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ABSTRACT 

 

The ABC transporter superfamily is one of the largest and abundant families of 

proteins.  It is a large group of proteins that transport a range of substances in cell 

systems. The ABC transporter P-glycoprotein (ABCB1, P-gp), a polyspecific 

protein has demonstrated its function as a transporter of hydrophobic drugs as 

well as transporting lipids, steroids and metabolic products. As well as this, 

previous studies have shown that P-gp is over expressed in cancerous tissues and 

plays a role in multidrug resistance. In this study,     in-silico methods were used 

to dock a data set of compounds to P-glycoprotein structures available in the 

Protein data bank. Binding sites were defined using co-crystallised ligand 

structures of P-gp and docking energies were calculated using MOE. Statistical 

models were built to gain a better understanding of how compounds may interact 

with P-gp. The protein was able to bind to structurally different compounds and 

results indicate that LogP is the most important factor for drug binding to P-

glycoprotein. 
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1 Introduction 

1.1 Transporters 

In every living cell, the transport of molecules is an important part of its survival. 

For molecules to enter, leave or cross cell membranes they usually require a 

protein to aid their movement. It is reported that the human genome has nearly 

900 transporter genes (Anderle, et al, 2004) that encode proteins which are 

mainly responsible for transporting molecules, nutrients and drugs throughout 

the body. From this group, it is reported that approximately 350 are genes that 

encode intracellular transporters. These transporters can be separated into three 

classes relating to their binding or carrier potential; ATP powered pumps, 

channel transporters and translocators (Lodish, et al., 2000). ATP pumps are 

transporters that require energy from ATP hydrolysis to be able to transfer 

various molecules across a membrane against the concentration gradient.  ATP is 

hydrolysed to ADP and Pi, which release energy enabling transport of the 

molecule across the membrane. Examples of ATP powered pumps include ATP-

binding cassette transporter, Na+/K+-ATPase and Hydrogen potassium ATPase. 

Channel transporters create a passage through the membrane which they wish to 

transport molecules through. They are regularly involved in the transport of 

water and ions such as sodium and chloride which require transport across 

membranes by facilitated transport. 
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1.1 ABC Transporters 

The ABC transport superfamily is one of the largest and abundant families of 

proteins.  It is a large group of proteins that transport a range of substances that 

include amino acids, drugs and lipids as well as several others (Sharom, 2008).  

The ABC proteins can be located in several organ membranes in humans, and in 

prokaryotes they are found in the cytoplasmic membrane of bacteria (Sharom, 

2008).  

Part of their structure includes an ATP-binding domain that utilises ATP 

hydrolysis to transport compounds across cell membranes.  A typical ABC 

transporter has four core domains; two membrane-associated domains and two 

ATP-binding domains (Higgins, 2001). The trans-membrane domains are 

situated across the membrane and function as the route for molecules to cross the 

membrane. The ATP-binding domains are located in the cytoplasm of the cell 

and are consequently hydrophilic in nature (Dean, 2002).  

 

Figure 1. ABC transporter organisation.  Domains of ABC transporters can be expressed by different 

combinations. A) encoded as four individual polypeptides B) combined ATP-binding domain C) combined 

membrane-associated domains D) membrane-associated domain fused to ATP-binding domain E) 

membrane-associated domain fused to ATP-binding domain F) All domains fused into one single 

polypeptide (Higgins, 2001)  
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 ABC transporter proteins bind ATP and use the energy derived from this to 

transfer molecules across cell membranes. In eukaryotic cells, ABC transporters 

usually direct molecules from the cytoplasm to the outside of the cell (Dean, 

2002) with the main function of transporting xenobiotic compounds out of the 

cell for transport to other areas of the body or for excretion. On the other hand, 

ABC transporters in prokaryotic cells can be either an importer or exporter of 

compounds. Bacterial importers are important for the cell survival and typically 

important substrates such as iron, inorganic ions as well as peptides and amino 

acids. Substances requiring removal from prokaryotic cells include cell wall 

components such as liposaccharides and toxins involved in pathogens e.g. 

haemolysin (Davidson et al, 2008). ABC proteins also play a role in the 

translation of mRNA and are involved in repairing DNA. 

The ABC trans-membrane protein family is a large group and 48 ABC 

transporter genes have been recognised in the human genome (Ambudkar, et al., 

2003).  ABC genes are classified into subfamilies which are further divided into 

subgroups (Dean, 2002). The best studied groups include ABCB1 also known as 

MDR1 due to its ability to produce multiple drug resistance in cancer cells. The 

sulphonylurea receptor (SUR) subfamily is involved in regulating insulin 

secretion in β-cells of the pancreas (Dassa and Bouige, 2001).  Others include the 

ABCC subfamily which encodes the cystic fibrosis transmembrane conductance 

regulator (CFTR) protein that plays a part in exocrine secretions of chloride 

(Dean, 2002; Dassa and Bouige, 2001). Despite playing a functional role in cells, 

mutations in up to 14 mammalian ABC transporters have been associated with 
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disease states (Borst and Elferink, 2002). These proteins as well as ABCG2 and 

ABCB1 are reported to be overexpressed in malignant cells thus causing these 

cells to be resistant to drug therapy, hence the multidrug resistance terminology. 

1.1.2 Role of ABC Transporters in Multidrug Resistance 

During cancer treatment, tumour cells can become resistant to chemotherapy due 

to increased excretion of drugs out of tumour cells or target proteins (Dean, 

2002). Pathways such as these can lead to multidrug resistance thus contributing 

to the failure of chemotherapy in malignant diseases. Multidrug resistance is the 

term given to describe tumours developing resistance to two or more 

chemotherapeutic drugs. This is the net result of the over-expression of 

membrane transporters that actively remove toxic chemotherapeutic agents out of 

tumour cells (Sarkadi, et al., 2006). ABC transporters have been widely 

associated with resistance and the ABC genes ABCB1, ABCC1 and ABCG2 can 

be upregulated in cancerous cells. 

 For example, ABCG2 was first named as the Breast Cancer Resistant Protein 

(BCRP) when it was found in doxorubicin resistant cancer cells (Saito, et al., 

2010).  ABCG2 can be located in normal tissues and endothelial cells where it 

forms a barrier between blood supply and tissues. ABCG2 is also expressed in 

placental trophoblast cells, in the epithelium of small intestine and liver 

membrane as well as ducts and lobes of the breast (Saito, et al., 2010). The fact 

that there are high levels of expression of this protein in trophoblast cells 

suggests that BCRP is responsible for transporting compounds into blood supply 

and for removing toxic metabolites (Satio, et al., 2010). 
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The ABCC1 gene encodes for the multidrug resistance protein MRP1 (Dassa and 

Bouige, 2001). MRP1 is expressed in epithelial cells and in non-malignant cells 

it plays a role in protecting kidney tissues, bone marrow and the intestinal 

mucosa from xenobiotics as well as contributing to the removal of drugs from the 

cerebrospinal fluid (Schinkel and Jonker, 2012). Moreover, MRP1 confers drug 

resistance to a range of cancer drugs and transports conjugates of hydrophobic 

drugs as well as organic anions (Schinkel and Jonker, 2012).  

P-glycoprotein is the transporter encoded by the ABCB1 gene. It was one of the 

first ABC transporters to be associated with resistance (Leslie, et al., 2005) and 

led to the discovery of other genes in the ABC transporter family involved in 

multidrug resistance. P-glycoprotein is one of the most widely studied ABC 

transporters because it transports a wide range of substrates including anticancer 

drugs. P-glycoprotein is highly expressed in cancerous tissues and it is reported 

to be involved in cancers of the liver, colon and kidney tissues (Schinkel and 

Jonker, 2012). Due to its diverse substrate specificity, scientists have sought to 

gain a better understanding of how substrates bind to it, in order to develop 

potential inhibitors that may improve the efficacy of anticancer therapy. 
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1.2 P-glycoprotein 

P-glycoprotein (P-gp), a well studied glycoprotein was first discovered in 1976 

by surface labelling studies in drug resistant ovary cells (Juliano and Ling, 1976). 

Since then, it has demonstrated its function as a transporter of hydrophobic drugs 

as well as transporting lipids, steroids and metabolic products. Encoded by the 

ABCB1 gene, it is also known to play a role in transporting compounds across 

the blood brain barrier and is involved in the uptake of the cardiac glycoside 

Digoxin in the kidneys (de Lannoy and Silverman, 1992).  It is highly expressed 

in various cells of the body but is mainly presented in epithelial cells. In the 

blood brain barrier, P-gp protects the brain from toxic products and drugs that 

cross this threshold. P-gp substrates that are lipophilic can easily diffuse across 

endothelial cells and enter the brain. However a high proportion of P-gp 

surrounds this area of the brain preventing their accumulation and the role of     

P-gp is to distribute substrates back into blood circulation (Schinkel and Jonker, 

2012). Similarly in cells of the liver, P-gp is responsible for the excretion of 

drugs from hepatocytes into the bile thus reducing the bioavailability of drugs 

exerting their effects in these cells. Inclusive of these two areas, P-gp can also be 

found to be expressed in the intestines, placenta, kidneys and adrenal glands 

excreting harmful metabolic products (Dean, 2002).  
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1.2.1 Structure of P-glycoprotein 

As described previously, most ABC transporters consist of two trans-membrane 

domains and an ATP-binding domain that uses energy from ATP to transport 

products (Figure 1).  P-glycoprotein is known as a full transporter and contains 

six transmembrane domains with an ATP-binding domain separated by a flexible 

linker region (Ambudkar, et al., 2003). The structure of human p-glycoprotein 

was first elucidated by electron microscopy (Rosenberg, et al., 1997) and image 

analysis. P-gp was reported as having a central core with an opening to the 

extracellular side of the membrane but is closed towards the cytoplasm.   

In 2009, Aller et al reported a medium resolution (3.8-4.4Å) X-ray structure of               

P-glycoprotein that supported previous claims about the structure of P-gp and 

revealed tentative binding sites for drug compounds (Aller, et al., 2009). The 

study proposed the structure for mouse P-gp with 87% sequence identity to 

human p-glycoprotein (Figure 2). In addition to this, the structure of P-gp co-

crystallised with the cyclic peptide inhibitors cyclic-tris-(R)-valineselenazole 

(QZ59-RRR) and cyclic-tris-(S)-valineselenazole (QZ59-SSS) was also 

determined, suggesting particular amino acid residues that are involved in drug 

binding (Figure 2). 
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1.2.2 Binding sites of P-glycoprotein 

The X-ray crystal structures proposed by Aller did give some useful information 

regarding the amino acid residues involved in substrate binding to P-gp.  The 

crystal structure showed one molecule of QZ59-RRR bound to the middle site in 

the binding pocket (Figure 2B), and two molecules of QZ59-SSS bound at upper 

and lower sites which are overlapping the middle site (Figure 2C). This showed 

that P-gp can bind to two drug molecules at the same time and confirmed the 

diverse and polyspecific nature of P-glycoprotein (Gutmann, et al., 2009).  

 The binding pocket was said to include the transmembrane helices 1, 6, 7 and 12 

which mainly consisted of hydrophobic and aromatic residues. These included 

Phenylalanine (Phe) and Tyrosine (Tyr) residues in addition to the aromatic and 

aliphatic residues Serine, Threonine and Glutamine (Ser, Thr, Gln).  Despite 

these key attributes being made available, questions have been raised about the 

absence of ATP in the structure and the fact that the structures do not appear to 

undergo conformational changes upon drug binding (Gottesman, et al., 2009).  

Substrates of P-gp mainly interact with the protein by hydrophobic interactions, 

π-π stacking and Van der Waals forces. The P-gp X-ray crystal structure also 

shows this as the cyclic peptide inhibitors bind to P-gp through hydrophobic 

aromatic side residues (Aller, et al., 2009). Studies have also demonstrated that 

P-glycoprotein is a flexible molecule that can alter its confirmation in order for 

substrate entry. These findings led to a proposed induced-fit mechanism for drug 

binding to P-gp, in which the substrate enters the large binding pocket and both 

drug and protein modify their shape to generate more favourable contacts unique 

to that substrate (Alonso, et al., 2006).  
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This mechanism is supported by the X-ray structure of P-gp, where each of the 

ligands bound to P-gp interact with the protein at different or the same 

overlapping amino acid residues (Figure 3). 

 

 

 

 

 

 

 

 

1.3 In-Silico Methods 

Traditionally, drugs are usually discovered in biological assays and in time-

consuming   in vivo and in vitro testing. However, the use of computer modelling 

in drug discovery has rapidly been developed creating techniques and software 

that are able to analyse and predict information about biological, chemical and 

medical data. The term ‘In-Silico’ refers to the computational approach of drug 

discovery which is complementary to in vivo and in vitro experiments (Ekins, et 

al., 2007). In a widely expanding field, in-silico techniques have been used to 

create virtual models that enable scientists to make predictions about biological 

activity and provide advances in medicine.  

