
Faddegon, Maarten (2017) Algorithmic debugging for complex lazy functional
programs. Doctor of Philosophy (PhD) thesis, University of Kent,.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/63869/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/63869/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

ALGORITHMIC DEBUGGING
FOR COMPLEX LAZY FUNCTIONAL PROGRAMS

a thesis submitted to
The University of Kent

in the subject of computer science
for the degree

of doctor of philosophy.

By
Maarten Faddegon

June 2017

Abstract

An algorithmic debugger �nds defects in programs by systematic search. It relies on
the programmer to direct the search by answering a series of yes/no questions about
the correctness of speci�c function applications and their results.

Existing algorithmic debuggers for a lazy functional language work well for small
simple programs but cannot be used to locate defects in complex programs for two
reasons: Firstly, to collect the information required for algorithmic debugging existing
debuggers use di�erent but complex implementations. Therefore, these debuggers are
hard to maintain and do not support all the latest language features. As a consequence,
programs with unsupported language features cannot be debugged. Also inclusion of
a library using unsupported languages features can make algorithmic debugging un-
usable even when the programmer is not interested in debugging the library. Secondly,
algorithmic debugging breaks down when the size or number of questions is too great
for the programmer to handle.

This is a pity, because, even though algorithmic debugging is a promising method
for locating defects, many real-world programs are too complex for the method to be
usuable.

I claim that the techniques in in this thesis make algorithmic debugging useable
for a much more complex lazy functional programs.

I present a novel method for collecting the information required for algorithmi-
cally debugging a lazy functional program. The method is non-invasive, uses program
annotations in suspected modules only and has a simple implementation.

My method supports all of Haskell, including laziness, higher-order functions and
exceptions. Future language extensions can be supported without changes, or with
minimal changes, to the implementation of the debugger.

ii

With my method the programmer can focus on untrusted code – lots of trusted
libraries are una�ected. This makes traces, and hence the amount of questions that
needs to be answered, more manageable.

I give a type-generic de�nition to support custom types de�ned by the programmer.
Furthermore, I propose a method that re-uses properties to answer automatically

some of the questions arising during algorithmic debugging, and to replace others
by simpler questions. Properties may already be present in the code for testing; the
programmer can also encode a speci�cation or reference implementation as a property,
or add a new property in response to a statement they are asked to judge.

iii

Contents

Abstract ii

1 Introduction 1

2 Algorithmic debugging for lazy functional programs 8
2.1 Functional programming . 8

2.1.1 Core language . 9
2.1.2 Semantics for lazy evaluation of the core language 10
2.1.3 The language Haskell . 12

2.2 Algorithmic debugging . 13
2.2.1 Kinds of computation trees . 15
2.2.2 Unevaluated expressions in a computation statement 19
2.2.3 Algorithmic debugging strategies 21
2.2.4 Oracle . 22

3 Value observation tracing 26
3.1 Finding a defect with value observation tracing 26
3.2 Under the hood of value observation tracing 29

3.2.1 Language . 29
3.2.2 A trace of events . 31
3.2.3 Semantics for lazy evaluation with generation of a trace 32
3.2.4 Example trace . 34

3.3 From trace to computation statements 34
3.3.1 Event trees . 35

iv

3.3.2 Constructing the nodes of the computation tree 36
3.4 Implementing value observation tracing 38

4 Type generic value observation tracing 45
4.1 The user’s perspective . 46
4.2 The implementer’s perspective: product-sum types 46

4.2.1 Type generic observation . 47
4.2.2 Sum type . 48
4.2.3 Product type . 49
4.2.4 Constructor names . 50
4.2.5 Base types . 50
4.2.6 Special types, including function types 51

4.3 Mixing observed and not-observed values 51
4.4 Summary . 56

5 Computation tree construction with trace stacks 57
5.1 Background, observation and idea . 58

5.1.1 Locating the defect with my algorithmic debugger 59
5.1.2 GHC’s cost centre stacks for pro�ling 60
5.1.3 Idea: dependencies from observed stacks 61
5.1.4 The computation tree . 61

5.2 Tracing semantics . 62
5.2.1 Adding a stack . 62
5.2.2 Adding a value observation trace 64

5.3 Processing the trace . 66
5.3.1 Constructing a computation graph 66
5.3.2 From computation graph to tree 69
5.3.3 Removing a reducible cycle . 69
5.3.4 Removing an irreducible cycle 69
5.3.5 Accuracy and order . 70

5.4 Higher-order functions . 71
5.5 My algorithmic debugger Hoed-cc . 73
5.6 Summary . 73

6 Pure computation tree construction 75
6.1 Creating a value observation trace . 76

6.1.1 Value observation trace . 77
6.1.2 Semantics . 78

v

6.1.3 A trace . 79
6.1.4 Request-response spans . 79
6.1.5 Properties of the trace . 81

6.2 From trace to computation tree . 82
6.2.1 Argument and result spans . 82
6.2.2 Positive and negative spans . 83
6.2.3 Constructing the edges of the computation tree 85
6.2.4 Example construction of a computation tree 87
6.2.5 Examples of particular language features 89
6.2.6 Properties of the computation tree 96

6.3 My algorithmic debugger Hoed-pure 98
6.3.1 Non-terminating programs . 99

6.4 Comparison with Hoed-cc . 99
6.5 Summary . 101

7 Sound algorithmic debugging 102
7.1 Constants in a computation tree . 102
7.2 Free variables in a computation statement 104
7.3 Constants and their dependencies . 106
7.4 Soundness . 108

7.4.1 How to test an algorithmic debugger 109
7.4.2 Defective slices and infection during evaluation 110
7.4.3 Judging computation statements 111
7.4.4 Restrictions on observation annotations 114
7.4.5 Testing computation tree construction with trace stacks 117
7.4.6 Testing pure computation tree construction 118

8 Properties as oracle for algorithmic debugging 119
8.1 Defective example program with properties 120
8.2 Dynamic and static dependencies . 121
8.3 Testing properties to judge statements 124

8.3.1 Judging statements wrong . 124
8.3.2 Judging statements right . 125
8.3.3 Summary of valid conclusions from property tests 126

8.4 Restricting results of subject functions 127
8.5 Testing with an unrestricted subject function 130
8.6 Parallel equality . 132

vi

8.7 Quantifying unevaluated expressions 133
8.8 Two-oracle strategies . 134
8.9 Implementing property-assisted debugging 135
8.10 Summary . 136

9 Case Studies 139
9.1 A defective higher-order function . 139
9.2 A defective n-queens problem solver 141
9.3 A defective pretty-printer . 144
9.4 A video game . 149
9.5 A defective window manager . 150
9.6 Summary . 156

10 Related work 157
10.1 Kinds of defects . 157
10.2 Algorithmic debugging . 158

10.2.1 Computation tree tracing for Haskell 158
10.2.2 Computation tree tracing for other languages 159
10.2.3 Display of functional values . 159
10.2.4 Automated oracles . 160

10.3 Other debugging methods . 161
10.3.1 Walking backward . 161
10.3.2 Generating redex trails with Hat 161
10.3.3 List of observations . 162
10.3.4 Breakpoint-style debugging . 163

10.4 Pro�ling . 163
10.5 Generic programming frameworks . 164

11 Summary and conclusion 166

12 Further work 168

Bibliography 170

vii

Languages

Launchbury’s semantics for lazy evaluation
Language: Figure 2 on page 9
Semantics: Figure 3 on page 11

Value observation tracing
Language: Figure 10 on page 30
Trace: Figure 11 on page 30
Semantics: Figure 12 on page 33

Cost-centre stack pro�ling
Language: Figure 21 on page 62
Semantics: Figure 22 on page 63

Computation tree tracing with
cost-centre stack
Language: Figure 27 on page 66
Trace: Figure 24 on page 64
Semantics: Figure 28 on page 67

Pure computation tree tracing
Language: Figure 10 on page 30
Trace: Figure 33 on page 78
Semantics: Figure 34 on page 79

viii

1
Introduction

Defective programs cause all kinds of problems and lead to huge economic costs for
society (Tassey 2002). Programmers are estimated to spend more than half of their time
locating defects in misbehaving programs (Beizer 1990). The time needed to write
and maintain software can be reduced when the program is de�ned in a high-level
programming language that abstracts from the details of how the machine runs the
program. The programmer uses a computer program, called a compiler, to translate
the high-level code into machine language that can be executed.

In this thesis I focus on the family of high-level programming languages that are
lazy and functional. A lazy language uses an evaluation model where an expression
is evaluated to a value when the value is needed. The primary operation in a func-
tional program is the application of functions to arguments (Hughes 1989). In many
functional languages the programmer can de�ne a higher-order function, a function
that can be applied to another function or that returns a function as result. I discuss
functional programming and lazy evaluation in more detail in Section 2.1.

