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Abstract 

This thesis describes a novel measurement methodology for two-phase or multiphase 

flow using Coriolis flowmeters incorporating soft computing techniques. A review of 

methodologies and techniques for two-phase and multiphase flow measurement is 

given, together with the discussions of existing problems and technical requirements in 

their applications. The proposed measurement system is based on established sensors 

and data-driven models. Detailed principle and implementation of input variable 

selection methods for data-driven models and associated data-driven modelling process 

are reported.  

 

Three advanced input variable selection methods, including partial mutual information, 

genetic algorithm-artificial neural network and tree-based iterative input selection, are 

implemented and evaluated with experimental data. Parametric dependency between 

input variables and their significance and sensitivity to the desired output are discussed. 

  

Three soft computing techniques, including artificial neural network, support vector 

machine and genetic programming, are applied to data-driven modelling for two-phase 

flow measurement. Performance comparisons between the data-driven models are 

carried out through experimental tests and data analysis. 

 

Performance of Coriolis flowmeters with air-water, air-oil and gas-liquid two-phase 

carbon dioxide flows is presented through experimental assessment on one-inch and 

two-inch bore test rigs. Effects of operating pressure, temperature, installation 

orientation and fluid properties (density and viscosity) on the performance of Coriolis 

flowmeters are quantified and discussed. Experimental results suggest that the 

measurement system using Coriolis flowmeters together with the developed data-driven 

models has significantly reduced the original errors of mass flow measurement to within 

±2%. The system also has the capability of predicting gas volume fraction with the 

relative errors less than ±10%. 
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Chapter 1  

Technical Requirements for Multiphase Flow 

Measurement 

1.1 Introduction 

 

Multiphase flow is defined as a simultaneous flow of materials with two or more 

different phases (i.e. gas, liquid or solid) or unseparated components (e.g. water and oil) 

[1]. Multiphase flow (including two-phase flow which is a particular example of 

multiphase flow) is widely seen in many industries, such as food, energy, chemical and 

transport industries. There are four basic types of multiphase flows: gas-liquid flow (in 

boilers, nuclear reactors and pump cavitation etc.), gas-solid flow (in fluidized beds and 

pneumatically conveyed pipelines etc.), liquid-solid flow (in river bed sediments and 

coal-water slurry etc.) and liquid-liquid flow (in oil production and chemical emulsions 

etc.). In such industrial processes, accurate measurement of multiphase flow is highly 

desirable to realize flow quantification, operation monitoring, process optimization and 

product quality control. This research focuses on the solutions to the measurement 

problems of multiphase flow in the process industry, including oil and gas applications 

and the Carbon Capture and Storage (CCS) chain.   

 

In the oil and gas industry most of gas and oil reservoirs naturally contain water. In 

some circumstances, additional water has to be injected into reservoirs to maintain the 

required pressure for production. Therefore, water occurs along with oil and gas in 

wellbores and hence multiphase flows in wells, transportation lines and risers. The 

problem of how to measure oil-gas-water mixtures has been of interest to the petroleum 

industry since the early 1980s [2]. Despite over three decades of intensive research and 

development worldwide, accurate measurement of the flowrate of oil-gas-water mixture 

in a pipeline still remains challenging [3]. One of the original solutions is to separate the 

components of the mixed flow and then measure the flowrate of each individual phase 
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using traditional single-phase instruments. However, separation systems in practical 

applications have the disadvantages of large volume, high cost, low efficiency and 

difficult installation and maintenance. As a result of the limitations of separation 

techniques, some on-line multiphase flowmeters such as those based on radiation sensor 

(e.g., gamma ray) and cross correlation techniques have been developed for specific 

applications. However, the available multiphase flowmeters still have limitations to 

some extent in terms of accuracy, range, reliability, applicability and cost. In addition, 

accurate mass flow metering is becoming more and more essential in the custody 

transfer of marine fuel (bunkering) in coastal ports around the world, as air entrainment 

is unavoidable particularly during the start and stop processes of the bunkering. For 

these reasons, new techniques are increasingly desirable for multiphase flow metering 

in the oil and gas industry and bunkering centres, especially for fiscal purpose, oil well 

monitoring and allocation metering.  

 

Measurement of CO2 flows in the CCS chain is also a challenging and pressing problem 

with the recent development and deployment of the CCS scheme in many countries. 

CCS is considered as an effective technology to reduce CO2 emission from electrical 

power generation and other industrial processes. Accurate measurement of captured 

CO2 is necessary not only for environmental purposes to detect CO2 leakage, but also 

for verification of the CO2 account under emissions trading schemes. To put the 

importance of accurate flow measurement into perspective, take the UK’s largest 

emitting power station Drax for example, it emits approximately 22 million tonnes of 

CO2 per annum. Every 1% uncertainty in flow measurement could result in a £6.6 

million financial exposure in the trading scheme (based on a carbon trading price of 

£30/tonne, as projected between 2013 and 2015) [4]. Moreover, CO2 flow in the CCS 

chain is more difficult to measure than other multiphase flows as the physical properties 

and flow regimes of CO2 could change significantly through long-distance 

transportation, especially with the variations of environmental temperature and pressure 

or in the presence of inevitable impurities (N2 and CH4). Therefore, CO2 flow 

measurement issues and challenges are arising in recent years, however, there has been 

no significant research undertaken in this area. Despite the traditional single-phase 

flowmeters, orifice plate meters and turbine meters, have been used in some CCS plants, 

none of the current techniques is able to meet the specified 1.5% measurement 
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uncertainty in the EU-ETS (European Union - Emissions Trading Scheme) under all 

expected flow conditions. For these reasons, new techniques for multiphase CO2 flow 

measurement are highly desirable. 

 

Coriolis flowmeters are one of the most accurate single phase mass flowmeters. The 

main advantage of Coriolis flowmeters is that they provide directly a measurement of 

mass flow rate, regardless of the variations of temperature, pressure and flow profile. 

Potential application of Coriolis flow metering technology to multiphase flow in the oil 

and gas industry and CCS systems is a recent trend in the field of flow measurement 

and instrumentation. With the rapid development of artificial intelligence and machine 

learning, soft computing techniques provide new and effective approaches to 

engineering problems. This research programme aims to combine Coriolis flow 

metering and soft computing techniques to determine the mass flowrate and volume 

fractions of multiphase flow. The proposed measurement methodology is to be applied 

and verified through metering air-water, air-oil and gas-liquid CO2 flows. 

 

1.2 Technical Challenges 

 

Multiphase flow is very complex and difficult to understand, predict and model due to 

the simultaneous presence of different phases or components in the same stream and 

their interactions within the pipeline. Therefore, the measurement of multiphase flow 

faces a number of technical challenges. This study focuses on the measurement of gas-

liquid multiphase flow in the oil and gas industry and in the CCS systems. The main 

technical difficulties to fulfil the requirement have been identified in the following 

sections, respectively. 

 

1.2.1 Challenges in Multiphase Flow Measurement in the Oil and Gas 

Industry 

 

An ideal multiphase flowmeter for the oil and gas industry should meet the 

measurement requirements in terms of accuracy, range, ruggedness and reliability etc. 
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However, there have been very few commercial flowmeters that can meet all the 

identified requirements. 

 High accuracy for the intended application  

The required accuracy depends on the specific application and local conditions. In 

general, more accurate flowmeters are required for the purpose of custody transfer. In 

some circumstances, oil can be economically produced in some sites with water 

fractions above 90%. In this case the water fraction has to be accurately measured in 

order to optimize the production of the field. Nowadays, the relative uncertainties of ±5% 

for liquid flowrate, ±5% for gas flowrate and an absolute uncertainty of ±2.5% for water 

cut are typically achievable by commercial flowmeters used in many industrial 

applications [3]. 

 Validity over the full fraction range of each phase 

Being able to measure over the full fraction range of each phase is a challenge for many 

current commercial multiphase flowmeters, practically in some extreme cases. For 

example, when the gas volume fraction is greater than 95% the flow is regarded as wet 

gas. On the contrary, water could be the main stream with high water cut in a mixed 

flow. In order to deal with these situations, many manufacturers produce specialized 

wet gas flowmeters or high water cut flowmeters based on different techniques. 

 Measurement independent of flow regime  

The flow regime of multiphase flow depends mainly on the individual phase flowrates, 

phase properties, local operating conditions and the pipeline geometry and orientation. 

As the flow regime present in a pipeline is difficult to control or reliably predict, an 

ideal multiphase flowmeter should be able to achieve the same measurement accuracy 

regardless of variations in flow regime. However, many phase fraction measurement 

techniques, such as electrical impedance methods, are flow regime dependent which 

brings challenges to the development of multiphase flowmeters. 
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1.2.2 Challenges in CO2 Flow Measurement in the CCS Chain 

 

In addition to the measurement issues and challenges specific to different types of 

flowmeter technologies, a number of problems arise in the measurement of CO2 flow 

throughout the CCS chain due to the special characteristics of CO2 and the process and 

plant conditions. 

 Physical properties of CO2 flows in the CCS chain  

It can be seen from the CO2 phase diagram in Figure 1.1 that transition boundaries 

between CO2 phases are very close and lie around ambient conditions. Unlike oil and 

water which are transported at pressures and temperatures much lower than their critical 

points, very small changes in temperature and pressure can lead to rapid and substantial 

changes in the CO2 physical properties. This makes CO2 more difficult to control and 

measure, as many industrial processes operate around ambient conditions. Moreover, 

pipelines are considered to be the most efficient and viable method for onshore 

transportation of high volume of CO2 from capture facilities to storage sites through 

long distances. This also imposes significant challenges to the measurement and control 

of CO2 flows in CCS pipelines. In addition, some constituents such as N2 and CH4 are 

very likely mixed in the captured stream, which makes pure CO2 phase diagram and 

state equations highly unreliable and results in a high likelihood of two phase or 

multiphase flow conditions. This will affect the operating conditions, economics and 

flow metering, since the majority of flowmeters can operate only under single phase 

conditions. In this case, the desired flowmeter should be able to measure either single 

phase or multiphase flows with satisfactory accuracy. Furthermore, any substantial 

contamination of CO2 with water will give rise to acid formation, leading to corrosion 

of flowmeters. 
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Figure 1.1 CO2 phase diagram [4] 

 Performance requirements for multiphase flowmeters 

The measurement of CO2 flow across the installation boundary, into the pipeline 

network, and from the pipeline head into the storage reservoir is necessary using 

flowmeters designed to custody transfer standard. The metering process itself is 

required to produce data with a measurement uncertainty within 2% [4]. To avoid the 

potential misallocation and measurement of fluid density, a mass flowmeter is more 

preferred to a volumetric flowmeter. Transportation pipelines through the CCS chain 

are normally in hundreds of millimetres in diameter to transport large volumes of CO2 

economically, which restricts the application of small-diameter flowmeters. The 

installation of the desired flowmeter should be as simple and straightforward as possible 

to allow retrofitting and to avoid significant pressure drop of CO2 flows. 

 Test and calibration facilities 

So far there are very few CO2 flow test and calibration facilities that can recreate CCS 

conditions particularly two-phase CO2 flow in pipelines together with accurate 

measurement standards. Trials may be undertaken in water, oil and gas, but such 

deviations from realistic CCS conditions may have a detrimental effect and impact on 

measurement uncertainty. Therefore, development of suitable CO2 test and calibration 

facilities may be necessary to test CO2 multiphase flowmeters and support the 

deployment of CCS measurement schemes. 



Chapter 1 Technical Requirements for Multiphase Flow Measurement 

7 

 

1.3 Research Objectives 

 

This research programme aims to develop a measurement methodology for two-phase 

or multiphase flow using Coriolis flowmeters together with soft computing techniques. 

The objectives of the research programme are defined as follows: 

 

 To review and define the state-of-the-art of multiphase flow measurement. Existing 

techniques for multiphase flow measurement using Coriolis flowmeters and soft 

computing techniques will be reviewed and gaps that require further research in the 

field identified. 

 To identify the significant parameters from Coriolis flowmeters and additional 

sensors that are suitable for the measurement of multiphase flow. Advanced input 

variable selection methods will be employed to process the experimental data. 

Parametric dependency between input variables and their significance and 

sensitivity to the desired output will be quantified. 

 To develop data-driven models for the estimation of mass flowrate and phase 

fractions. Soft computing techniques will be exploited to develop data-driven 

models. Performance comparisons between the data-driven models will be 

conducted in terms of accuracy, robustness, generalization ability and computing 

complexity. 

 To evaluate the proposed measurement methodology through extensive 

experimental tests under a wide range of conditions. The effectiveness of Coriolis 

flowmeters incorporating soft computing data models for the measurement of two-

phase flow will be assessed. 

 

1.4 Thesis Outline 

 

The contributions of this thesis to the state-of-the-art in multiphase flow metering 

include (1) investigations into the performance of Coriolis flowmeters under different 

two-phase flow conditions, (2) identification of parameter dependency, significance and 

sensitivity of the variables from Coriolis flowmeters and additional sensors for 

multiphase flow metering using input variable selection methods, (3) use of soft 
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computing techniques including ANN (Artificial Neural Network), SVM (Support 

Vector Machine) and GP (Genetic Programming) to develop data-driven models, and (4) 

experimental evaluation of the proposed measurement methodology with air-water, air-

oil and gas-liquid CO2 flows. 

 

This thesis is organised in seven chapters as follows: 

 Chapter 1 introduces the importance of multiphase flow measurement, covers the 

technical requirements in the measurement of multiphase flow in the oil and gas 

industry and CO2 flow in the CCS chain, and outlines the proposed objectives of the 

research programme. 

 Chapter 2 reviews the state-of-the-art techniques for multiphase flow measurement 

using Coriolis flowmeters and soft computing techniques. 

 Chapter 3 provides the principle of the proposed measurement methodology, related 

input variable selection methods and soft computing techniques.  

 Chapter 4 presents and discusses the experimental results obtained from a 1-inch 

air-water two-phase flow test rig. 

 Chapter 5 reports and analyses the experimental results acquired from 2-inch air-

water and air-oil two-phase flow test facilities. 

 Chapter 6 provides and discusses the experimental results obtained from a 
2

1  inch 

gas-liquid two-phase CO2 flow test rig. 

 Chapter 7 draws conclusions from the work that has been presented and provides 

suggestions and recommendations for future work. 
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Chapter 2  

Review of Soft Computing Techniques for 

Multiphase Flow Measurement 

2.1 Introduction 

 

The study of multiphase flow measurement has a long history and involves different 

areas from fundamental laboratory studies to industrial applications. The literature 

survey does not only provide necessary background knowledge for this work but also 

assists in demonstrating a clear contribution of this work to the state-of-the-art of 

multiphase flow metering. Substantial improvements have been made to develop 

effective and efficient techniques that may offer solutions to the measurement of 

multiphase flow over the past few decades, experimentally or theoretically. Different 

techniques have been developed to measure phase flowrate and phase fractions of 

multiphase flow. However, there still exists some limitations to meet all the 

requirements in the oil and gas industry and the CCS chain. 

 

This chapter is organised as follows. Firstly, the chapter begins with a review of 

existing multiphase flow measurement systems and techniques for the measurement of 

phase flowrate and phase fractions. The basic principle, advantages and limitations of 

each technique are described. A comprehensive survey about three-phase flow 

measurement in the petroleum industry has been conducted by Thorn [2].  

 

Secondly, this chapter reviews the soft computing techniques which are used for two-

phase or multiphase flow measurement. Published research work and design of 

industrial Coriolis flowmeter have been reviewed in details by Wang and Baker [5]. 

This part of review focuses on the correction methods for Coriolis flowmeters under 
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aeration conditions. In addition, the input variable selection methods for data-driven 

models are summarized and reported.    

 

Lastly, the chapter concludes with a summary on the various techniques reviewed and 

highlights the novelties of this research programme and why these techniques used in 

the current research are decided upon. 

 

2.2 Multiphase Flow Measurement Techniques 

 

Flowrates of the individual phases, including volumetric flowrate ( vq ) or mass flowrate 

( mq ), are usually used to characterise a multiphase flow. So far there is no ideal 

flowmeter which is able to directly measure the mixed and individual mass flowrate in 

an industrial environment. Alternatively, an inferential measurement method is 

commonly used to acquire the instantaneous velocity and cross sectional fraction of 

each component. Take oil-gas-water three-phase flow as an example, the mass flowrate 

of individual component and the total mass flowrate of the mixture can be determined 

by: 

 

                        )(,,, ooowwwgggomwmgmm vvvAqqqq                               (2-1) 

                                                 1 owg                                                              (2-2) 

 

where mq  is the total mass flowrate of the mixture,  gmq , , wmq ,  and omq ,  are individual 

mass flowrates of  gas, water and oil phases, respectively. A is the cross-sectional area 

of the pipe.  g , w and o are cross-sectional fractions of gas, water and oil 

components, respectively. gv , wv  and ov  are instantaneous velocities of gas, water and 

oil phases, respectively. g , w and o are the densities of the phases, respectively.  

 

Since the densities of oil, water and gas components can be made available from other 

production processes, at least five variables, including oil, water and gas velocities and 
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two of the component fractions (usually gas void fraction g and water fraction w ), are 

to quantify in equation (2-1).  

 

During the past several decades, significant efforts have been made to develop reliable 

multiphase flow measurement techniques and instruments. Thorn et al. [2],[3] and 

Falcone et al. [6] reviewed the developments of three-phase flowmeters, particularly for 

the petroleum industry. In general, multiphase flow measurement systems can be 

classified into three main categories: separation systems, on-line sampling systems and 

on-line multiphase flowmeters. 

 

2.2.1 Separation Systems 

 

As shown in Figure 2.1, the conventional production or well-test systems separate the 

oil-gas-water three-phase flow into pure gas, oil and water single-phase flows according 

to the differences in fluid properties [7],[8]. Then traditional single-phase flowmeters 

are used for each phase measurement, such as orifice plates or Coriolis flowmeters for 

liquid flow and ultrasonic, vertex or Coriolis flowmeters for gas flow. The separation 

systems are commonly applied for custody transfer purpose due to high measurement 

accuracy required. However, the disadvantages of this kind of system include large 

volume, high cost, low efficiency and difficult installation and maintenance. The 

commercial Accuflow 3 Phase System [9] presents an example of such three-phase 

separation systems.  

 

Figure 2.1 Principle of a production or well-test separation system in the oil and gas 

industry 
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Two-phase separation flowmeters normally contain a complete separation system or a 

partial separation system. It can be seen from Figure 2.2 that the complete separation 

system divides the three-phase flow into liquid (oil plus water) and pure gas streams 

before measurement. Once the liquid and gas are separated, each stream is measured 

independently using industry proven measurement devices. A conventional liquid meter 

(Coriolis and turbine etc.) is used to measure liquid flowrate. Water cut measurement 

can be obtained using traditional methods (density differential and microwave etc.). Gas 

flow is also measured using conventional technologies (vortex, turbine and ultrasonic 

etc.). After measurement, the gas and liquid streams are recombined and returned to the 

multiphase flow line. The commercial Accuflow JR Series Multiphase Metering system 

[10] and MB CCM Multiphase Meters [11] belong to the complete separation systems. 

 

 

Figure 2.2 Principle of a complete separation system 

 

Partial separation systems, such as Weatherford Alpha VSRD [12], partially separate 

the flow into wet gas and liquid dominant flow. The commercial multiphase flowmeter 

is based on an extended-throat Venturi meter, a sonar flowmeter, a Red Eye MP water-

cut meter and a gamma densitometer and provides the measurement of wet-gas and 

liquid dominant multiphase streams. 

 

The separation based multiphase flowmeters are capable of simplifying the multiphase 

metering process into single-phase or two-phase metering process and hence 

measurement accuracy mainly depends on the separation efficiency. Although this kind 
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of flowmeter is considered to be accurate and reliable, it also requires expensive and 

bulky separation equipment which significantly limits its usability.   

