l p

t3mp a4 4 10712 12 3 m p

t1mp a4 4 8226 12 1 m p

t3sf a2 2 8286 12 3 s f

t4mp a1 1 8720 12 4 m p

t2lf a3 1 12071 12 2 l f
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Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t4sp a2 2 9429 12 4 s p

t3lf a2 2 23679 12 3 l f

t2sf a1 1 7265 12 2 s f

t2mf a1 1 10663 12 2 m f

t3mf a3 3 8432 12 3 m f

t1mf a2 2 7503 12 1 m f

t4mf a1 1 6822 12 4 m f

t1lp a1 1 4943 12 1 l p

t4lf a1 1 7424 12 4 l f

t1sf a3 3 8849 13 1 s f

t4lf a1 1 11808 13 4 l f

t3lf a2 2 18016 13 3 l f

t2mp a1 1 32882 13 2 m p

t1mf a2 2 13087 13 1 m f

t1lp a1 1 6416 13 1 l p

t3sp a1 1 7816 13 3 s p

t3mf a3 3 9456 13 3 m f

t2lf a3 3 65507 13 2 l f

t4sf a2 2 8049 13 4 s f

t4lp a1 2 56370 13 4 l p

t1sp a3 3 13280 13 1 s p

t2sp a2 2 15544 13 2 s p

t4mp a1 1 8896 13 4 m p
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Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t3mp a4 4 13496 13 3 m p

t2mf a1 1 11114 13 2 m f

t1mp a4 4 6695 13 1 m p

t3sf a2 2 9240 13 3 s f

t4sp a2 2 8088 13 4 s p

t3lp a2 2 15623 13 3 l p

t4mf a1 1 5528 13 4 m f

t2sf a1 1 7929 13 2 s f

t2lp a3 3 17179 13 2 l p

t1lf a1 1 6975 13 1 l f

t4sp a2 2 9720 14 4 s p

t3sf a2 2 18351 14 3 s f

t3mf a3 3 11072 14 3 m f

t4mp a1 1 8024 14 4 m p

t2lf a3 3 39867 14 2 l f

t1lp a1 1 9720 14 1 l p

t4lp a1 1 22137 14 4 l p

t3lf a2 2 30472 14 3 l f

t2sf a1 1 12408 14 2 s f

t1sf a3 3 7258 14 1 s f

t2mf a1 1 9946 14 2 m f

t1mf a2 2 7856 14 1 m f

t3sp a1 1 14768 14 3 s p
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Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t4sf a2 2 7376 14 4 s f

t4mf a1 1 9800 14 4 m f

t4lf a1 1 20553 14 4 l f

t3mp a4 4 23088 14 3 m p

t1lf a1 1 6816 14 1 l f

t2lp a3 2 34924 14 2 l p

t3lp a2 2 18615 14 3 l p

t1mp a4 4 11231 14 1 m p

t1sp a3 3 5961 14 1 s p

t2sp a2 2 18312 14 2 s p

t2mp a1 1 12161 14 2 m p

t3lf a2 3 23255 15 3 l f

t1mf a2 2 8793 15 1 m f

t1lp a1 1 7025 15 1 l p

t2mf a1 1 19352 15 2 m f

t4sp a2 2 13656 15 4 s p

t3lp a2 2 23098 15 3 l p

t4mf a1 1 14241 15 4 m f

t2lf a3 3 40568 15 2 l f

t1sf a3 3 8937 15 1 s f

t3sf a2 2 20280 15 3 s f

t1mp a4 4 18920 15 1 m p

t4lp a1 1 21228 15 4 l p
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Question
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Answer

Answer
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Time

(ms)

User

ID
Task Size Method

t2sf a1 1 17680 15 2 s f

t4mp a1 1 17072 15 4 m p

t2mp a1 1 14854 15 2 m p

t2lp a3 3 13066 15 2 l p

t3mf a3 3 12751 15 3 m f

t4sf a2 2 8664 15 4 s f

t1lf a1 1 5513 15 1 l f

t3sp a1 1 10583 15 3 s p

t4lf a1 1 13280 15 4 l f

t1sp a3 3 5955 15 1 s p

t2sp a2 2 26744 15 2 s p

t3mp a4 4 23543 15 3 m p

t3sf a2 2 25479 16 3 s f

t4lp a1 2 35759 16 4 l p

t1mp a4 1 30368 16 1 m p

t4mp a1 1 15160 16 4 m p

t2mf a1 1 36864 16 2 m f

t1mf a2 2 19703 16 1 m f

t3lf a2 2 61995 16 3 l f

t1lp a1 1 13598 16 1 l p

t1sp a3 3 13744 16 1 s p

t2sf a1 1 29665 16 2 s f

t2lf a3 4 93576 16 2 l f
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Question
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Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t4mf a1 1 12064 16 4 m f