Structuring code well makes development easier and provides modules that can
be re-used in the future, lazy evaluation and higher-order functions can contribute
signi�cantly to modularity (Hughes 1989). A large scale study of open-source projects
showed that lazy functional programs misbehave less often than programs written
in other languages (Ray et al. 2014). For these reasons, lazy functional languages are
used to develop programs in complex domains where correctness is important (Wadler
1998a; Augustsson 1999).

Lazy functional languages, however, do not eliminate all programming mistakes.
A debugger is a tool that, given a program with observable faulty behaviour, supports
the programmer �nding a defect in the code that caused the program to misbehave.
Support for debugging is essential for wider adoption of lazy functional languages

1

(Wadler 1998b; Zielonka and the GHC Team 2005). The algorithmic debugging method
is particularly suitable for pure computations (cf. Zeller (2009)) and thus lazy functional
languages. Existing algorithmic debuggers for lazy functional languages work well for
small and simple programs but cannot be used to locate defects in complex programs
This is a pity, because a promising approach to debugging is therefore not applicable
to many real-world programs. So I reach the motivating question for this thesis:

How can algorithmic debugging for lazy functional languages be made use-
able not only for small and simple programs but also for complex programs?

Algorithmic Debugging Let us consider the program of Listing 1. This program
is written in the lazy functional language Haskell (Peyton Jones et al. 2003; Marlow
et al. 2010) which I use for examples throughout the thesis, for the reader unfamiliar
with Haskell I describe the language in Section 2.1.3. The program sorts a list xs by
starting with the empty list [] (which is trivially ordered) and inserting one element
from xs to create a new ordered list, this is repeated until the �nal result is an ordered
list containing all elements of xs. However, the second de�nition of insert is wrong:
when x <= y is true the result should be x:y:ys instead of x:ys (element y from the
ordered list should not be discarded).

Listing 1 A defective program for sorting lists.

sort xs = foldr insert [] xs

insert x [] = [x]
insert x (y:ys) = if x <= y then x : ys else y : insert x ys

Evaluating the function sort applied to “cab" I get the unexpected result “ac", I ob-
serve a symptom of the defect in the code. When I wrote the program of Listing 1 my
intention was that sort applied to a list xs evaluates to an ordered list that contains
every element from xs. The function application and result

sort "cab" = "ac"

does not satisfy my intention because the element b from the argument is not an el-
ement of the result. I will refer to a function applied an argument and its result as a
computation statement. When a function has no side e�ects, such as reading or writ-
ing globally accessible memory or showing data on the screen, evaluating a function

2

application is completely described by its computation statement. For a higher-order
function argument or result can be a functional value.

An algorithmic debugger (Shapiro 1983) records and presents computation state-
ments of, otherwise hidden, subcomputations to an oracle who is asked to judge if the
computation statements are right or wrong according to the intentioned behaviour/
speci�cation of the function. Commonly the oracle is a human, namely the program-
mer who tries to �nd and correct a mistake. For my example program the interaction
with the algorithmic debugger could be as follows, with the answers of the oracle writ-
ten in italics:

sort "cab" = "ab" ? wrong

insert 'c' "a" = "ac" ? right

insert 'a' "b" = "a" ? wrong

defect located in insert observed by insert 'a' "b" = "a"

How did the algorithmic debugger generate this sequence of questions and come
to the conclusion? For these the algorithmic debugger uses a computation tree. The
nodes of the tree are computation statements. A statement f x = v depends on another
statement g y = w if there exists a part w′ of w such that w′ is needed to determine v
and x can be determined without w′. If a parent node is wrong but all its child nodes
are right the node is defective. The part of the program associated with the node (here
the de�nition of the function insert) must be defective.

Figure 1 shows the computation tree of my example. Statements I judged as wrong
are annotated with 8 and the statement I judged as right is annotated with 4. When
recording the trace from which the tree is constructed I marked the functions sort and
insert as suspected. On the other hand, the functions foldr and (<=) are trusted and
hence applications of the latter functions are not recorded in the computation tree.

sort "cab" = "ab"

insert 'c'"a" = "ac"

insert 'c'[] = "c"

insert 'a'"b" = "a" insert 'b'[] = "b"

8

4 8

Figure 1: Computation tree of evaluating sort "cab".

3

Applicability Algorithmic debugging is particularly suitable for �nding defects in
pure, that is, side-e�ect free, computations and hence for debugging lazy functional
programs (Shapiro 1983; Zeller 2009; Nilsson 1998) . Several algorithmic debuggers,
such as Freja (Nilsson and Sparud 1997; Nilsson 1998), Hat (Wallace et al. 2001) and
Buddha (Pope 2006), have been built for the language Haskell.

These algorithmic debuggers for Haskell are a great help for �nding defects in small
simple programs, however all existing algorithmic debuggers share two challenges that
limit the usability applied to complex programs:

1. Limited language support: Existing algorithmic debuggers have in common
that the implementation is very complex — to record computation statements
and their dependencies either a specialized run-time system or a transformation
of all modules is needed — and hence these debuggers require constant main-
tenance to keep pace with the evolution of the language. In practice, therefore,
many programs cannot be debugged with these tools because language exten-
sions that are not supported by the debugger are used, directly or in a library
that the user does not even want to debug.

2. The human bottleneck: Algorithmic debugging with the human programmer
as oracle does not scale well to large and complex programs. The size and num-
ber of computation statements that need to be judged before a defect is located
can overwhelm the programmer. Judging computation statements with an au-
tomated oracle, using a working program or formal speci�cation as reference,
instead of the human programmer has been suggested by many (Shapiro 1983;
Drabent and Nadjm-Tehrani 1989; Nilsson and Fritzson 1992). In practice, how-
ever, such a reference is often not available and hence these methods are not
used widely.

Because of these limitations there is, to my knowledge, currently no algorithmic
debugger available that is useable for real-world lazy functional programs. In this
thesis I show how to address these shortcomings.

Useable algorithmic debugging In this thesis I present the techniques required to
build an algorithmic debugger that is useable for �nding defects in complex and large
lazy functional programs. I implemented my methods in a new algorithmic debugger
for Haskell called Hoed. Hoed is just a library and many new language extension
supported by a Haskell compiler can be supported without changes to Hoed.

4

Property-based testing works by de�ning a function that evaluates to a true/false/
unde�ned value and describes a desired property of the implementation. A tool, such as
QuickCheck (Claessen and Hughes 2000a), generates many values and tests if the prop-
erty holds for all these values. If there is a value for which the property does not hold
the tool detected a defect, otherwise the programmer is given con�dence, depending
on how representative the tested values are, in the soundness of their implementation.
For example, we detect that our program is defective because the property

prop_insert_complete x y ys =

x ‘elem‘ (y:ys) ==> x ‘elem‘ (insert y ys)

evaluates to False for the values x='c', y='c' and ys="ab".
By using test-properties to automatically judge computation statements algorith-

mic debugging scales to large programs. Properties may already be present in the code
for testing; the programmer can also encode a speci�cation or reference implementa-
tion as a property, or add a new property in response to a statement they are asked
to judge. Properties that are added during a debugging session may be used again for
further testing in the future.

Main contributions Together, the following contributions make algorithmimic de-
bugging a method that is useable for �nding defects in a much wider range of lazy
functional programs than with existing algorithmic debuggers:

• A semantics for value observation tracing, a technique to record the values
of otherwise hidden values of intermediate computations. Gill (2000) previously
presented the technique in a paper and implemented it in the Haskell Object Ob-
servation Debugger (HOOD) but the technique has not been formalized before.
HOOD can be used to obtain computation statements, for algorithmic debugging
the statements need to be connected and form a computation tree (Chapter 3).

• A type-generic de�nition of howa value should be observed. While HOOD
comes with de�nitions for the base types and many other commonly used types,
for user de�ned types the programmer has to write their own de�nition. This is
not only a laborious task, also strictness of the program is easily a�ected. With
my type-generic de�nition the compiler can for any value derive how to observe
it (Chapter 4).

• Amethod to construct a computation tree from a value observation trace

5

and trace stacks used for pro�ling, based on my observation that the infor-
mation required for connecting individual intermediate computations to a com-
putation tree is closely related to the information available in the trace stacks. I
give a semantics that combines maintaining a trace stack with value observation
tracing such that a trace stack is associated with each computation statement.
The resulting computation trees are sound for algorithmic debugging but the
trees contain surplus edges because trace stacks approximate the information
needed to connect the computation statement (Chapter 5).

• Amethod that constructs a computation tree purely from a value obser-
vation trace based on my discovery that value observation traces contain more
information than previously thought. A value observation trace is a sequence of
events, written in the order in which the program is evaluated. Each atomic value
of an observed expression has a request and response event which I together call
a span. I discovered that the spans, which occur nested and in sequence, corre-
spond to the dependencies between computation statements. With this method
I derive computation trees without surplus dependencies, and I remove the �rst
method’s dependency on the pro�ling run-time environment (Chapter 6).