 

2.2.2 On-line Sampling Systems 

 

The extracting and separating method is a new generation of multiphase flowmeter. As 

shown in Figure 2.3, a small fraction of gas-liquid mixture which can represent the 

component of the total flow is extracted by a sampler and separated through a small 

separator. Once separated, gas flow and liquid flow are metered using corresponding 

flowmeters. Finally, the sampled fluid flows back to the main stream. The total gas and 

liquid flowrate is determined by the measurements of gas and liquid flowmeters and 

extraction ratio. The sampler is the most crucial device as it determines the relationship 

between the sampled fluid and the total gas-liquid mixture. Consequently, the related 

research is mostly concentrated on the structure design of the samplers [13]-[17] to 

make sure the extracted stream can represent the total stream. 

 

 

Figure 2.3 Principle of a sampling system 

 



Chapter 2 Review of Soft Computing Techniques for Multiphase Flow Measurement 

14 

 

2.2.3 On-line Multiphase Flowmeters 

On-line multiphase flowmeters are the devices to measure the mixed flow without any 

separators and sampling lines. They can be classified into direct and indirect 

measurement groups according to measurement strategies deployed. 

 

 Direct approach 

Direct measurement (Figure 2.4) aims to measure the phase velocity and phase fraction 

of each individual component of the mixture. Phase velocity is often determined by 

cross-correlation, Venturi flowmeter and Coriolis flowmeter, while phase fraction is 

usually measured based on gamma energy absorption, electrical impedance sensors and 

microwave techniques. The commercial three-phase flowmeters such as AGAR MPFM-

50 [18], Multi Phase Meters AS MPM [19], Roxar Flow Measurement MPFM 2600 [20] 

and Subsea MPFM [21] are developed based on the combination of these techniques. In 

recent years, several techniques based on conductance [22]-[26], process tomography 

[27]-[37], ultrasonic [38]-[40] and nuclear magnetic resonance [41]-[42] have been 

proposed to measure phase velocity or phase fraction. 

 

 

Figure 2.4 Principle of the direct approach to on-line multiphase flow measurement 

 

 Indirect approach 

Indirect measurement (Figure 2.5) usually determines the three phases from analysis of 

the time variant signals acquired from a set of sensors. In general, the relationship 

between sensor outputs and the flowrate or fraction of each phase cannot be deduced 

theoretically. In this case, empirical models are commonly developed from 

experimental data using statistical methods or soft computing techniques. The statistical 

methods such as dual regression, kernel partial least squares regression and multivariate 
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adaptive regression splines have been proposed to estimate the phase fraction or phase 

velocity of two-phase flow [43]-[45]. With the recent development of artificial 

intelligence and machine learning, soft computing techniques provide alternative 

approaches to traditional statistical methods and extend the capabilities of empirical 

models. The review of soft computing techniques for multiphase flow measurement is 

included in Section 2.3. The main limitation of this kind of method is the requirement 

for primary calibration on a flow test facility and secondary calibration using on-site 

field tests. 

 

 

Figure 2.5 Principle of the indirect approach to on-line multiphase flow measurement 

 

The developed multiphase flowmeters are mostly applied to oil/gas/water two-phase or 

three-phase flow measurement. There is no reported flowmeter specialized for CO2 flow 

measurement in the CCS chain and the accuracy requirement from EU-ETS is 

challenging for the current flowmeters. With regard to CO2 flow metering, Orifice plate 

meters and turbine meters have been employed in single-phase CO2 measurement in 

Enhanced Oil Recovery (EOR) projects for many years [4]. However, the Orifice plate 

and differential pressure metering used for slugging two-phase mixture measurement at 

the well-head was reported to give errors up to 80% [46]. Coriolis flowmeters, as one of 

the most accurate single-phase mass flowmeters, have been tested with gas or liquid 

CO2 single-phase flow [47]-[48]. For two-phase CO2 flow measurement, commercial 

Coriolis mass flowmeters were field-tested with slugging two-phase CO2 flow and the 

difference between the Coriolis flowmeters under test and the reference meter was 5% 

[46]. However, the effect of different flow patterns on the performance of Coriolis 

flowmeters was not reported.   
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2.3 Soft Computing Techniques for Multiphase Flow Measurement 

 

Soft computing is described by L.A. Zadeh as: “a collection of methodologies that aim 

to exploit the tolerance for imprecision, uncertainty and partial truth to achieve 

tractability, robustness and low solution cost” [49]. As shown in Figure 2.6, the 

principal constituents of soft computing techniques are machine learning (including 

neural network and support vector machine, etc.), evolutionary computation (including 

evolutionary programming, genetic algorithm, evolution strategy and genetic 

programming), fuzzy logic and probabilistic reasoning (including Bayesian belief net 

and Dempster-Shafer theory, etc.). The first two are data-driven search and optimization 

approaches while the other two are based on knowledge-driven reasoning. In recent 

years, soft computing has become a promising tool in resolving engineering challenges 

due to its ability to handle highly complex, dynamic and non-linear problems and 

computational simplicity over analytical methods. For these reasons, they have been 

widely used in many fields, in particular, computer engineering, environmental 

engineering, material engineering and medical diagnosis [50]. 

 

 

Figure 2.6 Principal constituents of soft computing techniques 
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The applications of soft computing techniques to multiphase flow measurement are 

mainly concentrated on the estimation of phase flowrates and phase fractions and 

identification of flow regime. The estimation of phase flowrates and fractions is 

equivalent to solve a problem of function approximation while the identification of flow 

regime is a classification problem. As the review focuses on the measurement of phase 

flowrates and phase fractions, the research purely on flow regime identification using 

soft computing techniques is out of the scope of this review. The following section 

reviews indirect multiphase measurement systems combining traditional sensors and 

soft computing techniques. 

 

2.3.1 Ultrasonic Sensors 

 

Figueiredo et al. [51] made use of four ultrasonic sensors incorporating an ANN to 

identify the flow pattern and obtain the gas volume fraction of two-phase flow, 

respectively. It can be seen from Figure 2.7 that the input of the ANN is comprised of 

energy ratios from four acoustic sensors. There are two hidden layers, including five 

and two hidden neurons respectively in the ANN model. The output layer generates the 

identified flow pattern or the estimated gas volume fraction. Experimental work with 

air-oil flow was conducted on 1-inch and 2-inch vertical test sections, respectively. 

During the experimental tests, dispersed bubbles, intermittent flow, churn flow and 

annular flow were observed with the liquid velocity ranging from 0.1 to 0.3 m/s and the 

gas volume fraction from 0 to 85%. Experimental results showed that the overall 

successful recognition rate of flow pattern was 98.3% while the overall variation of the 

estimated gas volume fraction was ±4.2. 

 

 

Figure 2.7 Measurement system based on ultrasonic sensors and ANN (Figueiredo et al. 

[51])  
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2.3.2 Differential Pressure Devices 

 

Xu et al. [52] proposed a novel approach to the measurement of wet gas flow using a 

throat-extended Venturi meter and soft computing approximation techniques. The 

measurement system is shown in Figure 2.8. A backpropagation ANN (BP-ANN) 

model and a SVM model were developed to estimate the gas flowrate and liquid 

flowrate through the static and dynamic features of differential pressures. Experimental 

tests were carried out with natural gas and water two-phase flow on a 2-inch test rig. 

The gas flowrate was between 0.0139 and 0.0444 m3/s and liquid flowrate ranging from 

3.0556 ×10-4 to 0.0015 m3/s. It was found that both ANN and SVM models were valid 

in approximation of the complex relationship between the signal features and the two-

phase flowrates. With the usage of the BP-ANN, the mean prediction error and standard 

deviation were 3.14% and 4.22% for gas flowrate, respectively, whereas the mean and 

standard deviation were 4.77% and 6.33% for water flowrate, respectively. Through the 

SVM model, the mean and standard deviation of the relative prediction errors were 2.86% 

and 4.39%, respectively, for gas flowrate, whereas the mean and standard deviation 

were 4.25% and 6.09%, respectively, for water flowrate. In comparison with the ANN 

model, the SVM model was clearly of merit as the means of the relative prediction 

errors of the gas and water flowrates were improved by 8.9% and 10.9%, respectively. 

 

 

Figure 2.8 Measurement system based on a throat-extended Venturi meter with 

ANN/SVM (Xu et al. [52]) 
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Shaban and Tavoularis [53] proposed a method for the measurement of gas and liquid 

flowrates in a vertical upward pipe using differential pressure (DP) signals. As shown in 

Figure 2.9, the probability density function and the power spectral density of the 

normalized DP signals were obtained and processed by principal component analysis 

(PCA) and independent component analysis (ICA). The two-phase flow regime was 

firstly identified through the application of the elastic maps method on the probability 

density function of the DP signals. Then a multi-layer BP-ANN taking the extracted 

features as inputs was developed for each flow regime (slug, churn and annular) to 

produce phase flowrates. Experimental tests were conducted with air-water in a vertical 

pipe of diameter 32.5 mm with air superficial velocity between 0.014 m/s and 22 m/s 

and liquid velocity from 0.04 m/s to 0.4 m/s. Experimental results suggested that the 

average relative errors of liquid flowrates for slug, churn, annular flow regimes were -

0.3%, -0.1% and -0.4% respectively, and the average relative errors of gas flowrate 

were 5.5%, 0.5% and 0.6% respectively. 

 

 

Figure 2.9 Measurement system based on a differential pressure transducer with elastic 

maps, PCA-ICA and ANN (Shaban and Tavoularis [53]) 

 

2.3.3 Electrical Sensors 

 

Fan and Yan [54] presented an ANN based method to obtain gas and liquid flowrates of 

two-phase air-water slug flow in a 50 mm bore horizontal pipe through conductance 

probes. It can be seen from Figure 2.10 that five characteristic parameters of the 

mechanistic slug flow model, including translational velocity, slug holdup, film holdup, 
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slug length and film length, were extracted from the conductance signals and taken as 

inputs to the neural network. A feed forward neural network with ten hidden nodes was 

adopted to predict gas and liquid flowrates. Experimental assessment of the 

measurement system was conducted with air superficial velocity from 0.58 to 1.86 m/s 

and water superficial velocity between 0.35 to 1.62 m/s. Results suggested that the 

overall performance was within ±10% of full scale for the prediction of both liquid and 

gas flowrates. 

 

 

Figure 2.10 Measurement system based on two ring-type conductance probes and ANN 

(Fan and Yan [54]) 

 

2.3.4 Optical Sensors 

 

Li et al. [55] applied a laser source, a 12×6 photodiode array sensor and an SVM model 

to quantify the void fraction of gas-liquid two-phase flow in small channels. As shown 

in Figure 2.11, the extracted features from the mean value and standard deviation of the 

72 measured signals were taken as inputs of the SVM model. Through experimental 

tests with Nitrogen-water flow on a horizontal pipe with inner diameters of 4.22, 3.03, 

2.16 and 1.08 mm, the flow patterns, including bubble flow, slug flow, stratified flow 

and annular flow, were observed. The maximum absolute error of the void fraction was 

found to be 7%. 
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 Figure 2.11 Measurement system based on a laser source, photodiode array sensor and 

SVM (Li et al. [55]) 

 

2.3.5 Combination of Multiple Sensors 

 

Zheng et al. [56] proposed a measurement system using a turbine flowmeter, 

conductance sensors and SVM to identify the flow pattern and obtain the water cut of 

air-water two-phase flow in a vertical upward pipe with an inner diameter of 18 mm. As 

shown in Figure 2.12, the flow pattern was identified through chaotic attractor 

morphologic analysis of the conductance signals. The total flowrate of the mixture was 

obtained from the rotating speed of the turbine through a polynomial regression. To 

estimate the water cut of the mixed flow, a total of 10 features, extracted from fluctuant 

conductance signals in both time and frequency domains together with the average of 

rotating speed of the turbine were taken as inputs of the SVM model. The total flowrate 

of gas-water flow ranged from 0.1 to 2.5 m3/h during the tests. Experimental results 

suggested that the success rate of the flow pattern identification was higher than 96% 

and the average errors of the water flowrate and gas flowrate measurements were 7.36%. 
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Figure 2.12 Measurement system based on conductance sensors, a turbine flowmeter 

and SVM (Zheng et al. [56]) 

 

Meribout et al. [57] integrated impedance measurements with ultrasonic measurements 

to provide the volumetric flowrate of oil-water flow with the water-cut ranging from 0 

to 100%. As shown in Figure 2.13 (a), a pattern recognition algorithm based on an ANN 

was implemented. In the first stage, a feed forward three-layer ANN was developed 

with the signals extracted from the conductance, capacitance, ultrasonic and Venturi and 

an output of the mixture density. With the usage of the ANN, the water cut can be 

interpreted by the sensor signals. In the second stage, another three-layer ANN was 

established to obtain oil and water flowrates by combining the estimated water-cut from 

the first stage and the differential pressure and Venturi outputs. Experimental work was 

conducted on a two-inch oil-water test rig and the results showed that, for both water-

cut and total flowrate determinations the relative error was less than 5% for any flow 

regimes. In subsequent research, they applied the same measurement method to oil-gas-

water three-phase flow [58]. As shown in Figure 2.13 (b), two rings of high and low 

frequency ultrasonic sensors were used for low and high gas fractions, respectively. In 

this case, an ANN was developed in the first stage with the signals from capacitance, 

conductance, ultrasonic, pressure and Venturi sensors. Then the flowrate of the mixture 

was obtained using the estimated total density, differential pressure and Venturi outputs. 

The experimental results demonstrated that the average relative errors were 3.91% for 

water flowrate, 4.68% for gas flowrate and 6.2% for oil flowrate. 
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(a) Measurement system for oil-water two-phase flow measurement 

 

 

(b) Measurement system for oil-air-water three-phase flow measurement 

Figure 2.13 Measurement system based on capacitance, conductance, ultrasonic, DP 

sensors and a Venturi flowmeter (Meribout et al. [57], [58]) 

 

Wang et al. [59] proposed a data fusion method by combining capacitive and 

electrostatic sensors to realize online volumetric concentration measurement of 

pulverized coal/biomass fuel flow in co-fired power plants (See Figure 2.14). An 

adaptive network based fuzzy inference system (ANFIS) was developed through 

training with gradient descent method and hybrid method by combining the Kalman 

filter algorithm with a gradient descent algorithm. Experimental results on a 36 mm 

bore horizontal quartz glass pipe showed that the ANFIS based on the hybrid learning 

rule outperformed the system based on the gradient descent learning rule and the 

fiducial errors of biomass and pulverized coal flows were 1.2% and 0.7%, respectively. 

Following this research, an extreme learning machine (ELM) based on the electrostatic 

fluctuation signals was applied to identify the flow regime of coal/biomass/air three-

phase flow and an adaptive wavelet neural network (AWNN) based on electrostatic and 
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capacitance sensors was created to predict the volume concentration of each phase [60]. 

Experimental work was carried out on a 94 mm bore horizontal quartz glass pipe. This 

methods yielded 2.1% fiducial error for biomass and 1.2% for pulverised coal. It was 

claimed that the training time, identification time and prediction time were much less 

than the other methods. 

 

 

(a) Measurement system based on ANFIS 

 

 

(b) Measurement system based on ELM and AWNN 

Figure 2.14 Measurement system based on capacitive and electrostatic sensors (Wang et 

al. [59], [60]) 

 

2.3.6 Coriolis Flowmeters 

 

As shown in Figure 2.15, a Coriolis measuring system is a symmetrical design and 

consists of one or two measuring tubes (either straight or curved), a drive unit and two 

motion sensors. The driver sets the measuring tube into a uniform fundamental 

oscillation mode. Once liquid or gas flow moves through the measuring tube, Coriolis 

forces are generated in oscillating systems and result in an extremely slight distortion on 

the measuring tube. The distortion is picked up by motion sensors and the phase 

difference between the two sensor signals is proportional to the mass flowrate of the 

process fluid. The natural vibration frequency is directly related the density of the fluid. 

Since the oscillatory characteristics of the measuring tube are dependent on the fluid 
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temperature, the temperature is measured continuously and the measured mass flowrate 

and density are compensated accordingly. 

 

                    

  (a) A single straight-tube flow sensor               (b) A twin straight-tube flow sensor 

 

(c) A twin bent-tube flow sensor 

Figure 2.15 Typical Coriolis flow sensor designs [5] 

 

Several theoretical analysis has been undertaken to investigate the performance of 

Coriolis flowmeters under two-phase flow conditions. Bubble effect, damping factor, 

sensor balance, compressibility and phase decoupling have been proposed to interpret 

and quantify the mass flow errors from Coriolis flowmeters under aeration condition 

[61]-[64]. Since there were some assumptions in developing the mathematical models 

and certain important factors such as flow regime, bubble distribution and pipe 

geometry were not taken into consideration, there were significant differences between 

the theoretical analysis and experimental results. Meanwhile, some researchers applied 

soft computing techniques to establish the complicated relationship between the mass 

flow errors and the parameters of Coriolis flowmeters. Then the erroneous mass 

flowrates were corrected according to the estimated mass flow errors. This sub-section 

mainly reviews the soft computing techniques based correction models.  

  

Liu et al. [65] used a neural network to estimate the mass flow errors for a 1-inch 

Coriolis mass flowmeter on a horizontal pipe. As shown in Figure 2.16, the multi-layer 
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perceptron and radial basis function networks accept four inputs, including temperature, 

damping, density drop and flowrate, to estimate the mass flow errors. Then the mass 

flow reading from the Coriolis flowmeters is corrected with the estimated mass flow 

error. Experimental tests were conducted with the liquid mass flowrate ranging from 1.5 

to 3.6 kg/s and density drop up to 35%. Although most of the mass flow errors were 

reduced to within ±2%, the gas entrainment was not quantified and other installation 

conditions were not considered. 

 

 

Figure 2.16 Measurement system based on a Coriolis flowmeter and ANN (Liu et al. 

[65]) 

 

Henry et al. [66],[67] reported a case study about two-phase flow metering of heavy oil 

using a Coriolis mass flowmeter. Trials were carried out on a 75 mm bore flowmeter 

with a mass flowrate between 1 kg/s and 10 kg/s and gas void fraction up to 80%. 

Experimental results demonstrated that the corrected measurements were typically 

within 1%-5% of the nominal mass flow and density for both steady and slugging two-

phase flows. 

 

The field tests using Coriolis flowmeters incorporating the ANN correction model were 

conducted to measure slugging two-phase CO2 flow [46]. Due to the pressure losses 

through the pipeline network, the well-heads received the CO2 at the pressure of 5.52 

MPa -7.03 MPa and the temperature of 4°C-32°C. The significant variations in pressure 

and temperature resulted in gas-liquid two-phase CO2 flow. In this case, the comparison 

results showed a 5% difference between the Coriolis flowmeters and the Pecos station 

sales meter.   

 

Henry et al. [68] described another empirical method by combining a Coriolis mass 

flowmeter with a commercial water cut meter (Weaherford Red eye MP water cut 

meter) to achieve three-phase flow measurement. The water cut meter was used to 
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indicate the proportion of water in the liquid flow. Experimental tests were undertaken 

on a 50 mm bore test rig, with the total liquid flowrate ranging from 2.4 kg/s up to 11 

kg/s, the water cut from 0% to 100% and gas volume fraction between 0% and 50%. 

Results demonstrated that the total liquid mass flow error was reduced within ±2.5% 

and the gas mass flow error within ±5%. The oil mass flow error limit was ±6% for 

water cut less than 70% and ±15% for water cut between 70% and 95%.  

 

A method based on fuzzy inference was proposed to correct the mass flow error of a 

Coriolis mass flowmeter for two-phase flow measurement [69]. The system accepted 

damping, density drop and apparent mass flowrate as inputs to the fuzzy inference 

system to generate the corrected mass flowrate. Lari and Shabaninia [70] applied a 

neuro-fuzzy algorithm to correct the error of a Coriolis mass flowmeter for air-water 

two-phase flow measurement. However, the experimental data and results were not 

explained in detail in their reports.  