t3mf a3 3 22008 16 3 m f

t2mp a1 2 41004 16 2 m p

t4sf a2 2 10952 16 4 s f

t1sf a3 3 9008 16 1 s f

t4lf a1 1 10904 16 4 l f

t1lf a1 1 6408 16 1 l f

t2lp a3 1 18432 16 2 l p

t2sp a2 2 30321 16 2 s p

t3lp a2 3 45088 16 3 l p

t3sp a1 1 11337 16 3 s p

t3mp a4 4 72290 16 3 m p

t4sp a2 2 19320 16 4 s p

t2lp a3 3 8679 17 2 l p

t2mf a1 1 13249 17 2 m f

t4sf a2 2 7952 17 4 s f

t1lp a1 1 9441 17 1 l p

t2sf a1 1 12103 17 2 s f

t4lp a1 2 17719 17 4 l p

t1sp a3 3 6904 17 1 s p

t1mf a2 2 6417 17 1 m f

t4mf a1 1 9394 17 4 m f

t2mp a1 1 18144 17 2 m p
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Question
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Answer
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Time

(ms)

User

ID
Task Size Method

t3lp a2 2 18328 17 3 l p

t3mp a4 4 14593 17 3 m p

t3sp a1 1 9865 17 3 s p

t2sp a2 2 17776 17 2 s p

t4sp a2 2 5800 17 4 s p

t1sf a3 3 8439 17 1 s f

t4lf a1 1 8392 17 4 l f

t1mp a4 4 12599 17 1 m p

t2lf a3 3 28450 17 2 l f

t3sf a2 2 10576 17 3 s f

t3mf a3 3 8416 17 3 m f

t3lf a2 2 13560 17 3 l f

t4mp a1 1 11395 17 4 m p

t1lf a1 1 9623 17 1 l f

t2sp a2 2 18416 18 2 s p

t1mf a2 2 12422 18 1 m f

t1lf a1 1 7904 18 1 l f

t1sf a3 3 8175 18 1 s f

t3lp a2 2 27036 18 3 l p

t4lp a1 1 26007 18 4 l p

t2mp a1 1 10329 18 2 m p

t3sf a2 2 14199 18 3 s f

t4mf a1 1 13069 18 4 m f
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Question
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Answer

Answer
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Time

(ms)

User

ID
Task Size Method

t3mf a3 3 10145 18 3 m f

t2sf a1 1 10960 18 2 s f

t1sp a3 3 6655 18 1 s p

t4sp a2 2 12320 18 4 s p

t1mp a4 4 13113 18 1 m p

t3lf a2 2 23319 18 3 l f

t2lp a3 3 21934 18 2 l p

t1lp a1 1 9895 18 1 l p

t2mf a1 1 11473 18 2 m f

t3mp a4 4 16143 18 3 m p

t4lf a1 1 10804 18 4 l f

t4mp a1 1 12280 18 4 m p

t3sp a1 1 11735 18 3 s p

t4sf a2 2 10704 18 4 s f

t2lf a3 3 46171 18 2 l f

t4sf a2 2 11719 19 4 s f

t2lf a3 3 213110 19 2 l f

t2mf a1 1 20364 19 2 m f

t4lf a1 1 19632 19 4 l f

t3mp a4 4 16288 19 3 m p

t3sf a2 2 14536 19 3 s f

t3lp a2 2 45379 19 3 l p

t1sf a3 3 6841 19 1 s f
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ID
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Answer
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Time

(ms)