• Amethod to test soundness of a computation tree for algorithmic debug-
ging. Previous work in which new methods for computation tree construction
are presented often come without soundness proof or systematic testing. Chi-
til and Luo (2007) revisited an existing computation tree construction method
and proofed soundness, but the proof does not directly transfer to my approach
because they use a slightly di�erent programming language with a semantics
de�ned by graph rewriting . Given a randomly generated program of which a
random part is declared defective my test-method validates that algorithmic de-
bugging with the program’s computation tree indeed locates the defect in the
part declared defective (Chapter 7).

• Amethod to judge computation statements using test properties to make
algorithmic debugging scale to large and complex programs. Previous work al-
ready suggested using a reference program or a complete speci�cation, however,
in practice these are seldom available. Furthermore, I present several methods to
remove dependencies from properties on unevaluated expressions (Chapter 8).

• An evaluation ofmy implementation of above techniques with use-cases
based on defects in open-source projects (Chapter 9). I implemented my

6

techniques in the algorithmic debugger Hoed and made it available from the
Haskell package archive Hackage: cabal install Hoed.

The focus of this thesis is on algorithmic debugging of lazy functional languages.
However, many of my insights and techniques are of wider applicability. My discovery
of spans in an observation trace also helps to build algorithmic debuggers for strict
languages that work well in the presence of higher-order functions. Using properties to
judge computation statements is applicable to algorithmic debugging programs written
in many di�erent programming languages. My type-generic de�nition of which part
of a value is atomic is now also part of the original HOOD library.

Relation to my earlier publications I presented the basic idea for lightweight
computation tree construction from a value observation trace with at poster at the In-
ternational Conference on Functional Programming (ICFP) in Götenborg, Sweden in
2014. My type-generic de�nition of atomic values for tracing was presented at Trend
in Functional Programming 2014 in Soesterberg, The Netherlands (Faddegon and Chi-
til 2014), an extended article was published in the journal on Computer Languages,
Systems & Structures (Faddegon and Chitil 2017). The method for using pro�ling in-
formation to construct a computation tree was then presented at the conference on
Programming Language Design and Implementation (PLDI) in Portland, USA (Fadde-
gon and Chitil 2015). My insight that HOOD traces contain much more information
than previously thought, and the method to construct a computation tree from these
was presented at the conference on Programming Language Design and Implemen-
tation in Santa Barbara, USA (Faddegon and Chitil 2016). The Artifact Evaluation
Commitees of PLDI 2015 and 2016 evaluated earlier version of my test-method and
case-studies with Hoed-cc and Hoed-pure and declared that these met or exceeded ex-
pectations. Using properties as oracle for algorithmic debugging was presented at the
Workshop on Implementation of Functional Languages in Leuven, Belgium (Faddegon
and Runciman 2016). This thesis includes parts from these publications, but in most
parts the material has been substantially revised and extended.

7

2
Algorithmic debugging

for lazy functional programs

Here I give a brief introduction to functional programming, Launchbury’s semantics
for lazy evaluation and earlier work on algorithmic debugging.

2.1 Functional programming

The lambda calculus, de�ned by Church (1936), is a formal system that is at the core
of functional programming. In this chapter I give just enough background about func-
tional programming and the lambda calculus to make this thesis self-contained, more
thorough introductions are given by e.g. Barendregt and Barendsen (1984) and Bird
and Wadler (1988).

At the core of the lambda calculus are functions such as λx.x and λy.3, the former
returns the value to which the function is applied and the latter always returns the
value 3. An expression is evaluated by applying functions. For example

(λy.3)((λx.x)4)

could be evaluated by �rst applying (λx.x) to 4 such that the expression reduces to

(λy.3)4

and application of (λy.3) to 4 gives 4.
This is just one way of evaluating the expression, alternatively we could for exam-

ple �rst evaluate the application of (λy.3) to ((λx.x)4). There are many operational

8

expression e ::= v
| e x application
| let {xk = ek}nk=1 in e recursive binding
| case e of {ck x1 . . . xmk

→ ek}nk=1 case
| x variable
| x1 ⊕ x2 application of a primitive

value v ::= λx.e abstraction
| c x1 . . . xn saturated application of

data constructor
Figure 2: Syntax of the core language.

and semantical choices when specifying a set of rules that de�ne how an expression is
rewritten. I use Launchbury’s semantics for lazy evaluation as a base in this thesis.

2.1.1 Core language

Before discussing semantics I �rst give the syntax of an expression in the core language
that I use and extend in the rest of this thesis in Figure 2. The basis is Launchbury’s
core language together with his data constructors and primitive operations.

When a variable x is bound to an expression e, then any occurance of x may be
replaced by e or the value to which e evaluates. Given a recursive binding let {xk =

ek}nk=1 in e, the variable x1 is bound to e1 in any ek and in e, x2 is bound to e2 in any
ek and in e, . . . and xn is bound to en in any ek and in e. For example, in the following
expression the variable x2 is bound to the expression x1:

let {x1 = 3, x2 = x1 , x3 = x3} in y x2

free

boundexpression x2 is bound to

A variable is free in an expression when the variable is not bound in the expres-
sion. For example y is a free variable in above expression. A program is an expression
without free variables.

The language contains two sorts of values: a saturated appliction of a data con-
structor, and a functional value. A data constructor has an arity n and an application
of the data constructor is saturated when the data constructor is applied to n vari-
ables. Integer values are just data constructors with arity 0. An exception is also just

9

the constructor Exception. I include exceptions in my language, because in practice
defective programs often raise exceptions. An abstraction λx.e is an expression e that
depends on variable x. In other words the abstraction de�nes a function from x to e.
An abstraction λx.e is applied to a variable y by substituting any occurrence of x in e
for y. For example (λx.fx) y becomes fy.

To make heap allocation explicit, Launchbury requires the arguments of applica-
tions, data constructors and primitive operations to be variables. A language without
this argument restriction can easily be translated into the core by inserting let-bindings
(Launchbury 1993).

2.1.2 Semantics for lazy evaluation of the core language

A program is evaluated by systematically rewriting the expression as de�ned by a set
of rules, the semantics of the language. When de�ning the rewrite rules many choices
are to be made. Is an argument evaluated before applying a function to the argument,
or when the function body needs the argument value? In the former case the semantics
is strict in the latter it is non-strict. For a non-strict semantics: is the result of evaluation
shared between uses of the argument or is the argument re-evaluated for every use?
Non-strictness and preventing repeated evaluation together de�ne a lazy language.

A heap is a partial function from variables to expressions. I write Γ[x 7→ e] for the
heap that is equal to the heap Γ but additionally maps the variable x to the expression
e. Figure 3 de�nes the computation statement Γ1 : e ⇓ Γ2 : v, which means that the
expression e in the context of the heap Γ1 reduces to the value v together with the
modi�ed heap Γ2. A computation starts with an empty heap. Some rules are of the
form

Γ1 : e2 ⇓ Γ2 : v2
Γ1 : e1 ⇓ Γ2 : v1

or Γ1 : e2 ⇓ Γ2 : v2 Γ2 : e3 ⇓ Γ3 : v3
Γ1 : e1 ⇓ Γ3 : v1

which means that respectively Γ1 : e1 ⇓ Γ2 : v1 follows from subevaluation Γ1 : e2 ⇓
Γ2 : v2, and that Γ1 : e1 ⇓ Γ3 : v1 follows from the subevaluations Γ1 : e2 ⇓ Γ2 : v2
and Γ2 : e3 ⇓ Γ3 : v3.

The seven rules Lam, Con, Var, Let, App, Case and Prim are almost identical to rules
with the same names in Launchbury’s semantics (Launchbury 1993). Launchbury’s
semantics assume expression are in a normal form where:

• a bound variable is distinct from all other bound variables such that scope be-
comes irrelevant; and

• the argument to which a λ-expression is applied is a variable.

10

Γ : λx.e ⇓ Γ : λx.e Lam

Γ : c x1 . . . xn ⇓ Γ : c x1 . . . xn Con

Γ1 : e ⇓ Γ2 : v

Γ1[x 7→ e] : x ⇓ Γ2[x 7→ v] : v̂
Var

Γ1[xi 7→ ei]
n
i=1 : e ⇓ Γ2 : v

Γ1 : let {xi = ei}ni=1 in e ⇓ Γ2 : v
Let

Γ1 : e ⇓ Γ2 : v notAbs v

Γ1 : e x ⇓ Γ2 : Exception
EApp

Γ1 : e1 ⇓ Γ2 : λx.e2 Γ2 : e2[y/x] ⇓ Γ3 : v

Γ1 : e1 y ⇓ Γ3 : v
App

Γ1 : e ⇓ Γ2 : v notCon v {ci}ni=1

Γ1 : case e of {ci y1 . . . ymi
→ ei}ni=1 ⇓ Γ2 : Exception

ECase

Γ1 :e ⇓ Γ2 :ck x1 . . . xmk
Γ2 :ek[xi/yi]

mk
i=1 ⇓ Γ3 :v

Γ1 : case e of {ci y1 . . . ymi
→ ei}ni=1 ⇓ Γ3 : v

Case

Γ1 : e1 ⇓ Γ2 : v1 Γ2 : e2 ⇓ Γ3 : v2
Γ1 : e1 ⊕ e2 ⇓ Γ3 : v1⊕ v2

Prim

Figure 3: Semantics for lazy evaluation of core language.