 

Hou et al. [71] developed a digital Coriolis flow transmitter and tested a commercial 1-

inch Coriolis flowmeter. The measurement errors under gas-liquid two-phase flow 

conditions were corrected using a feed-forward neural network with two inputs - 

apparent liquid mass flowrate and observed density drop. The online correction results 

showed that, when water flowrate varied from 3 to 15 kg/min with gas volume fraction 

up to 25%, the flowrate errors were within ±3.5% while density errors were within 

±1.5%.  

 

Ma et al. [72] used a 25 mm bore Coriolis flowmeter together with SVM algorithms to 

measure the overall mass flowrate of oil-water two-phase flow. The oil flowrate ranged 

from 0.27 to 5 m3/h and water flowrate between 0.2 and 7 m3/h. Experimental results 

showed that the relative error of the total mass flowrate was within ±1% while the 

individual mass flowrate had the maximum error of ±8%.  

 

All the measurement methods mentioned in Section 2.3 using traditional sensors and 

soft computing techniques are summarized in Table 2.1. 
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Table 2.1 Indirect measurement approaches using traditional sensors and soft computing techniques 

Sensors                                           Soft computing method      Multiphase flow         Pipe diameter (mm)              Average relative error  

Ultrasonic sensor [48]                                  ANN                               air-oil                            25, 50                              GVF variation: ±4.2  

Throat-extended Venturi [50]                      ANN                        natural gas-water                     50                                 qv,g: 3.14%, qv,l: 4.77%                                                          

Throat-extended Venturi [50]                      SVM                        natural gas-water                     50                                 qv,g: 2.86%, qv,l: 4.25% 

DP sensors [51]                                            ANN                               air-water                           32.5                              vg:2.4%, vl: -0.3% 

Conductance sensors [52]                            ANN                               air-water                           50                                  vg, vl: <±10% 

Laser diode, photodiode array [53]              SVM                        nitrogen-water       4.22, 3.03, 2.16,1.08                      GVF variation <7% 

Conductance+Turbine flowmeter [54]         ANN                               air-water                          18                                   vg, vl: 7.36%                                                                                   

Capacitance+Conductance [55]                   ANN                               oil-water                           50                                   v: <5%  

+Ultrasonic+DP+Venturi          

Capacitance+Conductance [56]                    ANN                          oil-air-water                          50                           vo: 6.2%, vg: 4.68%, vl:3.91% 

+Ultrasonic+DP+Venturi           

Capacitance+Electrostatic sensor [57]        ANFIS                      coal-biomass-air                      36                                  Cb: 1.2%, Cc: 0.7% 

Capacitance+Electrostatic sensor [58]         ELM                       coal-biomass-air                       94                                   Cb: 2.1%, Cc: 1.2% 

Coriolis flowmeter [59]                                ANN                               air-water                           25                                   qm,l: <±2%       

Coriolis flowmeter [60]                                ANN                               air-heavy oil                     75                                   qm,l: <1%~5% 

Coriolis flowmeter [44]                                ANN                               gas-liquid CO2                   -                                     qm,l: 5% 

Coriolis flowmeter+Water cut meter [65]    ANN                               oil-air-water                     50            qm,l: ±2.5%, qm,g: ±5%, qm,o: ±6%, ±15% 

Coriolis flowmeter [66]                            Fuzzy system                      air-water                            -                                             - 

Coriolis flowmeter [67]                            Neuro-Fuzzy                       air-water                            -                                             -                

Coriolis flowmeter [68]                                ANN                               air-water                           25                                    qm,l: <±3.5% 

Coriolis flowmeter [69]                                SVM                               oil-water                           25                           qm:<±1%, qm,o,qm,w:<±8% 
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2.4 Input Variable Selection Methods for Data-Driven Models 

 

Input variable selection is in fact to establish the relationships within the available data 

and identify suitable predictors of the model output. In the case of artificial neural 

networks or other similar data-driven models due to the imprecision and uncertainty 

nature of the soft computing approach, input variable selection is indispensable for 

developing a suitable model. May et al. [73] summarized the input variable selection 

methods for artificial neural networks and presented several key considerations in 

determining the most appropriate approach to input variable selection for a given 

application. As shown in Figure 2.17, the input variable selection techniques can be 

classified into model-based and model-free algorithms. In order to choose an 

appropriate approach, the first consideration is to decide whether the case under 

consideration is a linear or non-linear problem. Subsequently, the computational 

requirements in the model-based techniques and the selection accuracy should be 

balanced as well. 

 

 

 

Figure 2.17 Principal input variable selection algorithms 
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Dimension reduction is often performed to reduce the computational effort associated 

with data processing, or to identify a suitable subset of variables to include in the 

analysis. Although the goal of dimension reduction differs from that of variable 

selection, it is closely related and regularly employed in data pre-processing. The 

commonly used dimension reduction method in the field of flow measurement is 

principal component analysis. Principal component analysis was applied in 

[52],[53],[74] to extract the features from several statistical variables before developing 

an ANN or SVM model. Ye et al. [75] extracted the statistical feature from pressure 

fluctuations through principal component analysis and established a least squares 

support vector machine to recognize multiphase flow pattern in a pipeline-riser system. 

Although principal component analysis and independent component analysis may be 

useful in removing noise from the data, they are not possible to distinguish the unique 

contributions of individual variables to the output.  

 

So far there have been few research reports on the application of variable selection 

methods to multiphase flow measurement. The input variables in the proposed models 

in Section 2.3.6 are all selected by experience and may underestimate the performance 

of data-driven models. However, significant progress has been achieved in hydrology 

engineering as the complex environmental data are more difficult to interpret in 

physical meaning. There are some research conducted to compare the performance 

among different variable selection methods.  

 

Bowden et al. [76],[77] tested PMI (Partial Mutual Information) and SOM-GAGRNN 

(Self Organizing Map - Genetic Algorithm and General Regression Neural Network) on 

a number of synthetic data sets and real-time forecasting simulation. It turned out that 

both approaches were acceptable when predictive performance was the primary aim. 

The variables determined using the PMI algorithm were most robust for the validation 

set and the PMI scores can reveal useful information about the order of importance of 

each significant input. May et al. [78] further researched on the partial mutual 

information based input variable selection for non-linear artificial neural networks. In 

order to resolve the problems of underlying assumption of linearity and redundancy 

within the available data, three novel termination criteria, i.e. Tabulated critical values, 

Akaike Information Criterion (AIC) and Hampel test criterion, were proposed to 
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improve computational efficiency and accuracy of the algorithm. Because the data 

distributions in real-world applications are often unknown and the assumption of 

Gaussian data may be inappropriate, the AIC and Hampel criteria are recommended for 

wider applicability. Galelli et al. [79] proposed a hybrid approach combining both 

model-free and model-based methods, namely, the tree-based Iterative Input Selection 

(IIS) algorithm. In this algorithm a tree-based ranking method is used in place of the 

information-theoretic measure such as PMI to estimate the information gained from the 

data. Results indicate that IIS is capable of selecting the most significant and non-

redundant inputs in different test conditions. Subsequently, Galelli et al. [80] made an 

inter-comparison of four input variable selection methods, including PMI, PCIS (Partial 

Correlation Input Selection), IIS and GA-ANN, through testing on several datasets, and 

evaluated the four algorithms in terms of selection accuracy, computational efficiency 

and qualitative criteria. Li et al. [81] presented preliminary guidelines for the selection 

of most appropriate methods for obtaining the required kernel density estimates in the 

PMI method. The use of alternative bandwidth estimators can result in significant 

improvements in the PMI method for non-normally distributed data.   

 

2.5 Summary  

 

This chapter has reviewed the existing multiphase flow measurement systems, including 

separation systems, on-line sampling systems and on-line direct and indirect multiphase 

flowmeters. The soft computing techniques used for multiphase flow measurement and 

input variable selection for data-driven models have also been reported. 

  

As can be seen from the cited work (Section 2.2), a variety of multiphase flowmeters 

have been developed for two-phase or multiphase flow measurement. However, there is 

limited research on CO2 flow measurement in CCS, especially under two-phase or 

multiphase flow conditions.  

 

As can be seen from the cited work (Section 2.3), traditional sensors incorporating soft 

computing techniques have been applied to measure the phase flowrate and phase 

fraction. The measurement systems based on Coriolis flowmeters are able to directly 
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provide mass flowrate of total or individual flow and have the potential to be more 

accurate than other measurement systems. As shown in Table 2.1, ANN is a popular 

approach to map the relationship between the input variables and desired outputs. 

However, ANN is based on empirical risk minimization and all the parameters are tuned 

iteratively and hence may suffer from overfitting. With the progress of soft computing 

techniques, more advanced algorithms such as SVM, evolutionary programming and 

hybrid techniques could be utilized to provide a better solution to these issues.  

 

Moreover, the input variables for the proposed correction models of Coriolis flowmeters 

were selected by experience and may understate the performance of correction models. 

Although certain theoretical Coriolis flowmeters is available, parameter dependency, 

significance and sensitivity to the desired output are not quantified. In addition, there 

has been no research on the prediction of gas volume fraction using Coriolis 

flowmeters. 

 

The literature review has demonstrated that there is a certain gap between the existing 

technologies and the requirements of multiphase flow measurement, including CO2 flow 

in the CCS chain. Based on the literature review, Coriolis flowmeters incorporating soft 

computing techniques are believed to be a promising, feasible and cost-efficient 

solution to multiphase flow measurement.  
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Chapter 3  

Theoretical Aspects of Data-Driven 

Modelling for Coriolis Flowmeters 

3.1 Introduction 

 

This chapter, firstly, presents the proposed measurement methodology using Coriolis 

flowmeters incorporating soft computing techniques. The measurement method is based 

on prior information captured from Coriolis flowmeters and additional sensors to 

estimate the liquid mass flowrate and gas volume fraction of two-phase flow. 

 

Then, the chapter presents three advanced input variable selection methods for data-

driven models, covering PMI (Partial Mutual Information), GA-ANN (Genetic 

Algorithm-Artificial Neural Network) and IIS (Tree-based Iterative Input Selection) 

approaches. The principle and selection procedures of the three methods are introduced 

specifically. 

 

At last, the chapter gives the theory of three soft computing techniques for data-driven 

modelling, including ANN (Artificial Neural Network), SVM (Support Vector Machine) 

and GP (Genetic Programming). The structure of the data-driven models based on these 

techniques and modelling process are described in detail. 

 

3.2 Measurement Methodology 

 

Although the mass flowrate measurement from Coriolis flowmeters under two-phase or 

multiphase conditions has greater uncertainty than single-phase conditions, the outputs 

from Coriolis flowmeters and other additional sensors, such as DP (Differential 

Pressure) transducers and electrical impedance sensors, are related to the phase 
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components to some extent. Consequently, it is reasonable to assume the phase flowrate 

and phase fraction can be obtained if the relationship between the sensor outputs and the 

phase parameters is established. With the development of soft computing techniques, 

data-driven models are becoming more and more popular in constructing an input-

output mapping by learning from history data and given examples and then performing 

estimation for the desired output.   

 

As shown in Figure 3.1, the measurement methodology is based on data-driven models, 

which accept variables from a Coriolis flowmeter and additional sensors (a DP 

transducer and an electrical impedance sensor are taken into account in Chapter 4) while 

the output gives the liquid mass flowrate or gas volume fraction. Since the volume of 

data is often limited in practice, it is appropriate to design a separate model for each 

desired output.   

 

 
Figure 3.1 Principle of the measurement methodology 

 

In order to develop a proper model for the desired output, there are two aspects - input 

variable selection and data-driven modelling. Input variable selection is to extract useful 

information from the available data and identify suitable input variables which are able 

to well explain the desired output for a data-driven model. Through input variable 

selection to eliminate the irrelevant or redundant variables, the complexity of the model 

structure is simplified and the computational efficiency is improved. Data-driven 

modelling is a process to find connections between the input variables and output 

variables through analysing the available data, even without any explicit knowledge of 

the physical behaviour of the system. Once the model is trained, it can be tested using 
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an independent data set to determine how well it can generalise to the unseen data. The 

approaches to input variable selection and data-driven modelling are presented in 

Sections 3.3 and 3.4, respectively. The evaluation of input variable selection methods 

and data-driven modelling techniques based on real experimental data is reported in 

Chapter 4. 

 

3.3 Input Variable Selection 

 

In this study, three input variable selection methods, including PMI, GA-ANN and IIS, 

are considered to identify input variables before modelling of Coriolis flowmeters for 

two-phase flow measurement.  

 

3.3.1 Partial Mutual Information 

 

The PMI approach, as an advanced model-free variable selection method, is able to 

minimize redundancy and maximize relevance in the available data by estimating the 

maximum joint mutual information. The PMI input variable selection method was first 

proposed by Sharma in 2000 for the identification of inputs for hydrological models 

[80]. PMI is a model-free variable selection method, which utilizes a measure of the 

partial dependence between a potential input variable and the output, conditional on any 

inputs that have already been selected. Earlier research on evaluating the performance 

of PMI on synthetic data sets and real-world data sets shows that PMI is a promising 

method [78],[81].  

 

Given a dependent variable Y=(y1,y2,…,yn)
T, the potential input variable pool X={x1, 

x2, … , xm} and the already selected variable set S which is a subset of X and can be 

represented as (s1, s2, …, sn)TX, m is the number of potential variables and n is the 

number of sample observations. The PMI value of a potential input variable x=(x1, x2,…, 

xn)
T can be formulated as: 
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where, u =(u1,u2,…,un)
T and v =(v1,v2,…,vn)

T represent the residual information in 

potential input variable x and dependent variable Y once the effect of the already 

selected inputs S has been taken into consideration. )(ˆ uf , )(ˆ vf and ),(ˆ vuf  are the estimated 

marginal and joint probability density functions which are realized by kernel density 

estimation.  

 

u and v in equation (3-1) are determined by 

)(ˆ]|[ sxSxxu xmE                                                  (3-2) 

)(ˆ]|[ sYSYYv YmE                                                      (3-3) 

where  sxm̂  is the conditional expectation of x given an observed S.  sYm̂  is the 

conditional expectation of Y given an observed S. The estimator  sYm̂  for the regression 

of Y on S is written as 
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where Kh is the Gaussian kernel function which can be described as  
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d denotes the number of dimensions of s, ∑ is the sample covariance matrix and iss   

is the squared Mahalanobis distance which is given by  
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where s is the mean of s. h denotes the kernel bandwidth which is determined by  
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where σ is the standard deviation of the data sample. 
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The estimator )(ˆ uf  in equation (3-1) is given by 
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The estimators  sxm̂ , )v(f̂  and )v,u(f̂ can be similarly constructed.  

 

Akaike information criterion (AIC) is considered as the termination criterion of the PMI 

algorithm, as it can provide a general measure of the trade-off between information gain 

and the complexity introduced to the model by the addition of input variables. It is 

based on the analysis of the output variable residual u. Once there is no further 

reduction in the information contained in u, the optimal input variable set is reached and 

the selection is terminated.  
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where p is the number of model parameters. u is the residual of the desired and 

estimated outputs and  u can be calculated from equation (3-2). 

 

The search strategy is a forward selection procedure which is described as follows: 

(1) Initialize the selected input set S with null.  

(2) Calculate the PMI value (equation (3-1)) for each potential variable which is beyond 

S. 

(3) Find out the variable x from {X-S} with the highest PMI value.  

(4) Calculate the AIC score (equation (3-9)), assuming x is included in S.  

(5) If AIC score decreases, variable x can be added to S and go to step (2). 

     Otherwise variable x is rejected and the selection is terminated. 

 

3.3.2 Genetic Algorithm-Artificial Neural Network 

 

GA-ANN is a kind of model-based input variable selection method. It comprises of a 

simple 1-hidden node multilayer perceptron neural network as a regression model and 
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genetic algorithm as the heuristic search strategy. The potential variable subsets are 

generated by the genetic operations: selection, crossover and mutation. The suitability 

of the input variables is determined by assessing the performance of the neural network 

which is established based on the corresponding variables. The out-of-sample AIC is 

considered to quantify the accuracy of the neural network after k-fold cross validation. 

The termination criterion of the genetic algorithm is either the maximum number of 

generations or convergence of the fitness function is achieved [82]. 

 

A genetic algorithm usually includes five steps: population initialization, fitness 

function, selection, crossover and mutation. The selection procedure is as follows: 

(1) Initialise a population with a random population of chromosomes. 

(2) Each chromosome in the population is decoded into a solution. Calculate its fitness 

using an objective function. 

(3) The chromosome with best fitness is selected to generate a second generation.  

(4) Partially exchange genetic information between two parent chromosomes during 

crossover. 

(5) With some low probability, a portion of the new individuals have some of their 

chromosomes flipped during mutation, which is used to keep the population diverse and 

prevent the algorithm from prematurely converging onto a local minimum. 

(6) If the maximum number of generations or convergence of the fitness function is 

reached, the selection procedure is over. Otherwise, go to (2). 

 

3.3.3 Tree-Based Iterative Input Selection 

 

The IIS method is a combination of model-free and model-based methods. It utilizes 

extra-trees to estimate the relative contribution of each candidate input. The ranking-

based evaluation does not require any assumption on the statistical properties of the 

input data set (e.g. Gaussian distribution) and can be applied to any sort of samples. 

Moreover, this approach does not rely on computationally intensive methods (e.g. 

bootstrapping) to estimate the information content in the data and thus is generally 

faster and more efficient [83].  
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Extra-trees is a nonparametric tree-based regression method. The process of building 

nodes and branches of a tree involves partitioning the input space into mutually 

exclusive regions according to a splitting criterion, progressively narrowing down the 

size of the regions. The splitting criterion is defined by the identification of the best 

input to split a node and the corresponding splitting value. Eventually, when the number 

of instances in a region becomes smaller than a specific user-defined value, the 

partitioning of that region stops the tree, a specific path is followed according to the 

splitting rules adopted in the tree-building procedure, and the predicted output is then 

obtained according to the values stored in the leaf. 

 

The particular structure of extra-trees can be exploited to rank the importance of the 

input variables in explaining the output behaviour. It is based on the idea of scoring 

each input variable by estimating the variance reduction it can be associated with by 

propagating the training data set D over the M different trees composing the ensemble.  

The relevance G of the variable xi in explaining the output Y can be evaluated by: 
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where M is the number of different trees and Ω is the number of non-terminal nodes in 

the tree. wtj is the jth non-terminal node in the tth tree. k is equal to 1 if the variable xi is 

used to split the node wtj, otherwise k is 0. )(var tjw  is the variance reduction associated 

to node wtj. D is the number of observations in training dataset D.  

 

The input variables are sorted by decreasing the relevance of potential variables, and 

thus the first variable should be most significant. In order to reduce miss-selection and 

minimize the redundancy, the first q variables in the ranking are further evaluated by 

extra-trees based SISO (Single Input Single Output) and MISO (Multiple Inputs Single 

Output) models. The termination criterion is defined as either the best variable obtained 

in the current iteration is already in the selected variable set S, or the improvement of 

the model performance reaches to tolerance ε. 
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The search strategy is forward selection and the selection procedure is as follows: 

(1) Calculate the input ranking of the potential input variables according to the 

explained variance and pick out the q most relevant input variables. 

(2) Build SISO models for each of the first q-ranked variables. Compute the distance 

metric between Y and the model output, and then select the most relevant variable xi and 

add it to the selected variable set S. 

(3) Build a MISO model with selected variable set S and compute the distance metric 

between Y and the model output M(S). 

(4) The procedure is repeated using the residuals [Y-M(S)] as the new output variable in 

steps (1) and (2). These operations iterated until either the best variable returned is 

already in the set S or the performance of the underlying model does not significantly 

improve. 

 

The evaluation of the distance metric follows a k-fold cross-validation approach. The 

estimated prediction accuracy is then the average value of the distance metric over the k 

validations. 

 

3.4 Soft Computing Techniques 

 

Data-driven modelling is a process to develop models using soft computing techniques, 

particularly machine learning. This section describes three soft computing techniques, 

including ANN, SVM and GP, for modelling a nonlinear system with multiple inputs 

and outputs [84]-[88]. These techniques are to be applied in the following study. 