User

ID
Task Size Method

t1lp a1 1 7924 19 1 l p

t1mp a4 4 6785 19 1 m p

t4lp a1 2 28838 19 4 l p

t4mf a1 1 12866 19 4 m f

t2sp a2 2 39594 19 2 s p

t2mp a1 1 20536 19 2 m p

t1sp a3 3 8080 19 1 s p

t3mf a3 3 17852 19 3 m f

t3sp a1 1 13472 19 3 s p

t1lf a1 1 8143 19 1 l f

t4mp a1 1 11169 19 4 m p

t1mf a2 2 4055 19 1 m f

t2lp a3 3 45813 19 2 l p

t3lf a2 2 26428 19 3 l f

t4sp a2 2 8649 19 4 s p

t2sf a1 1 17448 19 2 s f

t1lf a1 1 12328 20 1 l f

t3sp a1 1 11367 20 3 s p

t1sp a3 3 12032 20 1 s p

t2sp a2 2 31443 20 2 s p

t1mf a2 2 12160 20 1 m f

t3lp a2 2 40058 20 3 l p

t2lf a3 3 44522 20 2 l f
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Answer

Given

Time

(ms)

User

ID
Task Size Method

t4sp a2 2 12735 20 4 s p

t2mf a1 1 29177 20 2 m f

t4mf a1 1 10751 20 4 m f

t3sf a2 2 18051 20 3 s f

t1lp a1 1 10151 20 1 l p

t4lp a1 1 54467 20 4 l p

t2sf a1 1 21567 20 2 s f

t3lf a2 2 24987 20 3 l f

t3mf a3 3 14239 20 3 m f

t2lp a3 3 69419 20 2 l p

t2mp a1 1 19929 20 2 m p

t1sf a3 3 9095 20 1 s f

t1mp a4 4 14469 20 1 m p

t4sf a2 2 14055 20 4 s f

t4mp a1 1 17784 20 4 m p

t4lf a1 1 17812 20 4 l f

t3mp a4 4 21808 20 3 m p

t1mp a4 4 18780 21 1 m p

t2lf a3 3 29296 21 2 l f

t4sf a2 2 9640 21 4 s f

t2mp a1 1 27371 21 2 m p

t4mp a1 1 11791 21 4 m p

t2sf a1 1 36031 21 2 s f
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Answer
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Time

(ms)

User

ID
Task Size Method

t1sf a3 3 11152 21 1 s f

t4lf a1 1 18193 21 4 l f

t1lp a1 1 10672 21 1 l p

t3mp a4 3 20312 21 3 m p

t2lp a3 3 53292 21 2 l p

t3lp a2 2 38769 21 3 l p

t3sf a2 2 32090 21 3 s f

t4mf a1 1 7815 21 4 m f

t1mf a2 2 8583 21 1 m f

t1sp a3 3 8313 21 1 s p

t2sp a2 2 37658 21 2 s p

t4lp a1 1 25880 21 4 l p

t3mf a3 3 14927 21 3 m f

t2mf a1 1 18985 21 2 m f

t3lf a2 2 33490 21 3 l f

t4sp a2 2 13152 21 4 s p

t1lf a1 1 15328 21 1 l f

t3sp a1 1 15544 21 3 s p

t3lp a2 2 12011 22 3 l p

t4mf a1 1 7632 22 4 m f

t1lf a1 1 6504 22 1 l f

t2sf a1 1 13168 22 2 s f

t4lp a1 1 13831 22 4 l p
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Answer
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Time
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User

ID
Task Size Method

t2mp a1 1 7248 22 2 m p

t3mp a4 4 14549 22 3 m p

t1mp a4 4 9128 22 1 m p

t3sf a2 2 10072 22 3 s f

t1lp a1 1 6088 22 1 l p

t1sp a3 3 7208 22 1 s p

t2lp a3 3 15703 22 2 l p

t4mp a1 1 6212 22 4 m p

t3mf a3 4 7279 22 3 m f

t4sf a2 2 6305 22 4 s f

t2sp a2 2 17520 22 2 s p

t3lf a2 2 16512 22 3 l f

t3sp a1 1 9004 22 3 s p

t2lf a3 3 11209 22 2 l f

t1mf a2 2 5703 22 1 m f

t4lf a1 1 7776 22 4 l f

t2mf a1 1 5935 22 2 m f

t1sf a3 3 9320 22 1 s f

t4sp a2 2 9647 22 4 s p

t1mf a2 2 12697 23 1 m f

t2sp a2 2 29659 23 2 s p

t4mp a1 1 17928 23 4 m p

t4lp a1 1 22744 23 4 l p
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User