Γ1 : f ⇓ Γ1 : λx′.x′
Γ1 : y ⇓ Γ1 : 3

Γ1 : z ⇓ Γ2 : 3

Γ1 : f z ⇓ Γ2 : 3

〈 〉 : let{f = λx.x, y = 3, z = y} in f z ⇓ Γ2 : 3

where
Γ1 = 〈f 7→ λx.x, y 7→ 3, z 7→ y〉
Γ2 = 〈f 7→ λx.x, y 7→ 3, z 7→ 3〉

Figure 4: Example evaluation with the rules from the core semantics.

11

Launchbury shows that any expression can be transformed into this normal form by
introducing let-expressions. The bindings in a let-expression are mutually recursive.

In the Var rule the result value is duplicated. To preserve the invariant that all
bound variables are distinct, I rename all bound variables with fresh variables in the
copy. This renaming is written as v̂.

The App rule makes the language non-strict. The value of the variable y to which
the abstraction λx.e is applied is not demanded, instead y is substituted for all occur-
rences of x in e (for this I use the notation e[y/x]). The Var rule prevents repeated
evaluation: when variable x is demanded and x maps to expression e, and e evaluates
to value v then the heap is updated such that x now maps to v.

I added the rules ECase and EApp to de�ne basic exceptions. An exception is just
a constructor Exception and thus already handled by most rules. The exception rules
just ensure that if a computation with the other rules would get “stuck”, then it eval-
uates to an exception. The expression notCon v {ci}ni=1 in the ECase rule is true i�
v is not a constructor application such that the constructor occurs in the set {ci}ni=1.
Similarly notAbs v in the EApp rule is true i� v is not an abstraction. The construc-
tor Exception may appear in a program but should not appear in a pattern of a case
expression to catch an exception, as this would substantially change the equational
theory of the language. In the Prim rule ⊕ is the total semantic function associated
with the syntactic operator ⊕.

Consider example program let{f = λx.x, y = 3, z = y} in f z. The tree in
Figure 4 shows evaluation to value 3 as de�ned by the core semantics.

2.1.3 The language Haskell

Haskell (Peyton Jones et al. 2003; Marlow et al. 2010; Hudak et al. 2007) has a far more
complex syntax than our core language. The goal of these constructs is to make Haskell
programs easier to read and write. A Haskell program can be translated to our core
language.

Haskell has a powerful type system that helps prevent the programmer making
some mistakes. The type system is mostly out of scope for this work, although I do
not consider defective programs that could have been prevented by the type systems
(e.g. trying to apply a function that expects a number to a functional value) and in
Chapter 4 I use type information to genericly de�ne how a value should be recorded
in the trace.

Let-bindings can be nested, a top-level let-binding is not nested in any other let-
binding. Consider for example the Haskell program and its equivalent in the core

12

f x = let y = ey in ef
g [] = eg1
g (h : t) = eg2
...

main = e

−→

let { f = λx. let y = ey in ef,
g = λx. case x of

{ [] → eg1,
(h : t) → eg2 }

...
} in e

1 top-level bindings
2 nested let-binding

Figure 5: A Haskell program (left) translated to our core language (right).

language in Figure 5. The functions f and g in the Haskell program are top-level let-
bound functions 1 in the core language program. I refer to f and g as top-level
functions, and to a nested let-bound function such as y as a local function 2 .

An abstraction in Haskell can be de�ned with the argument left of the ‘=’ sign,
such as argument x in the de�nition of f . Furthermore, the de�nition may be split in
di�erent cases based on the value of the function argument, as for function g.

I explain my tracing methods in this thesis using the core language, and imple-
mented the methods for all of Haskell in the tracer and debugger Hoed. Tracing scales
to full Haskell because I observe values and, although Haskell is more complex than
my core language, Haskell does not have many more kinds of values than my core
language.

2.2 Algorithmic debugging

Algorithmic debugging (Shapiro 1983) is a method for �nding defects in programs by
systematic search using a two-phase process:

• In the �rst phase, su�cient information is collected during execution of the de-
fective program to construct a computation tree. Each node in the computation
tree records a function application and its result — a computation statement. I re-
fer to the function f applied in a computation statement S as the subject function,
and to S itself as an f -statement.

• In the second phase, an oracle is asked to judge computation statements. A com-
putation statement is right if the evaluated value agrees with the (informal) spec-
i�cation of the programmer for the program, otherwise the statement is wrong.
The systematic examination of the computation tree in the second phase contin-
ues until the oracle has provided enough right/wrong judgements and a faulty

13

node has been found in the computation tree: the oracle has judged as wrong
the statement attached to this node, but has judged as right all the statements
it depends on. The de�nition of the subject function of a faulty node contains a
defect.

The computation tree structure must have the following property of algorithmic
debugging: if a statement S0 is wrong than S0 depends on another statement S1 that is
also wrong or the de�nition of the subject function appearing in S0 must be defective.
If a program misbehaves the root node is wrong. The tree is guaranteed to have a
faulty node, if the root node is wrong.

Consider the defective Haskell program in Listing 2. The program contains a parity
function 1 which returns an unexpected result for some argument values due to a
defect in the de�nition of another function 2 : modTwo n is incorrectly de�ned as
n ‘div‘ 2 instead of n ‘mod‘ 2. The program includes a property for testing 3 .
Using the property-based testing tool QuickCheck (Claessen and Hughes 2000a) we
get:

> quickCheck prop_notBothOdd

*** Failed! Falsifiable: 2

So for argument value 2 the property does not hold.

Listing 2 A defective program with a test property.

isOdd n = isEven (plusOne n)
isEven n = modTwo n == 0
plusOne n = n + 1
modTwo n = n ‘div‘ 2

prop_notBothOdd :: Int -> Bool
prop_notBothOdd x = isOdd x /= isOdd (x+1)

1 Parity test

2

Defect: modulo op-
erator replaced by
divide operator

3

Evaluates to True
for all x with
sound imple-
mentation

In this thesis I assume the functions in the program are divided in a set of func-
tions trusted by the programmer to be correct and the functions which the program-
mer suspects to contain a defect. For example isOdd, isEven, plusOne and modTwo

are suspected and quickCheck, div, (==) and prop_notBothOdd are trusted. Only
suspected functions are recorded in the computation tree and the oracle is not asked
to judge statements with trusted functions.

14

F

isOdd 2 = False

plusOne 2 = 3

isEven 3 = False

modTwo 3 = 1

isOdd 3 = False

plusOne 3 = 4

isEven 4 = False

modTwo 4 = 2

Figure 6: Computation tree for prop_notBothOdd 2.

Evaluating a program may entail evaluation of several independent applications of
suspected functions, and hence result in multiple subtrees that I connect with a special
root nodeF. When a program misbehaves at least one of the children ofF is wrong.
Figure 6 shows a computation tree for evaluating the expression prop_notBothOdd 2

(2 is the value property-based testing found as counter-example). All other nodes of a
computation tree are computation statements.

The computation statement modTwo 4 = 2 is wrong (the expected result is 0) and
because that node has no children in the tree, the de�nition of modTwo must be de-
fective, as indeed it is. The statements isOdd 3 = False and isEven 4 = False are
wrong but not necessarily faulty because they each depend on another statement that
is also wrong.

2.2.1 Kinds of computation trees

The function of a child node is not necessarily called by the function of its parent node,
although that is often the case. Firstly, not all functions that contribute to an entire
computation have to appear in a computation tree. Usually a computation tree contains
only nodes for functions that the programmer suspects of being defective; hence my
example tree has no nodes for function the progammer trusts to be correct, e.g., (+)
or prop_notBothOdd.

Secondly, for higher-order functions di�erent de�nitions for the parent-child rela-
tion of a computation tree exist. Previous research already found two de�nitions and

15

here I give more variations. To explain the di�erent de�nitions I use the faulty pro-
gram from Listing 3 that unexpectedly prints “oops" 1 . In this program the argument
f of the function app is another function 2 .

The representation in a computation statement of an argument with a functional
value can be intensional or extensional. The intensional representation of a functional
value is a function symbol (e.g. “neg"), or a partial application of a function symbol
(e.g. “and False"). The extensional representation of a functional value is a �nite map
of arguments and results (e.g. “{\True -> False; \False -> False}").