Figure 3. Venn diagram of amino acid residues involved in binding of cyclic peptide 

inhibitors and those predicted to be involved in Verapamil binding. (Aller, et al., 2009) 
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Various approaches can be considered an in-silico method, and one of the most 

well known is quantitative structure-activity relationships (QSAR). Since the 

1960s, QSAR has been used to describe the mathematical relationship between 

the structure of a molecule and biological activity (Van de Waterbeemd and 

Rose, 2003). It has now been further developed with branches of 2D and 3D 

QSAR methods based on the type of molecular descriptors involved. In contrast 

to QSAR is virtual screening, a knowledge based method that requires structural 

information about the target or the compound being developed (Klebe, 2006). A 

sample of small molecules highlighted as candidate ligands are ranked in order 

of affinity for the target and this way of generating lead compounds has become 

an essential part of the pharmaceutical industry. Other in-silico methods involve 

pharmacophore modelling that uses 3D structure representations to describe how 

candidate ligands may bind to a target (Ekins, et al., 2007). Target based methods 

involve docking compounds to a target site and the use of scoring functions to 

score the binding affinity of the ligand to the target. It has gained popularity in 

recent times and has been involved in the discovery of inhibitors of HIV-1 

integrase (Hayouka, et al., 2010). 
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1.4 Molecular Docking 

Molecular docking is a computational method used to estimate the binding 

energy of a ligand to a specific receptor (Huang, 2007). It is the process of 

building a model based on molecular properties of an individual compound or a 

library of compounds with a target structure usually a protein. In protein ligand 

docking, the docking program aims to find the preferred conformation of the 

ligand at a binding site of the target (Sousa., et al, 2006). The binding energy is 

then calculated for each conformation and is ranked and scored to give an 

estimation of the binding affinity between a compound and target. Docking has 

been successful in the discovery of novel ligands and inhibitors of enzymes. 

Docking has also been involved in producing inhibitors of aldose reductase 

(Iwata, 2001), carbonic anhydrase as well as HIV-1 integrase mentioned 

previously.  

At present, there is a wide range of docking software available in the market with 

different scoring functions. The program AUTODOCK is one of the most cited 

docking programs and uses the Lamarckian genetic algorithm as well as a 

traditional genetic algorithm (Sousa, et al., 2006). GOLD is another program that 

is popular in the field and enables flexibility of the protein hydrogen bonds as 

well as the ligand being tested. Unlike AUTODOCK, docking scores in GOLD 

are ranked using a force field scoring function that includes the contributions of 

hydrophobic interactions, Van der Waals forces and number of hydrogen bonds 

(Cummings, et al., 2005). FlexX is another software package that permits protein 

flexibility and scores the final position of molecules using the empirical Böhm’s 
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scoring function (Sousa, et al., 2006). In addition to these aforementioned 

programs, the Molecular Operating Environment (MOE) is a suite of applications 

that can be used for medicinal chemistry purposes. It includes a docking tool that 

searches for complimentary binding poses between a ligand and a rigid receptor 

which can be used to determine interactions between candidate ligands and 

targets. 

1.4.1 Scoring Functions 

Scoring functions are used to calculate the binding energy of poses generated 

after docking placement. A very accurate scoring function is desired to be able to 

successfully predict binding affinity, however due to the complexity and high 

computational cost involved, scoring functions make assumptions about 

molecular interactions based on experimental data from independent reactions 

(Lipkowitz and Boyd, 2002).  In all scoring functions, a lower score indicates a 

more favourable pose while higher scores suggest that binding is less likely. 

Scoring functions are based on different calculation methods and can be divided 

into three categories: knowledge-based, force field and empirical based methods. 

 Knowledge-based functions use data from statistical analysis of structural 

complexes in the protein data bank, to estimate interatomic reactions occurring 

frequently between a ligand and the protein in specified intervals (Schulz-Gasch 

and Stahl, 2004). Typical examples of knowledge based scoring functions 

include Muegges’s potential of Mean Force (PMF), DrugScore and the SMoG 

score (Sousa, Fernandes and Ramos, 2006).  
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GoldScore, Assisted Model Building and Energy Refinement (AMBER) and the 

Optimised Potentials for Liquid Simulations function (OPLS), are examples of 

force-field scoring functions. Force-field scores are calculated by measuring 

electrostatic and Van der Waals interactions (Schulz-Gasch and Stahl, 2004) but 

is limited by the exclusion of solvation and entropic properties (Sousa, et al., 

2006). In contrast to these two scoring functions, empirical scores estimate free 

binding energy based on a sum of localised independent reactions (Lipkowitz 

and Boyd, 2002). In most cases, the constants in empirical formulas are derived 

from binding energies calculated in experiments of receptor-ligand complexes 

(Sousa, et al., 2006).  An example of an empirical scoring function is the London 

dG scoring utilised in MOE (Figure 4).  

 

Figure 4. London dG Scoring Function (Corbeil et al, 2012) 

The formula above calculates binding energy where Eflex represents the energy 

due to loss of flexibility of the ligand, ƒhb and Сhb are measurements of hydrogen 

bonds while СM and ƒM measure energies related to metal ligation.   
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1.5 Data Mining 

Data mining is the process of extracting information and establishing 

relationships from large sets of data. Methods involve computer-based statistics, 

pattern recognition and database technology (Hand, et al., 2001).  Data mining 

methods can be classified into two categories: predictive and descriptive data 

mining (Kantardzic, 2011). Descriptive data mining tools aim to produce new 

information about a dataset and to establish patterns and relationships from a 

large data set. In contrast, predictive methods are for building models regarding 

the information available in the database which can then be used to make 

predictions or classify data (Kantardzic, 2011).  

Classification and regression trees (CART) are predictive systems that can be 

used to classify data into pre-defined classes. Decision trees are built which split 

data into categories in response to a dependent variable. Classification trees are 

developed if the dependent variable is categorical (e.g. substrate/non-substrate) 

and regression trees are formed when continuous data is available (Deconinck, et 

al., 2005). Interaction trees are similar but the user can manually select a variable 

as the independent variable and then allow the software to grow the tree 

automatically. Support Vector Machine (SVM) is a machine learning method 

that uses a mathematical algorithm to classify data. It constructs a hyperplane in 

a high dimensional space which separate sets of linear data by the maximum 

margin (Lipkowitz, Cundari, 2007). In the case of non-linear data, SVM 

constructs a higher dimensional feature space, using Kernel functions such as 

Gaussians, polynomial and RBF kernels (Wang, 2005).  
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1.6 Research objectives 

P-glycoprotein is a poly-specific protein and is able to recognise structurally 

diverse substrates. In this study, we aim to develop a better understanding of how 

compounds interact with P-gp. It is our aim to build a model using statistical 

methods to describe the common features of compounds that bind to                  

P-glycoprotein. In addition to this, there are currently three X-ray structures of  

P-gp available in the protein data bank (3G5U, 3G60, 3G61). In these structures, 

there are at least two binding sites that have been suggested. It is our aim to 

optimise the molecular docking strategy to identify substrates of P-gp and 

suggest the most favourable binding site. By doing this, we can establish the type 

of interactions that occur between P-gp substrates in the drug binding pocket and 

provide information about the amino acid residues that are involved. 
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2  Methods 

2.1 Data Set 

Compounds used in the data set as part of this study, were selected from a 

previous research paper, Matsson et al, (2009) which had studied activity of ABC 

transporters. The compounds in the data set had been chosen as they represented 

a cross section of available and licensed oral drugs. The compounds in the data 

set are reported as inhibitors and non-inhibitors of P-gp based on the previous 

experimental results. Using this information, each compound was assigned a 

value of ‘1’ if in the literature it was a substrate or inhibitor and assigned a value 

of ‘0’ if it was a non-inhibitor.   

We then proceeded to gather the simplified molecular-input line-entry system 

code (SMILES) and the registration number (RN) for each compound into 

Microsoft Excel. This information was collected from online databases 

ChemSpider and Pubchem. These databases were used as they are available to 

access for free and provide reliable information about the structures and 

properties of millions of compounds. While searching for the SMILES code for 

Ivermectin, we noticed that it had two isomers which had not been included in 

the data extracted from the literature. As a result, we decided to use both isomers 

and include this in our data set (Ivermectin A & B). In total, 123 compounds 

were included in our data set (Table 1), with 54 classified as substrates and 69 

non-substrates.  From the 123 compounds, 98 compounds were separated 

randomly into a training set and 25 in the validation set. 
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Table 1. Substrates and Non-Substrate of P-glycoprotein. 0=non substrate,     

1=substrate 

Compound ABCB1P-gp Compound ABCB1-Pgp Compound ABCB1-Pgp 

Chlorprotixene 

Cyclosporine-A 

Diethylstilbestrol  

Dipyridamole 

Flupentixol 

GF120918 

Isradipine 

Ivermectin 

Loperamide 

Lopinavir 

MK571  

Quercetin 

Reserpine 

Ritonavir  

Saquinavir  

Silymarin  

Tamoxifen  

Terfenadine  

Thioridazine 

Benzbromarone 

Amiodarone 

Apigenin 

17β-estradiol  

Biochanin A 

Chlorpromazine 

Chrysin 

Ergocristine  

Felodipine  

Gefitinib  

Genistein 

Glibenclamide 

Imatinib mesylate 

Ketoconazole  

Kol 43 

Medroxyprogesterone 

Mifepristone 

Nicardipine 

Nitrendipine  

Simvastatin 

Tipranavir 

Verapamil 
 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 
 

Diltiazem 

Taurolithocholic acid  

Haloperidol 

Maprotiline  

Noscapine 

Prednisone  

Procyclidine 

Propafenone 

Quinidine 

Quinine f 

Taurocholate 

Tetracycline 

Vinblastine 

Amodiaquine  

Fumitremorgin  

Hoechst 33342 

Mitoxantrone 

Naringenin 

Omeprazole 

Prazosin 

Progesterone 

Bromosulfalein 

Lansoprazole 

P-aminohippuric acid 

Rifampicin 

1-methyl-4-phenylpyridinium 

4-Methylumbelliferoneglucuronide 

Amantadine  

Amiloride 

Amitriptyline  

Antipyrine 

Atropine 

Budesonide 

Captopril 

Carbamazepine 

Carnitine 

Cefamandole 

Chloroquine 

Chlorzoxazone  

Cholic acid  

Cimetidine 
 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
 

Colchicine 

Dehydroisoandrosterone-3-sulfate 

Desipramine  

Digoxin 

Doxorubicin 

Erythromycin  

Estradiol-17β- 

Etoposide 

Fexofenadine  

Flucloxacillin 

Hydrochlorothiazide 

Hydrocortisone f 

Indinavir 

Indomethacin  

Mesalazine 

Methotrexate  

Metoprolol  
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0 

0 

0 

0 

0 

0 

0 

0 

0 
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2.2 Calculation of Molecular Properties 

The SMILES codes collected from online databases was added to an Excel 

spreadsheet. From Excel, the chemical name and SMILES code of all 

compounds in the data set was copied and pasted into a notepad file. It was then 

saved as “.txt” file because this is the format that can be read by the software.  

This file was imported into Advanced Chemistry Development, Inc. ACD Labs/ 

Log D Suite Version 12.0 (ACD/Labs) software which is an application used to 

calculate molecular properties. Some of the compounds are in salt form, so 

before calculations the desalt function of the software was used to remove the 

ionic forms of some of the compounds and minimise their charges. Molecular 

properties were calculated for 123 compounds and examples of descriptors 

calculated include pKa, LogD, LogP and molar volume. The structure of each 

compound was saved by ACD Labs/ Log D (ACDlabs) in SDF file format. It was 

saved this way as this will allow the Molecular Operating Environment (MOE) 

software to read the structures formed in ACDlabs and produce a 3D version of 

the structures. 

2.3 Preparation of compounds for Docking 

Before docking could take place, the SDF file was imported into the software 

MOE. MOE is a suite of applications that can be used to manipulate and analyse 

a collection of compounds.  For docking to work efficiently, it is essential that 

each structure is in a form suitable for it to be docked to a ligand. As a result, the 

software’s ‘Wash’ application was used to clean the structures and neutralise the 

protonation state of each compound. This will neutralise all atoms and form the 

structure of the compound in its least charge-bearing state. The next step was to 
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lower the potential energy of the structures. This was completed using the 

“Energy minimize” function from the software. The compounds in the database 

were now ready to be computed and molecular descriptors were calculated. In 

total, MOE calculated 320 descriptors for the compounds in the dataset.  

2.4 Protein-Ligand Docking 

Docking of compounds in the dataset was carried out using the Dock application 

in MOE. The structure of the P-gp protein that the compounds in our dataset 

would be docked to was downloaded from the Protein Data Bank (PDB) online. 

The X-ray structure of mouse P-gp, 3G5U (QZ59-RRR bound) and 3G61 

(QZ59-RRR bound), were used for docking. The docking site for P-gp 3G5U 

was determined using residues that have been shown to interact with cyclic-

peptide inhibitors (Aller, et al., 2009). In total, 4 docking sites and their 

interacting residues were identified for P-gp 3G5U; Verapamil site, QZ59-RRR, 

QZ59-SSS upper and QZ59-SSS lower sites. The docking site of P-gp 3G61 was 

determined using the co-crystallised ligand QZ59-SSS already bound to the 

protein. The amino acid residues involved in each of the sites has been reported 

in Table 2. In the MOE software, the default Triangle Matcher was used as the 

placement method followed by forcefield refinement and London dG scoring 

was used for the docking runs. The top scoring conformation of each compound 

for each binding site was calculated as well as the root mean square deviation of 

each pose (RMSD). The maximum number of poses kept after the rescoring 

stage was 30 and duplicates were also removed 
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2.5 Statistical Analysis 

Results collected from docking scores and molecular descriptor calculations were 

analysed using data mining tools on Statistica 11.0 software. Data mining tools 

that were used for this study include Classification and Regression Tree (CART), 

Support Vector Machine and Interactive Tree (IT). CART is a statistical method 

that is used to partition data based on continuous dependent variables 

(regression) or categorical predictor variables (classification). In this study, 

CART was used to determine the importance of variables such as docking scores 

and molecular descriptors for classification of substrates and non-substrates.  

In all CART models that were developed, substrate/non-substrate property 

(ABCB1-Pgp) was the dependent variable and in each model other variables 

acted as independent variables. The dependent variable was categorical i.e. 1 

(substrate), 0 (nonsubstrate), therefore categorical analysis was performed.  