 

3.4.1 Artificial Neural Network 

 

Neural network models are developed by training the network to represent the 

relationships and processes that are inherent within the data. Being essentially non-

linear regression models, they perform an input-output mapping using a set of 

interconnected simple processing nodes or neurons. Each neuron takes in inputs either 

externally or from other neurons and passes it through an activation or transfer function 
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such as a logistic or sigmoid curve. As shown in Figure 3.2, the ANN consists of an 

input layer, one or more hidden layers and an output layer. The inputs can be any 

combination of variables that are thought to be important for predicting the output. 

Therefore, some knowledge of the process and input variable selection are very 

important. The hidden layer is the essential component that allows the neural network to 

learn the relationships in the data. The estimated values are generated from the output 

layer. In general, a neural network with a single-hidden layer of sufficient neurons is 

able to represent any nonlinear problem. In consideration of the simplicity of the ANN 

structure, a single-hidden layer is chosen and investigated in this study. The ANN 

trained with a backpropagation learning algorithm is defined as BP-ANN. 

 

 

Figure 3.2 Structure of a BP-ANN 

 

As shown in Figure 3.2, x=(x1,x2, …, xm)T is an input sample and y is the desired output. 

Assume y is the linear output of the hidden neurons and a transfer function f(x) is used 

on the neurons, the ANN is modelled as: 

  
  


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j

m

i

jiijjjjBP baxfbHy
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)(                              (3-11) 

where m and L are the numbers of input variables and hidden nodes, respectively. ωj is 

the weight connecting the jth hidden node and the output node, ωij is the weight 

connecting the ith input node to the jth hidden node. aj and b are the biases on the jth 

hidden node and the output node, respectivley. In this study, the hyperbolic tangent 

sigmoid function is used as a transfer function on hidden neurons and presented by 
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The weights (ωij and ωj) and biases (aj and b) are obtained through the training process. 

Backpropagation algorithm is a variation of a gradient descent optimisation algorithm 

that minimises the error between the predicted and actual output values. The weighted 

connects between neurons are adjusted after each training cycle until the error in the 

validation data set begins to rise. The BP algorithm has been widely applied to solve 

practical problems. However, the BP algorithm has the disadvantage of slow 

convergence and long training time. Additionally, the success of the BP algorithm 

depends on the user-dependent parameters, such as initialization and structure of the 

ANN. 

 

3.4.2 Support Vector Machine 

3.4.2.1 SVM 

 

SVM was developed by Vapnik in 1995 to solve the classification problem based on the 

statistic learning theory and structural risk minimization [89]. Since then, this method 

has been extended to the domain of regression and prediction problems [90]. The 

estimation of liquid mass flowrate and gas volume fraction is a regression problem. As 

shown in Figure 3.3, the input vector x=(x1,x2, …, xm)T is first mapped into an L-

dimensional feature space using transfer functions )(x  and then a linear model is 

constructed in this feature space. The nonlinear function f between input x and output 

ysvm is given by 

bfySVM  )(,)( xωx                                           (3-13) 

where ω is the weight vector and b is the bias term.  
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Figure 3.3 Structure of an SVM 

 

SVM regression performs a linear regression in the high dimensional feature space 

using ε-insensitive loss and tends to reduce the model complexity by minimizing 
2

 . 

This can be described by introducing slack variables i  and i    (i=1,2,…,n) to measure 

the deviation of training samples (X*, D) outside ε-insensitive zone. X*=(x1, x2,…, xn) 

represents n input vectors of training samples and D=(y1,y2, …, yn) is the corresponding 

desired output. Regression estimates can be obtained by minimizing the empirical risk 

on the training data and thus the optimization problem can be formulated as 
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where n is the number of training samples.    is the approximation accuracy that can be 

violated by means of the slack variables i , 
i for the non-feasible case. C is a positive 

constant as a regularization parameter that allows tuning the trade-off between the 

flatness of the function f(x) and the tolerance of deviations larger than ε.    

      

The Lagrangian function is given by 
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where i , 
i , i , 

i 0 are Lagrange multipliers. The conditions for optimality are given 

by 
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The extreme value problem is transferred into a dual problem by substituting (3-16) to 

(3-15): 
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 The parameter b can be computed by exploiting the Karush-Kuhn-Tucker (KKT) 

conditions and given by                                 
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The resulting SVM for nonlinear function estimation takes the form: 
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According to Mercer’s condition, the inner product )(),( ixx   can be defined through a 

kernel ),( iK xx , so the final product of a training process in the SVM method can be 

presented by: 

bKf

n

i

iii 




1

),()()( xxx                                          (3-20) 

There are some optional kernel functions for SVM, such as: 

 

Linear kernel: iiK xxxx ,),(                                                                                       (3-21) 

Polynominal kernel: 0,),(),(  pmdpK d
ii xxxx                                            (3-22) 

Gaussian radial basis function kernel: 

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Sigmoid kernel: 0,0),tanh(),(   iiK xxxx                                              (3-24) 

 

3.4.2.2 LSSVM 

 

LSSVM is a least squares version of support vector machine and proposed by Auykens 

and Vandewale [91]. Unlike the inequality constraint (equation (3-10)) used in SVM, 

LSSVM applies equality constraints and thus finds the optimal solution through solving 

a set of linear equations instead of a convex quadratic programming problem in classical 

SVM. As a result, computational complexity is significantly reduced. Meanwhile, 

LSSVM has been proven to have excellent generalization performance and low 

computational cost in many applications [92],[93]. 

 

Similar to equation (3-14), the optimization problem in LSSVM is formulated 
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s.t. iii eby  )(, xω  , i=1,…, n                                    (3-26) 
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where   is a penalty parameter that balances model complexity and approximation 

accuracy, ie  is the ith error variable. With the usage of the Lagrangian method, the 

optimization problem can be converted into a group of linear equations: 
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where iα  (i=1,…,n) are the Lagrange multipliers. The conditions for optimality are 

given by: 
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The solutions can be given in a group of linear equations by eliminating the variables ω  

and e: 
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where T
v ]1,...,1[1 , T

nyy ],...,[ 1y , T
n ],...,[ 1 α , I is an n×n identity matrix. The Mercer 

condition is applied: 

),()(),( kikiik K xxxx    i,k=1,…,n                            (3-30) 

The parameter α  and b can be calculated as follows: 
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where H is a positive definite matrix and described as 
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The choices of the kernel function ),( kiK xx  in LSSVM are the same as those in SVM.  

Finally, the LSSVM regression model can be obtained: 
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3.4.3 Genetic Programming 

 

Genetic programming is a method for evolving equations by taking various 

mathematical building blocks such as functions, constants and arithmetic operations and 

combining them into a single expression and was originally developed by Koza in 1992. 

GP as an evolutionary computation technique is an extension of genetic algorithms and 

is widely applied to symbolic data mining (symbolic regression, classification and 

optimization) [94]-[96]. Unlike traditional regression analysis, GP based symbolic 

regression automatically evolves both the structure and parameters of the mathematical 

model from the available data. Meanwhile, it is superior to other machine learning 

techniques due to the ability to generate an empirical mathematical equation without 

assuming prior form of the existing relationships. In this study, multigene symbolic 

regression is applied to establish a model for two-phase flow measurement. The 

structure of a multigene symbolic regression model is shown in Figure 3.4. 

 

 

Figure 3.4 Structure of a GP model 
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The GP model can be regarded as a linear combination of lower-order nonlinear 

transformations of the input variables. The output yGP is defined as a vector output of n 

trees modified by the bias term b0 and scaling parameters b1,…, bn: 

nnGP tbtbby  ...110                                           (3-34) 

where ti (i=1,…, n) is the (m×1) vector of outputs from the ith tree comprising a 

multigene individual.  

 

The evolutionary process starts with initial population by creating individuals 

containing GP trees with different genes generated randomly. The evolutionary process 

continues with an evaluation of the fitness of the new population, two-point high-level 

crossover to acquire and delete genes and low-level crossover on sub-trees. Then the 

created trees replace the parent trees or the unaltered individual in the next generation 

through mutation operators. The best program that appeared in any generation, the best-

so-far solution, defines the output of the GP algorithm [95].    

 

3.5 Summary 

 

This chapter has firstly described the measurement methodology using Coriolis 

flowmeters incorporating soft computing techniques. Data-driven models accept the 

useful information extracted from sensor signals and estimate the liquid mass flowrate 

and gas volume fraction of two-phase flow. Before developing the data-driven models, 

input variable selection is an essential step to identify the significance of the variables to 

the desired output and determine a suitable subset of variables as inputs of the model.   

 

Three different approaches to input variable selection have been presented, including 

PMI, GA-ANN and IIS. The principle and selection procedures have been described in 

detail. In addition, the chapter has also presented the principles of soft computing 

techniques for data-driven modelling, including ANN, SVM and GP. The structure of 

the model based on each technique and modelling process have been reported 

specifically. The performances of the input variable selection methods and data-driven 
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models based on different soft computing techniques are demonstrated and compared 

through the real experimental data obtained from 1-inch air-water two-phase flow test 

rig (Chapter 4). The comparison of generalization ability of SVM and LSSVM is 

reported in Chapter 5. 
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Chapter 4  

Experimental Tests with Air-Water Two-

Phase Flow 

4.1 Introduction 

 

This chapter presents the results using soft computing techniques on 1-inch Coriolis 

flowmeters (KROHNE OPTIMASS 6400 S25) with air-water two-phase flow. 

Experimental work was conducted on the air-water two-phase flow test rig at KROHNE 

Ltd. The objectives of the tests were defined as follows: 

 

1) To assess the performance of 1-inch Coriolis flowmeters with air-water two-phase 

flow on horizontal and vertical installation orientations. 

2) To evaluate the effectiveness of the input variable selection methods (i.e. PMI, GA-

ANN, IIS) and soft computing techniques (ANN, SVM, GP) presented in Chapter 3.   

3) To investigate the performance of the measurement methodology for two-phase flow 

using Coriolis flowmeters incorporating soft computing techniques. 

 

A range of experimental tests were carried out with liquid flowrate from 700 kg/h to 

14500 kg/h and gas volume fraction between 0 and 30%. Previous studies suggested 

that the parameters from Coriolis flowmeters, DP transducers and electrical impedance 

sensors are varying with the liquid flowrate and entrained gas. The impacts of sensor 

outputs on the measurement of liquid mass flowrate and gas volume fraction are 

reported in this chapter. The performance comparisons of input variable selection 

method and soft computing techniques are presented in detail. 
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4.2 Experimental Conditions 

 

Experimental tests of 1-inch Coriolis flowmeters (KROHNE OPTIMASS 6400 S25) 

with air-water two-phase flow were conducted at KROHNE Ltd in July 2015. As shown 

in Figure 4.1, the gas flow is set to enter to the liquid flow through a by-pass on the pipe. 

The liquid mass flowrate is controlled by adjusting the pump frequency from 15 to 80%. 

The gas flowrate is varied by adjusting the opening of the valve in a gas flow controller. 

Two independent Coriolis flowmeters (KROHNE OPTIMASS 6400 S25 and 

Bronkhorst mini CORI-FLOW M15) were installed before the mixer to provide 

references for the individual mass flow rates of the liquid and gas phases respectively. 

Both reference meters’ measurement uncertainties under single-phase conditions were 

verified according to the manufacturer’s technical specification. Due to the effect of 

gravity and buoyancy on the gas-liquid two-phase flow, bubbles distributed within the 

Coriolis measuring tubes are different between horizontal and vertical installations and 

hence Coriolis flowmeters perform differently. For this reason, two additional Coriolis 

flowmeters (see Figure 4.2) of the same type were installed in the horizontal and 

vertical test sections, respectively, to measure the liquid mass flowrate. The Coriolis 

flowmeters under test are in twin bent-tube design, as shown in Figure 4.3. Two DP 

transducers were also used to record the DP value across each flowmeter under test. In 

addition, an electrical impedance sensor was installed in the upstream of the Coriolis 

flowmeter on the horizontal test section.  

 

Figure 4.1 Schematic of the two-phase flow test rig 
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Figure 4.2 Photo of the Coriolis flowmeters under test 

 

Figure 4.3 Typical design of twin bent Coriolis measuring tubes [5] 

 

A series of experimental tests were conducted with the liquid mass flow rate ranging 

from 700 kg/h to 14500 kg/h and gas volume fraction from 0 to 30%. The test points 

with variations in liquid mass flowrate and gas volume fraction are summarized in 

Figure 4.4. For the purpose of model training, a dataset of 237 records (circular makers 

in Figure 4.4) was collected while the dataset of 24 records (triangular markers in 

Figure 4.4) for testing the model. The test dataset includes some experimental data 

which were collected at different flowrates from those in the training dataset. The new 

conditions as in the test dataset which were conducted on a different day and obtained 

under different flowrate from the training dataset are useful to assess the generalization 

capability of data-driven models.  

 

Each dataset represents the average of all recorded values within an approximate 

window of 100 s. The fluid temperature during the tests was between 18°C and 24°C, 

which varied with the ambient temperature in the laboratory. It was observed during the 
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experiments that the flow pattern in the horizontal pipe was mostly slug or dispersed 

bubbly flow whilst the flow was of bubbly and dispersed bubbly nature in the vertical 

pipe.  

 

 
Figure 4.4 Experimental test points of the 1-inch air-water flow 

 

4.3 Analysis of Original Errors  

 

The typical original mass flow errors of the Coriolis flowmeters in training data are 

plotted in Figure 4.5. The Coriolis flowmeter on the vertical section gives negative 

errors at flowrates below 4000 kg/h. At a higher flowrate (>5500 kg/h), the mass flow 

errors become positive and crossing the zero line and then return to negative errors 

again along with increasing entrained gas. This is believed to be due to the flow regime 

effects on the fluid-tube coupling system at different flowrates. At a lower flowrate (< 

2000 kg/h), the flow was nearly slug flow as observed during the test while the flow 

regime became gradually dispersed bubbly flow as the flowrate and entrained gas 

increase. For the Coriolis flowmeter on the horizontal pipeline, the range of mass flow 

errors is different from that on the vertical pipeline most likely due to the effects of 

gravity and buoyancy on the flow regime. Positive errors occur at mass flowrates of 700 

kg/h and 1000 kg/h when the gas volume fraction is below 6%. Gas volume fraction is 

calculated according to the temperature and pressure in the upstream of the test meter. 

By comparing the mass flow errors at the same flowrate in Figure 4.5 and Figure 4.6, 
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the errors are generally reproducible for the same installation and thanks to the new-

generation flow transmitter [97].  

 

 

(a) Horizontal pipeline                                            

 

(b) Vertical pipeline 

Figure 4.5 Original errors of the liquid mass flowrate from training data 
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(a) Horizontal pipeline                                         

 

(b) Vertical pipeline 

Figure 4.6 Original errors of the liquid mass flowrate from test data 

 

Figure 4.7 depicts the distribution of the relative errors of the measured liquid mass 

flowrate on both horizontal and vertical pipelines. Each color (blue or green) in the 

figure represents training or test datasets respectively. The Coriolis flowmeter on the 

horizontal pipeline yields the liquid mass flowrate with a relative error between -41% 

and 9% whilst the meter on the vertical pipeline gives an error from -25% to 11%. The 

difference in errors between the vertical and horizontal installations is due to the fact 

that the bubbles in a vertical flow are distributed evenly in the pipe cross section due to 

the effect of gravity, resulting in less interruptions on the tube vibration inside the 

Coriolis flowmeter and hence different errors.              
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               (a) Horizontal pipeline                                        (b) Vertical pipeline 

Figure 4.7 Relative error histogram of the liquid mass flowrate 

 

4.4 Evaluation of Input Variable Selection Methods 

4.4.1 Definition of Variables 

 

The variables acquired from sensors and their corresponding physical definitions are 

outlined in Table 4.1. All input variables (x1-x14) are obtained through measuring or 

transforming the internal parameters of the two Coriolis flowmeters, DP transducers and 

the electrical impedance sensor. Variables x1-x3 are direct measurement outputs from 

Coriolis flowmeters while x4-x11 are their internal parameters. The measurement 

principle of mass flowrate ( mq ) of a single-phase flow using Coriolis flowmeters is 

represented as [98],[99] 

dTRm tTCTCCCTeKKq ])(1[ 2
4321                               (4-1) 

where KR is a calibration factor for the measurement of the mass flowrate of a single-

phase flow at a reference temperature, KT is a material temperature dependence factor, e 

is a device-specific temperature dependence factor, and T is a relevant temperature 

difference.  and   indicate the relevant differences on circumferential stress and 

axial stress of a measuring tube. C1, C2, C3 and C4 are corresponding calibration 

coefficients. td is the time shift between the signals from motion sensors A and B. 

The fluid density (ρ) from a Coriolis flowmeter is determined by 
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where AR and BR are calibration factors to measure the density of single phase flow, KE 

is a temperature dependence factor, and f is the frequency of a measuring tube. 

 

Coriolis flowmeters are capable of providing accurate measurements of mass flowrate 

and density of single-phase flow. However, the mass flowrate and density readings are 

erroneous under the condition of two-phase or multiphase flows due to the effect of 

additional phases on the vibration coupling of the measuring tube. In this case, the 

erroneous mass flowrate and density are defined as apparent mass flowrate and 

observed density (i.e. x1 and x2 in Table 4.1).  

 

x12 (DP) from the DP transducer represents the pressure difference across a Coriolis 

flowmeter. x13 and x14 are from the electrical impedance sensor and represent the 

magnitude and phase angle of the impedance of the flow between two electrodes. Under 

two phase flow conditions, it is impossible to measure the liquid mass flowrate and gas 

volume fraction directly using each of the instruments alone. However, the variations of 

the variables in Table 4.1 reflect the changing of the desired outputs 1Y  (desired liquid 

mass flowrate) and 2Y  (desired gas volume fraction) to some extent. Due to the 

reproducibility of the experimental tests, it is possible to establish data-driven models 

using the available experimental data to estimate liquid mass flowrate (
1Ŷ ) and gas 

volume fraction (
2Ŷ ). Because some of the variables from different sensors are 

independent and some are related to each other in physical sense, it is difficult to 

empirically determine which variable has more contribution to explain the desired 

outputs. It is necessary to formulate the relationship between the potential input 

variables and the desired outputs and then identify significant variables which are able 

to explain the desired outputs completely. Meanwhile, the repeated information should 

be eliminated to reduce the complexity of the model structure and improve the 

performance of the model. 
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Table 4.1 Variables and their corresponding physical definition 

ID      Variable name and symbol        Physical definition                                                                                                              Source 

x1                     Apparent mass flowrate (qm)                                                         
The mass flowrate reading from Coriolis flowmeters based on calibration 

characteristics for single-phase flows. 
Coriolis flowmeter 

x2 Observed density (ρ) 
The density reading from Coriolis flowmeters based on calibration                                       

characteristics for single-phase flows. 
Coriolis flowmeter 

x3 Process temperature (T) The temperature reading from Coriolis flowmeters Coriolis flowmeter 

x4 Sensor-A amplitude (VA) The voltage amplitude of signals from motion sensor-A. 
Coriolis flowmeter 

x5 Sensor-B amplitude (VB) The voltage amplitude of signals from motion sensor-B. Coriolis flowmeter 

x6 Drive level (ID) The current amplitude of the driver output. Coriolis flowmeter 

x7 Time shift (td) The time delay between the signals from the two motion sensors induced by flow. Coriolis flowmeter 

x8 Tube frequency (f) 
The oscillation frequency of the Coriolis measuring tube(s) inside Coriolis 

flowmeters. 
Coriolis flowmeter 

x9 Sensor balance (Bs) The ratio of the voltage amplitude of sensor-A signal to sensor-B signal. Coriolis flowmeter 

x10 Damping (K) Damping factor of Coriolis measuring tube(s) Coriolis flowmeter 

x11 Two phase indicator An indicator for the detection of a two-phase or multiphase flow [100] Coriolis flowmeter 

x12 Differential pressure (DP) DP is the differential pressure across the Coriolis flowmeter. DP transducer 

x13 Magnitude of impedance ( Z ) The ratio of the voltage difference amplitude to the current amplitude. 
Electrical 

impedance sensor 

x14 Phase factor of impedance ( ) The phase difference between voltage and current. 
Electrical 

impedance sensor 

Y1 Desired liquid mass flowrate 
Desired liquid mass flowrate on the test section is obtained from liquid reference 

Coriolis flowmeter 

Liquid reference 

Coriolis flowmeter 

Y2 Desired gas volume fraction 
Desired gas volume fraction on the test section is obtained by calculation according 

to liquid and gas reference Coriolis flowmeters 

Liquid and gas 

reference 

flowmeters 

1Ŷ  Estimated liquid mass flowrate 
Output of data-driven models for the measurement of liquid mass flowrate under two-

phase flow conditions. 
Data-driven model 

2Ŷ  Estimated gas volume fraction 
Output of data-driven models for the measurement of gas volume fraction under two-

phase flow conditions. 
Data-driven model 
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In consideration of different performances of the Coriolis flowmeter on horizontal and 

vertical installations, two separate models are to be built for each position. Model-H-L 

and Model-H-G present the models built for the Coriolis flowmeter in the horizontal 

section to estimate liquid mass flowrate and gas volume fraction, respectively. Similarly, 

Model-V-L and Model-V-G indicate the models built in the vertical section to estimate 

liquid mass flowrate and gas volume fraction, separately. Since apparent mass flowrate 

(x1) and observed density (x2) are derived directly from time shift (x7) and tube 

frequency (x8), respectively, with temperature compensation, the possibility of replacing 

x7 and x8 with x1 and x2 is considered, respectively. For this reason, x7 and x8 are 

excluded in Table 4.2. Regarding each model, there are 12 potential input variables and 

one output. The input variables and outputs from the four models are outlined in Table 

4.2. 