Listing 3 Defective example program with a higher-order function.

main :: IO ()
main = print (if (toggle False == True)

then "ok!" else "oops!")

toggle :: Bool -> Bool
toggle b = app neg b

app :: (Bool->Bool) -> Bool -> Bool
app f b = f b

neg :: Bool -> Bool
neg b = case b of True -> False; False -> False

1 Prints “oops!"

2 Higher-order function

3

Defect: if b is
False then neg
should return
True

Evaluation dependence tree The �rst computation tree structure that was pro-
posed for lazy functional languages is the evaluation dependence tree (EDT) (Nilsson
and Sparud 1997). The EDT represents functional values intensionally: as function
identi�ers or partial applications. When in the de�nition of a function g a higher-order
function h is applied to a function f then the computation statement of h depends on
the computation statement of f . The EDT of the example program is:

16

F

toggle False = False

app neg False = False

neg False = False

Most algorithmic debuggers for lazy languages (Nilsson and Fritzson 1992; Nilsson
1998; Wallace et al. 2001; Caballero, López-Fraguas and Rodríguez-Artalejo 2001; Braßel
and Siegel 2008) construct EDTs.

Function dependence tree Because a λ-abstraction plus the binding of its free vari-
ables is often big, inclusion of λ-abstractions in the EDT is problematic. The algo-
rithmic debugger Buddha is the �rst to implement the idea of representing functional
values extensionally, that is, as �nite maps from arguments to results, instead of inten-
sionally (Pope 2005, 2006).

An extensional representation also requires a di�erent tree structure, the function
dependence tree (FDT). In an FDT a computation statement f = . . . is the parent
of a computation statement g = . . . only if the function identi�er g appears in the
de�nition of the function f . In an EDT that parent-child relation holds, if and only if
the application of function g appears in the de�nition of function f . So for �rst-order
functions the two tree structures coincide. Chitil and Davie (2008) formally de�ne
the corresponding FDT, compare the two tree structures and prove that both have the
essential property for algorithmic debugging. The FDT of the example program is:

F

toggle False = False

neg False = False

app {\False -> False} False = False

Acyclic directed computation graph A directed acyclic computation graph over-
approximates a computation tree at least contains all arcs from that tree and contains
exactly the same nodes as the computation tree it approximates. The following graph
is an over-approximation of above FDT tree:

17

F

toggle False = False

neg False = False

app {\False -> False} False = False

Any acyclic graph that is an over-approximation of either the EDT or the FDT is
also sound for algorithmic debugging.

Property 2.1. Let t be a computation graph with at least one faulty node. Let d be an
acyclic directed graph with exactly the same nodes as t and a superset of the edges of t.
There exists a faulty node in t that is also faulty in d.

Let v be a faulty node in t. Case v has a successor w0 that is wrong: let
[w0 . . . wn|w(i−1 → wi∧isWrong wi]. Because d is acyclicwn 6= v andwn 6∈ [w0 . . . wn−1.
There exists no successor of w that is wrong or it would have been included in [w0 . . . wn].
Hence node wn is faulty in d. Tree t also has node wn, and wn has as most the succes-
sors wn has in d, none of which are wrong, hence wn is also faulty in t. Case v has
no successors in d, or all successors are right: by de�nition v is also faulty in d.

In many cases the surplus edges require more judgements from the oracle when
using a computation graph compared to using the tree that the graph approximates.

Mixed Representation Mixing the structure of an FDT with the representation of
an EDT is not sound in general. Consider for example the following tree:

F

toggle False = False

app {\False -> False} False = False

neg False = False

An algorithmic debugger using this tree could incorrectly conclude that the fault is in
the de�nition of the function toggle rather than in the de�nition of neg:

18

toggle False = False ? wrong
app {\False -> False} False = False ? right
Fault detected in function toggle!

However, sound mixing of EDT and FDT is possible. Let’s consider the toggle

function in our example program as a trusted function. Tracing evaluation gives the
following FTD (left) and EDT (right):

F

app {\False -> False}

False = False
neg False = False

F

app neg False = False

neg False = False

Compare with the following computation tree which mixes EDT with FDT:
F

app {\False -> False}

False = False

neg False = False

The actual fault is in the neg function de�nition. The app-statement is right. The
neg-statement is wrong and because the statement has no children in the computation
tree, the statement is identi�ed as faulty. Vice versa, if I assume app to be faulty and
neg to be correct then the app statement is wrong and its child is right. In all possible
cases algorithmic debugging �nds the actual faulty slice, therefore this speci�c tree is
sound.

However, this mixed tree does not have the property that, in the computation tree
of an observable misbehaving program, if the root of a subtree is judged right that
a faulty node can be found in a di�erent part of the tree. This property is used by
algorithmic debuggers in the second phase to minimize the number of computation
statements the oracle is asked to judge — when a statement is judged right the debugger
does not consider the subtree of which the statement is a root of for further inspection.
The root of the mixed tree also does not have the property that one of its children is
wrong, even though the program misbehaves.

2.2.2 Unevaluated expressions in a computation statement

A term in a computation statement of a lazily evaluated program can be a value or
an unevaluated expression. Consider the following computation statement from the

19

program of Listing 4 where I use the symbol _ to represent an unevaluated expression:

paint (Square Red _) = Paint Red _

When we judge this statement, we need to consider possible completions of it, in which
the two unevaluated expressions are replaced by values of appropriate types. But
which of the following interpretations is correct?

(a) The statement is right if every completion makes it right.

(b) The statement is right if some completion makes it right.

(c) The statement is right if for every completion of the argument some completion
of the result makes it right.

Interpretation (a) requires too much. Statements are about functions, so for any com-
pletion of the argument(s) there can be at most one right way to complete the result.
Requiring every argument completion to be right would include silly alternative results
such as:

paint (Square Red 2) = Paint Red 345

Interpretation (b) requires too little. That the expression is not evaluated (and thus
not used to compute the result) may exactly be the reason that the result is not as
speci�ed. This interpretation would, for example, allow

paint (Rect _ 2 _) = Paint _ 4

to be judged right, as it is right when completed (from left-to-right) by Red, 2 and Red.
But the area is not 4 regardless of the height of the rectangle!

Interpretation (c) is correct. We should interpret the paint statement as:

∀x.∃y. paint (Square Red x) = Paint Square y

That is, for all values for the unevaluated expressions in the argument, if there are
any values for the unevaluated expressions in a computation statements result that
would make the computation statement right, then the statement should be judged
right (Naish 1992).

20

2.2.3 Algorithmic debugging strategies

The number of statements an oracle must judge before a faulty node is found varies
depending on the shape of the computation tree and the strategy adopted by the al-
gorithmic debugger. A strategy determines an order in which statements in the tree
are considered (Shapiro 1983). Algorithmic debugging strategies are not my focus, al-
though I shortly discuss strategies for algorithmic debugging with multiple oracles in
Chapter 8.

Two often-used options are a top-down strategy, or a divide-and-query strategy.
The shape of a tree is characterized by the following three properties:

• Number of nodes N in the tree.

• Maximum depth D, the largest number of steps from the root node to another
node in the tree.

• Average branch factor B, the average number of children at non-leaf nodes.

A top-down strategy traverses the computation tree depth-�rst, asking the oracle
to judge computation statements in pre-order, starting at the root of the tree (Av-Ron
1984). When a statement is judged wrong we next consider one of the child statements.
When a statement is judged as right we return to the parent statement and select an-
other child that has no judgement. If there is no such child the defect is located.

Relatively many computation statements need to be considered using the top-down
strategy. The oracle has to judge B × D statements to �nd the defect in a tree with
depth D and branch factor B (Silva 2007).

A divide-and-query strategy repeatedly selects a statement that splits the com-
putation tree into two parts that are roughly equal in size (Shapiro 1983). That is, we
select an unjudged statement at the root of a subtree with roughly half of the unjudged
statements. When the statement is right, all statements in the subtree are right. When
the statement is wrong we search for the defect in the subtree.

Comparatively few computation statements need to be considered using the divide-
and-query strategy. Using this strategy the oracle is asked B × logN questions to
�nd a faulty node(Silva 2007). The advantage is smaller when the parts are less equal
(consider for example applying the strategy on a tree with all nodes directly under the
root). Cabrera (2016) discusses in detail with which tree characteristics the divide-and-
query strategy is a good choice.

21

Despite the apparent advantage of needing fewer judgements, there are other con-
siderations. A top-down strategy provides the user a clearer sense of context, and also
of control since judging a statement wrong means “step into this computation” and
judging a statement right means “step over this computation”. Using divide-and-query
strategy, a human oracle has less context, and less sense of control over the debugging
process.