Interactive tree are similar to CART, however a specific independent variable 

e.g. docking scores at QZ59-SSS (lower) site was chosen manually as the first 

splitting variable and then the tree was allowed to grow further using statistically 

selected variables.  
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Table 2. Amino acid residues used for the definition of binding site 

Binding site Amino acid Residues P-gp model  

Verapamil  H60, A63, L64, S218, I302, L335, 

A338, F724, I864, G868, F938, T941, 

L971, V978, G980, A981 

3G5U 

QZ59-SSS(upper) M68, F332, I336, Y949, F974, V978, 

A981 

3G5U 

QZ59-SSS (lower) L300, Y303, F339, Q721, F724, L758, 

F833, F974, V978, A981, M982, 

G985, Q986, S989 

3G5U 

QZ59-RRR M68, Y303, F332, L335, I338, F339, 

Q721, F724, F728, Y949, F974, S975, 

V978 

3G5U 

QZ59-SSS M68, F332, I336, Y949, F974, V978, 

A981 

L300, Y303, F339, Q721, F724, L758, 

F833, F974, V978, A981, M982, 

G985, Q986, S989 

3G61 
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3 Results 

3.1 Docking results 

Docking energies for each compound was calculated by docking each compound 

to the three binding sites of 3G5U and the cyclic peptide binding site of 3G61. 

The lowest score for each compound was recorded and the average was 

calculated. The average of the lowest docking energies is shown in the graph 

below for all 123 compounds (Figure 5). The average docking energy for 

substrate and non-substrate is also shown (Figure 6). 

 Figure 5.  Average of the lowest docking scores 

 

Figure 6.  Average docking energy of substrate and non-substrates 
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Table 3. Docking energy of top three poses for all compounds 

The table below shows the average value of the top three docking energies 

calculated for all compounds at each binding site. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Binding site Docking energy of top three 

scoring poses (kcal/mol) 

Average  

(kcal/mol) 

Verapamil – 3G5U 

 

-15.4 -12.97 -12.3 -13.6 

QZ59SSSupper – 3G5U 

 

-17.5 -15.3 -14.8 -15.9 

QZ59SSSlower – 3G5U -15.7 -15.7 -15.1 -15.5 

QZ59RRRlower – 3G5U -16.9 -15.6 -14.2 -15.6 

QZ59SSS – 3G61 

 

-17.6 -15.9 -15.7 -16.4 
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3.1.2 Docking Performance 

After obtaining docking scores for each compound, docking energies were 

evaluated to determine which compounds had greater affinity for the binding 

sites of P-gp.  The table on the following page shows the top ten compounds that 

had good docking performance at each binding site. 
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Table 4. Compounds with high docking performance 

 

 

 

 

 

 

Compound  

Verapamil 

Compound QZ59sss-upper Compound QZ59sss-lower Compound     QZ59rrr Compound      3G61 

   Score      Score       Score      Score     Score 

Ivermectin A -15.407999 Ivermectin A -17.49052 Ivermectin B -15.702105 Cyclosporine-A -16.93857 Cyclosporine-A -17.6087 

Bromosulfalein -12.974476 Digoxin -15.264123 Cyclosporine-A -15.671002 Rifampicin -15.607213 Rifampicin -15.8589 

Doxorubicin -12.270447 Rifampicin -14.776971 Ivermectin A -15.053252 Ivermectin A -14.21278 Bromosulfalein -15.7715 

Tetracycline -12.25106 Ivermectin B -14.182034 Digoxin -13.845214 Taurocholate -13.826485 Silymarin  -15.6766 

Silymarin  -12.211308 Cyclosporine 
A 

-13.913272 Erythromycin  -12.796752 Etoposide -12.774714 Etoposide -15.3638 

Mitoxantrone -12.069983 Silymarin  -12.740396 Rifampicin -12.707092 Ivermectin B -12.753691 Taurocholate -15.2546 

Methotrexate  -11.986519 Colchicine -12.727611 Doxorubicin -12.654102 Erythromycin  -12.736913 Doxorubicin -14.8735 

Tipranavir -11.627663 Methotrexate  -12.722812 Bromosulfalein -11.747195 Bromosulfalein -12.696462 Vincristine -14.4704 

Estradiol-17β-glucuronide  -11.490866 Vincristine -12.462447 Flupentixol -11.41256 Digoxin -12.67726 Reserpine -14.4181 

Budesonide -11.293019 Bromosulfalein -12.310234 Vinblastine -11.387159 Silymarin  -12.592422 Digoxin -14.2525 
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3.1.3 Docked compounds 

Docking runs were performed for each binding site and docking energies 

calculated. Below are images of example compounds docked to different binding 

sites of 3G5U and 3G61. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Ivermectin A (blue) docked to 

QZ59-SSS (upper) binding site of 3G5U 

 

 Figure 8. Ivermectin A (blue) docked to 

QZ59-SSS(lower) binding site of 3G5U. 

Figure 10. Chlorprotixene (blue) docked to     

binding site of 3G61 

 

 Figure 7. 17-β-estradiol (blue) docked to 

Verapamil  binding site of 3G5U. 
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3.2 Statistical Models 

3.2.1 Classification Trees (CART) 

Classification trees were developed to make predictions about the classification 

of substrates and non-substrates.  In all classification trees developed, 

substrate/non-substrate property (ABCB1-Pgp) was the dependent variable. 

Several models were developed because in each model particular variables were 

selected as the independent variable e.g. Docking scores. In order to control the 

splitting of the tree, the minimum number of cases was 49 and maximum cases 

were 1000.  

 

CART 2 – Using all docking scores for each binding site as independent 

variables  

 

 

 

 

 

 

 

 

 

 

 

 

 

          Figure 11   Parameters: 0 (Non-substrate), 1 (Substrate)  

          S/QZ59rrr – Docking score at the QZ59rrr binding site (3G5U) 

          S/QZ59upper – Docking score at the QZ59upper binding site (3G5U) 

          S/QZ59lower – Docking score at QZ59lower binding site (3G5U) 

 

Tree 1 graph for ABCB1P-gp

Num. of non-terminal nodes: 3,  Num. of terminal nodes: 4

ID=1 N=98
0

ID=2 N=68
1

ID=5 N=49
1

ID=4 N=19
0

ID=6 N=36
1

ID=7 N=13
0

ID=3 N=30
0

S/QZ59rrr

<= -9.264243 > -9.264243

S/QZ59upper

<= -11.383177 > -11.383177

S/QZ59lower

<= -9.039293 > -9.039293

0

1



28 

 

CART  3 – Using Docking score at 3G61-QZ59SSS site and RMSD as independent 

variables 

 

 

 

 

 

 

 

 

 

 

 

 

CART 4 – Docking scores of all binding sites and molecular descriptors 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12   

Parameters: 0 (Non-substrate) , 1 (Substrate) , S/3G61-QZ59RR – Docking score at the QZ59rrr site (3G61) 

Rmsd_refine – The root mean square deviation of the pose 

Tree 1 graph for ABCB1P-gp

Num. of non-terminal nodes: 7,  Num. of terminal nodes: 8
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AM1_IP

<= 10.280640 > 10.280640

VSA

<= 765.587555 > 765.587555

SMR_VSA7

<= 119.552365 > 119.552365

0

1

Figure 13 

Parameters: 

LogP - Log of the octanol/water partition coefficient, 

SMR_VSA2 – Sum of van der Waals surface area (in Å2) such that Molar Refractivity is in (0.26,0.35), 
V surf_IW4 – Hydrophillic integy moment 

GCUT_PEOE_1 - PEOE partial charge GCUT (1/3) 

AM1_IP - The ionization potential (kcal/mol) calculated using the AM1 Hamiltonian [MOPAC] 
SMR_VSA7 - Sum of van der Waals surface area (in Å2) such that Molar Refractivity is > 0.56 

VSA - Approximation to the sum of VDW surface areas 

Tree 1 graph for ABCB1P-gp

Num. of non-terminal nodes: 3,  Num. of terminal nodes: 4
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0
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3.2.2 Interactive Trees 

The aim of using interactive trees was to manually select one independent 

variable as the first splitting criteria and then allow the software to statistically 

select other important variables to grow the tree. In Figure 10, the first splitting 

criteria was the Docking score of all compounds at QZ59-RRR binding site 

(3G5U) and in Figure 11, Docking score at the QZ59lower binding site (3G5U) 

was the first splitting variable. Interactive tree models developed are shown 

below. 

IT 1 – Docking score S/QZ59RRR dependent variable 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tree graph f or ABCB1P-gp

Num. of  non-terminal nodes: 3,  Num. of  terminal nodes: 4

Model: C&RT

ID=1 N=98
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ID=13 N=36
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ID=11 N=30
0

S/QZ59rrr

<= -9.260000 > -9.260000

LogD(10)

<= 2.370000 > 2.370000

LogD(2)

<= 2.945000 > 2.945000

0

1

Figure 14 

Parameters: S/QZ59rrr - Docking score at the QZ59-RRR binding site (3G5U) and is the 

Dependent variable 

LogD – Log of the distribution coefficient  
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IT 2 – Docking score S/QZ59lower dependent variable 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tree graph f or ABCB1P-gp

Num. of  non-terminal nodes: 4,  Num. of  terminal nodes: 5

Model: C&RT

ID=1 N=98
0

ID=10 N=61
1

ID=12 N=27
0

ID=11 N=37
0

ID=14 N=20
0

ID=15 N=7
1
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0

ID=17 N=10
1

S/QZ59lower

<= -9.040000 > -9.040000

LogD(10)

<= 2.230000 > 2.230000

LogD(2)

<= 2.875000 > 2.875000

Q_VSA_HYD

<= 277.885435 > 277.885435

0

1

Figure 15 

Parameters: S/QZ59rrr - Docking score at the QZ59-SSS (lower) binding site (3G5U) and is the 

Dependent variable 

LogD – Log of the distribution coefficient  

Q_VSA_HYD - Total hydrophobic van der Waals surface area. 
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3.2.3 Support Vector Machine Models 

Further classification models were developed using Support Vector Machine. 

SVM Classification type 1 was used for all SVM calculations and Radial Basis 

Function (RBF) was selected as the kernel type. The independent variables were 

manually selected from the CART and Interactive trees developed.  

Table 5. SVM Models 

Model 

No. 

Dependent  Independent SVM Type Kernel Type               Accuracy 
Training Test Overall 

SVM 

1. 

ABCB1-Pgp S/3G61-

QZ59RR 

S/QZ59upper 

S/QZ59RRR 

 

Classificatio

n type 1 

Capacity=7.

00 

Radial Basis 

function  

Gamma=0.33 

64.3% 64% 64.2% 

 

SVM 

2. 

ABCB1-Pgp S/3G61-

QZ59RR 

S/QZ59upper 

S/QZ59RRR 

S/Ver3g5u 

S/QZ59lower 

 

Classificatio

n type 1 

Capacity=10

.0 

Radial Basis 

function  

Gamma=0.2 

69.4% 60% 67.5% 

SVM 

3. 

ABCB1-Pgp S/QZ59RRR 

LogD(2) 

LogD(10) 

 

Classificatio

n type 1 

Capacity=3.

00 

Radial Basis 

function  

Gamma=0.3 

75.5% 76% 75.6% 
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3.3  Prediction accuracies of statistical models 

The accuracy of predictions of all models developed is shown in Table 5 below.  

The accuracy of each model, Youden’s J statistic and Matthews correlation 

coefficient (MCC) calculations were carried out to predict the accuracy of the 

models. The formulas for the calculations are also described below. 

Table 6. Results of all statistical models 

 

        Acc – Accuracy =                        SE – Sensitivity=              

        SP – Specificity=             Youdens J =                           –     

       MCC – Matthews correlation coefficient =  

                                              

TP, TN, FP, and FN are True Positive, True Negatives, False Positive and False Negative 

respectively. 

 

 

                        Training Set                 Validation Set 

Model Acc SE SP Youden’s 

J 

MCC Acc SE SP Youden’s 

J 

MCC 

CART 1  0.64 0.88 0.45 0.34 0.36 0.68 1 0.43 0.43 0.50 

CART 2 0.71 0.59 0.83 0.41 0.49 0.64 0.64 0.64 0.28 0.35 

CART 3 0.69 0.64 0.73 0.38 0.38 0.6 0.36 0.79 0.15 0.17 

CART 4 0.96 0.95 0.96 0.91 0.91 0.48 0.22 0.67 0.11 0.12 

SVM 1 0.64 0.49 0.76 0.25 0.26 0.64 0.45 0.79 0.24 0.26 

SVM 2 0.7 0.59 0.8 0.39 0.4 0.6 0.36 0.79 0.15 0.17 

SVM 3 0.76 0.67 0.82 0.49 0.5 0.81 0.72 0.93 0.65 0.65 

IT 1 0.83 0.83 0.83 0.66 0.66 0.81 0.78 0.83 0.61 0.61 

IT2 0.85 0.93 0.79 0.72 0.71 0.81 0.67 0.92 0.58 0.61 
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3.3.1 Accuracy vs. Matthews correlation coefficient  

The accuracy and Matthews correlation coefficient calculations were compared 

for each model for the validation set. The result for the performance for each 

model is shown graphically below. 

Figure 16. Graph showing performance of models for validation set 

 

Overall the best model was SVM 3, due to a better performance of Youden’s J 

and MCC for the validation set. As well as this IT 1 and IT2 models also showed 

good performance for both training and validation set. 
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4. Discussion 

P-glycoprotein is a member of a super family of transporters expressed in cells of 

the liver, kidney and in the blood brain barrier. For it to function, ATP is 

required to transport molecules across cell membranes. The major role of this 

protein is to export drugs and metabolites out of cells and it has also been 

associated with multi-drug resistance in cancerous cells (Leslie, et al., 2009). The 

first objective of this study was to identify substrates and inhibitors of                

P-glycoprotein by evaluating their docking energies. At present, various studies 

have proposed a range of locations within the internal cavity of P-gp that 

compounds may bind to (Aller, et al., 2009; Gutmann, et al., 2009). To dock the 

compounds in our data set to P-gp, the binding sites of the protein had to be 

determined. Amino acid residues were selected from literature that had been 

demonstrated as binding sites of cyclic peptide inhibitors and Verapamil (Aller et 

al., 2009; Table 2) and compounds in the data set were docked to these areas.    