ID
Task Size Method

t3mf a3 3 16571 23 3 m f

t3sp a1 1 11664 23 3 s p

t2mf a1 1 22240 23 2 m f

t1lf a1 1 8327 23 1 l f

t1mp a4 1 11394 23 1 m p

t4sf a2 2 17328 23 4 s f

t3lp a2 2 30880 23 3 l p

t4mf a1 1 11995 23 4 m f

t1sf a3 3 11240 23 1 s f

t4lf a1 1 18528 23 4 l f

t2mp a1 1 31570 23 2 m p

t2lf a3 3 51583 23 2 l f

t2sf a1 1 20443 23 2 s f

t3sf a2 2 12120 23 3 s f

t1lp a1 1 11703 23 1 l p

t1sp a3 3 7513 23 1 s p

t3lf a2 2 25705 23 3 l f

t3mp a4 4 20729 23 3 m p

t2lp a3 2 49090 23 2 l p

t4sp a2 2 15024 23 4 s p

t4lf a1 1 21967 24 4 l f

t3sp a1 1 22328 24 3 s p

t2mp a1 1 20547 24 2 m p
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User

ID
Task Size Method

t1sp a3 3 12328 24 1 s p

t4sf a2 2 15023 24 4 s f

t1mp a4 4 21196 24 1 m p

t3mf a3 3 21255 24 3 m f

t2lp a3 1 14184 24 2 l p

t3lp a2 2 41538 24 3 l p

t4mf a1 1 26280 24 4 m f

t3sf a2 2 18387 24 3 s f

t2sf a1 3 37335 24 2 s f

t4sp a2 2 10912 24 4 s p

t1lp a1 1 53378 24 1 l p

t2lf a3 1 45234 24 2 l f

t3lf a2 2 30203 24 3 l f

t2mf a1 1 18191 24 2 m f

t3mp a4 4 26303 24 3 m p

t1mf a2 2 23683 24 1 m f

t4mp a1 1 10287 24 4 m p

t1sf a3 3 16279 24 1 s f

t2sp a2 3 28451 24 2 s p

t4lp a1 2 23040 24 4 l p

t1lf a1 1 14520 24 1 l f

t2mf a1 1 31024 25 2 m f

t2lf a3 1 23184 25 2 l f
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User

ID
Task Size Method

t1sp a3 3 7848 25 1 s p

t4sp a2 2 8632 25 4 s p

t3sp a1 1 13984 25 3 s p

t1mf a2 2 9231 25 1 m f

t3lp a2 2 25281 25 3 l p

t1lp a1 1 5633 25 1 l p

t2mp a1 1 31600 25 2 m p

t4lf a1 1 8624 25 4 l f

t4sf a2 2 7480 25 4 s f

t3mp a4 4 20507 25 3 m p

t1mp a4 4 7095 25 1 m p

t1sf a3 3 6321 25 1 s f

t4mf a1 1 8384 25 4 m f

t2sf a1 1 10527 25 2 s f

t1lf a1 1 11057 25 1 l f

t3lf a2 2 32426 25 3 l f

t2lp a3 1 8872 25 2 l p

t3mf a3 3 11520 25 3 m f

t4lp a1 1 12927 25 4 l p

t4mp a1 1 9657 25 4 m p

t2sp a2 1 38979 25 2 s p

t3sf a2 2 13799 25 3 s f

t3sp a1 1 16052 26 3 s p
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User
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t1mf a2 2 12119 26 1 m f

t2sf a1 2 39369 26 2 s f

t2lp a3 1 38530 26 2 l p

t3lf a2 2 28030 26 3 l f

t1lp a1 1 16616 26 1 l p

t1sf a3 3 8793 26 1 s f

t2mf a1 1 24475 26 2 m f

t4lf a1 1 21000 26 4 l f

t4mf a1 1 8184 26 4 m f

t1mp a4 3 11623 26 1 m p

t3mf a3 3 11856 26 3 m f

t4sf a2 2 9004 26 4 s f

t2lf a3 4 31328 26 2 l f

t3lp a2 2 19240 26 3 l p

t1lf a1 1 6991 26 1 l f

t3sf a2 2 12117 26 3 s f

t2sp a2 3 35087 26 2 s p

t1sp a3 3 9280 26 1 s p

t3mp a4 4 13200 26 3 m p

t2mp a1 1 33314 26 2 m p

t4mp a1 1 7872 26 4 m p

t4sp a2 1 12729 26 4 s p

t4lp a1 1 20783 26 4 l p
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Table B.3 – continued from previous page

Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t2mp a1 2 19010 27 2 m p

t4mp a1 1 11129 27 4 m p

t2lp a3 2 25983 27 2 l p

t4sf a2 2 7177 27 4 s f

t3sf a2 2 10632 27 3 s f

t1lp a1 1 13378 27 1 l p

t4lp a1 1 10936 27 4 l p

t3mp a4 4 18904 27 3 m p

t1sf a3 3 7961 27 1 s f

t3lp a2 2 16842 27 3 l p

t2sp a2 2 23527 27 2 s p

t1mp a4 4 7887 27 1 m p

t4sp a2 2 5840 27 4 s p

t1lf a1 1 4912 27 1 l f

t2lf a3 2 17080 27 2 l f

t3mf a3 3 8411 27 3 m f

t1sp a3 3 5760 27 1 s p

t3sp a1 1 6551 27 3 s p

t4mf a1 1 8425 27 4 m f

t2sf a1 1 29655 27 2 s f

t1mf a2 2 4347 27 1 m f

t4lf a1 1 6840 27 4 l f

t3lf a2 4 13288 27 3 l f
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Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t2mf a1 2 17743 27 2 m f

t2sf a1 2 27472 28 2 s f

t2lf a3 2 18513 28 2 l f

t4lp a1 1 22864 28 4 l p

t3mp a4 4 48842 28 3 m p

t4mf a1 1 17696 28 4 m f

t1lf a1 1 11080 28 1 l f

t1sp a3 3 14256 28 1 s p

t2mp a1 1 41921 28 2 m p

t3lf a2 1 55692 28 3 l f

t3sf a2 2 24842 28 3 s f

t2lp a3 1 19200 28 2 l p

t4mp a1 1 16808 28 4 m p

t4lf a1 1 12783 28 4 l f

t4sp a2 2 13427 28 4 s p

t1mp a4 4 27920 28 1 m p

t3mf a3 3 34499 28 3 m f

t1lp a1 1 14599 28 1 l p

t3lp a2 2 38623 28 3 l p

t2mf a1 2 25402 28 2 m f

t1sf a3 3 9073 28 1 s f

t2sp a2 2 23695 28 2 s p

t4sf a2 2 11843 28 4 s f
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Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t1mf a2 2 12208 28 1 m f

t3sp a1 1 15927 28 3 s p

t3mf a3 3 15976 29 3 m f

t4sp a2 1 17976 29 4 s p

t4lf a1 1 15144 29 4 l f

t3sp a1 1 10871 29 3 s p

t3lf a2 1 12752 29 3 l f

t1lf a1 1 10696 29 1 l f

t4mp a1 1 13456 29 4 m p

t2sf a1 1 26008 29 2 s f

t1sf a3 3 8824 29 1 s f

t2mp a1 1 10240 29 2 m p

t4lp a1 1 20257 29 4 l p

t3mp a4 4 26473 29 3 m p

t4sf a2 2 7503 29 4 s f

t1mp a4 2 15096 29 1 m p

t2lp a3 1 13403 29 2 l p

t1sp a3 3 12950 29 1 s p

t1lp a1 1 16223 29 1 l p

t2sp a2 2 18355 29 2 s p

t4mf a1 1 6865 29 4 m f

t3lp a2 2 17920 29 3 l p

t3sf a2 2 12792 29 3 s f
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Table B.3 – continued from previous page

Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t1mf a2 2 11583 29 1 m f

t2lf a3 3 24139 29 2 l f

t2mf a1 1 10871 29 2 m f

t4sf a2 2 10000 30 4 s f

t2lp a3 2 48716 30 2 l p

t1mp a4 4 14784 30 1 m p

t1lf a1 1 8719 30 1 l f

t3sp a1 1 24481 30 3 s p

t3mp a4 4 20452 30 3 m p

t4lp a1 1 14504 30 4 l p

t2sp a2 2 28223 30 2 s p

t4sp a2 2 9948 30 4 s p

t4mp a1 1 23055 30 4 m p

t1sp a3 3 9473 30 1 s p

t2mf a1 1 19785 30 2 m f

t3lf a2 2 30165 30 3 l f

t4lf a1 1 12759 30 4 l f

t3sf a2 2 17699 30 3 s f

t2sf a1 1 41152 30 2 s f

t3mf a3 3 13168 30 3 m f

t1sf a3 3 7346 30 1 s f

t1lp a1 1 8808 30 1 l p

t4mf a1 1 10711 30 4 m f
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Table B.3 – continued from previous page

Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t1mf a2 2 10640 30 1 m f

t2mp a1 1 48987 30 2 m p

t3lp a2 2 29278 30 3 l p

t2lf a3 3 46163 30 2 l f

t4mp a1 1 12616 31 4 m p

t4lp a1 1 22399 31 4 l p

t1sf a3 3 9347 31 1 s f

t3lf a2 3 40999 31 3 l f

t2mp a1 1 11738 31 2 m p

t2sf a1 1 12608 31 2 s f

t1lf a1 1 9111 31 1 l f

t3sf a2 2 23688 31 3 s f

t2lf a3 3 13304 31 2 l f

t1sp a3 3 6803 31 1 s p

t1mp a4 4 8808 31 1 m p

t4lf a1 1 14384 31 4 l f

t4sf a2 2 8328 31 4 s f

t3mf a3 3 13551 31 3 m f

t2mf a1 1 8971 31 2 m f

t1lp a1 1 9327 31 1 l p

t4mf a1 1 13616 31 4 m f

t3lp a2 2 36424 31 3 l p

t1mf a2 2 6157 31 1 m f
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Table B.3 – continued from previous page

Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t2sp a2 3 11568 31 2 s p

t2lp a3 3 18327 31 2 l p

t3mp a4 4 21016 31 3 m p

t3sp a1 1 13453 31 3 s p

t4sp a2 2 15840 31 4 s p

t3mp a4 4 11944 32 3 m p

t2mf a1 1 7920 32 2 m f

t3sf a2 2 20224 32 3 s f

t1mp a4 4 13211 32 1 m p

t4lp a1 1 11312 32 4 l p

t2sp a2 2 15536 32 2 s p

t4sp a2 2 10103 32 4 s p

t3lp a2 2 19138 32 3 l p

t4mf a1 1 5680 32 4 m f

t1sf a3 3 7488 32 1 s f

t3mf a3 3 19375 32 3 m f

t2mp a1 1 7568 32 2 m p

t1lp a1 1 10726 32 1 l p

t2lp a3 3 36732 32 2 l p

t1mf a2 2 9895 32 1 m f

t4lf a1 1 9209 32 4 l f

t4mp a1 1 10690 32 4 m p

t2sf a1 1 7751 32 2 s f
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Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t3sp a1 1 12217 32 3 s p

t4sf a2 2 7127 32 4 s f

t1lf a1 1 7001 32 1 l f

t3lf a2 2 22171 32 3 l f

t1sp a3 3 5478 32 1 s p

t2lf a3 3 62291 32 2 l f

t2lp a3 1 12415 33 2 l p

t3mp a4 4 14224 33 3 m p

t3sf a2 2 17018 33 3 s f

t3lf a2 2 32800 33 3 l f

t1mp a4 4 18667 33 1 m p

t1lp a1 1 11144 33 1 l p

t2sp a2 3 23759 33 2 s p

t2mf a1 1 36123 33 2 m f

t4sp a2 2 22233 33 4 s p

t4lf a1 1 19246 33 4 l f

t4mf a1 1 11924 33 4 m f

t1sp a3 3 5286 33 1 s p

t1mf a2 2 6449 33 1 m f

t2lf a3 3 14920 33 2 l f

t3sp a1 1 9951 33 3 s p

t2mp a1 1 12736 33 2 m p

t3lp a2 4 17707 33 3 l p
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Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t4sf a2 2 9840 33 4 s f

t1sf a3 3 4800 33 1 s f

t4mp a1 1 18072 33 4 m p

t3mf a3 3 16834 33 3 m f

t1lf a1 1 7271 33 1 l f

t2sf a1 1 12168 33 2 s f

t4lp a1 1 29049 33 4 l p

t1lp a1 1 7520 34 1 l p

t3mf a3 3 20903 34 3 m f

t3lf a2 2 10295 34 3 l f

t2sf a1 2 21099 34 2 s f

t2lf a3 3 44286 34 2 l f

t1lf a1 1 11268 34 1 l f

t1mf a2 2 6943 34 1 m f

t4mf a1 1 18888 34 4 m f

t1sp a3 3 5456 34 1 s p

t4lf a1 1 19288 34 4 l f

t2mf a1 2 34570 34 2 m f

t3mp a4 4 13231 34 3 m p

t3sp a1 1 13591 34 3 s p

t1mp a4 4 15219 34 1 m p

t4sf a2 2 10186 34 4 s f

t2sp a2 2 26046 34 2 s p
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Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t1sf a3 3 6287 34 1 s f