Many other algorithmic debugging strategies have been devised. For example, the
ratio of right/wrong judgements of previous statements can be used to predict which of
the possible next statements is most likely wrong, based on its subject function (Davie
and Chitil 2006b). For an overview of alternative strategies, see (Silva 2007).

Listing 4 Defective program for computing amount of paint needed to �ll a shape.

data Clr = Red | Blue
data Shape = Square Clr Int | Rect Clr Int Int
data Paint = Paint Clr Int

paint shape = Paint (colour shape)
((width shape) * (height shape))

colour (Square c x) = c
colour (Rect c w h) = c

width (Square c x) = x
width (Rect c w h) = w

height (Square c x) = x
height (Rect c h w) = h

Defect: w and h in Rect-pattern match
are swapped

Determines
colour and
amount of paint
needed to �ll a
shape

Desired colour of shape

2.2.4 Oracle

To determine which node is faulty, and thus which part of the code contains a defect,
an algorithmic debugger some method to judge a computation statement as right or
wrong. Possible methods for judging a computation statement are:

22

Consulting a human oracle Using the programmer needing to �nd and correct
mistakes as oracle works in the absence of a reference implementation or formal spec-
i�cation and is easy to implement. Papers on algorithmic debugging tend to focus on
the construction and soundness of computation trees and many actual implementa-
tions of algorithmic debuggers rely on a human oracle. A drawback of using a human
oracle is that if the size or the number of questions is too great for the programmer to
handle, then the technique breaks down.

Re-using a previous judgement Knowledge provided by the human programmer
in the form of right/wrong judgements is lost after a debugging session ends. To retain
this knowledge statements and their judgement can be stored in a database (Tamarit
et al. 2016). The stored information can both be used to answer questions in a future
debugging session and for unit testing.

Tamarit et al. (2016) assume fully evaluated computation statements — they imple-
mented their idea in an algorithmic debugger for a strict language. When a term in a
computation statement can be an unevaluated expression some statements are a more
general version of another statement. Consider for example the following statements:

S0 sort [7,8] = 8 : _

S1 sort [7,8] = [8,7]

S2 sort [2,1,3] = 1 : _

S3 sort [2,1,3] = [1,2,3]

S4 sort [2,1,3] = [1,3,2]

Statement S0 is a more general version of S1, it follows therefore that if S0 is wrong
then S1 is also wrong. Statement S2 is a more general version of S3, it follows therefore
that if S3 is right then S2 is also right.

Brehm (2001) de�nes a more-general relationship for computation statements and
a rule based on this relationship to use a previous judgements. However, Brehm’s
rule also seem to allow the unsound conclusion that because statement S2 is a more
general version of S4 it follows that S4 is right when S2 is right. Brehm implemented
his method in the algorithmic debugger Hat for Haskell but it was removed in a later
version.

Comparing with a reference implementation When a program is slow for cer-
tain inputs a programmer might want to make changes to the code to make the pro-
gram run faster. When a defect is introduced during the optimization attempt we have
the old correct version of the code and a new defective version of the code.

The idea is to use the old version as reference implementation to debug the new ver-
sion as follows: given a computation statement from evaluating the new version of the

23

Listing 5 Defective program to select the smallest from the two values in a tuple (top),
and a reference implementation (bottom).

tmin x = fst (tsort x)
tsort (x,y) = if x > y then (snd (x,y), x) else (x,y)
fst (x,y) = y
snd (x,y) = x

tmin_ref x = fst (tsort_ref x)
tsort_ref (x,y) = if x > y then (snd (x,y), x) else (x,y)
fst_ref (x,y) = x
snd_ref (x,y) = y

Defect causing observed faulty behaviour
Defect that may cause faulty behaviour in
other cases

F

tmin (4,3) = 3

tfst(3,_) = 3 tsort(4,3) = (3,_)

Figure 7: Computation tree for tmin (4,3).

program we repeat the computation with the subject function’s reference implemen-
tation. If the recorded result di�ers from the result of the reference implementation,
then the computation statement is wrong and otherwise the statement is right.

Consider for example the computation statement

tmin (4,3) = 3

from Listing 5. The reference implementation gives

tmin_ref (4,3) = 4

and hence the tmin-statement is wrong.
Although using a reference implementation as oracle is often mentioned (Shapiro

1983; Drabent and Nadjm-Tehrani 1989; Nilsson and Fritzson 1992), to my knowledge,
there is no work that speci�es exactly how such an implementation is soundly used in
a lazy context. For example, consider the following statement:

24

tsort (4,3) = (3,_)

We could force the computation and obtain:

tsort (4,3) = (3,3)

Which gives us a result di�erent from the reference computation tsort_ref (4,3)

= (3,4). However, this leads to the incorrect conclusion that tsort is faulty because
the defect in snd was not part of the computation tmin (4,3) for which we observed
faulty behaviour, hence there is no snd-statement in the computation tree (Figure 7).
Furthermore, a forced computation may not even terminate.

Using a formal speci�cation A formal speci�cation is another automated method
suggested in several works for judging computation statements (Shapiro 1983; Drabent
and Nadjm-Tehrani 1989; Nilsson and Fritzson 1992). A formal speci�cation di�ers
from a reference implementation in that it checks some desired property of the func-
tion. Such a property could be “The result of applying sort to a list is an ordered
list". While encoding properties as Haskell functions is common practice for testing
purposes (Claessen and Hughes 2000b), however to my knowledge there is no existing
work that describes how these properties – or any other encoding – can be used as
oracle for algorithmic debugging of a lazy functional program.

25

3
Value observation tracing

A lazily evaluated functional program can be modularized into a generator part that
constructs a large number of possible answers and a selector part that selects the right
answer. Consider the Haskell program

main = sel (gen 3)

where the function gen computes intermediate values that are used as inputs for the
function sel. We could �rst run gen and store all intermediate values in memory, and
then apply sel to the values. However, gen might construct so many intermediate
values that not all values can �t in memory at the same time.

Because the code of a program modularised into a generator and selector part is
simpler, the programmer is less likely to make a mistake, however mistakes can still
be made. When a program misbehaves we cannot tell from the output whether the
selector or the generator part is defective. To �nd out which part is defective we need
to know the otherwise hidden intermediate values produced by the generator part and
demanded by the selector part of my program.

To observe intermediate values while preserving the semantics for lazy evaluation
Gill (2000) developed a library called HOOD. With HOOD the programmer can mark
certain expressions for observation. The values to which an observed expression eval-
uates are recorded and can be inspected by the programmer after termination of the
program.

3.1 Finding a defect with value observation tracing

Consider the defective program in Listing 6. The generator function mkTreeRat con-
structs a sorted in�nite binary tree of rational numbers (the Stern-Brocot tree) and

26

the selector function toFloat uses the tree for �nding the rational number that rep-
resents a �oating point number. For completeness my TreeRat type also has a Leaf

constructor, even though the tree I de�ne is in�nite and has no leafs. Floating point
number 0.75 can for example be represented by the rational number 3

4
(for which I use

the notation 3 :% 4 in the program). However, when I run the program it prints the
unexpected result 1 :% 2 instead. How do I �nd out if the defect is in the de�nition
of the generator function or in the de�nition of the selector function?

Listing 6 A defective program for �nding a rational representation of a �oating point
number using an sorted in�nite tree of rational numbers.

data TreeRat = Node Rational TreeRat TreeRat | Leaf
data Rational = Integer :% Integer
deriving Show

mkTreeRat :: Integer -> Integer -> Integer -> Integer -> TreeRat
mkTreeRat a b c d =
Node (x :% y) (mkTreeRat a b x y) (mkTreeRat x y c d)
where x = a+c

y = b+d

toFloat :: TreeRat -> Float -> Rational
toFloat (Node x left right) y
| delta <= 0 = x
| delta > 0 = toFloat left y
| otherwise = toFloat right y
where delta = (fromRational x) - y

main = print (toFloat (mkTreeRat 0 1 1 0) 0.75)

Defect: operator (<=) should be (==)

When I could inspect the intermediate values that are used as inputs for the selector
function I could see if these are right (the defect is in the selector) or wrong (the defect
is in the generator).

In a naive attempt to inspect the intermediate values I derive Show for the TreeRat
type and try to reveal the intermediate values with

main = print (mkTreeRat 0 1 1 0)

27

-- Combinators used to make observations
runO :: IO a -> IO ()
observe :: Observable a => String -> a -> a

-- Every observed value has to be of a type that is an
-- instance of this class
class Observable a where

obs :: a -> Parent -> a

-- Helper functions to implement an instance of Observable
send :: String -> ObserverM a -> Parent -> a
(<<) :: (Observable a) => ObserverM (a->b) -> a -> ObserverM b

-- Abstract types used above
type Parent
type ObserverM

Figure 8: Essential parts of the HOOD API.

however, print tries to show all values in the in�nite tree constructed by mkTreeRat

and hence this program never terminates.
Value observation tracing preserves the semantics for lazy evaluation and reveals

only the intermediate values that are actually demanded by the selector function.
HOOD implements value observation tracing in Haskell (Gill 2000). HOOD is unob-
trusive: it is just a library and requires no changes to the run-time system. Figure 8
shows the essential parts of the library’s API.