Docking runs were carried out for each compound in the data set using MOE 

which calculated the docking energy for each pose generated. As shown in 

Figure 5, the average docking energy at the 3G61-QZ59SSS site was lowest        

(-11.1 kcal/mol) whilst compounds docked less favourably to the 3G5U binding 

sites. Table 3 shows that the average docking energy of the top 3 scores was 

superior at the binding site defined by 3G61-QZ59-SSS but average docking 

energy of the top three scores at the Verapamil site was -13.6 kcal/mol.  These 

results showed that docking performance for compounds in the data set was 

considerably better when docked to the co-crystallised ligand in P-gp 3G61. 

Better docking performance in 3G61 could be due to the changed confirmation 
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Figure 17 Location of QZ59 compounds in Pgp drug binding pocket. A. One QZ59-

RRR molecule  B. Two QZ59-SSS molecules.  (Aller , et al., 2009) 

 

of the protein upon ligand binding in accordance with the induced fit binding 

theory (Alonso, et al., 2006).  

 By docking to 3G61 (Figure 17), compounds were able to interact with more 

residues compared with other sites thus improving their chances of binding to the 

protein. 

               A                                                                       B                      

  

 

 

 

  

 

A list of compounds with strong affinity for the binding sites of P-gp is shown in 

Table 4. Cyclosporin an immunosuppressant drug, was one of the compounds in 

the data set that had significantly better docking scores across all binding sites. 

As shown in Table 4, docking energy of Cyclosporin was lowest at 3G61 

compared to other sites. As well as this, Rifampicin best docking energy at the 

QZ59-SSS upper site was -14.776971kcal/mol, and docking score at 3G61 was    

-15.8kcal/mol. Similarly, Bromosulfalein which had efficient docking 

performance across all binding sites had its lowest docking score when docked to 

3G61 (Table 4).  
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This further suggests that docking to the ligand QZ59-SSS in P-gp-3G61 was the 

most favourable binding site for compounds in our data set compared with other 

binding sites that were used.  As part of this study, it was also our aim to gain an 

understanding about the residues that play a major role in drug binding to P-gp. 

The differences in amino acid residues used at each binding site provides 

valuable information about the importance of some specific residues involved in 

drug binding to P-gp.  The amino acid residues selected for each binding site 

were reported to be within the drug binding pocket of P-glycoprotein (Aller, et 

al., 2009). Some of the residues in particular binding sites appear to play a more 

important role in drug binding compared to others. An example of this is Tyr 303 

a residue in TM helice 5 of P-gp, is part of the QZ59-RRR and QZ59-SSS 

(lower) site but not seen in the other two binding sites used. As well as this, Phe 

332 is a residue in the QZ59-RRR and QZ59-SSS (upper) sites but not in the 

Verapamil binding site (Table 2). In addition to differences such as these, some 

residues appear to be involved in all binding sites used. For example, Phe 724 

and Val 978 are part of each binding site and this suggests that they are important 

residues involved in the interaction of substrates with P-gp.   

From Table 2, it can be seen that there are several other amino acid residues that 

are involved in binding compounds to the QZ59-RRR and QZ59-SSS sites. 

Examples of these residues include, Phe 339 (TM6), Gln 721 (TM7) which are in 

both QZ59 sites whilst residues such as Ala 981(TM12) and Leu 335 (TM6) are 

identifiable in both Verapamil and QZ59-RRR sites respectively. These 

observations suggest that different transmembrane helices are involved in drug 

binding and compounds use unique segments of the transmembrane domains to 
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bind to P-gp.  It is also interesting to note the overlap of residues involved in 

drug-binding, which suggests that compounds in the data set may have similar or 

overlapping binding sites with other compounds (Ambudkar, et al., 2003).  

To illustrate this, Rifampicin a bactericidal antibiotic was seen to demonstrate 

good docking performance across both QZ59 sites and when docked to P-gp 

3G61 (Table 4). In contrast, when docked to the Verapamil binding site its best 

docking score was -10.88kcal/mol. As well as this,  Erythromycin a macrolide 

antibiotic docked in a similar way to Rifampicin at the QZ59-SSS (lower) and 

QZ59-RRR sites but not as successfully to the Verapamil site (-11.14 kcal/mol). 

It could be suggested that the docking performance at these sites, is due to both 

compounds binding to the same or overlapping residues at these binding sites.  

In addition to docking results observed, Figure 6 shows the difference between 

docking energies of substrates and non-substrates. The results here add further 

evidence to the reports that P-gp is a polyspecific protein which is capable of 

recognising different types of compounds as non-substrates were able to dock to 

P-glycoprotein. The results suggest that non-substrates in the data set are capable 

of binding to P-gp but have a weaker binding affinity. Despite these outcomes, 

limitations of the docking method discussed below should be considered when 

evaluating docking results.   

The use of X-ray structures of 3G5U and 3G61in this study as docking targets 

may have had an influence on the accuracy of docking results produced. Apart 

from the fact that one of these structures belongs to the protein co-crystallised 

with a ligand and the other is free of a ligand, the resolutions of the crystal 

structures of P-gp models used is an important factor; 3.80Å and 4.35Å for 
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3G5U and 3G61 respectively. Generally, high resolution models of proteins are 

those considered as having a resolution lower or equal to 1.5Å, whilst low 

resolution models have values greater than 2.5Å (Davis, et al., 2003). In this 

case, the X-ray structures used in this study are of low resolution and therefore 

the accuracy of these structures is still uncertain. Structural models obtained at 

higher resolutions are more likely to produce better docking results (Mohan et al, 

2005). This is because higher resolution models are developed using more 

experimental data whereas at lower resolutions, models are likely to be more 

subjective and include a greater number of errors (Davis, et al., 2003; Davis, et 

al., 2008). Consequently, docking results from this study may not be 

reproducible because we cannot be sure that the 3D structural models of P-gp are 

correct and validated. 

Additionally, the scoring method used to calculate binding energies of the 

compounds would have had a major impact on the docking results. During the 

docking process, the top 30 poses produced after placement were scored using 

the London dG scoring function. As an empirical scoring function, it calculates 

the binding energy of compounds based on the sum of independent reactions 

from experimental data (Lipkowitz and Boyd, 2002).  The issue with this is that 

the experimental data used to derive the scoring function may not be consistent 

with the data set used in this study therefore inaccuracies in scoring are likely. 

Furthermore, the scoring function is also more inclined to favour larger 

compounds.  
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Due to the additive nature of the formula, larger compounds are more likely to 

have better docking energies than smaller compounds (Schulz-Gasch and Stahl, 

2004; Lipkowitz and Boyd, 2002).  This is reflected in the results produced as 

compounds with high docking performance (Table 4) e.g. Bromosulfalein, 

Ivermectin A, Rifampicin, (794.03g mol
-1

, 875.09g mol
-1

 and 822.94g mol
-1

) 

were part of the heaviest compounds in the data set. In contrast, smaller 

compounds such as Valproic Acid (144.21 g mol
-1

) and Amantadine (151.25 g 

mol
-1

) had average docking scores of -7.04kcal/mol and -6.37kcal/mol 

respectively (Appendix 3).  

The lack of flexibility of the target protein used in docking should also be taken 

into consideration when assessing docking results. The main purpose of the dock 

application in MOE, is to calculate docking energies between a rigid protein 

target and flexible ligand.  The inflexible nature of the protein during docking 

highlights the fact that in-silico methods do not totally represent what occurs in 

biological systems.  For docking results to successfully guide our predictions of 

inhibitors and substrates of P-gp, it should take into account the flexible nature of 

the receptor. Previous studies have described the importance of protein flexibility 

in P-gp ligand interactions (Davis, et al. , 1999; Teague, 2003; Loo, et al. , 2003; 

Loo, et al. , 2009) and the induced-fit mechanism that drives this phenomenon.  

Induced fit mechanism explains the fact that both drug and protein are flexible, 

and can modify their shape to generate more favourable contacts (Alonso, et al., 

2006). Current evidence demonstrates that P-glycoprotein is able to 

accommodate a wide range of substrates due to the mobile nature of its 

transmembrane helices (Ambudkar, et al., 2003; Loo, et al., 2003). From this 
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hypothesis, it is possible that compounds in the data set may not be correctly 

identified as substrates or inhibitors of P-gp, because the docking process does 

not allow the protein to be mobile and therefore some compounds are not 

recognised as a substrate in the drug binding pocket.  Further to this, the use of 

only specific binding sites in the drug binding pocket did not allow us to fully 

explore the diverse nature of P-glycoprotein. Using only the QZ59 and 

Verapamil binding sites meant that compounds could only dock to these areas. It 

is possible that variable docking energies may have been produced if compounds 

were docked to other residues of P-gp (Gutmann, et al., 2009).  

The aim of docking the data set of 123 compounds was to find out if scoring 

functions can correctly identify the substrates and non-substrates of the data set. 

After obtaining docking results from each binding site, statistical models were 

built using data mining tools in Statistica to explore the classification accuracy of 

the docking scores. In each classification tree built, the classification of 

compounds as substrates/non-substrates was used as the dependent variable.  The 

CART 2 model was built using docking scores from each binding site as 

independent variables. By examining CART 2, it shows us that docking scores at 

QZ59-RRR site were of importance and that if docking energy is lower than        

-9.26423kcal/mol, compounds are classified as substrates.  

 The tree was further split according to the docking score at QZ59-SSS (upper) 

site, with substrates classified as those having docking scores above                     

-11.383177kcal/mol. The final node of this tree established that compounds with 

docking energy below -9.039293kcal/mol at QZ59-SSS (lower) site are 

substrates of P-glycoprotein. The disparity in the final two nodes may be related 
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to the differences in amino acid residues at each site and the fact that some 

compounds have overlapping binding sites (Ambudkar, et al., 2003) hence their 

binding to P-glycoprotein extends beyond the QZ59-SSS (upper) site. 

The CART 3 model was built using docking scores and RMSD scores at the 

QZ59-SSS site of 3G61. This was performed because average docking scores for 

compounds in the data set was much better at this site. Consequently, the tree 

was split into three nodes with docking score being most important. The tree was 

then split according to RMSD scores and defined substrates as those having an 

RMSD below 2.18120kcal/mol as a substrate. Substrates meeting this criteria 

were also classified as a substrate if their docking score was lower than                 

-11.092090kcal/mol in the final node of the tree.  

 A further tree was developed to detect the most important factor for P-gp 

binding, by combining docking scores and molecular descriptors calculated by 

ACD Labs. A total of 320 molecular descriptors were available. The model built 

using these variables (CART 4), selected LogP as the main descriptor required 

for P-gp binding. Substrates were classified as having a LogP above 2.67 and 

were further classified as substrates by various descriptors such as ionization 

potential and sum of Van der Waals surface area. Average LogP of compounds 

in the data set was 2.91 and 56% of compounds in the data set had a LogP value 

above 2.67. From this classification tree, it can be suggested that lipophilicity is 

an essential part of a compounds ability to bind to P-gp.   

This is in agreement with previous studies that have described LogP as an 

important parameter in drug binding to P-gp (Wang, et al., 2003; Matsson, et al., 

2009; Aller, et al., 2009). The significance of LogP for this data set is due to the 
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location of the residues in the binding sites.  Amino acid residues in the binding 

sites were mostly located in the upper section of P-gp and this area purportedly 

contains hydrophobic and aromatic residues (Aller, et al., 2009). Therefore, it is 

likely that lipophilic substrates will bind to P-gp using these residues.  It is also 

considerable that Van der Waals surface area factors, (SMR_VSA2, SMR_VSA7, 

and VSA) were also used to determine the classification of compounds.  

The cyclic peptide inhibitors used to detect binding sites in P-glycoprotein, 

mainly interacted with residues by hydrophobic and Van der Waals interactions 

(Aller et al, 2009). Compounds in this data set seem to follow that trend 

according to CART 4 and it is has also been suggested that drug binding to P-gp 

is associated with compounds Van der Waals surface area (Litman, et al., 1997).  

Despite combining docking scores with molecular descriptors to build CART 4 

model, molecular descriptors were selected as being of importance rather than 

the docking energy. From this outcome, it can be suggested that molecular 

descriptors are better predictors of a compounds class as a substrate or non-

substrate. 

After assessing results of the classification trees, Interaction trees were also 

developed (Figure 14 & 15). In each tree developed, one variable was manually 

selected as being of importance for the first splitting criteria and then the 

software statistically selected other variables to grow the tree. In both trees, the 

software selected LogD(2) and LogD(10) as other important attributes for 

classification of substrates and non-substrates. This is in accordance with 

suggestions that lipophilicity plays a major role in P-gp activity. 
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SVM models were then developed to further classify substrates and non-

substrates of P-glycoprotein (Table 5). SVM 1 was built using docking scores 

from 3G61, QZ59 (upper) and QZ59-RRR sites of 3G5U. This model had an 

overall accuracy of 64.2% whereas SVM 2 had an improved accuracy of 67.5% 

when using all docking scores.  SVM 3 model had an overall accuracy of 75.6% 

and this was based on docking score at the QZ59-RRR site of 3G5U and 

LogD(2) and LogD(10).  LogD was used to develop this model because it was a 

valuable descriptor selected by the Interaction trees developed (Figure 14 & 15). 