t3lp a2 2 23771 34 3 l p

t2mp a1 1 12864 34 2 m p

t3sf a2 2 13326 34 3 s f

t4lp a1 1 16323 34 4 l p

t4mp a1 1 9641 34 4 m p

t2lp a3 1 11943 34 2 l p

t4sp a2 2 8536 34 4 s p

t4lf a1 1 9803 35 4 l f

t2lp a3 3 20542 35 2 l p

t3mp a4 3 13369 35 3 m p

t1mp a4 4 9048 35 1 m p

t2sp a2 2 17499 35 2 s p

t4mp a1 1 12281 35 4 m p

t4sf a2 2 8551 35 4 s f

t1sp a3 3 10592 35 1 s p

t3lf a2 2 22127 35 3 l f

t2mf a1 1 11562 35 2 m f

t3sf a2 2 12552 35 3 s f

t2sf a1 1 14304 35 2 s f

t1mf a2 2 5192 35 1 m f

t2lf a3 2 13471 35 2 l f

t1lp a1 1 5321 35 1 l p

Continued on next page



APPENDIX B. EMPIRICAL STUDY DATA 362

Table B.3 – continued from previous page

Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t1sf a3 3 7384 35 1 s f

t3lp a2 2 26155 35 3 l p

t4mf a1 1 8071 35 4 m f

t3mf a3 3 10929 35 3 m f

t2mp a1 1 10103 35 2 m p

t3sp a1 1 10080 35 3 s p

t4lp a1 1 19384 35 4 l p

t4sp a2 2 7156 35 4 s p

t1lf a1 1 4880 35 1 l f

t1sf a3 3 8527 36 1 s f

t3lf a2 2 22032 36 3 l f

t2lp a3 1 28205 36 2 l p

t3mf a3 3 16344 36 3 m f

t1sp a3 3 12911 36 1 s p

t3mp a4 4 23327 36 3 m p

t1mf a2 2 11299 36 1 m f

t4mp a1 1 14391 36 4 m p

t1lp a1 1 14440 36 1 l p

t4sp a2 2 19040 36 4 s p

t3sp a1 1 12138 36 3 s p

t2lf a3 2 27249 36 2 l f

t2sp a2 3 15559 36 2 s p

t4lp a1 1 16842 36 4 l p
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Table B.3 – continued from previous page

Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t1mp a4 4 16752 36 1 m p

t2mf a1 1 24376 36 2 m f

t1lf a1 1 15426 36 1 l f

t4sf a2 2 9024 36 4 s f

t3sf a2 2 12552 36 3 s f

t2sf a1 1 12192 36 2 s f

t3lp a2 2 24567 36 3 l p

t4mf a1 1 10740 36 4 m f

t4lf a1 1 15104 36 4 l f

t2mp a1 1 16712 36 2 m p

t2sf a1 1 18497 37 2 s f

t3sp a1 1 13303 37 3 s p

t1sf a3 3 8694 37 1 s f

t1mf a2 2 13266 37 1 m f

t3lf a2 4 18282 37 3 l f

t3mf a3 3 17301 37 3 m f

t4lp a1 1 25431 37 4 l p

t1lp a1 1 7217 37 1 l p

t3sf a2 2 11636 37 3 s f

t2mp a1 1 15764 37 2 m p

t4sf a2 2 15884 37 4 s f

t1mp a4 4 7833 37 1 m p

t1sp a3 3 7552 37 1 s p
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Table B.3 – continued from previous page

Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t4mf a1 1 12800 37 4 m f

t2sp a2 2 12779 37 2 s p

t2lp a3 2 15898 37 2 l p

t3lp a2 2 20437 37 3 l p

t4lf a1 1 10549 37 4 l f

t2mf a1 1 9534 37 2 m f

t3mp a4 3 18765 37 3 m p

t4mp a1 1 8715 37 4 m p

t4sp a2 2 9253 37 4 s p

t1lf a1 1 7081 37 1 l f

t2lf a3 2 12098 37 2 l f

t3sp a1 1 12155 38 3 s p

t2sp a2 2 24928 38 2 s p

t1lf a1 1 5551 38 1 l f

t4lf a1 1 11992 38 4 l f

t1sf a3 3 9127 38 1 s f

t2lf a3 3 42181 38 2 l f

t3mp a4 4 24151 38 3 m p

t2mp a1 1 20216 38 2 m p

t4sf a2 2 9320 38 4 s f

t1mf a2 2 5080 38 1 m f

t3lf a2 2 24027 38 3 l f

t4mp a1 1 6865 38 4 m p
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Table B.3 – continued from previous page

Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t1lp a1 1 4567 38 1 l p

t1sp a3 3 6344 38 1 s p

t3mf a3 3 9224 38 3 m f

t2sf a1 1 15208 38 2 s f

t2mf a1 1 9895 38 2 m f

t4lp a1 1 19251 38 4 l p

t4mf a1 1 8344 38 4 m f

t3sf a2 2 12128 38 3 s f

t3lp a2 2 22832 38 3 l p

t1mp a4 4 8447 38 1 m p

t4sp a2 2 7401 38 4 s p

t2lp a3 3 18603 38 2 l p

t1sf a3 3 11400 39 1 s f

t3mp a4 4 18800 39 3 m p

t3sp a1 1 13768 39 3 s p

t1mf a2 2 13186 39 1 m f

t1lp a1 1 7913 39 1 l p

t3lf a2 2 44991 39 3 l f

t2sf a1 2 31210 39 2 s f

t2mf a1 1 32400 39 2 m f

t2lp a3 2 40898 39 2 l p

t4sf a2 2 9841 39 4 s f

t4lf a1 1 13794 39 4 l f
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Table B.3 – continued from previous page

Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t3sf a2 2 20175 39 3 s f

t3lp a2 2 51091 39 3 l p

t1lf a1 1 5696 39 1 l f

t4mp a1 1 9944 39 4 m p

t2sp a2 2 12584 39 2 s p

t2lf a3 3 38291 39 2 l f

t4lp a1 1 18744 39 4 l p

t3mf a3 3 25785 39 3 m f

t1sp a3 3 9792 39 1 s p

t2mp a1 1 24416 39 2 m p

t4sp a2 2 15704 39 4 s p

t4mf a1 1 11091 39 4 m f

t1mp a4 4 16424 39 1 m p

t1sp a3 3 8664 40 1 s p

t4mp a1 1 13810 40 4 m p

t2sp a2 2 34791 40 2 s p

t1mp a4 4 13958 40 1 m p

t4lp a1 1 27037 40 4 l p

t4sp a2 2 10577 40 4 s p

t2mf a1 1 16615 40 2 m f

t3mf a3 3 21264 40 3 m f

t1lp a1 1 10559 40 1 l p

t1sf a3 3 11084 40 1 s f
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Table B.3 – continued from previous page

Question

ID

Correct

Answer

Answer

Given

Time

(ms)

User

ID
Task Size Method

t3lp a2 2 30960 40 3 l p

t3sp a1 1 18024 40 3 s p

t2lf a3 2 45851 40 2 l f

t4lf a1 1 14871 40 4 l f

t2sf a1 1 13561 40 2 s f

t1mf a2 2 14896 40 1 m f

t4sf a2 2 14232 40 4 s f

t1lf a1 1 9233 40 1 l f

t3lf a2 2 41513 40 3 l f

t4mf a1 1 12151 40 4 m f

t2mp a1 1 14683 40 2 m p

t3sf a2 2 16328 40 3 s f

t2lp a3 3 83332 40 2 l p

t3mp a4 4 15247 40 3 m p

B.5.2 Preferences

Table B.4: Preference results

User

ID

Number of

Force Preferences

Number of

Pattern Preferences

1 1 2
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Table B.4 – continued from previous page

User

ID

Number of

Force Preferences

Number of

Pattern Preferences

2 1 2

3 3 0

4 2 1

5 3 0

6 1 2

7 3 0

8 3 0

9 0 3

10 3 0

11 3 0

12 2 1

13 3 0

14 3 0

15 3 0

16 1 2

17 3 0

18 3 0

19 0 3

20 0 3

21 3 0

23 1 2

24 0 3

25 1 2
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User

ID

Number of

Force Preferences

Number of

Pattern Preferences

27 3 0

26 3 0

28 2 1

29 0 3

30 2 1

22 2 1

31 3 0

32 2 1

33 2 1

34 2 1

35 2 1

36 3 0

37 1 2

38 2 1

39 0 3

40 2 1
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