The two main combinators of the library are observe and runO. The function
observe takes a label as parameter and then behaves like the identity function; as side
e�ect a value is observed and associated with the label. The runO function evaluates
its argument expression and afterwards uses the trace of events to print the observed
values. The rest of the API is used to de�ne how values are observed, I discuss this
in more detail in Section 3.4. In the example program I add the following underlined
annotations to observe the toFloat function:

main = runO (print (toFloat’ (mkNode 0 1 1 0) 0.75))

where toFloat’ = observe "toFloat" toFloat

After running my program as usual runO prints Figure 9 with the representation of the
observed arguments and result values. The symbol _ is used to represent a part of the

28

toFloat (Node (1 :% 1) (Node (1 :% 2) _ _) _) 0.75 = 1 :% 2

Figure 9: Recorded arguments and result values of toFloat.

tree that is not used in this context of the evaluated function.
From these recorded values I can use the speci�cation of the Stern-Brocot tree

(Graham, Knuth and Patashnik 1989; Gibbons, Lester and Bird 2006) to conclude that
the argument of toFloat, the part of the tree evaluated in this context, is correct while
the result is not correct. Hence, the defect is not in the generator function mkTreeRat

and must therefore be in the selector function toFloat.

3.2 Under the hood of value observation tracing

To explain what is exactly recorded in the trace by an observe annotation I de�ne a
small language and with a semantics I specify how expressions from my language are
lazily evaluated with generation of a trace. For the purpose of explaining my method
I use a language that has not as many di�erent expressions as Haskell, however value
observation based tracing scales to full Haskell because Haskell has only few di�erent
sorts of values.

3.2.1 Language

In Figure 10 I extend Launchbury’s language with expressions for observing values.
To annotate an expression e with an identi�er f the programmer uses observe f e.
In principle the programmer is free to annotate any expression with any identi�er,
however for the construction of computation statements for algorithmic debugging
I require a more systematic approach labelling e in function de�nition f = e with
identi�er f (I discuss construction of computation statements in Section 3.3).

The obs expressions and obsλ values should not appear in a program. Rather
they are introduced by evaluation of an observe expressions. The �eld p (for par-
ent) is used to keep track of which parts of the trace belong together and is discussed
in more detail in the next section. A single applied data constructor or a single λ-
abstraction may be observed several times; the latter case leads to values such as
obsλ p1 (obsλ p2 (. . . (λx.e) . . .)) during evaluation. My semantics scales to the many
di�erent expressions in Haskell, because I observe only values and Haskell has only
few di�erent sorts of values.

29

expression e
::= v value
| e x application
| let {xk = ek}nk=1 in e recursive binding
| case e of {ck x1 . . . xmk

→ ek}nk=1 case
| x variable
| x1 ⊕ x2 application of a primitive
| observe f e labelled expression
| obs p e observed expression

value v
::= vλ functional value
| c x1 . . . xn saturated application of

data constructor
functional value vλ

::= λx.e abstraction
| obsλ p vλ observed functional value

Figure 10: Syntax of the core language extended (di�erences in bold) to label and
observe expressions.

trace T ::= t0, . . . , tn sequence growing right
event number i ∈ {0, . . . , n} refers to an event in the trace
trace event t ::= i :Root f root with label f

| i :Con p c a value is application of constructor c
| i :Lam p value is an abstraction
| i :MapsTo p function application

parent p ::= P i parent is event i :Root f or i :Lam p′

| Pc i m argument m; parent is constructor
event i :Con p′ d a with m ≤ a

| Pa i argument
| Pr i result

Figure 11: Syntax of the trace and its events.

30

3.2.2 A trace of events

A trace is a sequence of events, as de�ned in Figure 11. A value is observed by adding
events to the trace. Evaluating for example let {x = 3 :% 4} in fromRational

(observe "x" x) gives the trace

1: Root “x”

2: Con (P 1) “:%” 2

3: Con (Pc 2 2) “4” 0

4: Con (Pc 2 1) “3” 0

Each event has a unique event number i that corresponds one-to-one to the index of the
event in the trace. Several observe annotations may add events that occur interleaved
in the trace; and as we see in the example above even the events describing a single
value may occur in a di�erent order than we might expect. To identify which events
belong to which observation, every event, except the root events, contains a parent
�eld p. This �eld both identi�es which event is their parent and what the role of the
child event with respect to the parent event is. Following Gills terminology I call the
latter its port. For example, the parent �eld Pc 2 1 of event 4 above tells us that event
4 is the �rst argument of the constructor recorded by event 2.

An i : Root f event records the label with which the programmer labeled an ex-
pression. The �rst event in the example trace above records the label “x”.

An event i :Con p d a records that the value is a saturated application of a construc-
tor cwhere d is the representation of that constructor. A constructor may be the parent
of up to a children, each child event with a parent �eld Pc i m such that 1 ≤ m ≤ a.
Because lazy evaluation may not evaluate some data constructor arguments, the event
i :Con p d a does not necessarily have all m children.

I can also observe functional values: either directly, as argument to a constructor
or as argument or result of another functional value. Functional values are recorded
extensionally, that is, as a �nite map from argument to result value. An i :Lam p event
has one or more i′ :MapsTo p′ events as children. Each i′ :MapsTo p′ event corresponds
to an application of the observed function. A function application always has exactly
one result value (which in turn may have more children) and may have one optional
argument value. Consider for example the program

let f = observe "f" (λ x . 7); y = 8 in f y

which evaluates to the following trace:

31

1: Root “f”

2: Lam (P 1)

3: MapsTo (P 2)

4: Con (Pr 3) “7” 0

3.2.3 Semantics for lazy evaluation with generation of a trace

Figure 12 extends the semantics for lazy evaluation of the core language from Sec-
tion 2.1.2 with a trace. The rules of the extended semantics de�ne how trace T1 and an
expression e in the context of heap Γ1 are evaluated to value v, heap Γ2 and trace T2.
The initial heap and trace are empty. The resulting trace T2 is the sequence of events
that correspond to the values to which the observed expressions in e evaluated in the
context of evaluating e to v.

The nine rules at the top (Lam, Con, Let, Var, EApp, App, ECase, Case and Prim)
are similar to the rules with the same names in the semantics of Section 2.1.2. I added
a trace as an additional global state that is passed and possibly changed by a subevalu-
ation but not by the rules themselves. As before I require that all bound variables of an
expression are distinct. For y1 to yn in ObsCon and y in ObsApp I pick fresh variables,
just like the v̂ in the Var rule.

Finally consider the last four rules that four rules de�ne how the trace is con-
structed. t0, . . . , tn l t = t0, . . . , tn, t appends an event to the trace. |T | determines
the length of trace T and thus the index of the event that is appended next.

The Observe rule records an i : Root f event and wraps the observed expression
with the pseudo-function obs. The index of the i : Root f event is passed to obs to
enable connecting to the parent event later.

For an application of a constructor c x1 . . . xn the ObsCon rule adds a Con event
and continues observing the arguments x1, . . . , xn of the constructor using the pseudo
function obs.

For a functional value vλ the ObsLam rule adds an event i :Lam p to the trace. For
every application of the resulting observed functional value obsλ (P j) vλ the ObsApp
rule adds an event k :MapsTo (P j) to the trace and continues observing the argument
and result using the pseudo function obs.