In the validation set, there are 5 substrates and 1 non substrate that had been 

misclassified by SVM 3 model; Apigenin, Imatinib, Prednisone, Progesterone, 

Quercetin, Taurocholate (Appendix 5).  Out of this group, Progesterone a non-

substrate was classified as a substrate by the SVM model. It is possible that it 

was classed as a substrate by the SVM model due to its high lipophilicity    

(LogP = 3.83), which has previously been discussed as an important property of 

P-gp substrates.  Further complementing this are suggestions that Progesterone is 

a substrate by an induced fit mechanism (Loo, et al., 2003). However, differences 

in data preparation and method used for classification indicate that the 

identification of Progesterone as a substrate or non-substrate is still uncertain in 

the literature. Other compounds that were misclassified include Apigenin and 

Quercetin which are Flavanoids that have been classified as non-substrates by 

SVM.  Similar to progesterone, misclassification could have occurred based on 

lipophilicity with both compounds exhibiting low LogP values (Appendix 3). 

Results from the Matsson study, suggest that flavanoids interact with the ATP- 

binding region of P-gp (Matsson, et al., 2009). Compounds did not interact with 
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this segment of P-gp during docking and so it could be suggested that these two 

compounds were misclassified by the model as a result of this. Overall, Table 6 

shows a summary of accuracy performance by all models and this shows that the 

best performing model was SVM 3, due to a better performance of Youden’s J 

and MCC for the validation set.  

In addition to limitations discussed previously, accuracy of the models developed 

in this study could have been improved if a larger data set was used. A larger 

dataset would have provided more valuable information and this is necessary to 

build models of better quality (Chen, et al., 2011).  Using the data set from the 

Matsson paper will have affected results as the data collected in this paper was 

based on human P-gp, whilst the structures used for docking are of mouse P-gp 

which has 87% sequence identity to human p-glycoprotein (Aller, et al., 2009). 

By forming a data set in this way reduces the reliability of the data set and 

therefore the class of compounds should be checked against other sources. 

Finally, docking energies were only calculated using one docking program. It 

would have been interesting to compare docking energies using other docking 

software such as Glide, Gold and FlexX. 
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Conclusions 

In this study, a data set of 123 compounds was docked to P-gp structures 

available from the protein data bank.  Docking results revealed that compounds 

had better docking performance at the QZ59-SSS binding site in P-gp 3G61 

rather than the binding sites in 3G5U. The amino acid residues involved in all 

sites showed that some amino acid residues overlap and this suggests that 

compounds may have the same or overlapping residues in their binding sites. 

This also complements other studies, which suggest that   P-gp is a polyspecific 

protein, in which a diverse range of compounds are able to bind to it. However, it 

is important to understand that the structures described by Aller et al, merely 

represent the authors view of the P-gp structure obtained in their study. For this 

reason, we should consider that the accuracy of this structure is still uncertain 

and coupled with the relatively low resolution of the structure, the use of these 

protein structures for docking is limited.  

Despite this, results from this study do provide evidence about the amino acid 

residues that are important in drug binding e.g. Phe 724 and Val 978. In addition 

to this, docking results appear to be better when the protein structure 

conformation has already been changed in order to allow binding of a ligand as 

was observed from docking results of    P-gp 3G61 co-crystallised with QZ59-

SSS. Other significant results from this study also show that LogP is a major 

contributor to compounds availability and compounds with high LogP are more 

likely to be able to bind to P-glycoprotein.   

 



46 

 

Future work 

The findings from this study do allow us to propose suggestions for future work. 

Amino acid residues that were part of all binding site sequences Phe 724 and Val 

978 could possibly be a target for inhibitors of P-glycoprotein. These residues 

appear to be vital for P-gp interactions and inhibitors could aim to covalently 

bind to residues such as these, therefore disrupting P-gp function.  The lack of 

high resolution models has severely limited work in this field but if higher 

resolution models of P-gp were made available, this would greatly improve the 

identification of binding sites within P-glycoprotein. Higher resolution models 

will also improve docking energies and allow us to visualise the interactions 

between P-gp and compounds. After combining docking scores and molecular 

descriptors to build models in this study, this could possibly be the way forward 

in improving identification of P-gp substrates and inhibitors. By using docking 

results, molecular descriptor calculations and results from other in-silico methods 

such as QSAR and pharmacophore modelling, this may provide better outcomes 

for identification of P-gp substrates and inhibitors. Although this may prove 

challenging, there are studies which suggest that combining methods together to 

build a global model can be beneficial (Li, et al., 2007; Pajeva, et al., 2009). 
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APPENDIX 

Appendix 1: SMILES CODE 

Compound SMILES CODE 

Chlorprotixene Clc2cc1C(\c3c(Sc1cc2)cccc3)=C/CCN(C)C 

Cyclosporine-A O=C1N(C)[C@H](C(=O)N[C@H](C(=O)N(C)CC(=O)N(C)[C@H](C(=O)N[C

@H](C(=O)N(C)[C@H](C(=O)N[C@H](C(=O)N[C@@H](C(=O)N([C@H](C(

=O)N(C)[C@H](C(=O)N(C)[C@H]1C(C)C)CC(C)C)CC(C)C)C)C)C)CC(C)C)

C(C)C)CC(C)C)CC)[C@H](O)[C@H](C)C/C=C/C 

Diethylstilbestrol  Oc2ccc(/C(=C(/c1ccc(O)cc1)CC)CC)cc2 

Dipyridamole n3c(nc2c(nc(nc2N1CCCCC1)N(CCO)CCO)c3N4CCCCC4)N(CCO)CCO 

Flupentixol FC(F)(F)c2cc1C(\c3c(Sc1cc2)cccc3)=C/CCN4CCN(CCO)CC4 

GF120918 O=C2c1cccc(c1Nc3c2cccc3OC)C(=O)Nc4ccc(cc4)CCN6Cc5c(cc(OC)c(OC)c5)

CC6 

Isradipine O=C(OC)\C3=C(\N\C(=C(\C(=O)OC(C)C)C3c1cccc2nonc12)C)C 

Ivermectin A CO[C@H]1C[C@@H](O[C@@H](C)[C@@H]1O)O[C@@H]2[C@@H](OC)

C[C@@H](O[C@H]2C)O[C@@H]3C(C)=CC[C@@H]6C[C@H](OC(=O)[C

@@H]4C=C(C)[C@@H](O)[C@H]5OCC(=CC=C[C@@H]3C)[C@@]45O)C[

C@@]7(O6)CC[C@H](C)[C@H](O7)[C@@H](C)CC 

Ivermectin B CO[C@H]1C[C@@H](O[C@@H](C)[C@@H]1O)O[C@@H]2[C@@H](OC)

C[C@@H](O[C@H]2C)O[C@@H]3C(C)=CC[C@@H]6C[C@H](OC(=O)[C

@@H]4C=C(C)[C@@H](O)[C@H]5OCC(=CC=C[C@@H]3C)[C@@]45O)C[

C@@]7(O6)CC[C@H](C)[C@H](O7)C(C)C 

Loperamide Clc1ccc(cc1)C4(O)CCN(CCC(c2ccccc2)(c3ccccc3)C(=O)N(C)C)CC4 

Lopinavir O=C(N[C@@H](Cc1ccccc1)[C@@H](O)C[C@@H](NC(=O)[C@@H](N2C(=

O)NCCC2)C(C)C)Cc3ccccc3)COc4c(cccc4C)C 

MK571  CN(C)C(=O)CCSC(SCCC(=O)O)c1cccc(c1)/C=C/c2ccc3ccc(Cl)cc3n2 

Quercetin O=C1c3c(O/C(=C1/O)c2ccc(O)c(O)c2)cc(O)cc3O 

Reserpine O=C(OC)[C@H]6[C@H]4C[C@@H]3c2nc1cc(OC)ccc1c2CCN3C[C@H]4C[C

@@H](OC(=O)c5cc(OC)c(OC)c(OC)c5)[C@@H]6OC 

Ritonavir CC(C)c4nc(CN(C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](Cc1ccccc1)C[C

@H](O)[C@H](Cc2ccccc2)NC(=O)OCc3cncs3)cs4 

Saquinavir  O=C(N)C[C@H](NC(=O)c1nc2c(cc1)cccc2)C(=O)N[C@@H](Cc3ccccc3)[C@

H](O)CN5[C@H](C(=O)NC(C)(C)C)C[C@@H]4CCCC[C@@H]4C5 

Silymarin  O=C4c5c(O)cc(O)cc5O[C@H](c2ccc1O[C@H]([C@@H](Oc1c2)c3ccc(O)c(O

C)c3)CO)[C@H]4O 

Tamoxifen  O(c1ccc(cc1)/C(c2ccccc2)=C(\c3ccccc3)CC)CCN(C)C 
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Terfenadine  OC(c1ccccc1)(c2ccccc2)C4CCN(CCCC(O)c3ccc(cc3)C(C)(C)C)CC4 

Thioridazine S(c2cc1N(c3c(Sc1cc2)cccc3)CCC4N(C)CCCC4)C 

Benzbromarone Brc1cc(cc(Br)c1O)C(=O)c2c3ccccc3oc2CC 

Amiodarone Ic1cc(cc(I)c1OCCN(CC)CC)C(=O)c2c3ccccc3oc2CCCC 

Apigenin O=C\1c3c(O/C(=C/1)c2ccc(O)cc2)cc(O)cc3O 

17ß-estradiol  C[C@]12CC[C@H]3[C@H]([C@@H]1CC[C@@H]2O)CCC4=C3C=CC(=C4)

O 

Biochanin A O=C\1c3c(O/C=C/1c2ccc(OC)cc2)cc(O)cc3O 

Chlorpromazine CN(C)CCCN1c2ccccc2Sc3c1cc(cc3)Cl 

Chrysin O=C\1c3c(O/C(=C/1)c2ccccc2)cc(O)cc3O 

Ergocristine  O=C3N1CCC[C@H]1[C@]2(O)O[C@](C(=O)N2[C@H]3Cc4ccccc4)(NC(=O)[

C@@H]8/C=C7/c5cccc6c5c(cn6)C[C@H]7N(C)C8)C(C)C 

Felodipine  O=C(OCC)\C1=C(\N/C(=C(/C(=O)OC)C1c2cccc(Cl)c2Cl)C)C 

Gefitinib  COc1cc2c(cc1OCCCN3CCOCC3)c(ncn2)Nc4ccc(c(c4)Cl)F 

Genistein Oc1ccc(cc1)C\3=C\Oc2cc(O)cc(O)c2C/3=O 

Glibenclamide COc1ccc(Cl)cc1C(=O)NCCc2ccc(cc2)S(=O)(=O)NC(=O)Nc3ccccc3 

Imatinib Cc3ccc(cc3Nc1nc(ccn1)c2cccnc2)NC(=O)c4ccc(cc4)CN5CCN(C)CC5 

Ketoconazole  O=C(N5CCN(c4ccc(OC[C@@H]1O[C@](OC1)(c2ccc(Cl)cc2Cl)Cn3ccnc3)cc4

)CC5)C 

Kol 43 O=C(OC(C)(C)C)CC[C@@H]1NC(=O)[C@H]4N(C1=O)[C@H](c3c(c2ccc(O

C)cc2n3)C4)CC(C)C 

Medroxyprogesterone O=C4\C=C2/[C@]([C@H]1CC[C@@]3([C@@](O)(C(=O)C)CC[C@H]3[C@

@H]1C[C@@H]2C)C)(C)CC4 

Mifepristone O=C5\C=C4/C(=C3/[C@@H](c1ccc(N(C)C)cc1)C[C@]2([C@@H](CC[C@]2(

C#CC)O)[C@@H]3CC4)C)CC5 

Nicardipine O=C(OCCN(Cc1ccccc1)C)\C2=C(\N/C(=C(/C(=O)OC)C2c3cccc([N+]([O-

])=O)c3)C)C 

Nitrendipine  O=C(OCC)\C1=C(\N/C(=C(/C(=O)OC)C1c2cccc([N+]([O-])=O)c2)C)C 

Simvastatin O=C(O[C@@H]1[C@H]3C(=C/[C@H](C)C1)\C=C/[C@@H]([C@@H]3CC[C

@H]2OC(=O)C[C@H](O)C2)C)C(C)(C)CC 

Tipranavir CCC[C@]1(CC(/O)=C(\C(=O)O1)[C@H](CC)c3cccc(NS(=O)(=O)c2ccc(cn2)C

(F)(F)F)c3)CCc4ccccc4 

Verapamil N#CC(c1cc(OC)c(OC)cc1)(CCCN(CCc2ccc(OC)c(OC)c2)C)C(C)C 

Diltiazem O=C2N(c3c(S[C@@H](c1ccc(OC)cc1)[C@H]2OC(=O)C)cccc3)CCN(C)C 

Taurolithocholic acid  C[C@H](CCC(=O)NCCS(=O)(=O)O)[C@H]1CC[C@@H]2[C@@]1(CC[C@

H]3[C@H]2CC[C@H]4[C@@]3(CC[C@H](C4)O)C)C 

Haloperidol c1cc(ccc1C(=O)CCCN2CCC(CC2)(c3ccc(cc3)Cl)O)F 
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Maprotiline  c1ccc3c(c1)C4c2ccccc2C3(CC4)CCCNC 