 

Table 4.2 Symbols of the input variables and corresponding outputs for the four models 

 

4.4.2 Implementation of Input Variable Selection 

4.4.2.1 Implementation of PMI 

 

The PMI algorithm was implemented on the experimental dataset for each model. The 

variable with the highest PMI value is selected as the candidate input variable set for 

each iteration. As defined in equation (3-9), AIC is a measure of the trade-off between 

accuracy of the regression and the size of the input sets. The behaviour of AIC will 

initially be dominated by a reduction in the magnitude of the residual terms and 

decreases with increasing the number of inputs before reaching a minimum value. 

Installation              Model                  Potential input variables         Model output 

Horizontal pipe          H-L                       x1-x6, x9-x14                                                           1Ŷ  

                        H-G                       x1-x6, x9-x14                                                            2Ŷ  

Vertical pipe              V-L                        x1-x6, x9-x14                                                           1Ŷ   

                        V-G                        x1-x6, x9-x14                                                          2Ŷ   
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Afterwards, AIC increases due to the term of 2p in equation (3-9), which penalises the 

selection of addition variables. Hence, the optimal size of inputs corresponds to the 

minimum AIC. Figure 4.8 shows the change of AIC score when a new variable is added. 

As Figure 4.8 (a)-(d) shown, the AIC score has a decreasing trend until a new variable 

is selected so that the termination criterion is reached. The variables before the red line 

in Figure 4.8 are the final selected variables for the four models. 

 

Model-H-L and Model-V-L are applied to the Coriolis flowmeters on horizontal and 

vertical pipelines, respectively, for the measurement of liquid mass flowrate. The results 

of PMI selection (Figure 4.8 (a) and (c)) show that variables x1 (apparent mass flowrate), 

x2 (observed density) and x12 (DP) are main factors for the two models to estimate the 

desired liquid mass flowrate. This means, although the Coriolis flowmeters on different 

orientations have different performances, the main factors affecting liquid mass flowrate 

are the same. Variable x5 (sensor-B amplitude) provides additional information for 

Model-H-L while x10 (damping) is helpful for Model-V-L. The combined effect of the 

variables is more significant than that of an individual variable on the output. The 

selection results demonstrate x1 has more contribution than the other variables to the 

measurement of liquid mass flowrate as one would expect from a purely physical point 

of view. The difference in selection sequence between the models for horizontal and 

vertical pipes is due to the effect of installation on the performance of Coriolis 

flowmeters. 

 

Model-H-G and Model-V-G are applied for gas volume fraction prediction of Coriolis 

flowmeters on horizontal and vertical pipelines, separately. Figure 4.8 (b) and (d) show 

that variables x2 (observed density), x13 (magnitude of impedance) and x3 (process 

temperature) are obtained from the PMI selection procedures for both Model-H-G and 

Model-V-G. Apart from the three variables, x10 and x9 are also beneficial to Model-H-G 

for fitting the desired output. As expected, variable x2 was first selected for Model-H-G 

and Model-V-G since the observed density changes significantly in relation to the 

amount of gas entrained in the liquid flow. 
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           (a) PMI for Model-H-L                                (b) PMI for Model-H-G                                      

    

            (c) PMI for Model-V-L                                      (d) PMI for Model-V-G 

Figure 4.8 Procedures of PMI input variable selection for Models H-L, H-G, V-L and 

V-G 

 

4.4.2.2 Implementation of GA-ANN 

 

GA-ANN input variable selection was implemented on the dataset of Models H-L, H-G, 

V-L and V-G. The GA algorithm takes thousands of iterations to conduct selection, 

crossover and mutation before the AIC value is converged. The iteration process for 

each model is shown in Figure 4.9. The out-of-sample AIC for the four models are 

individually 1639.06, 958.65, 1555.46 and 911.36.  

 

The selected input variables are x1, x5, x6, x10 and x12 for Model-H-L, while x1, x5, x6, x9, 

x10 and x12 for Model-V-L. It is obvious that the common variables x1 (apparent mass 

flowrate), x5 (sensor-B amplitude), x6 (drive level), x10 (damping) and x12 (DP) are 

important for the pre-defined ANN models to fit the desired liquid mass flowrate.  

 

The selected inputs variables are x2, x3, x4, x5, x11, x12, x13, x14 for Model-H-G, while x2, 

x3, x4, x9, x11, x12, x13, x14 for Model-V-G. As the GA-ANN selection results suggest, 
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the variables x2 (observed density), x3 (process temperature), x4 (sensor-A amplitude), 

x11 (two phase indicator), x12 (DP), x13 (magnitude of impedance) and x14 (phase factor 

of impedance) are common important variables for the pre-defined models to predict 

gas volume fraction. 

 

The outcomes of GA-ANN include more variables than PMI. The selected subset is 

restricted by the structure of ANN and the problem of redundancy in the selected 

variables is more serious than PMI. Moreover, it cannot provide the information of 

significance level of the selected input variables. 

 

   
        (a) GA-ANN for Model-H-L                        (b) GA-ANN for Model-H-G 

   

       (c) GA-ANN for Model-V-L                       (d) GA-ANN for Model-V-G 

Figure 4.9 Iteration of GA algorithm for Models H-L, H-G, V-L and V-G 

 

4.4.2.3 Implementation of IIS 

 

IIS algorithm was executed on the dataset of Models H-L, H-G, V-L and V-G, 

respectively. The candidate subset was incrementally built through ranking, SISO 

(Single Input Single Output) and MISO (Multiple Inputs Single Output) evaluation. The 

selection process and the performance of MISO are shown in Figure 4.10 for each 
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model. For Model-H-L, the tolerance ε is reached after x1, x4 and x9 are all included.  

For Model-H-G, the selection process is terminated because variable x12 is selected 

twice. For Model-V-L, the tolerance ε is reached after x1, x4, x2 and x9 are selected. For 

Model-V-G, input variable x12 is also selected twice resulting in the selection procedure 

terminated. 

 

From the results of Model-H-L, the variables x1 (apparent mass flow), x4 (sensor-A 

amplitude), x9 (sensor balance) are selected while variables x1, x4, x2 (observed density), 

x9 are selected for Model-V-L. This presents the information of apparent mass flow and 

sensor balance are two most useful variables to improve the performance of MISO 

models.  

 

From the results of Model-H-G, the variables x2, x12 (DP), x3 (process temperature) 

were selected while variables x2, x1, x12 were selected for Model-V-G. The fitting 

results of MISO models with the inputs of the information of observed density and mass 

flowrate information (DP or apparent mass flowrate) are significantly improved. 

 

   

          (a) IIS for Model-H-L                                   (b) IIS for Model-H-G 

   

           (c) IIS for Model- V-L                                 (d) IIS for Model-V-G 

Figure 4.10 Results of IIS for Models H-L, H-G, V-L and V-G 
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4.4.3 Comparison of Input Variable Selection Methods 

 

The selected variables by PMI, GA-ANN and IIS methods and corresponding running 

time (the laptop processor is Intel(R) Core (TM) i5-4200U CPU @ 1.60GHz) are 

summarized in Table 4.3. It is clear that GA-ANN algorithm takes longer time to 

implement the heuristic search than the other two methods. The running time of GA-

ANN is about 10 times of IIS running time and 100 times of PMI running time. A large 

number of calibration and validation processes in GA-ANN result in high computational 

requirement while the model-free approaches are directly based on the information 

obtained from the available dataset. In view of time efficiency, PMI algorithm is the 

most effective approach and IIS is in the second place.  

 

In terms of the number of selected input variables, GA-ANN produces more candidate 

variables than PMI and IIS. Moreover, there is much more redundant and unnecessary 

information in the selected subset. IIS generates smallest subset without such 

redundancy. Comparing the outcomes from IIS and PMI, the important information of 

the candidate variables from IIS are mostly included in the selected variables from PMI. 

 

Table 4.3 Variable selection outcomes from PMI, GA-ANN and IIS 

 

 

 

Model 

 PMI                                              GA-ANN                                      IIS  

Variables         Time (s)        Variables                      Time (s)       Variables        Time (s)                                                    

H-L      x1, x5, x2, x12              11.81        x1, x5, x6, x10, x12                        5281.93         x1, x4, x9                  217.33 

V-L      x1, x12, x10, x2            13.14        x1, x5, x6, x9, x10, x12                4152.62         x1, x4, x2, x9          279.63 

H-G x2, x13, x3, x10, x9     13.10       x2, x3, x4, x5, x11, x12, x13, x14   2689.13     x2, x12, x3               242.92 

V-G x2, x13, x3                       12.63       x2, x3, x4, x9, x11, x12, x13, x14   721.12        x2, x1, x12              247.57 
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4.4.3.1 Validation 

 

In order to compare the performance of the three variable selection methods, a typical 

data-driven model is established for each case with SVM. Since an SVM model is based 

on the statistic learning theory and structural risk minimization, the output is not 

affected by the initial parameters and pre-defined structure of the model. Due to the 

relatively constant structure of the SVM model, it is applied to establish the relationship 

between the input variables and the output. In this study, the parameters for building the 

SVM models are optimized through 10-fold cross validation. The performance of the 

SVM model is quantified by Normalised Root-Mean-Square Error (NRMSE), which is 

defined as 
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                                             (4-3) 

where iy  is the reference value of the model output, y   is the mean of iy  , iŷ  is the 

model output, and n is the number of observations. 

 

For each model, three SVM-based models were established based on the selected 

variables from PMI, GA-ANN and IIS, respectively. Each SVM-based model was 

tested on the training data and test data to evaluate the performance of the models which 

was mainly affected by the input variables. The solid line (original error1) and dash line 

(original error2) in Figure 4.11 (a) and (c) represent the original errors of mass flowrate 

on training data and test data. After correction by SVM-based models, the error of 

liquid mass flowrate from Coriolis flowmeters on horizontal and vertical pipes are both 

dramatically reduced. Due to the inherent limitation of generalization ability of data-

driven models, the errors on test data are larger than those on training data. Through 

comparing the NRMSE values of the three SVM-based models, the model with the 

variables selected by PMI has the lowest error than the other two. This means the 

selected variables by PMI include better and more completed information to explain the 

liquid mass flowrate.  

 

As shown in Figure 4.11 (b) and (d), the SVM-based models with PMI input variables 

does not perform well to predict gas volume fraction. Alternatively, IIS input variables 
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make the model predict gas volume fraction with relatively lower error. This illustrates 

IIS provides the fundamental variables for the prediction of gas volume fraction. The 

performance of SVM-based models with GA-ANN input variables is not as good as the 

models based on variables from PMI and IIS. 

 

   

       (a) Model-H-L                                             (b) Model- H-G 

    

        (c) Model-V-L                                            (d) Model-V-G 

Figure 4.11 Performance of SVM with input variables selected for PMI, GA-ANN and 

IIS 

4.4.3.2 Sensitivity Analysis 

 

Sensitivity analysis is used to evaluate how sensitive the model output is to the changes 

in the value of input variables and also identify which input variables are important in 

contributing to the prediction of the output variables [101],[102]. In performing the 

sensitivity analysis, each variable of the model’s inputs is increased by 5% in turn. The 

aim is to assess the effect of small changes in each input on the model output. The 

percentage change in the output as a result of the increase in each of the inputs is the 

sensitivity, which is defined as: 
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where, iẑ  is the model output after small changes added to the input variables, iŷ  is 

the model output with no changed input variables and n is the number of observations. 

 

Sensitivity analysis was conducted on the SVM-based models with PMI input variables 

for liquid mass flowrate measurement, and the SVM-based models based on IIS input 

variables for gas volume fraction prediction. The sensitivity of each variable is plotted 

in Figure 4.12. From Figure 4.12 (a) and (c), it is clear that variables x1 (apparent mass 

flowrate) and x2 (observed density) have the higher sensitivity to the model output than 

the other variables. They have more relative influence on the measurement of liquid 

mass flowrate. Figure 4.12 (b) and (d) show that small changes in variable x2 (observed 

density) can result in more significant variations on the model output. Moreover, 

temperature fluctuation has more effect on the measurement of gas volume fraction than 

liquid mass flowrate. 

  

     
              (a) Sensitivity for Model-H-L                         (b) Sensitivity for Model- H-G       

    
               (c) Sensitivity for Model-V-L                         (d) Sensitivity for Model-V-G 

Figure 4.12 Sensitivity of input variables for the four models 
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The validation and analysis results suggest that the input variables selected from the 

PMI algorithm provide more effective information to estimate the liquid mass flowrate 

while the IIS algorithm provides a fewer but more effective variables to predict the gas 

volume fraction. With regard to the experimental data obtained in this study, the most 

important variable set for the measurement of liquid mass flowrate includes observed 

density, apparent mass flowrate, DP and damping while those for the prediction of gas 

volume fraction include observed density, apparent mass flowrate and DP. Although 

variable selection approaches can provide some valuable information to determine the 

input variables of a data-driven model, the accuracy of the methods also depends on the 

observational dataset, such as data size and their distributions. A dataset with less data 

or low-quality may result in underestimation or overestimation of the candidate 

variables for a data-driven model. Consequently, in order to ensure the selection 

accuracy with limited size of a dataset, it is necessary to determine the input subset 

using variable selection methods incorporating physical interpretation of the variables. 

 

4.5 Evaluation of Data-Driven Models 

4.5.1 Data-Driven Modelling  

4.5.1.1 BP-ANN Models 

 

The BP-ANN model is developed through a training process. For each installation 

condition a separate model is established for the estimation of the measured liquid mass 

flowrate and gas volume fraction. The inputs of the BP-ANN for liquid mass flowrate 

correction include four variables, i.e. observed density, apparent mass flowrate, 

damping and DP which are concluded from Section 4.4 while the inputs of the BP-ANN 

for gas volume fraction prediction include observed density, apparent mass flowrate and 

DP. The number of neurons (L) in the hidden layer is determined using the equations 

below, as proposed in [77]: 

                                                             12  nL                                                         (4-5) 
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where n and m are the numbers of input variables and training samples, respectively. 

However, equations (4-5) and (4-6) give only the range of L for BP-ANN models. The 

exact L for a model can be selected by a trial-and-error method to compromise between 

minimizing errors and achieving good generalization capability. The output layer has 

one neuron for each model since there is only one output variable. 

 

The BP-ANN transfer function between the input and hidden layers is hyperbolic 

tangent sigmoid transfer function. The pure linear function is taken as the transfer 

function connecting the hidden layer to the output layer. The training function is 

Bayesian regularization whilst the learning function is gradient descent with momentum 

weight and bias learning function. Training stops when the maximum number of epochs 

is reached or the performance is minimized to the goal. In this study, NRMSE is used to 

assess the performance of a data driven model, which is defined in equation (4-3). 

 

As the weights and biases between the neurons are initialized randomly, a different BP-

ANN is obtained for each training, resulting in different performance. A preliminary 

study of averaging NRMSE of more than 200 BP-ANNs did not show any noticeable 

difference. Therefore, in order to minimize the effect of random initialization of an 

ANN, the average NRMSE of 200 BP-ANNs with the same structure is calculated to 

assess the effect of the hidden neurons on the performance of the ANN. 

 

For the models for liquid mass flowrate estimation, the number of neurons in the hidden 

layer is set from 4 to 9 as per equations (4-5) and (4-6). The NRMSE values of the BP-

ANNs are summarized in Figure 4.13. The error bars indicate the maximum and 

minimum errors of 200 BP-ANNs for the same structure. In view of the errors on both 

training and test datasets, the BP-ANN with 7 neurons in the hidden layer performs 

better than other structures under both horizontal and vertical conditions. The BP-ANN 

used for gas volume fraction prediction has lower NRMSE when the number of the 

hidden neurons is 6. 
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                    (a) BP-ANN: H-L                                          (b) BP-ANN: V-L     

   

                   (c) BP-ANN: H-G                                           (d) BP-ANN: V-G 

Figure 4.13 Performance of BP-ANNs with different numbers of neurons in the hidden 

layer 

 

Once the structure of a BP-ANN is determined, the trained neural network which has 

the minimum error with the test dataset is selected. Figure 4.14 shows the errors of the 

corrected liquid mass flowrate from the BP-ANNs. For the horizontal and vertical 

pipelines, the relative errors are mostly less than ±2% (the red dash lines in Figure 4.14) 

with the training dataset except some larger errors at low flowrates of 700 kg/h and 

1000 kg/h. This is very likely due to larger bubbles or slugs appearing in the flow tubes 

under low flowrate which affects the Coriolis flowmeter behaving differently from 

smaller bubbles. The trained BP-ANN has relatively larger errors at low flowrates and 

hence results in unsatisfactory performance with the test dataset under the same 

experimental conditions. 
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(a)  BP-ANN for Model-H-L with training data      

 
(b) BP-ANN for Model-H-L with test data 

 

(c) BP-ANN for Model-V-L with training data 

 

(d) BP-ANN for Model-V-L with test data 

Figure 4.14 Errors of the corrected liquid mass flowrate from the trained BP-ANNs 
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Since the gas volume fraction under the experimental conditions ranges from 0 to 30% 

and the intrinsic complexity of two-phase flow, the relative errors of the predicted gas 

volume fraction from the BP-ANNs are quite large when the gas volume fraction is 

below 5%. As the entrained gas increases, the errors from the training dataset are mostly 

within ±10% (the red dash lines in Figure 4.15). For the test dataset, however, all the 

errors are less than ±10% on the vertical pipeline, even under the low flowrate 

conditions.                                        

 

(a)  BP-ANN for Model-H-G with training data 

 
(b) BP-ANN for Model-H-G with test data 

 

(c) BP-ANN for Model-V-G with training data 



Chapter 4 Experimental Tests with Air-Water Two-Phase Flow 

73 

 

 

(d) BP-ANN for Model-V-G with test data 

Figure 4.15 Errors of the predicted gas volume fraction from the trained BP-ANNs 

 

4.5.1.2 SVM Models 

 

SVM models are also established for both installation conditions. An important 

difference between the SVM and ANN models is that the SVM leads to a unique 

deterministic model for each dataset while ANNs depend on a random initial choice of 

synaptic weights and cannot produce the fixed results. Through a direct comparison of 

the performances of SVM between the four kinds of kernel function (Table 4.4), we 

know that the SVM with radial basis function (RBF) generates the smallest NRMSE 

among the four models. 