Noscapine O=C2OC(c1ccc(OC)c(OC)c12)C5N(C)CCc4c5c(OC)c3OCOc3c4 

Prednisone  O=C(CO)[C@@]3(O)CC[C@H]2[C@@H]4CC\C1=C\C(=O)\C=C/[C@]1(C)[

C@H]4C(=O)C[C@@]23C 

Procyclidine OC(c1ccccc1)(CCN2CCCC2)C3CCCCC3 

Propafenone O=C(c1ccccc1OCC(O)CNCCC)CCc2ccccc2 

Quinidine O(c4cc1c(nccc1[C@H](O)[C@@H]2N3CC[C@@H](C2)[C@@H](/C=C)C3)cc

4)C 

Quinine  O(c4cc1c(nccc1[C@@H](O)[C@H]2N3CC[C@@H](C2)[C@@H](/C=C)C3)cc

4)C 

Taurocholate C[C@H](CCC(=O)NCCS(=O)(=O)O)[C@H]1CC[C@@H]2[C@@]1([C@H](

C[C@H]3[C@H]2[C@@H](C[C@H]4[C@@]3(CC[C@H](C4)O)C)O)O)C 

Tetracycline CN(C)[C@@H]2C(\O)=C(\C(N)=O)C(=O)[C@@]3(O)C(/O)=C4/C(=O)c1c(ccc

c1O)[C@@](C)(O)C4CC23 

Vinblastine O=C(OC)[C@]4(c2c(c1ccccc1n2)CCN3C[C@](O)(CC)C[C@H](C3)C4)c5c(O

C)cc6c(c5)[C@@]89[C@@H](N6C)[C@@](O)(C(=O)OC)[C@H](OC(=O)C)[

C@@]7(/C=C\CN([C@@H]78)CC9)CC 

Amodiaquine  Clc1cc2nccc(c2cc1)Nc3cc(c(O)cc3)CN(CC)CC 

Fumitremorgin C  O=C4N5[C@H](C(=O)N3[C@H](c2c(c1ccc(OC)cc1n2)C[C@H]34)\C=C(/C)C)

CCC5 

Hoechst 33342 CCOc1ccc(cc1)c2[nH]c3cc(ccc3n2)c4[nH]c5cc(ccc5n4)N6CCN(CC6)C 

Mitoxantrone O=C2c1c(c(NCCNCCO)ccc1NCCNCCO)C(=O)c3c2c(O)ccc3O 

Naringenin O=C2c3c(O[C@H](c1ccc(O)cc1)C2)cc(O)cc3O 

Omeprazole O=S(c2nc1ccc(OC)cc1n2)Cc3ncc(c(OC)c3C)C 

Prazosin O=C(N3CCN(c2nc1cc(OC)c(OC)cc1c(n2)N)CC3)c4occc4 

Progesterone O=C4\C=C2/[C@]([C@H]1CC[C@@]3([C@@H](C(=O)C)CC[C@H]3[C@@

H]1CC2)C)(C)CC4 

Bromosulfalein c1cc(c(cc1/C(=C/2\C=CC(=O)C(=C2)S(=O)(=O)[O-

])/c3c(c(c(c(c3Br)Br)Br)Br)C(=O)O)S(=O)(=O)[O-])O 

Lansoprazole FC(F)(F)COc1c(c(ncc1)CS(=O)c3nc2ccccc2n3)C 

P-aminohippuric acid O=C(c1ccc(N)cc1)NCC(=O)O 

Rifampicin CN1CCN(CC1)/N=C/c2c(O)c3c5C(=O)C4(C)O/C=C/C(OC)C(C)C(C(C)C(O)C(

C)C(O)C(C)\C=C\C=C(\C)C(=O)Nc2c(O)c3c(O)c(C)c5O4)C(=O)OC 

1-methyl-4-

phenylpyridinium 

c2cc(c1cc[n+](cc1)C)ccc2 



55 

 

4-Methylumbelliferone 

glucuronide 

O=C/2Oc1cc(O)ccc1\C(=C\2)C 

Amantadine  C1C2CC3CC1CC(C2)(C3)N 

Amiloride Clc1nc(C(=O)\N=C(/N)N)c(nc1N)N 

Amitriptyline  c3cc2c(/C(c1c(cccc1)CC2)=C\CCN(C)C)cc3 

Antipyrine O=C2\C=C(/N(N2c1ccccc1)C)C 

Atropine CN3[C@H]1CC[C@@H]3C[C@@H](C1)OC(=O)C(CO)c2ccccc2 

Budesonide O=C\1\C=C/[C@]2(/C(=C/1)CC[C@H]3[C@H]4[C@](C[C@H](O)[C@H]23)(

[C@@]5(OC(O[C@@H]5C4)CCC)C(=O)CO)C)C 

Captopril O=C(O)[C@H]1N(C(=O)[C@H](C)CS)CCC1 

Carbamazepine c1ccc2c(c1)C=Cc3ccccc3N2C(=O)N 

Carnitine [O-]C(=O)C[C@@H](O)C[N+](C)(C)C 

Cefamandole O=C2N1/C(=C(\CS[C@@H]1[C@@H]2NC(=O)[C@H](O)c3ccccc3)CSc4nnnn

4C)C(=O)O 

Chloroquine Clc1cc2nccc(c2cc1)NC(C)CCCN(CC)CC 

Chlorzoxazone  Clc2cc1c(OC(=O)N1)cc2 

Cholic acid  C[C@H](CCC(=O)O)[C@H]1CC[C@@H]2[C@@]1([C@H](C[C@H]3[C@H]

2[C@@H](C[C@H]4[C@@]3(CC[C@H](C4)O)C)O)O)C 

Cimetidine N#CN\C(=N/C)NCCSCc1ncnc1C 

Colchicine O=C(N[C@@H]3C\1=C\C(=O)C(\OC)=C/C=C/1c2c(cc(OC)c(OC)c2OC)CC3)

C 

Dehydroisoandrosterone

-3-sulfate 

O=S(=O)(O)O[C@@H]4C/C3=C/C[C@@H]2[C@H](CC[C@@]1(C(=O)CC[C

@H]12)C)[C@@]3(C)CC4 

Desipramine  c1cc3c(cc1)CCc2c(cccc2)N3CCCNC 

Digoxin O=C\1OC/C(=C/1)[C@H]2CC[C@@]8(O)[C@]2(C)[C@H](O)C[C@H]7[C@

H]8CC[C@H]6[C@]7(C)CC[C@H](O[C@@H]5O[C@H](C)[C@@H](O[C@

@H]4O[C@@H]([C@@H](O[C@@H]3O[C@@H]([C@@H](O)[C@@H](O)

C3)C)[C@@H](O)C4)C)[C@@H](O)C5)C6 

Doxorubicin C[C@H]1[C@H]([C@H](C[C@@H](O1)O[C@H]2C[C@@](Cc3c2c(c4c(c3O)

C(=O)c5cccc(c5C4=O)OC)O)(C(=O)CO)O)N)O 

Erythromycin  CC[C@@H]1[C@@]([C@@H]([C@H](C(=O)[C@@H](C[C@@]([C@@H]([

C@H]([C@@H]([C@H](C(=O)O1)C)O[C@H]2C[C@@]([C@H]([C@@H](O

2)C)O)(C)OC)C)O[C@H]3[C@@H]([C@H](C[C@H](O3)C)N(C)C)O)(C)O)C

)C)O)(C)O 

Estradiol-17ß-

glucuronide  

O=C(O)[C@@H]5OC(O[C@H]4CC[C@@H]2[C@]4(C)CC[C@@H]1c3ccc(O

)cc3CC[C@H]12)[C@@H](O)[C@H](O)[C@H]5O 
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Etoposide C[C@@H]1OC[C@@H]2[C@@H](O1)[C@@H]([C@H]([C@@H](O2)O[C@

@H]3c4cc5c(cc4[C@H]([C@@H]6[C@@H]3COC6=O)c7cc(c(c(c7)OC)O)OC

)OCO5)O)O 

Fexofenadine  O=C(O)C(c1ccc(cc1)C(O)CCCN2CCC(CC2)C(O)(c3ccccc3)c4ccccc4)(C)C 

Flucloxacillin O=C(O)[C@@H]3N4C(=O)[C@@H](NC(=O)c2c(onc2c1c(F)cccc1Cl)C)[C@H

]4SC3(C)C 

Hydrochlorothiazide O=S(=O)(c1c(Cl)cc2c(c1)S(=O)(=O)NCN2)N 

Hydrocortisone  O=C4\C=C2/[C@]([C@H]1[C@@H](O)C[C@@]3([C@@](O)(C(=O)CO)CC[

C@H]3[C@@H]1CC2)C)(C)CC4 

Indinavir CC(C)(C)NC(=O)[C@@H]1CN(CCN1C[C@H](C[C@@H](Cc2ccccc2)C(=O)

N[C@H]3c4ccccc4C[C@H]3O)O)Cc5cccnc5 

Indomethacin  Cc1c(c2cc(ccc2n1C(=O)c3ccc(cc3)Cl)OC)CC(=O)O 

Mesalazine O=C(O)c1cc(ccc1O)N 

Methotrexate  O=C(O)[C@@H](NC(=O)c1ccc(cc1)N(C)Cc2nc3c(nc2)nc(nc3N)N)CCC(=O)O 

Metoprolol  O(c1ccc(cc1)CCOC)CC(O)CNC(C)C 

Nevirapine  O=C2Nc1c(ccnc1N(c3ncccc23)C4CC4)C 

Nicotine n1cc(ccc1)[C@H]2N(C)CCC2 

Ofloxacin Fc4cc1c2N(/C=C(\C1=O)C(=O)O)C(COc2c4N3CCN(C)CC3)C 

Phenobarbital CCC1(C(=NC(=O)N=C1O)O)c2ccccc2 

Phenylethyl 

isothiocyanate 

S=C=N/CCc1ccccc1 

Phenytoin  O=C2NC(=O)NC2(c1ccccc1)c3ccccc3 

Pravastatin O=C(O)C[C@H](O)C[C@H](O)CC[C@H]2[C@H](/C=C\C1=C\[C@@H](O)C

[C@H](OC(=O)[C@@H](C)CC)[C@@H]12)C 

Prednisolone  O=C\1\C=C/[C@]4(/C(=C/1)CC[C@@H]2[C@@H]4[C@@H](O)C[C@@]3([

C@@](O)(C(=O)CO)CC[C@@H]23)C)C 

Probenecid O=S(=O)(N(CCC)CCC)c1ccc(C(=O)O)cc1 

Propranolol CC(C)NCC(COc1cccc2c1cccc2)O 

Ranitidine  [O-][N+](=O)\C=C(\NC)NCCSCc1oc(cc1)CN(C)C 

Sotalol O=S(=O)(Nc1ccc(cc1)C(O)CNC(C)C)C 

Sparfloxacin C[C@@H]1CN(C[C@@H](N1)C)c2c(c(c3c(c2F)n(cc(c3=O)C(=O)O)C4CC4)N

)F 

Sulfasalazine O=S(=O)(Nc1ccccn1)c3ccc(/N=N/c2cc(C(O)=O)c(O)cc2)cc3 
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Sulfinpyrazone O=C2N(c1ccccc1)N(C(=O)C2CCS(=O)c3ccccc3)c4ccccc4 

Sulindac O=S(c1ccc(cc1)\C=C3/c2ccc(F)cc2\C(=C3C)CC(=O)O)C 

Testosterone  O=C4\C=C2/[C@]([C@H]1CC[C@@]3([C@@H](O)CC[C@H]3[C@@H]1CC

2)C)(C)CC4 

Tinidazole [O-][N+](=O)c1cnc(n1CCS(=O)(=O)CC)C 

Trimethoprim  COc1cc(cc(c1OC)OC)Cc2cnc(nc2N)N 

Valproic acid  O=C(O)C(CCC)CCC 

Warfarin  CC(=O)CC(C\1=C(/O)c2ccccc2OC/1=O)c3ccccc3 

Vincristine O=C(OC)[C@]4(c2c(c1ccccc1n2)CCN3C[C@](O)(CC)C[C@@H](C3)C4)c5c(

OC)cc6c(c5)[C@@]89[C@@H](N6C=O)[C@@](O)(C(=O)OC)[C@H](OC(=O

)C)[C@@]7(/C=C\CN([C@@H]78)CC9)CC 

Zidovudine O=C/1NC(=O)N(\C=C\1C)[C@@H]2O[C@@H]([C@@H](\N=[N+]=[N-

])C2)CO 
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Appendix 2: Highest docking score for each compound 

Compound ABCB1P-
gp 

S-Ver3g5u S/QZ59upper S/QZ59lower S/QZ59rrr S/3G61 

Chlorprotixene 1 -9.3004074 -8.459938 -8.1764832 -8.803051 -9.436208 

Cyclosporine-A 1 -10.156612 -13.913272 -15.671002 -16.93857 -17.60867 

Diethylstilbestrol  1 -9.4258194 -7.717423 -7.9587054 -10.264479 -9.587139 

Dipyridamole 1 -11.091798 -10.233459 -10.369469 -11.163453 -12.34627 

Flupentixol 1 -10.632503 -10.661702 -11.41256 -10.590546 -11.23787 

GF120918 1 -9.8905039 -10.713839 -9.8388119 -10.92973 -11.64353 

Isradipine 1 -10.450793 -11.525162 -10.018229 -9.8677025 -10.29302 

Ivermectin A 1 -15.407999 -17.49052 -15.053252 -14.21278 -13.68392 

Ivermectin B 1 -8.5880575 -14.182034 -15.702105 -12.753691 -11.51765 

Loperamide 1 -9.830308 -9.6608973 -10.113488 -10.485672 -12.6576 

Lopinavir 1 -10.369528 -9.2258024 -10.088408 -10.676792 -12.42869 

MK571  1 -10.548156 -12.268476 -9.7600927 -9.9758444 -12.00426 

Quercetin 1 -9.6049185 -9.846427 -9.4942179 -10.662757 -9.802873 

Reserpine 1 -9.6042442 -11.332067 -10.40928 -11.331938 -14.4181 

Ritonavir 1 -11.058732 -12.277213 -9.7571392 -10.353203 -12.82965 

Saquinavir  1 -11.114758 -10.143492 -10.06812 -9.9175653 -13.85331 

Silymarin  1 -12.211308 -12.740396 -11.329776 -12.592422 -15.67663 

Tamoxifen  1 -9.6038904 -8.5444183 -9.0636072 -10.022164 -11.78149 

Terfenadine A44 1 -10.828145 -8.8642521 -10.5563 -11.039285 -11.73056 
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Thioridazine 1 -8.9083242 -7.8792377 -10.050879 -9.5215521 -10.70159 

Benzbromarone 0 -10.346081 -8.221384 -9.9977951 -10.500174 -11.18317 

Amiodarone 1 -10.70286 -10.739605 -9.6271276 -10.519768 -12.65702 

Apigenin 1 -10.61247 -9.2287788 -8.6095076 -10.622262 -9.70258 

17β-estradiol  1 -9.3679514 -7.8578453 -9.462574 -10.319477 -8.940121 

Biochanin A 1 -9.2910938 -10.263983 -8.1855145 -8.2347078 -9.657901 

Chlorpromazine 1 -8.3345718 -7.7475543 -7.8980999 -8.9394903 -10.38405 

Chrysin 1 -10.554909 -8.3061218 -10.490614 -10.57549 -8.911892 

Ergocristine  1 -10.259492 -10.541076 -10.302964 -11.130157 -12.58193 

Felodipine  1 -9.6793785 -7.7453742 -9.5227003 -9.5240564 -10.0143 

Gefitinib  1 -10.119772 -10.34021 -9.0785007 -11.483757 -11.43558 

Genistein 1 -9.0585032 -8.3349791 -10.125244 -9.279067 -9.529384 

Glibenclamide 1 -10.019725 -11.332147 -8.7031746 -10.400661 -11.69834 

Imatinib 1 -10.306933 -10.95615 -10.700336 -10.292026 -10.45726 

Ketoconazole  1 -10.214561 -11.057756 -9.1053286 -9.9653654 -11.57038 

Kol 43 1 -8.9050388 -10.648838 -9.1451588 -10.571228 -12.40026 

Medroxyprogesterone 1 -9.6898108 -7.7250443 -9.3627224 -9.9533339 -11.0971 

Mifepristone 1 -10.505825 -9.1948147 -10.158919 -9.4235382 -13.46323 

Nicardipine 1 -10.663759 -9.9746799 -9.4923162 -10.301338 -13.60907 

Nitrendipine  1 -9.9102268 -8.5903606 -9.1928492 -9.6273088 -10.03407 

Simvastatin 1 -10.496209 -8.8446598 -9.1530542 -9.7082663 -11.98095 

Tipranavir 1 -11.627663 -10.544059 -10.162716 -11.806179 -14.14789 

Verapamil 1 -10.519194 -10.790701 -9.2990332 -8.6394806 -12.54895 

Diltiazem 1 -9.7515516 -9.5250664 -7.7090964 -9.7192259 -12.28151 

Taurolithocholic acid  1 -10.897123 -9.1023989 -10.131459 -11.243021 -12.83619 
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Haloperidol 1 -9.2387438 -10.970337 -8.5671577 -9.6470385 -11.13091 

Maprotiline  1 -9.5215988 -8.9605398 -8.6476765 -9.4146843 -9.887517 

Noscapine 1 -10.431744 -10.722205 -10.501363 -10.413963 -12.00903 

Prednisone  1 -10.309956 -10.344711 -9.5839205 -10.487357 -10.65359 

Procyclidine 1 -8.8565769 -8.4229498 -8.4684896 -8.7602282 -9.858139 

Propafenone 1 -9.1153469 -9.4176445 -8.7731705 -10.269821 -11.47182 

Quinidine 1 -9.539341 -7.6209884 -9.5094252 -9.761198 -9.330069 

Quinine A50 1 -9.3600197 -8.193058 -8.6307859 -10.090897 -11.55817 

Taurocholate 1 -10.252878 -9.6550837 -10.120589 -13.826485 -15.2546 

Tetracycline 1 -12.25106 -9.2137432 -9.9086618 -12.249457 -11.59131 

Vinblastine 1 -7.6626611 -9.919591 -11.387159 -9.285367 -13.51052 

Amodiaquine  0 -10.609269 -9.0921354 -8.8429432 -10.655272 -10.72421 

Fumitremorgin C  0 -10.10892 -9.4868574 -9.3236475 -10.058537 -10.67109 

Hoechst 33342 0 -9.6359091 -11.045726 -9.3159275 -10.280766 -11.00911 

Mitoxantrone 0 -12.069983 -11.434206 -10.387532 -10.386574 -13.87651 

Naringenin 0 -10.699261 -9.1101408 -10.72489 -10.711188 -8.341228 

Omeprazole 0 -9.6031446 -10.293558 -10.02894 -8.8998051 -9.922818 

Prazosin 0 -8.8828516 -10.613285 -9.3761845 -9.1080608 -11.63355 

Progesterone 0 -9.2005606 -8.8879795 -8.9872503 -10.076205 -10.39482 

Bromosulfalein 0 -12.974476 -12.310234 -11.747195 -12.696462 -15.77145 

Lansoprazole 0 -9.9817438 -9.4636879 -8.6808853 -9.5217371 -10.55191 

P-aminohippuric acid 0 -7.5560284 -7.3900452 -7.3223267 -7.7994919 -8.224644 

Rifampicin 0 -10.881661 -14.776971 -12.707092 -15.607213 -15.85894 

1-methyl-4-phenylpyridinium 0 -6.934773 -7.7081928 -6.4839993 -6.8460197 -7.963677 

4-Methylumbelliferoneglucuronide 0 -7.9916229 -7.8331814 -8.9206944 -7.9753709 -6.826306 
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Amantadine  0 -6.3526926 -5.3320203 -6.3266449 -6.3345504 -7.503057 

Amiloride 0 -8.8389435 -7.5056643 -7.6710935 -8.2251282 -8.684454 

Amitriptyline A98 0 -9.2818766 -8.9655581 -9.3389559 -9.2117443 -9.565305 

Antipyrine 0 -7.3381066 -6.6651206 -7.3842626 -7.571815 -7.122243 

Atropine 0 -9.0077009 -8.051362 -8.3661737 -8.9017839 -9.776143 

Budesonide 0 -11.293019 -11.60719 -9.1883268 -9.7388487 -11.08708 

Captopril 0 -7.6405721 -8.0399799 -8.0298433 -8.188179 -7.657503 

Carbamazepine 0 -8.5274229 -7.2034917 -8.4886007 -9.3757973 -9.013274 

Carnitine 0 -7.2166624 -7.0989256 -6.9449291 -6.4096179 -8.174127 

Cefamandole 0 -10.145037 -10.903329 -10.494161 -12.38217 -12.55593 

Chloroquine 0 -9.532608 -9.0205898 -8.1266356 -9.2494192 -9.54703 

Chlorzoxazone  0 -7.3827214 -6.3034315 -6.025938 -7.3652225 -7.332795 

Cholic acid  0 -10.776716 -8.9253407 -8.5485239 -10.711271 -12.42511 

Cimetidine 0 -7.7259474 -7.2465606 -8.2314672 -8.4074793 -8.449764 

Colchicine 0 -10.714324 -12.727611 -10.133555 -11.653122 -11.96499 

Dehydroisoandrosterone-3-sulfate 0 -9.270402 -10.271486 -8.6834316 -9.9046402 -11.77644 

Desipramine  0 -8.9099407 -9.0193939 -8.8133793 -8.9883986 -9.752567 

Digoxin 0 -11.16558 -15.264123 -13.845214 -12.67726 -14.25247 

Doxorubicin 0 -12.270447 -9.7047529 -12.654102 -12.111775 -14.87355 

Erythromycin  0 -11.146794 -12.131126 -12.796752 -12.736913 -13.13491 

Estradiol-17β-glucuronide A66 0 -11.490866 -10.448287 -10.062901 -11.392282 -14.00624 

Etoposide 0 -11.064533 -11.451082 -10.737698 -12.774714 -15.36379 

Fexofenadine  0 -10.728499 -12.205088 -9.9871464 -11.987885 -10.3285 

Flucloxacillin 0 -11.07047 -9.6187134 -9.8800745 -10.685433 -11.20973 

Hydrochlorothiazide 0 -8.4825487 -8.925005 -8.2919388 -8.507925 -9.363761 
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Hydrocortisone  0 -10.304188 -9.6608438 -9.8306179 -10.031824 -10.60378 

Indinavir 0 -9.6872206 -11.956147 -9.8693228 -11.337888 -12.38338 

Indomethacin  0 -9.4931955 -12.066354 -8.9237766 -9.7628975 -12.64803 

Mesalazine 0 -6.9549108 -7.6400247 -8.1257553 -7.9664588 -7.541798 

Methotrexate  0 -11.986519 -12.722812 -10.812212 -10.057438 -13.23796 

Metoprolol  0 -7.9435692 -9.3319874 -7.7133036 -8.3539362 -10.60786 

Nevirapine  0 -9.0224047 -8.4566927 -7.8702278 -8.9860678 -7.827874 

Nicotine 0 -6.9170685 -7.0697546 -6.1248832 -6.8440375 -7.391009 

Ofloxacin 0 -8.5635834 -10.142664 -8.5361586 -10.691373 -10.93162 

Phenobarbital  0 -9.6933594 -7.4914031 -9.5400419 -8.8618202 -8.699678 

Phenylethyl isothiocyanate 0 -6.7740951 -5.9904637 -6.1920362 -6.5109282 -7.488194 

Phenytoin  0 -8.8452339 -7.7078223 -8.1711397 -8.8362265 -8.585069 

Pravastatin 0 -10.683473 -10.081711 -8.7615652 -11.556952 -12.16104 

Prednisolone  0 -10.106754 -9.0637264 -9.5830917 -10.937309 -10.8012 

Probenecid 0 -8.9605207 -9.3834229 -8.4948893 -8.909256 -8.614807 

Propranolol 0 -9.3896971 -9.2584066 -8.6361856 -8.5617714 -10.65507 

Ranitidine  0 -8.7418537 -8.3862219 -8.4139299 -8.5178547 -9.984197 

Sotalol 0 -8.5546455 -8.9202785 -9.2301331 -8.9183006 -9.847155 

Sparfloxacin 0 -9.6356382 -10.27851 -9.5493898 -10.364615 -11.56888 

Sulfasalazine 0 -10.049615 -10.035481 -9.5956984 -10.255516 -11.54249 

Sulfinpyrazone 0 -10.12289 -9.5853405 -9.0000858 -10.790933 -11.81816 

Sulindac 0 -9.1808004 -11.152394 -9.6613617 -9.4821892 -11.10014 

Testosterone  0 -9.7777252 -7.3668432 -8.6111145 -9.8584127 -9.95339 

Tinidazole 0 -8.1798 -8.2702465 -8.0159121 -8.2341499 -9.185381 

Trimethoprim  0 -8.3030396 -10.153893 -9.2529078 -9.0906744 -9.998123 
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Valproic acid  0 -7.5599384 -6.473103 -6.8606076 -6.737505 -7.569929 

Warfarin A37 0 -10.079456 -8.9441195 -9.6533222 -9.8448915 -10.05809 

Vincristine 0 -9.6095648 -12.462447 -10.760735 -10.002497 -14.47043 

Zidovudine 0 -9.2348881 -8.7530203 -8.329999 -10.314642 -8.797813 
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Appendix 3: LogP, LogD and MW of compounds 

Substance ABCB1P-
gp 

Group S/3G61-
QZ59RR 

LogD(2) LogD(5.5) LogD(6.5) LogD(7.4) LogD(10) LogP MW 

17ß-estradiol  1 Train -8.94012 4.15 4.15 4.15 4.14 3.96 4.15 272.38 

4-
Methylumbelliferoneglucuronide 

0 Train -6.82631 2.43 2.43 2.42 2.33 0.46 2.43 176.17 

Amantadine  0 Train -7.50306 -0.66 -0.66 -0.63 -0.47 1.62 2.44 151.25 

Amiloride 0 Train -8.68445 0.76 1.22 1.22 1.22 1.22 1.22 229.63 

Amiodarone 1 Train -12.657 4.71 4.78 5.14 5.87 7.72 7.81 645.31 

Amitriptyline  0 Train -9.5653 1.31 1.41 1.87 2.64 4.35 4.41 277.4 

Amodiaquine  0 Train -10.7242 -0.96 0.0236 0.31 0.95 2.36 3.13 355.86 

Atropine 0 Train -9.77614 -1.72 -1.7 -1.57 -1.09 1.09 1.38 289.37 

Benzbromarone 0 Train -11.1832 6.65 5.75 4.82 4.05 3.5 6.65 424.08 

Biochanin A 1 Train -9.6579 3.34 3.28 2.93 2.11 -0.77 3.34 284.26 

Bromosulfalein 0 Train -15.7715 -3.67 -4.04 -4.04 -4.06 -4.89 1.46 794.03 

Budesonide 0 Train -11.0871 3.2 3.2 3.2 3.2 3.2 3.2 430.53 

Captopril 0 Train -7.6575 1.98 0.13 -0.81 -1.46 -2.14 1.99 217.29 

Carbamazepine 0 Train -9.01327 1.89 1.89 1.89 1.89 1.89 1.89 236.27 

Cefamandole 0 Train -12.5559 -0.17 -2.87 -3.55 -3.75 -3.8 -0.0443 462.5 

Chloroquine 0 Train -9.54703 0.31 0.65 1.16 1.59 3.81 4.41 319.87 

Chlorpromazine 1 Train -10.384 2.08 2.15 2.51 3.24 5.09 5.18 318.86 

Chlorprotixene 1 Train -9.43621 2.11 2.24 2.77 3.57 5.17 5.21 315.86 
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Chlorzoxazone  0 Train -7.33279 1.82 1.82 1.81 1.78 0.39 1.82 169.57 