 

Table 4.4 NRMSE of the SVM models with different kernel functions 

 

Model 

Training data                                                      Test data 

Linear    Polynomial      RBF       Sigmoid       Linear     Polynomial      RBF       Sigmoid                                           

H-L         5.62%              11.12%        0.11%             889.50        7.44%        10.97%           0.58%       738.32 

V-L         6.32%         10.33%        0.10%         911.90        9.39%        11.42%           0.57%       777.32 

H-G   21.37%        28.37%        3.44%         606.58         2.6%         5.68%             3.29%        138.03 

V-G   27.27%        34.08%        2.16%         683.13         3.71%        6.78%            3.2%          171.56 
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From Figure 4.16 (a) and (c), the SVM model performs well to fit with training data and 

limit the relative errors on horizontal and vertical pipelines to ±1% or less, except some 

points at 700 kg/h and 1000 kg/h, which is a common problem for the ANN and SVM 

models. The generalization ability of the SVM model is proven as shown in Figure 4.16 

(b) and (d). Most errors from the SVM models with the test data are reduced to ±1%. 

 

 

(a)  SVM for Model-H-L with training data 

 

(b) SVM for Model-H-L with test data 

 

(c) SVM for Model-V-L with training data 
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(d) SVM for Model-V-L with test data 

Figure 4.16 Errors of the corrected liquid mass flowrate from the SVMs 

 

Figure 4.17 indicates that, for gas volume fraction prediction, a less number of points 

from the SVM models have an error beyond ±10% with the training dataset. This is 

probably due to the fact that the samples at 1000 kg/h flowrate are far away from the 

support vectors in the network. The relative errors in the predicted gas volume fraction 

with the test dataset at the flowrate of 1000 kg/h is larger than other test data. 

 

 

(a)  SVM for Model-H-G with training data 
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(b) SVM for Model-H-G with test data 

 

(c) SVM for Model-V-G with training data 

 

(d) SVM for Model-V-G with test data 

Figure 4.17 Errors of the predicted gas volume fraction from the SVMs 
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4.5.1.3 GP Models 

 

Four GP models are established in this study for correcting the liquid mass flowrate and 

predicting the gas volume fraction, respectively, for horizontal and vertical installations 

of Coriolis flowmeters. The parameters that were set in the GP algorithms include: 

population size 250, tournament size 25, elitism 0.7, maximum number of genes 

allowed in an individual 6, function set {×, -, +, tanh, mult3, add3}, terminal sets {x1, x2, 

x3, x4} for models H-L and V-L and {x1, x2, x3} for models H-G and V-G.  

 

The GP-based formulations for the four models are given below: 
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The errors of the corrected mass flowrate on the training dataset using GP are higher by 

-15% and 25%, respectively, under horizontal and vertical installations (Figure 4.18 (a) 

and (c)), which results in larger errors on the test dataset (Figure 4.18 (b) and (d)). As 

can be seen that larger errors normally occur at low flowrates, which indicates that the 

GP models are unable to approximate all the data.     

 
(a)  GP for Model-H-L with training data 
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(b) GP for Model-H-L with test data 

 

(c) GP for Model-V-L with training data 

 

(d) GP for Model-V-L with test data 

Figure 4.18 Errors of the corrected liquid mass flowrate from the GPs 

 

As shown in Figure 4.19, for the prediction of gas volume fraction, the outputs of GP 

models have large errors for low gas entrainment and low flowrates. The relative errors 

with test data reach 25% and -50% on horizontal and vertical pipes, respectively. 
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(a)  GP for Model-H-G with training data 

 

(b) GP for Model-H-G with test data 

 

(c) GP for Model-V-G with training data 

 

(d) GP for Model-V-G with test data 

Figure 4.19 Errors of the predicted gas volume fraction from the GPs 



Chapter 4 Experimental Tests with Air-Water Two-Phase Flow 

80 

 

4.5.2 Performance Comparison between Data-Driven Models 

4.5.2.1 Robustness 

 

In order to assess the robustness of the developed models for two-phase flow 

measurement, the averaged NRMSE values are shown in Figure 4.20. Among the 

models for liquid mass flowrate correction and gas volume fraction prediction, GP 

produces larger errors than the other three techniques, while the SVM models yield less 

errors. With the test dataset, BP-ANN and SVM methods perform similarly on Model-

H-L and Model-V-L. However the SVM models are significantly better than the BP-

ANN and GP models for the prediction of gas volume fraction. Moreover, BP-ANN has 

uncertain parameters to optimize which could result in differences in performance. 

However, due to their fixed structure, the SVM models produce repeatable results all 

the time. This outcome suggests that the SVM models are superior to both ANN and GP 

models in terms of robustness. 

 

    

          (a) Performance with training dataset               (b) Performance with test dataset 

Figure 4.20 Performance comparison between ANNs, SVMs and GPs 

 

4.5.2.2 Accuracy 

 

Figure 4.21 depicts the relative error histograms of the ANNs, SVMs and GPs for 

corrected liquid mass flowrate. It is clear that the error distributions of the GP and ANN 

models are much wider and dispersive than the SVM models. Through comparing the 
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mean value and standard deviation of the errors between the eight error distributions 

(Table 4.5), we can see that the SVM models with the lowest mean value and standard 

deviation outperform the BP-ANN and GP models for liquid mass flowrate 

measurement on both horizontal and vertical pipelines. Moreover, the data driven 

models (mean value 0.0008% and standard deviation 0.40%) on the vertical pipeline 

perform better than those on the horizontal pipeline (mean value 0.0585% and standard 

deviation 0.66%). 

 

   

                          (1) BP-ANN: H-L                                          (2) BP-ANN: V-L 

   

                         (3) SVM: H-L                                                   (4) SVM: V-L 
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                       (5) GP: H-L                                                         (6) GP: V-L 

Figure 4.21 Relative error histogram of ANNs, SVMs and GPs for corrected liquid mass 

flowrate 

 

Table 4.5 Mean and standard deviation of the relative error distribution for liquid mass 

flowrate correction 

 

Figure 4.22 shows the relative error histograms of the three kinds of models for gas 

volume fraction prediction. GP models have a larger range of errors than all other 

models. The error distribution of the SVM model is much narrower than the ANN 

models for the measurement of gas volume fraction. It can be seen that most errors of 

the SVM models are concentrated around zero line.  

 

Model                                             BP-ANN                    SVM                      GP  

Model H-L        Mean (%)                               0.0823                      0.0585                    0.2405  

                          Standard deviation (%)          1.03                          0.66                        2.83  

Model V-L Mean (%)                               0.0548                     0.0008                    0.1660   

 Standard deviation (%)          1.50                         0.40                        2.77 
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                   (1) BP-ANN: H-G                                             (2) BP-ANN: V-G 

     

                    (3) SVM: H-G                                                     (4) SVM: V-G 

        

                     (5) GP: H-G                                                       (6) GP: V-G 

Figure 4.22 Relative error histogram of ANNs, SVMs and GPs for gas volume fraction 

prediction 

 



Chapter 4 Experimental Tests with Air-Water Two-Phase Flow 

84 

 

Table 4.6 shows that the standard deviations of the SVM models are smaller than those 

of the BP-ANN and GP models on both horizontal and vertical pipelines.    

 

Table 4.6 Mean and standard deviation of the relative error distribution for gas volume 

fraction prediction 

 

In order to assess the accuracy of the ANN, SVM and GP models, the percentage of 

experimental data for each model which can achieve the accuracy of ±2% and ±1%, 

respectively, for liquid mass flowrate measurement and ±10% for gas volume fraction 

prediction is calculated and summarized in Table 4.7. For liquid mass flowrate 

measurement with the SVM models, 93.49% of the experimental data yield a relative 

error less than ±1% on the horizontal pipeline whilst 96.17% of the results are within ±1% 

on the vertical installation. The SVM models predict the gas volume fraction with a 

relative error less than 10% for 93.10% and 94.25% of the test conditions on horizontal 

and vertical installations, respectively. Therefore, the SVM models perform 

significantly better than the BP-ANN and GP models for two phase flow measurement 

in terms of robustness and accuracy. 

 

Table 4.7 Accuracy comparisons of ANN, SVM and GP models 

 

Model                                           BP-ANN                         SVM                      GP  

Model H-G        Mean (%)                             0.17                              -0.25                       3.15 

                          Standard deviation (%)        11.88                             6.95                        17.70 

Model V-G Mean (%)                             -0.18                             -0.38                       -1.99      

 Standard deviation (%)        9.70                               5.57                        20.62   

 

Model         H-L                                      V-L                                       H-G                  V-G 

Error Limit        ≤ ±2%          ≤ ±1%             ≤ ±2%         ≤ ±1%          ≤ ±10%             ≤ ±10%                                           

      BP-ANN            91.95%         80.08%             89.66%         79.69%          79.31%             86.21% 

         SVM       96.93%         93.49%              98.85%         96.17%         93.10%             94.25% 

          GP       68.20%         54.41%              83.14%         67.05%         55.56%             54.79% 
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4.6 Summary  

 

A wide range of experimental tests of 1-inch Coriolis flowmeters have been conducted 

with air-water two-phase flow. The test results have demonstrated the effectiveness of 

the proposed two-phase flow measurement strategy using Coriolis flowmeters 

incorporating soft computing techniques. 

 

The evaluation results of PMI, GA-ANN and GP demonstrated that 1) In terms of time 

efficiency the PMI and IIS algorithms have outperformed the GA-ANN algorithm; 2) In 

terms of selection accuracy PMI provides more effective variables for the measurement 

of liquid mass flowrate than the other two approaches. For the prediction of gas volume 

fraction, the IIS has selected the most important information and thus generate a better 

performing model; 3) With regard to the experimental data obtained in this study, the 

most important variable set for the measurement of liquid mass flowrate includes 

observed density, apparent mass flowrate, DP and damping while those for the 

prediction of gas volume fraction include observed density, apparent mass flowrate and 

DP. 

 

The comparison results between BP-ANN, SVM and GP suggested that the SVM 

models are superior to the ANN and GP models for two-phase flow measurement in 

terms of robustness and accuracy. For liquid mass flowrate measurement with the SVM 

models, 93.49% of the experimental data yield a relative error less than ±1% on the 

horizontal pipeline, while 96.17% of the results are within ±1% on the vertical 

installation. The SVM models predict the gas volume fraction with a relative error less 

than ±10% for 93.10% and 94.25% of the test conditions on the horizontal and vertical 

installations, respectively. 
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Chapter 5  

Experimental Tests with Air-Water and    

Air-Oil Flows 

5.1 Introduction 

 

This chapter presents results using soft computing techniques on 2-inch Coriolis 

flowmeters (KROHNE OPTIMASS 6400 S50) with air-water and air-oil two-phase 

flows. Experimental work was conducted on an air-water two-phase flow test rig at 

KROHNE Ltd and an air-water-oil three-phase flow test rig at Tianjin University, 

respectively. Through analysing the original errors of liquid mass flowrate from the 

Coriolis flowmeter under test, effects of operating pressure, temperature, installation 

orientation of the Coriolis flowmeter and fluid properties (i.e. density and viscosity) on 

the performance of Coriolis flowmeters are discussed.  

 

It is concluded in Chapter 4 that SVM models outperform BP-ANN and GP models in 

terms of accuracy and robustness. Consequently, SVM models are applied to estimate 

liquid mass flowrate and gas volume fraction of air-water and air-oil flows in this 

Chapter. In addition, Least Squares Support Vector Machine (LSSVM) models are 

developed for each case. Performance comparison between the SVM and LSSVM 

models is carried out and discussed in terms of generalization ability and computational 

complexity.     

 

5.2 Experimental Conditions 

 

Experimental tests of 2-inch Coriolis flowmeters (OPTIMASS 6400 S50) with air-water 

flow were conducted at KROHNE Ltd in July 2015. As shown in Figure 5.1, a Coriolis 

flowmeter as a reference meter was installed in the upstream and the Coriolis flowmeter 
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under test was installed in the downstream of the horizontal section. A gas flow 

controller between the two meters was used to control the amount of gas entrainment. 

The same Coriolis flowmeter was tested on air/water/oil three-phase flow test rig at 

Tianjin University in August 2015. As shown in Figure 5.2, the different positions 

including horizontal and vertical installations of the flowmeter under test were taken in 

account. Additionally, the Coriolis flowmeter was tested with air-water and air-oil flows 

respectively. A turbine flowmeter, a magnetic flowmeter and an Alicat flowmeter, with 

uncertainty of 1%, 1% and 0.35% respectively, were installed on single oil, water and 

air flow sections as reference meters, respectively. 

 

 

Figure 5.1 Installation of the Coriolis flowmeter under test at KROHNE Ltd 

 

           

                          (a) Horizontal section                                               (b) Vertical section 

Figure 5.2 Installation of the Coriolis flowmeter under test at Tianjin University 
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Experimental conditions are summarized in Table 5.1. Five experimental cases are 

named according to the test rig, meter size, test flow and installation orientation. All the 

tests were conducted with the liquid flowrate ranging from 2000 kg/h to 12000 kg/h and 

the gas volume fraction between 0 and 60%. In the case of KROHNE tests, the fluid 

temperature was around 20°C and the inlet pressure of the Coriolis flowmeter under test 

was about 0.5 bar. However, there was no cooling system on the Tianjin test rig and 

hence the fluid temperature was varying between 30°C and 36°C. Meanwhile, the inlet 

pressure was between 0.58 bar and 2.96 bar. 

 

Table 5.1 Experimental conditions 

 

It is observed from the sight window on the horizontal test section that the flow pattern 

is intermittent flow, including slug flow and plug flow for the five cases. For each test, 

90 experimental data were acquired as training data while 24 data as test data. The 

circular markers in Figure 5.3 indicate the training data and triangular markers present 

the test data. It can be seen from the test matrix that some test data are within the range 

of training data and the other points at the flowrates of 2000 kg/h and 12000 kg/h are 

out of range. The data out of range are regarded as unknown data and are used to assess 

the generalization ability of the data-driven models. 

 

Test code    Test rig    Meter size       Flow             Position      Pressure (bar)    Temperature (°C)               

K2AWH     KROHNE     2 inch         air-water         Horizontal          0.47~0.54             18.1~21.9 

T2AWH     Tianjin          2 inch    air-water         Horizontal         1.00~2.61              32.6~35.9 

T2AWV      Tianjin          2 inch    air-water         Vertical           0.63~1.48            31.0~33.8 

T2AOH      Tianjin          2 inch    air-oil             Horizontal          0.82~2.96            30.6~34.1 

T2AOV      Tianjin          2 inch    air-oil              Vertical            0.58~1.45            29.6~33.1 
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Figure 5.3 Experimental test points of the 2-inch oil/air/water flows 

 

5.3 Analysis of Original Errors 

 

The original mass flow errors of the 2-inch Coriolis flowmeter in the case of K2AWH 

are plotted in Figure 5.4. The results from Tianjin tests with air-water and air-oil flows 

are shown in Figures 5.5-5.8, respectively. The effects of several factors such as 

pressure, temperature, installation orientation and fluid properties are discussed in the 

following sections. 

 

5.3.1 Effect of Pressure and Temperature on Mass Flow Errors 

 

It is well known that pressure and temperature are two important factors affecting the 

physical properties of the fluid such as density, viscosity and compressibility. Although 

the measurement of single phase flow using Coriolis flowmeters is not affected by 

variations of density and viscosity, the performance of Coriolis flowmeters is different 

under two-phase flow conditions due to relative motion between liquid and gas phases. 

As shown in Figures 5.4 and 5.5, the original errors of the Coriolis flowmeter have a 

decreasing trend with different gradients in the cases of K2AWH and T2AWH. Most 

errors are negative except that one point at the flowrate of 2500 kg/h is positive. Due to 
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the different environmental conditions between the two experimental cases, the higher 

temperature and pressure of the fluid in the Tianjin tests result in smaller errors than the 

KROHNE tests. 

 

5.3.2 Effect of Installation Orientation on Mass Flow Errors 

 

As discussed in Section 4.2.2, different installation positions of the 1-inch Coriolis 

flowmeter under test result in different performances with air-water two-phase flow. 

Original errors of the 2-inch Coriolis flowmeter with air-water flow on horizontal and 

vertical positions are shown in Figures 5.5 and 5.6, respectively.  Similarly, the results 

with air-oil flow are plotted in Figures 5.7 and 5.8. As bubbles in the vertical pipe are 

more evenly distributed than those in the horizontal pipe, they have less influence on the 

vibration of Coriolis measuring tubes. As a result, the mass flow errors of Coriolis 

flowmeters on the vertical position are smaller than those on the horizontal position. 

 

5.3.3 Effect of Fluid Properties on Mass Flow Errors 

 

Different liquids have different density and viscosity and thus the relative motion 

between the liquid phase and the gas phase is different. The density of water and oil is 

995.68 kg/m3 and 876.14 kg/m3, respectively, at the temperature of 30 °C. They both 

decrease with gas entrained. The kinematic viscosity of water and oil are 0.00101 Pa∙s 

and 0.0147 Pa∙s, respectively. Through a comparison between the results from T2AWH 

and T2AOH, the errors from air-oil flow on horizontal position are more linear than 

those from air-water flow. Similarly, the results from T2AWV and T2AOV present that 

the errors from air-oil flow are larger than those from air-water flow. 
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Figure 5.4 Original errors of the liquid mass flowrate for K2AWH 

 

Figure 5.5 Original errors of the liquid mass flowrate for T2AWH         

 

Figure 5.6 Original errors of the liquid mass flowrate for T2AWV 
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Figure 5.7 Original errors of the liquid mass flowrate for T2AOH               

 

Figure 5.8 Original errors of the liquid mass flowrate for T2AOV 

 

5.4 Comparison between SVM and LSSVM Models 

 

As SVM models outperform BP-ANN and GP models in terms of accuracy and 

robustness through comparative investigations in Chapter 4, SVM is adopted in this 

Chapter to build data-driven models for the five cases. In practice, data-driven models 

are usually restricted by their generalization abilities. A model that not only performs 

well with the training data but also deals well with the test data which are not part of the 

training process is regarded as a good model. In this section, SVM and LSSVM models 

are established for the five cases to estimate liquid mass flowrate and gas volume 
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fraction, respectively. Performance comparison, especially the generalization ability, 

between SVM and LSSVM models is discussed through analysing the relative error of 

model output with test data. The test data (the triangular markers in Figure 5.3) are 

divided into two sets: the data points within the range of training data are defined as test 

I while the data out of range constitute test II.     

 

5.4.1 SVM and LSSVM Models for the Correction of Liquid Mass 

Flowrate 

 

For each case, there are 14 variables available as outlined in Table 4.1. The PMI based 

input variable selection is applied to the five cases respectively and thus four variables 

including apparent mass flowrate, observed density, damping and DP are obtained and 

determined as the inputs of the data-driven models.  

 

In developing the SVM and LSSVM models, the cost parameter C and kernel parameter 

γ should be determined appropriately. To obtain the most suitable values of C and γ for 

data-driven models, a cross-validation approach is used. Specifically, the training set is 

divided into a number of subsets (in the present study, five subsets) with an equal size. 

Sequentially one subset is tested using the model trained on the remaining subsets. Thus, 

each instance of the whole training set is predicted once. The C and γ with which the 

best validation accuracy is obtained are taken as the kernel parameters to train the whole 

training set. The cross-validation procedure can ameliorate or prevent the over-fitting 

problem. The kernel function is determined through comparing the performance of the 

model with different functions including linear, polynomial, radial basis function and 

sigmoid function. It is turned out that the SVM and LSSVM models with radial basis 

function outperform the others in the cases of K2AWH, T2AWH, T2AWV and T2AOV, 

while the linear kernel function is more suitable for the SVM and LSSVM models in the 

case of T2AOH.  