Cholic acid f 0 Train -12.4251 2.88 2.06 1.13 0.27 -0.85 2.88 408.57 

Chrysin 1 Train -8.91189 3.13 3.07 2.73 1.92 -0.98 3.13 254.24 

Colchicine 0 Train -11.965 1.07 1.07 1.07 1.07 1.07 1.07 399.44 

Cyclosporine-A 1 Train -17.6087 2.79 2.79 2.79 2.79 2.79 2.79 1202.61 

Dehydroisoandrosterone-3-
sulfate 

0 Train -11.7764 0.022 0.022 0.022 0.022 0.022 3.52 368.49 

Desipramine  0 Train -9.75257 0.72 0.88 0.95 1.27 3.48 3.97 266.38 

Digoxin 0 Train -14.2525 1.29 1.29 1.29 1.29 1.29 1.29 780.94 

Dipyridamole 1 Train -12.3463 0.51 2.61 3.19 3.33 3.35 3.35 504.63 

Erythromycin  0 Train -13.1349 -1.19 -0.54 0.35 1.16 1.9 1.91 733.93 

Estradiol-17ß-glucuronide  0 Train -14.0062 3.72 0.99 0.3 0.0959 -0.11 3.81 448.51 

Etoposide 0 Train -15.3638 0.28 0.28 0.27 0.27 -0.058 0.28 588.56 

Felodipine  1 Train -10.0143 3.98 4.76 4.76 4.76 4.76 4.76 384.25 

Fexofenadine  0 Train -10.3285 0.64 1.21 1.23 1.23 0.65 3.73 501.66 

Flupentixol 1 Train -11.2379 -0.21 1.93 2.85 3.44 3.67 3.67 434.52 

Fumitremorgin C  0 Train -10.6711 3.34 3.34 3.34 3.34 3.34 3.34 379.45 

Gefitinib  1 Train -11.4356 -1.4 0.97 2.07 2.56 2.7 2.7 446.9 

Genistein 1 Train -9.52938 3.11 3.06 2.73 1.93 -1.39 3.11 270.24 

GF120918 1 Train -11.6435 1.33 2.21 3.14 3.9 4.43 4.43 563.64 

Glibenclamide 1 Train -11.6983 3.23 1.96 1.4 1.26 1.23 3.23 487.96 

Haloperidol 1 Train -11.1309 0.66 1.23 2.11 2.93 3.75 3.76 375.86 

Hydrochlorothiazide 0 Train -9.36376 -0.0211 -0.0213 -0.023 -0.0362 -1.52 -0.0211 297.74 

Hydrocortisone  0 Train -10.6038 1.76 1.76 1.76 1.76 1.76 1.76 362.46 

Indinavir 0 Train -12.3834 -0.65 3.06 3.38 3.43 3.43 3.44 613.79 

Indomethacin  0 Train -12.648 4.25 2.7 1.74 0.98 0.5 4.25 357.79 
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Isradipine 1 Train -10.293 3.08 3.73 3.73 3.73 3.73 3.73 371.39 

Ivermectin B 1 Train -11.5176 5.18 5.18 5.18 5.18 5.17 5.18 861.07 

Ketoconazole  1 Train -11.5704 0.59 2.66 3.51 3.93 4.04 4.04 531.43 

Kol 43 1 Train -12.4003 4.75 4.75 4.75 4.75 4.75 4.75 469.57 

Lansoprazole 0 Train -10.5519 0.41 2.57 2.58 2.58 2.27 2.58 369.36 

Loperamide 1 Train -12.6576 1.05 1.92 2.85 3.61 4.14 4.15 477.04 

Lopinavir 1 Train -12.4287 5.41 5.42 5.42 5.42 5.42 5.42 628.8 

Maprotiline  1 Train -9.88752 1.26 1.27 1.3 1.51 3.65 4.36 277.4 

Medroxyprogesterone 1 Train -11.0971 3.58 3.58 3.58 3.58 3.58 3.58 344.49 

Methotrexate  0 Train -13.238 -2.95 -3.79 -4.71 -5.1 -5.19 -0.45 454.44 

Metoprolol  0 Train -10.6079 -1.47 -1.42 -1.14 -0.47 1.5 1.63 267.36 

Mifepristone 1 Train -13.4632 3.74 5.91 6.15 6.19 6.19 6.19 429.59 

Mitoxantrone 0 Train -13.8765 -3.14 -2.52 -2.26 -1.58 -2.1 1.55 444.48 

MK571  1 Train -12.0043 3.01 2.16 1.19 0.37 -0.34 3.41 515.09 

Naringenin 0 Train -8.34123 2.63 2.62 2.56 2.23 -1.5 2.63 272.25 

Nevirapine  0 Train -7.82787 0.57 2.61 2.64 2.64 2.64 2.64 266.3 

Nicotine 0 Train -7.39101 -3.47 -2.22 -1.46 -0.62 0.55 0.57 162.23 

Nitrendipine  1 Train -10.0341 2.98 3.81 3.81 3.81 3.81 3.81 360.36 

Noscapine 1 Train -12.009 -0.69 1.51 2.17 2.35 2.38 2.38 413.42 

Omeprazole 0 Train -9.92282 -0.5 2.29 2.35 2.35 1.51 2.36 345.42 

P-aminohippuric acid 0 Train -8.22464 -0.71 -2.26 -3.17 -3.69 -3.87 -0.12 194.19 

Phenobarbital  0 Train -8.69968 0.5 -1.12 -2.58 -3.75 -3.99 0.51 232.24 

Phenylethyl isothiocyanate 0 Train -7.48819 3.47 3.47 3.47 3.47 3.47 3.47 163.24 

Phenytoin  0 Train -8.58507 1.42 1.42 1.42 1.38 -0.0121 1.42 252.27 

Pravastatin 0 Train -12.161 2.21 0.9 -0.0679 -0.88 -1.54 2.21 424.53 
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Prazosin 0 Train -11.6336 -0.36 1.09 1.83 2.08 2.14 2.14 383.4 

Probenecid 0 Train -8.61481 2.5 0.72 -0.13 -0.53 -0.64 2.51 285.36 

Procyclidine 1 Train -9.85814 0.76 0.77 0.82 1.08 3.27 3.86 287.44 

Propafenone 1 Train -11.4718 0.25 0.31 0.66 1.37 3.25 3.35 341.44 

Propranolol 0 Train -10.6551 -0.2 -0.15 0.12 0.79 2.77 2.9 259.34 

Quinidine 1 Train -9.33007 -1.27 -0.26 0.22 0.98 2.75 2.82 324.42 

Quinine  1 Train -11.5582 -1.27 -0.26 0.22 0.98 2.75 2.82 324.42 

Ranitidine  0 Train -9.9842 -3.63 -2.73 -1.91 -1.07 -0.078 -0.0681 314.4 

Reserpine 1 Train -14.4181 1.35 2.71 3.63 4.21 4.45 4.45 608.68 

Rifampicin 0 Train -15.8589 -0.89 0.0531 0.12 -0.12 -1.79 2.39 822.94 

Ritonavir 1 Train -12.8296 1.41 2.33 2.33 2.33 2.32 2.33 720.94 

Saquinavir 1 Train -13.8533 1.89 4.22 4.87 5.05 5.04 5.08 670.84 

Silymarin  1 Train -15.6766 4.23 4.22 4.13 3.73 -0.0292 4.23 482.44 

Simvastatin 1 Train -11.981 4.72 4.72 4.72 4.72 4.72 4.72 418.57 

Sotalol 0 Train -9.84715 -2.86 -2.78 -2.39 -1.68 -1.25 0.24 272.36 

Sulfasalazine 0 Train -11.5425 2.74 0.0689 -0.079 -0.0992 -0.63 3.05 398.39 

Sulfinpyrazone 0 Train -11.8182 1.82 -0.42 -0.59 -0.61 -0.61 1.89 404.48 

Sulindac 0 Train -11.1001 2.55 1.29 0.32 -0.49 -1.19 2.55 356.41 

Taurolithocholic acid  1 Train -12.8362 3.19 0.58 0.52 0.51 0.51 4.01 483.7 

Terfenadine  1 Train -11.7306 2.52 2.57 2.9 3.6 5.51 5.62 471.67 

Testosterone  0 Train -9.95339 3.18 3.18 3.18 3.18 3.18 3.18 288.42 

Tetracycline 1 Train -11.5913 -2.48 -1.91 -1.95 -2.22 -3.98 0.62 444.43 

Thioridazine 1 Train -10.7016 2.8 2.82 2.98 3.49 5.65 5.9 370.57 

Tipranavir 1 Train -14.1479 6.91 5.74 4.28 2.9 2.42 6.92 602.66 

Trimethoprim  0 Train -9.99812 -1.9 -0.8 0.0441 0.47 0.59 0.59 290.32 
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Valproic acid  0 Train -7.56993 2.58 1.81 0.89 0.0231 -1.16 2.58 144.21 

Verapamil 1 Train -12.5489 0.92 1.08 1.64 2.46 3.99 4.02 454.6 

Vinblastine 1 Train -13.5105 1.76 3.47 4.65 5.43 5.91 5.92 810.97 

Vincristine 0 Train -14.4704 1.65 3.15 4.39 5.2 5.72 5.75 824.96 

Warfarin f 0 Train -10.0581 3.13 2.09 1.14 0.33 -0.37 3.13 308.33 

1-methyl-4-phenylpyridinium 0 Validation -7.96368 -0.29 -0.29 -0.29 -0.29 -0.29 -0.29 170.23 

Antipyrine 0 Validation -7.12224 0.42 0.44 0.44 0.44 0.44 0.44 188.23 

Apigenin 1 Validation -9.70258 2.13 2.07 1.73 0.93 -2.11 2.13 270.24 

Carnitine 0 Validation -8.17413 -4.7 -4.13 -4.13 -4.13 -4.13 -4.73 162.21 

Cimetidine 0 Validation -8.44976 -2.86 -1.91 -1.05 -0.39 -0.0664 - 0.0651 252.34 

Diethylstilbestrol  1 Validation -9.58714 5.33 5.33 5.33 5.33 5.09 5.33 268.35 

Diltiazem 1 Validation -12.2815 1.63 1.85 2.52 3.36 4.7 4.73 414.52 

Doxorubicin 0 Validation -14.8735 -2.86 -2.56 -1.91 -1.47 -3.57 0.24 543.52 

Ergocristine  1 Validation -12.5819 5.14 6.79 7.66 8.1 7.68 8.24 609.71 

Flucloxacillin 0 Validation -11.2097 2.73 -0.16 -0.71 -0.84 -0.87 2.89 453.87 

Hoechst 33342 0 Validation -11.0091 -2.06 0.0772 1.55 2.44 2.76 2.96 452.55 

Imatinib 1 Validation -10.4573 -1.59 0.84 1.77 2.49 2.89 2.89 493.6 

Ivermectin A 1 Validation -13.6839 5.69 5.69 5.69 5.69 5.68 5.69 875.09 

Mesalazine 0 Validation -7.5418 -1.66 -1.88 -2.26 -2.39 -2.41 0.74 153.14 

Nicardipine 1 Validation -13.6091 1.23 3.1 4.03 4.64 4.89 4.89 479.52 

Ofloxacin 0 Validation -10.9316 -1.24 -0.16 -0.0777 -0.39 -1.84 1.86 361.37 

Prednisolone f 0 Validation -10.8012 1.63 1.63 1.63 1.63 1.63 1.63 360.44 

Prednisone f 1 Validation -10.6536 1.57 1.57 1.57 1.57 1.56 1.57 358.43 

Progesterone 0 Validation -10.3948 3.83 3.83 3.83 3.83 3.83 3.83 314.46 

Quercetin 1 Validation -9.80287 1.99 1.91 1.51 0.62 -3.3 1.99 302.24 
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Sparfloxacin 0 Validation -11.5689 -0.5 -0.00256 0.62 0.83 -0.54 2.6 392.4 

Tamoxifen f 1 Validation -11.7815 2.03 2.29 2.99 3.83 5.11 5.13 371.51 

Taurocholate 1 Validation -15.2546 -0.57 -3.18 -3.24 -3.25 -3.25 0.25 515.7 

Tinidazole 0 Validation -9.18538 -0.76 -0.29 -0.29 -0.29 -0.29 -0.29 247.27 

Zidovudine 0 Validation -8.79781 0.0522 0.0522 0.0518 0.0492 -0.52 0.0522 267.24 
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Verapamil-
3G5U

QZ59SSSupp
er

QZ59SSSlow
er

QZ59rrrlowe
r

3G61-
QZ59rrr

RMSD 1.718845757 1.772845858 1.80017582 1.602198446 1.577728048
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Appendix 4: Average Root Mean Square Deviation (RMSD 

RMSD – The root mean square deviation of the pose, in Å, from the original 

ligand. 
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Appendix 5: Predicted vs Observed class for validation set of SVM 3 Model 

Compound Observed Predicted Classification confusion 

matrix 

1-methyl-4-

phenylpyridinium 

0 0 TN 

Antipyrine 0 0 TN 

Apigenin 1 0 FN 

Carnitine 0 0 TN 

Cimetidine 0 0 TN 

Diethylstilbestrol  1 1 TP 

Diltiazem 1 1 TP 

Doxorubicin 0 0 TN 

Ergocristine  1 1 TP 

Flucloxacillin 0 0 TN 

Hoechst 33342 0 0 TN 

Imatinib 1 0 FN 

Ivermectin A 1 1 TP 

Mesalazine 0 0 TN 

Nicardipine 1 1 TP 

Ofloxacin 0 0 TN 

Prednisolone  0 0 TN 

Prednisone  1 0 FN 

Progesterone 0 1 FP 

Quercetin 1 0 FN 

Sparfloxacin 0 0 TN 

Tamoxifen  1 1 TP 

Taurocholate 1 0 FN 

Tinidazole 0 0 TN 

Zidovudine 0 0 TN 

 

TN – True Negative 

FN – False Negative 

TP – True Positive 

FP - False Positive 

1 – Non-substrate 

0 - Substrate 
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