 

The performance of SVM and LSSVM models on test data is shown in Figures 5.9-5.13. 

For each case, original mass flow errors from the Coriolis flowmeter under two-phase 

flow condition and corrected errors of the liquid mass flowrate from SVM and LSSVM 
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are presented. In the case of K2AWH, the original errors are all negative and drop 

dramatically with the gas entrainment. The maximum error is up to -40%. After 

correction by SVM and LSSVM, most errors are significantly reduced to ±2% (the red 

dashed lines) except for some points at the lowest flowrate of 2000 kg/h. It is observed 

that SVM and LSSVM obtain similar performance for K2AWH. In the other four cases, 

the corrected errors beyond ±2% are observed at the lowest (2000 kg/h) and highest 

flowrates (12000 kg/h) as these test points are out of range of the training data. The 

errors at 2000 kg/h seem to be larger than the errors at 12000 kg/h. This is due to the 

unstable slug flow at the low flowrate which is difficult to extrapolate from the 

available data while the flow at high flowrate is more stable. It is clear that the errors at 

highest and lowest flowrate from LSSVM models are smaller than the errors from SVM 

models through comparing (b) and (c) in Figures 5.10-5.13. 

 

The NRMSE of original errors and corrected errors from SVM and LSSVM models are 

outlined in Table 5.2. It particularly highlights the performance comparison between 

SVM and LSSVM with test data. It can be seen from the NRMSE values that the 

original NRMSEs are drastically reduced after correction with SVM and LSSVM 

models. However, there exists overcorrection in SVM models with test II and hence 

larger errors after correction in the case of T2AWV. As observed from KROHNE test, 

the SVM and LSSVM models obtain similar generalization ability with the test data. 

However, the LSSVM models achieve smaller NRMSEs than the SVM models and 

result in much better generalization performance for the Tianjin tests. 
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                 (a) Original errors for K2AWH         (b) Corrected errors from SVM for K2AWH    (c) Corrected errors from LSSVM for K2AWH 

Figure 5.9 Relative errors of the liquid mass flowrate for K2AWH 

 

 

                  (a) Original errors for T2AWH          (b) Corrected errors from SVM for T2AWH    (c) Corrected errors from LSSVM for T2AWH 

Figure 5.10 Relative errors of the liquid mass flowrate for T2AWH 
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                 (a) Original errors for T2AWV           (b) Corrected errors from SVM for T2AWV    (c) Corrected errors from LSSVM for T2AWV 

Figure 5.11 Relative errors of the liquid mass flowrate for T2AWV 

 

 

                 (a) Original errors for T2AOH             (b) Corrected errors from SVM for T2AOH    (c) Corrected errors from LSSVM for T2AOH 

Figure 5.12 Relative errors of the liquid mass flowrate for T2AOH 
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                   (a) Original errors for T2AOV           (b) Corrected errors from SVM for T2AOV    (c) Corrected errors from LSSVM for T2AOV 

Figure 5.13 Relative errors of the liquid mass flowrate for T2AOV 

 

Table 5.2 NRMSE comparison of the SVM and LSSVM models for Model-L (%) 

 

 

 

 

 

 

 

Model-L 

     K2AWH                  T2AWH                   T2AWV                    T2AOH                     T2AOV 

Test I    Test II    Test I    Test II     Test I    Test II      Test I    Test II      Test I    Test II                       

Original       19.82     19.79        10.53    10.93         14.30       3.52        12.13     12.53        18.33      20.70 

SVM            1.44       2.33          3.15      3.37           2.64      12.29         1.16       1.73          1.12        9.75 

LSSVM 1.47       2.40          3.01      1.58           1.97       1.79          1.14       1.71           1.10       7.87 
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Table 5.3 summarises the training time of the SVM and LSSVM models for liquid mass 

flowrate correction. It can be seen that training time by SVM is much more than 

LSSVM. For LSSVM, the main computational cost comes from calculating the 

Lagrange multipliers α based on equation (3-29) while SVM need more time to solve a 

dual problem in equation (3-17). 

 

Table 5.3 Training time of the SVM and LSSVM models for Model-L 

 

5.4.2 SVM and LSSVM Models for the Prediction of Gas Volume 

Fraction 

 

Three variables (apparent mass flowrate, observed density and DP) are determined as 

inputs of the data-driven models through input variable selection. SVM and LSSVM 

models are established respectively for each case to predict gas volume fraction. The 

kernel function used in these models is radial basis function. The optimal combination 

of C and γ is determined by 5-fold cross validation. As shown in Figures 5.14-5.18, the 

relative errors of the predicted gas volume fraction are mostly within ±10% (the red 

dashed lines). It is notable that large errors occur at the flowrate of 2000 kg/h, 

practically in the cases of K2AWH, T2AWH and T2AWV, due to the unstable flow. 

For the air-oil flow, all the predicted errors with the test data are less than ±10%. 

 

 

   Model-L              K2AWH (s)       T2AWH (s)        T2AWV (s)         T2AOH (s)        T2AOV (s) 

    SVM                  3.353                  22.525              2.351                 25.144              4.205 

   LSSVM              0.668                  0.454                0.457                 0.534                0.503 
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             (a) The SVM model for K2AWH              (b) The LSSVM model for K2AWH 

Figure 5.14 Relative errors of gas volume fraction for K2AWH 

 

 

               (a) The SVM model for T2AWH            (b) The LSSVM model for T2AWH 

Figure 5.15 Relative errors of gas volume fraction for T2AWH 

 

 

               (a) The SVM model for T2AWV           (b) The LSSVM model for T2AWV 

Figure 5.16 Relative errors of gas volume fraction for T2AWV 



Chapter 5 Experimental Tests with Air-Water and Air-Oil Flows 

100 

 

 

             (a) The SVM model for T2AOH                (b) The LSSVM model for T2AOH 

Figure 5.17 Relative errors of gas volume fraction for T2AOH 

 

               (a) The SVM model for T2AOV               (b) The LSSVM model for T2AOV 

Figure 5.18 Relative errors of gas volume fraction for T2AOV 

 

The NRMSE of predicted gas volume fraction from the SVM and LSSVM models are 

summarized in Table 5.4. In the case of K2AWH, the SVM model outperforms LSSVM 

with test I and test II. In the other cases, the SVM and LSSVM models present similar 

generalization ability with test data. With regard to the training time shown in Table 5.5, 

the SVM models require much more time than LSSVM to complete the training process. 

Therefore, LSSVM is more efficient than SVM in practical application. 

 

Table 5.4 NRMSE of the SVM and LSSVM models for Model-G (%) 

Model-G 

    K2AWH              T2AWH                T2AWV                  T2AOH                  T2AOV 

Test I  Test II   Test I  Test II   Test I  Test II   Test I  Test II   Test I  Test II 

SVM          1.87     13.84      3.73     9.53       8.98      7.79       3.04     1.52       4.31      4.03 

LSSVM  5.28     23.33      3.96     6.95       7.04      9.67       2.84      2.50      4.22      2.89 
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Table 5.5 Training time of the SVM and LSSVM models for Model-G (s) 

 

5.5 Summary  

 

Experimental tests of 2-inch Coriolis flowmeters with air-water and air-oil flows have 

been conducted on KROHNE and Tianjin test rigs, respectively. The original errors of 

Coriolis flowmeters with different two-phase flows were presented. The effects of 

pressure, temperature, installation orientation and physical properties of the fluid on the 

performance of Coriolis flowmeters have been quantified and discussed.  

 

SVM and LSSVM models have been established for each case to correct liquid mass 

flowrate and predict gas volume fraction of two-phase flows.  The performance of the 

models has been assessed in terms of accuracy, generalization ability and computational 

complexity. The results have demonstrated that the developed SVM and LSSVM 

models are capable of reducing the mass flow errors to within ±2% and gas volume 

fraction less than ±10% in most cases. Even though test I and test II are different from 

the training data, the data-driven models have yielded better results in test I than in test 

II due to the fact that test I data are within the range of the training process. Large errors 

are often observed with the unstable slug flow at 2000 kg/h, however, the LSSVM 

models outperform the SVM models in most cases. As for the training time, the 

LSSVM is faster than the SVM model to compute the model parameters in the training 

process. Consequently, the LSSVM models have similar and even better generalization 

ability when compared to the SVM models. Meanwhile, the LSSVM is more 

computationally efficient than the SVM models. 

 

 

  

      Model-G          K2AWH            T2AWH              T2AWV              T2AOH                 T2AOV 

      SVM              21.648              20.140              19.715                24.396                 20.223 

    LSSVM           0.486                0.460                 0.518                  0.461                   0.462 
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Chapter 6   

Experimental Tests with Gas-Liquid           

Two-Phase CO2 Flow 

6.1 Introduction 

 

This chapter assesses the performance of Coriolis flowmeters (KROHNE OPTIMASS 

6400 S15) with gas-liquid two-phase CO2 flow. Experimental work was conducted on a 

purpose-built two-phase CO2 flow test rig. The original errors of Coriolis flowmeters in 

horizontal and vertical installation orientations are presented and interpreted.  

 

SVM and LSSVM models are established for the Coriolis flowmeters in horizontal and 

vertical installation positions respectively. A performance comparison between the 

models is discussed. As three typical flow patterns were observed during the 

experimental tests with gas-liquid two-phase CO2, the modelling work is more 

complicated than that in Chapters 4 and 5. Consequently, flow pattern recognition is 

necessary before developing the individual data-driven models for each flow pattern. 

Performances of pattern recognition and two-phase CO2 flow measurement using 

Coriolis flowmeters and LSSVM models are reported. 

 

6.2 Experimental Conditions 

 

Experimental tests of Coriolis flowmeters (KROHNE OPTIMASS 6400 S15) with gas-

liquid two-phase CO2 flow were conducted at NCEPU (North China Electric Power 

University) in August 2016. As shown in Figure 6.1, the CO2 test facility at NCEPU is 

capable of providing single-phase (liquid or gas) or two-phase (liquid/gas) CO2 flows in 

horizontal and vertical pipelines with pressure up to 72 bar. Two independent Coriolis 

flowmeters were installed before the mixer to provide references for the individual mass 
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flow rates of the liquid and gas CO2 phases. The reference Coriolis flowmeters 

equipped on the facility offer uncertainties of 0.16% for CO2 liquid flow and 0.3% for 

CO2 gas flow [103]. In the downstream, two additional Coriolis flowmeters (Figure 6.2) 

of the same type were installed in the horizontal and vertical test sections, respectively. 

These are the meters under test to assess their performance of the developed data-driven 

models. In view of the effects of gravity and buoyancy on two-phase fluid, both 

horizontal and vertical installations of the meters are considered. Temperature, pressure 

and DP transducers were used to record the flow conditions in the pipelines.  

 

 

 

Figure 6.1 Schematic of the gas-liquid two-phase CO2 flow test rig 
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Figure 6.2 Meters under test and reference meters on the test rig 

 

In order to achieve liquid CO2 at single phase section and stable gas-liquid mixture at 

test section, the fluid temperature was controlled between 19°C and 21°C through a 

cooling system and pressure was from 54 bar to 58 bar. The liquid and gas CO2 mass 

flowrates were varied from 250 kg/h to 3200 kg/h and from 0 to 330 kg/h, respectively. 

The test points in terms of liquid CO2 mass flowrate and gas CO2 mass flowrate are 

plotted in Figure 6.3. A total of 232 data sets (circular markers in Figure 6.3, 

representing liquid flowrates of 250, 400, 700, 800, 1050, 1300, 1800, 2300, 2800 and 

3200 kg/h) were collected for the purpose of training the data-driven models whilst 89 

data sets (triangular markers in Figure 6.3, presenting liquid flowrates of 300, 550, 900, 

1550, 2050, 2550 and 3050 kg/h) for testing the models. Each data set represents the 

average of all recorded values within an approximate window of 100 seconds. On the 

horizontal test section three typical flow regimes, including stratified flow, intermittent 

flow and dispersed flow, were observed. The typical flow patterns on the vertical test 

section include bubbly flow, intermittent flow and dispersed flow. As shown in Figure 

6.3, the test matrix is divided into three sections according to the flow patterns. 

 



Chapter 6 Experimental Tests with Gas-Liquid Two-Phase CO2 Flow 

105 

 

 

Figure 6.3 Experimental test points of the gas-liquid CO2 two-phase flow 

 

6.3 Analysis of Original Errors 

 

The typical original, uncorrected mass flow errors of the Coriolis flowmeters on 

horizontal and vertical test sections under two-phase CO2 flow conditions are plotted in 

Figure 6.4. As gas mass flowrate cannot be ignored at higher pressure, the error 

presented in this Chapter is against the total mass flowrate of liquid and gas CO2. When 

the liquid mass flowrate is lower than 800 kg/h, gas and liquid phases are completely 

separated and stratified flow is observed in the horizontal pipe. The high volume of gas 

in the liquid introduces large positive errors to the Coriolis flowmeter on the horizontal 

position. The flowmeter on the vertical position yields smaller errors as bubbles go 

upwards in the liquid. From 800 kg/h to 1000 kg/h, the flow is observed as intermittent 

flow. As gas CO2 increases, the two Coriolis flowmeters both generate negative errors 

for the dispersed flow. Different flow patterns of the two-phase flow present different 

trends on the error curves due to the chaotic nature of gas phase distributions within the 

liquid phase. The meter orientation also affects the phase distribution in the Coriolis 

measuring tubes. In the horizontal installation, the Coriolis measuring tubes are in 

downward position and bubbles may get trapped on the inlet side at low rates due to the 
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buoyancy effect. Consequently, the mass flow errors of the Coriolis flowmeters under 

the test conditions are either positive or negative and have different trends from 

horizontal and vertical installations.  

 

 

(a) Coriolis flowmeter in horizontal installation 

 

(b) Coriolis flowmeter in vertical installation 

Figure 6.4 Original errors of mass flowrate of two-phase CO2 
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6.4 Measurement of Gas-Liquid Two-Phase CO2 Flow 

6.4.1 SVM and LSSVM Models 

 

Input variable selection is conducted based on the experimental data from gas-liquid 

two-phase CO2 flow to determine the inputs of correction and prediction models. 

Similar to the results of input variable selection in Chapter 4, four variables (apparent 

mass flowrate, observed density, damping and DP) are selected out by PMI for the 

correction models of mass flowrate. A total of three variables including apparent mass 

flowrate, observed density and DP are taken as inputs for the prediction models of gas 

volume fraction. SVM and LSSVM models are established to correct the mass flowrate 

of two-phase CO2 flow, respectively. The relative errors of CO2 mass flowrate from 

horizontal and vertical Coriolis flowmeters are shown in Figures 6.5 and 6.6. It can be 

seen from the original errors that the errors at the flowrate of 300 kg/h and 550 kg/h are 

very different from the rest due to the difference in flow patterns. The CO2 mass flow 

from SVM has relative large errors at the flowrate of 300 kg/h and 550 kg/h on 

horizontal position and 550 kg/h and 2050 kg/h on vertical position. Compared with 

original errors, it is notable that these errors are overcorrected by SVM models.  Even 

though the penalty parameters C and γ have been optimized through five-fold cross 

validation and a proper kernel function (radial basis function) is utilized, the optimal 

interface is difficult to satisfy all the test points and results in some unexpected errors.  
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            (a) Original errors for H-installation           (b) Corrected errors from the SVM model     (c) Corrected errors from the LSSVM model 

Figure 6.5 Relative errors of CO2 mass flowrate for horizontal installation 

 

            (a) Original errors for V-installation         (b) Corrected errors from the SVM model         (c) Corrected errors from the LSSVM model 

Figure 6.6 Relative errors of CO2 mass flowrate for vertical installation 
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When LSSVM is applied, all the errors on the horizontal position are reduced to ±5% 

and most of them are less than ±2%. The test points at 900 kg/h on both installations are 

over-corrected at low gas entrainment, but the results are still much better than those 

from the SVM models.  

 

As for the prediction of gas volume fraction, as shown in Figures 6.7 and 6.8, some of 

the relative errors from SVM and LSSVM models are over 100% when the gas volume 

fraction is lower than 0.1. As gas CO2 increases, the predicted errors are all within 10%. 

Therefore, it is evident that the performances of SVM and LSSVM are affected by the 

flow pattern, especially at lower flowrate and less gas entrainment. 

 

 

(a) Predicted errors from the SVM model   (b) Predicted errors from the LSSVM model  

Figure 6.7 Relative errors of gas volume fraction for horizontal installation 

 

 

(a) Predicted errors from the SVM model   (b) Predicted errors from the LSSVM model  

Figure 6.8 Relative errors of gas volume fraction for vertical installation 
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6.4.2 Flow Pattern Recognition 

 

In order to further reduce the corrected errors and avoid overcorrection at lower 

flowrate, individual models are established for a specific flow pattern. As shown in 

Figure 6.9, the flow pattern based measurement methodology in this case consists of a 

classifier model for flow pattern recognition, a correction model and a prediction model 

for each flow pattern. The flow pattern based models are developed for horizontal and 

vertical installations, respectively. Since flow pattern is related to the flowrate of liquid 

and gas phases, the classifier model can be established based on the available data from 

Coriolis flowmeters and DPs. 

 

 

Figure 6.9 Principle of the flow pattern based measurement methodology for horizontal 

and vertical installations 

 

The variable selection results in Chapters 4 and 5 show that the variables, including 

apparent mass flowrate, observed density, damping and DP, have more significance to 

estimate the liquid mass flowrate and gas volume fraction which are closely related to 

the flow pattern. Consequently, these four variables are selected as inputs for the flow 

pattern recognition model. Due to the fact that LSSVM models have similar 

performance to SVM models and more computationally efficient, LSSVM is thus 

applied to train the flow pattern classifier. For the test purpose, there are 19 data for 

stratified flow on the horizontal section and bubbly flow on the vertical section, 

respectively, 34 data from intermittent flow and 36 data from dispersed flow on both 

horizontal and vertical sections, respectively. The results of flow pattern recognition are 

summarised in Table 6.1. Due to the high performance of LSSVM for classification, all 
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the test points can be correctly classified into the corresponding flow patterns and result 

in 100% successful recognition rate.  

Table 6.1 Results of flow pattern recognition 

 

Once the test point is classified into a certain flow pattern, the corresponding correction 

model and prediction model are determined. The relative errors of the corrected CO2 

mass flowrate on the horizontal and vertical sections are plotted in Figure 6.10. The red, 

green and blue markers represent the test points from Sections I, II and III, respectively. 

It can be seen that the test points at Sections II and III are all within ±2% for the 

horizontal installation and ±1% for the vertical installation. Meanwhile, the errors of 

mass flowrate at Section I are largely reduced in comparison with the results from the 

SVM and LSSVM models. The maximum errors at low flowrate are all within ±5%. 

The correction model on the vertical installation outperforms the horizontal one at the 

flowrates of 300 kg/h and 550 kg/h and results in relative errors within ±2%. 

 

 

       (a) Corrected errors for H-installation        (b) Corrected errors for V-installation                                                     

Figure 6.10 Relative errors of CO2 mass flowrate from the flow pattern based LSSVM 

 

Horizontal flow patterns         Success rate             Vertical flow patterns             Success rate 

Stratified flow (19)                     19                      Bubbly flow (19)                         19       

Intermittent flow (34)                 34                      Intermittent flow (34)                  34 

Dispersed flow (36)                    36                      Dispersed flow (36)                     36 

Overall success rate              100% (89/89)          Overall success rate             100% (89/89)                       
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The relative errors of gas volume fraction from the flow pattern based LSSVM model 

are plotted in Figure 6.11. The large errors occur at the intermittent and dispersed flows 

with gas volume fraction less than 5% while the predicted errors of other test points are 

all within ±10%. 

  

        (a) Predicted errors for H-installation            (b) Predicted errors for V-installation 

Figure 6.11 Relative errors of gas volume fraction from the flow pattern based LSSVM 

 

NRMSE results from the SVM, LSSVM and the flow pattern based LSSVM 

(FP_LSSVM) models for mass flowrate correction and gas volume fraction prediction 

are summarized in Table 6.2. For the mass flow correction models (CO2_M_H and 

CO2_M_V), the NRMSE values increase after correction by SVM due to overcorrection 

occurred at some test points. The results from the FP_LSSVM are much smaller than 

the LSSVM models and they both improve the performance of Coriolis flowmeters for 

the measurement of two-phase CO2 mass flow.  

 

As for gas volume fraction prediction, the SVM and LSSVM models have similar 

performance on both horizontal and vertical installations while FP_LSSVM models 

outperform the SVM and LSSVM models significantly. 

 

Table 6.2 NRMSE comparison of SVM, LSSVM and FP_LSSVM models 

NRMSE (%)         Original                   SVM                        LSSVM                       FP_LSSVM 

CO2_M_H             2.82                      4.97                         1.05                               0.80 

CO2_M_V             3.69                      6.93                         1.77                               0.51 

CO2_G_H               -                          9.65                         10.24                             8.11 

CO2_G_V               -                          12.81                       10.49                             4.32 
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6.5 Summary 

 

The performance of Coriolis flowmeters (KROHNE OPTIMASS 6400 S15) has been 

assessed with gas-liquid two-phase CO2 flow under horizontal and vertical orientations. 

The liquid flowrate in this experimental test is as low as 250 kg/h and hence stratified 

flow on horizontal section, which is different and more complex than the tests reported 

in Chapters 4 and 5. SVM and LSSVM models have been established to estimate the 

mass flowrate and gas volume fraction of the two-phase flow. The performance of SVM 

and LSSVM models were evaluated with test data for different flow patterns. Test 

results have demonstrated that some points for flowrate measurement were 

overcorrected by the SVM models especially at the lower flowrate (300 kg/h and 550 

kg/h) and large predicted error for gas volume fraction at less gas entrainment. In order 

to reduce the measurement errors and avoid overcorrection, flow pattern recognition 

was incorporated in the measurement strategy. The LSSVM based flow pattern 

classifier is capable of identifying the flow pattern with a success rate of 100%. After 

correction with the flow pattern based LSSVM model, the mass flowrate is mostly with 

±2% on the horizontal section and ±1.5% on the vertical section. The predicted errors of 

gas volume fraction is largely reduced, compared with the SVM and LSSVM models.     
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Chapter 7   

Conclusions and Recommendations for 

Future Work 

7.1 Introduction 

 

The research work presented in this thesis is concerned with the measurement of 

multiphase flow using Coriolis flowmeters incorporating soft computing techniques. 

Experimental tests of different sized Coriolis flowmeters (KROHNE OPTIMASS 6400 

S25, S50 and S15) with air-water, air-oil and gas-liquid two-phase CO2 flows have been 

conducted. The performance of the Coriolis flowmeters under different two-phase flow 

conditions has been presented and analysed. Data-driven models based on ANN, GP, 

SVM and LSSVM were established with the experimental data to estimate mass 

flowrate and gas volume fraction. Performance of these models in terms of accuracy, 

robustness, generalization ability and computational efficiency was evaluated with test 

data. Considering the effect of flow pattern on the model performance, individual 

LSSVM models for the estimation of mass flowrate and gas volume fraction of gas-

liquid two-phase CO2 flow have been developed for each flow pattern. 

 

This chapters presents the conclusions that have been drawn from the research 

programme conducted and makes recommendations for further work in the field. 

 

7.2 Conclusions 

7.2.1 Input Variable Selection and Model Selection 

 

Input variable selection and model selection have been taken into consideration based 

on the experimental data from 1-inch Coriolis flowmeters (KROHNE OPTIMASS 6400 
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S25) with air-water flow. The performance of Coriolis flowmeters under air-water two-

phase flow condition has been reported in Chapter 4. 

 

Three input variable selection approaches including PMI, GA-ANN and IIS have been 

applied to determine the most suitable variable subset for the correction models of 

liquid mass flowrate and prediction models of gas volume fraction, respectively. The 

validity of the selected variables has been assessed on SVM-based models through a 

comparison of the NRMSE and sensitivity analysis. It can be concluded from the results 

that the PMI and IIS algorithms have outperformed the GA-ANN algorithm in terms of 

time efficiency and selection validity. With regard to the experimental data obtained, 

the most important variables for the correction of liquid mass flowrate include observed 

density, apparent mass flowrate, DP and damping while those for the prediction of gas 

volume fraction include observed density, apparent mass flowrate and DP.  

 

Experimental and analytical investigations have been carried out to assess the 

performance of Coriolis flowmeters together with BP-ANN, SVM and GP models for 

gas-liquid two-phase flow measurement. Results presented have suggested that the 

SVM models are superior to the ANN and GP models in terms of robustness and 

accuracy. Once the SVM models are applied to analyse the test data, the NRMSE of the 

liquid mass flowrate is reduced from 8% to 0.58% for both horizontal and vertical 

installation orientations while the NRMSE of the predicted gas volume fraction is about 

3.20%. 

 

7.2.2 Tests with Air-Water and Air-Oil Flows 

 

Experimental tests of 2-inch Coriolis flowmeters (KROHNE OPTIMASS 6400 S50) 

have been conducted with air-water and air-oil two-phase flows. Through the analysis 

of the original errors of liquid mass flowrate from the Coriolis flowmeters under test, 

the effects of pressure, temperature, installation orientation and physical properties of 

the fluid on the performance of Coriolis flowmeters have been discussed in Chapter 5.  
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SVM and LSSVM models have been developed for each case to correct the liquid mass 

flowrate and predict the gas volume fraction of two-phase flows. The performance of 

the models has been assessed in terms of accuracy, generalization ability and 

computational complexity. Experimental results have demonstrated that SVM and 

LSSVM models are able to reduce the relative errors of mass flowrate to within ±2% 

and predict the gas volume fraction with relative errors less than ±10% in most cases. 

LSSVM models have similar or even better generalization ability compared with SVM 

models. Meanwhile, LSSVM is more computational efficiency than SVM. Once the 

LSSVM models are applied to process the test data from the five experimental cases, 

the NRMSEs of the liquid mass flowrate are reduced from more than 10% to less than 

2% while the NRMSEs of the predicted gas volume fraction are less than 7%.    

 

7.2.3 Tests with Gas-Liquid Two-Phase CO2 Flow 

 

Experimental tests of Coriolis flowmeters (KROHNE OPTIMASS 6400 S15) have been 

conducted with gas-liquid two-phase CO2 flow. The original errors of Coriolis 

flowmeters on horizontal and vertical installations have been presented and interpreted 

in Chapter 6. 

 

SVM and LSSVM models have been established to estimate the mass flowrate and gas 

volume fraction of gas-liquid two-phase CO2 flow. The performance of SVM and 

LSSVM models was evaluated with test data for different flow patterns. Test results 

have demonstrated that some points were overcorrected by SVM models especially at 

lower flowrates (300 kg/h and 550 kg/h) and hence large predicted error of gas volume 

fraction at less gas entrainment (<10%). In order to reduce the measurement errors and 

avoid overcorrection, the flow pattern based measurement methodology with a flow 

pattern classifier was proposed. The LSSVM based flow pattern classifier is capable of 

achieving a successful recognition rate of 100%. After correction with the flow pattern 

based LSSVM model, the relative errors of mass flowrate are mostly with ±2% on the 

horizontal section and ±1.5% on the vertical section. Meanwhile, the NRMSE of the 

mass flowrate is reduced from 2.82% to 0.80% on the horizontal position and from 
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3.69% to 0.51% on the vertical positions while the NRMSEs of the predicted gas 

volume fraction are less than 8%.    

 

The work reported in this thesis offers very useful measurement strategies to develop 

data-driven models of Coriolis flowmeters for applications to two-phase or multiphase 

flow measurement. The proposed measurement method has been validated through a 

series of experimental tests. The work reported in this thesis has demonstrated the 

potential of the Coriolis flowmeters incorporating soft computing techniques in 

multiphase flow measurement. It is envisaged that the implementation of such technique 

will lead to an effective method for multiphase flow measurement in industrial 

processes. 

 

7.3 Recommendations for Future Research 

 

The work presented in this thesis has demonstrated the usefulness and potential of the 

outcomes of the research programme. However, the soft computing techniques for 

multiphase flow measurement are still in their development stage. There are a number 

of areas that require further research and improvements in the near future and have been 

identified as follows: 

 

1) Experimental work in this study was conducted on laboratory test rigs with relatively 

stable temperature and pressure. However, the temperature and pressure in industrial 

processes are quite different in practical applications. Moreover, the installation 

orientation of Coriolis flowmeters may be not limited to horizontal or vertical position 

in an industrial site. Consequently, different fluid temperature, pressure and installation 

orientation of Coriolis flowmeters will be taken into consideration in the modelling 

work. The modelling method will be extended from air-water, air-oil and gas-liquid 

CO2 two-phase flows to oil-gas-water multiphase flow. Further field trials in the oil and 

gas industry and bunkering centres are also required to evaluate the measurement 

system under a wider range of conditions.  
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2) Gas-liquid two-phase CO2 flow measurement was carried out in this study. In real 

CCS chain, there could exist more states of CO2 in the mixture due to the diverse 

climate and variant temperature and pressure during the long transport pipelines. In 

addition, some constituents such as N2 and CH4 are very likely mixed in the captured 

stream, which makes pure CO2 phase diagram and state equations highly unreliable and 

results in two-phase or multiphase flow conditions. The present study will be further 

extended by considering the solid state of CO2 or impurities of N2 and CH4 involved in 

the multiphase CO2 flow.  

 

3) With the rapid development of soft-computing techniques, some more advanced, 

improved and hybrid algorithms are being developed to achieve high-performance data-

driven models. Further investigations into the techniques used for data-driven modelling 

should be conducted. 

 

4) The data-driven models based on soft computing techniques provide an effective and 

cost-efficient approach for Coriolis flowmeters in the application of two-phase or 

multiphase flow measurement. Mass flowrate and gas volume fraction can be estimated 

through data-driven models without any modifications on the Coriolis flowmeters. 

However, this approach is a kind of ‘black box’ and cannot interpret the mass flow 

errors of Coriolis flowmeters due to gas entrainment. Hence, further research on the 

measurement principle and analysis on low-level signals is a necessary research 

direction to explore the essence of air entrainment on Coriolis flowmeters.  
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Appendix 1 Program for BP-ANN 

% *******************************************************************% 

% File name: BPANN.m 

% Train data: 1_apparent mass flowrate; 2_observed density; 3_process temperature;  

% 4_sensorA; 5_sensor B; 6_drive level; 7_time shift; 8_tuve frequency; 

% 9_sensor balance; 10_damping; 11_two phase indicator; 12_DP; 13_Z; 14_θ 

% Desired output: 1_liquid mass flowrate; 2_gas volume fraction  

% Toolbox: Matlab Neural Network Toolbox 

% ******************************************************************% 

 

%% load data 

        load T2gw_h; 

% set the number of variables  

        p_train=ptrain(:,[1,2,10,12])';    

        t_train=ttrain(:,1)'; 

        p_test=ptest(:,[1,2,10,12])'; 

        t_test=ttest(:,1)'; 

 

        hiddennode=9; % the number of hidden neurons 

 

% normalise the training data 

        [inputn,inputps]=mapminmax(p_train,-1,1); 

        [outputn,outputps]=mapminmax(t_train,-1,1); 

 

%% create BP net  

% set parameters for training a BP-ANN 

        net=newff(inputn,outputn,hiddennode,{'tansig', 'purelin'},'trainbr','learngdm'); 

        net.trainParam.epochs=1500; 

        net.trainParam.lr=0.1; 

        net.trainParam.goal=0.00001; 

 

        net.divideParam.trainRatio = 80/100;   
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        net.divideParam.valRatio = 10/100; 

        net.divideParam.testRatio =10/100; 

 

%% BP net training 

        net=train(net,inputn,outputn); 

% normailise the perdict data 

        inputn_test=mapminmax('apply',p_test,inputps); 

 

%% BP net on training data 

        an=sim(net,inputn); 

% converse normalization of the output 

        bp_prediction_result1=mapminmax('reverse',an,outputps); 

% calculate NRMSD after correction 

         absolute_error1=bp_prediction_result1-t_train; 

 

% calculate relative error after correction 

         corrected_error1=bp_prediction_result1./t_train-1; 

         corrected_error1=corrected_error1'; 

         L=length(absolute_error1); 

         NRMSD1=sqrt(sum(absolute_error1.^2)/L)/mean(t_train); 

         disp(['NRMSD on training data after correction']); 

         NRMSD1 

 

% calculate orginal NRMSD of mass flow before correction 

          absolute_error_original1=ptrain(:,2)-ttrain(:,1); 

% calculate relative of mass flow errors before correction 

          original_error1=ptrain(:,2)./ttrain(:,1)-1; 

          L=length(absolute_error_original1); 

          NRMSD_original1=sqrt(sum(absolute_error_original1.^2)/L)/mean(t_train); 

          disp(['NRMSD on training data before correction']); 

          NRMSD_original1 

 

%% BP net on test data 
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           an2=sim(net,inputn_test); 

% converse normalization of the output 

           bp_prediction_result2=mapminmax('reverse',an2,outputps); 

% calculate NRMSD after correction 

           absolute_error2=bp_prediction_result2-t_test; 

% calculate relative error after correction 

           corrected_error2=bp_prediction_result2./t_test-1; 

           corrected_error2=corrected_error2'; 

           L=length(absolute_error2); 

           NRMSD2=sqrt(sum(absolute_error2.^2)/L)/mean(t_test); 

          disp(['NRMSD on test data after correction']); 

          NRMSD2 

 

% calculate orginal NRMSD of mass flow before correction 

          absolute_error_original2=ptest(:,2)-ttest(:,1); 

% calculate relative of mass flow errors before correction 

          original_error2=ptest(:,2)./ttest(:,1)-1; 

          L=length(absolute_error_original2); 

          NRMSD_original2=sqrt(sum(absolute_error_original2.^2)/L)/mean(t_test); 

          disp(['NRMSD on test data before correction']); 

          NRMSD_original2 
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Appendix 2 Program for SVM 

% *******************************************************************% 

% File name: SVM.m 

% Train data: 1_apparent mass flowrate; 2_observed density; 3_process temperature;  

% 4_sensorA; 5_sensor B; 6_drive level; 7_time shift; 8_tuve frequency; 

% 9_sensor balance; 10_damping; 11_two phase indicator; 12_DP; 13_Z; 14_θ 

% Desired output: 1_liquid mass flowrate; 2_gas volume fraction 

% Toolbox: Libsvm  

% ******************************************************************% 

 

%% load data 

        load T2gw_h; 

% set the number of variables  

        p_train=ptrain(:,[1,2,10,12])';    

        t_train=ttrain(:,1)'; 

        p_test=ptest(:,[1,2,10,12])'; 

        t_test=ttest(:,1)'; 

% data preprocessing 

        [inputn,inputps]=mapminmax(p_train,-1,1); 

        inputn=inputn'; 

        [outputn,outputps]=mapminmax(t_train,-1,1); 

        outputn = outputn'; 

 

% optimal parameters selection  

         [bestmse,bestc,bestg] = SVMcgForRegress(outputn,inputn,-8,8,-8,8,3,1,1,0.1); 

% print the selected result 

          disp('print the reslut of fine slection'); 

          str = sprintf( 'Best Cross Validation MSE = %g Best c = %g Best g = 

%g',bestmse,bestc,bestg); 

          disp(str); 

 

%% Train SVM network with the optimal parameters 
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% -s (svm type)0-C-SVC; 1-nu-SVC; 2-one-class SVM; 3-epsilon-SVR; 4-nu-SVR 

% -t (kernel_type): 0-linear; 1-polynomial; 2-radial basis function; 3-sigmoid 

           cmd = ['-c ', num2str(bestc), ' -g ', num2str(bestg) , ' -s 3 -t 2 -p 0.01'];  

           model = svmtrain(outputn,inputn,cmd);                                                                                                                             

           save best_model model 

 

%% SVM network regression prediction 

% test SVM on training data 

           [predict,mse,dicision_values] = svmpredict(a,inputn,model,'-b 0');   

           predict_SVM1 = mapminmax('reverse',predict,outputps); 

           predict_SVM1 = predict_SVM1'; 

 

% test SVM on test data 

           inputn_test=mapminmax('apply',p_test,inputps); 

           outputn_test=mapminmax('apply',t_test,outputps); 

           inputn_test=inputn_test'; 

           outputn_test=outputn_test'; 

           [predict,mse,dicision_values] = svmpredict(a,inputn_test,model,'-b 0');  

           predict_SVM2 = mapminmax('reverse',predict,outputps); 

           predict_SVM2 = predict_SVM2'; 
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Appendix 3 Program for LSSVM 

% *******************************************************************% 

% File name: LSSVM.m 

% Train data: 1_apparent mass flowrate; 2_observed density; 3_process temperature;  

% 4_sensorA; 5_sensor B; 6_drive level; 7_time shift; 8_tuve frequency; 

% 9_sensor balance; 10_damping; 11_two phase indicator; 12_DP; 13_Z; 14_θ 

% Desired output: 1_liquid mass flowrate; 2_gas volume fraction 

% Toolbox: LS-SVMLab  

% ******************************************************************% 

 

% load data 

    load T2go_v; 

%  set the number of variables  

    p_train=ptrain(:,[1,2,10,12]);   

    t_train=ttrain(:,1); 

    p_test=ptest(:,[1,2,10,12]); 

    t_test=ttest(:,1); 

      

% lin_(Linear); poly_(Polynominal); RBF_ (Radial Basis Function); MLP_(Multiplayer 

% Perceptron) 

    model=initlssvm(p_train,t_train,'f',[],[],'RBF_kernel','o'); 

    model=tunelssvm(model,'simplex','crossvalidatelssvm',{5,'mse'}); 

    model=trainlssvm(model); 

     

    save best_model model 

     

%  test LSSVM on training data 

    predict_SVM1=simlssvm(model,p_train); 

    

%  test LSSVM on test data   

    predict_SVM2=simlssvm(model,p_test); 
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Appendix 4 Program for GP 

% *******************************************************************% 

% File name: GP_config.m 

% Train data: 1_apparent mass flowrate; 2_observed density; 3_process temperature;  

% 4_sensorA; 5_sensor B; 6_drive level; 7_time shift; 8_tuve frequency; 

% 9_sensor balance; 10_damping; 11_two phase indicator; 12_DP; 13_Z; 14_θ 

% Desired output: 1_liquid mass flowrate; 2_gas volume fraction 

% Toolbox: GPTIPS  

% ******************************************************************% 

 

% run control parameters 

     gp.runcontrol.pop_size = 250;                           

     gp.runcontrol.timeout = 10; 

     gp.runcontrol.runs = 3; 

 

% selection 

     gp.selection.tournament.size = 25; 

     gp.selection.tournament.p_pareto = 0.7;  

     gp.selection.elite_fraction = 0.7; 

     gp.nodes.const.p_int= 0.5;  

 

% fitness  

     gp.fitness.terminate = true; 

     gp.fitness.terminate_value = 0.2; 

 

% load data  

     load K1gw_17_V 

     p_train=ptrain(:,[1,2,10,12]);    

     t_train=ttrain(:,2); 

     p_test=ptest(:,[1,2,10,12]); 

     t_test=ttest(:,2); 
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    gp.userdata.xtest = p_test; %testing set (inputs) 

    gp.userdata.ytest = t_test; %testing set (output) 

    gp.userdata.xtrain = p_train; %training set (inputs) 

    gp.userdata.ytrain = t_train; %training set (output) 

    gp.userdata.name = 'Mass flow'; 

 

%genes 

    gp.genes.max_genes = 6; 

 

%define building block function nodes 

    gp.nodes.functions.name = {'times','minus','plus','tanh','mult3','add3'}; 
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