So only when evaluation reaches a constructor application that constructor appli-
cation is recorded in the trace. When that constructor application is destructed by a
case expression, nothing is recorded in the trace. In contrast, when evaluation reaches
a functional value that is recorded in the trace and whenever that functional value is
applied to an argument, the pair of argument and result are recorded in the trace. I

32

Γ,T : λx.e ⇓ Γ,T : λx.e Lam

Γ,T : c x1 . . . xn ⇓ Γ,T : c x1 . . . xn Con

Γ1,T 1 : e ⇓ Γ2,T 2 : v

Γ1[x 7→ e],T 1 : x ⇓ Γ2[x 7→ v],T 2 : v̂
Var

Γ1[xi 7→ ei]
n
i=1,T 1 : e ⇓ Γ2,T 2 : v

Γ1,T 1 : let {xi = ei}ni=1 in e ⇓ Γ2,T 2 : v
Let

Γ,T 1 : e ⇓ Γ′,T 2 : v notAbs v

Γ,T 1 : e x ⇓ Γ′,T 2 : Exception
EApp

Γ1,T 1 : e ⇓ Γ2,T 2 : λx.e′ Γ2,T 2 : e′[y/x] ⇓ Γ3,T 3 : v

Γ1,T 1 : e y ⇓ Γ3,T 3 : v
App

Γ1,T 1 : e ⇓ Γ2,T 2 : v notCon v {ci}ni=1

Γ1,T 1 : case e of {ci y1 . . . ymi
→ ei}ni=1 ⇓ Γ2,T 2 : Exception

ECase

Γ1,T 1 :e ⇓ Γ2,T 2 :ck x1 . . . xmk
Γ2,T 2 :ek[xi/yi]

mk
i=1 ⇓ Γ3,T 3 :v

Γ1,T 1 : case e of {ci y1 . . . ymi
→ ei}ni=1 ⇓ Γ3,T 3 :v

Case

Γ1,T 1 : e1 ⇓ Γ2,T 2 : v1 Γ2,T 2 : e2 ⇓ Γ3,T 3 : v2
Γ1,T 1 : e1 ⊕ e2 ⇓ Γ3,T 3 : v1⊕ v2

Prim

Γ1,T1 l (i :Root f) : obs (P i) e ⇓ Γ2,T2 : v i= |T1|
Γ1,T1 : observe f e ⇓ Γ2,T2 : v

Observe

Γ1,T1 : e ⇓ Γ2,T2 : c x1 . . . xn i= |T2|
Γ1,T1 : obs p e ⇓ Γ2[y1 7→obs (Pc i 1) x1, . . . , yn 7→obs (Pc i n) xn],

T 2 lll(i :Con p c (arity c)) : c y1 . . . yn

ObsCon

Γ1,T1 : e ⇓ Γ2,T2 : vλ i= |T2|
Γ1,T1 : obs p e ⇓ Γ2,T 2lll(i :Lam p) : obsλ (P i) vλ

ObsLam

Γ1,T1 :e ⇓ Γ2,T2 :obsλ p vλ

Γ2[y 7→obs (Pa i) x],
T 2 lll(i :MapsTo p) :
obs (Pr i) (vλ y) ⇓ Γ3,T3 :v i= |T2|

Γ1,T1 :e x ⇓ Γ3,T3 :v
ObsApp

Figure 12: Rules added to Launchbury’s semantics of Figure 3 for lazy evaluation with
generation of a trace. New rules and di�erence to existing rules in bold.

33

1 :Root “toFloat”
2 :Lam (P 1)
3 :MapsTo (P 2)
4 :Lam Pr 3
5 :MapsTo (P 4)
6 :Con (Pr 4) “:%” 2
7 :Con (Pa 3) “Node” 3
8 :Con (Pc 7 1) “:%” 2
9 :Con (Pc 8 1) “1” 0

10 :Con (Pc 8 2) “1” 0
11 :Con (Pr 5) “0.75” 0
12 :Con (Pc 7 2) “Node” 3
13 :Con (Pc 12 1) “:%” 2
14 :Con (Pc 13 1) “1” 0
15 :Con (Pc 13 2) “2” 0
16 :Con (Pc 6 1) “1” 0
17 :Con (Pc 6 2) “2” 0

Figure 13: Trace obtained by evaluating introductory example.

have this asymmetry, because my syntax uses a saturated constructor application as
value, which contains a constructor and its arguments; in contrast, a functional value
can be applied to an arbitrary number of arguments in a computation.

3.2.4 Example trace

During the evaluation of the annotated program from Section 3.1 the observe an-
notation records, as de�ned in the semantics of Section 3.2, the event trace listed in
Figure 13.

Note how for example event 7 records an arity of 3 but only has two children (event
7 and 12) from which I conclude that the expression that describes the right-tree was
not demanded in this context, and hence a _ is printed.

3.3 From trace to computation statements

Observing functions à la HOOD allows us to obtain computation statements for the
computation tree of algorithmic debugging without making any changes to trusted
modules of the program. An observation contains the label written after observe

and the observed value. I assume that the label is the name of the observed function,
as in the example. Then a single argument-result pair of a �nite map gives rise to a
computation statement. I construct the nodes of the computation tree in two steps:
First I translate the event trace into a forest of event trees. Subsequently I translate the
forest into nodes of the computation tree.

Note that an event tree and a computation tree are two very di�erent structures. An
algorithmic debugger still needs the dependencies between computation statements to

34

0:Root “isOdd”

2: Lam

3: MapsTo

24: 2 31: False

32: MapsTo

44: 3 51: False
a r a r

5:Root “isEven”

7: Lam

8: MapsTo

28: 3 30: False

34: MapsTo

47: 4 50: False
a r a r

10:Root “modTwo”

12: Lam

13: MapsTo

28: 3 29: 1

36: MapsTo

48: 4 49: 2
a r a r

17:Root “plusOne”

19: Lam

20: MapsTo

25: 2 26: 3

40: MapsTo

45: 3 46: 4
a r a r

Figure 14: Trace of Figure 35 shown as forest of event trees.

determine which question to ask and eventually to conclude which part of the code is
faulty. The construction of a computation tree is discussed in Chapter 5 and 6.

3.3.1 Event trees

The nodes of an event tree are events. Enter events are not needed for constructing
the nodes of a computation tree. Every event of the event trace that is not an Enter
event becomes a node in an event tree. The edges of an event tree are determined by
the parent �elds of the events: An event with parent P i, Pc i a, Pa i or Pr i has the
event with number i as parent. Therefore every Root event of the event trace becomes
the root of an event tree.

35

Figure 14 shows the four event trees that I obtain from the trace of Figure 35. Be-
cause parent �elds determine the tree edges, I do not include them in the tree nodes.
The argument event of a MapsTo event is marked with a and the result event is marked
with r. Constructor events are abbreviated to show only the constructor name.

In the example each observed function is applied exactly twice in the traced com-
putation. Therefore each Lam node has exactly two MapsTo nodes as children.

From the semantic rules of Figure 34 I obtain the following properties of an event
tree:

• An i :Root f node has exactly one child (by the Observe rule). Because I observe
only variables bound to λ-abstractions, that child is a Lam node.

• An i : Lam p node has MapsTo nodes as children. There are zero or more such
children. All children have the same parent P i (by the ObsLam rule).

• An i : MapsTo p node has at most one child with parent Pa i and one child with
parent Pr i (by the ObsApp rule).

• An i : Con p c a node has at most one child with parent Pc i k for every
k ∈ {1, . . . , a} (by the ObsCon rule). Recall that a is the arity of constructor c.

Because of lazy evaluation, some expressions are never evaluated and hence certain
children may not exist in the trace.

Because I observe only top-level variables, which are evaluated at most once, each
observation yields at most one event tree. Removing an observation from the program
leads to removing its corresponding event tree from the forest of event trees. The
remaining events of the trace would have di�erent indices but appear in unchanged
order.

3.3.2 Constructing the nodes of the computation tree

The nodes of the computation tree are computation statements. Figure 15 de�nes the
syntax of computation statements. A computation statement is a function identi�er
plus a singleton map. A singleton map maps an argument value to a result value. A
value can be unknown when lazy evaluation did not require its evaluation, the satu-
rated application of a constructor to values, or a functional value. A functional value
is represented extensionally as a �nite map from arguments to results. Hence I de�ne
it as a �nite set of singleton maps.

36

statement s ::= f = b
singleton map b ::=w 7→ w
statement value w ::= _ unknown

| c w1 . . . wn n = arity c
| {b1, . . . , bk} functional value

Figure 15: Abstract syntax of computation statements.

mkStmts

i :Root f

j : Lam

et(P j) . . . et(P j)

 = f =mkSMap et(P j), . . . , f =mkSMap et(P j)}

mkSMap

 i : MapsTo

et(Pa i) et(Pr i)

a r

 = mkVal et(Pa i) 7→ mkVal et(Pr i)

mkVal

 i : Con c a

et(Pc i 1) . . . et(Pc i a)

1 a

 = c (mkVal et(Pc i 1), . . . ,mkVal et(Pc i a)

mkVal

 i : Lam

et(P i) . . . et(P i)

 = {mkSMap et(P i), . . . ,mkSMap et(P i)}

mkVal (empty event tree) = _

Figure 16: From event tree to computation statements.

37

The algorithm of Figure 16 constructs computation statements from an event tree.
I write etp for a subtree of an event tree that has a root node with parent p. As the last
equation emphasises, because of lazy evaluation such a subtree can be empty.

For every MapsTo event that is a grandchild of a Root event I construct a computa-
tion statement. So there is a one-to-one relation between the nodes in the computation
tree and the MapsTo events whose grandfather is a Root. So from the eight MapsTo
events of Figure 14 I obtain the eight computation statements

isOdd = 2 7→ False isOdd = 3 7→ False

isEven = 3 7→ False isEven = 4 7→ False

modTwo = 3 7→ 1 modTwo = 4 7→ 2

plusOne = 2 7→ 3 plusOne = 3 7→ 4

In practice a debugger may introduce some syntactic sugar for nodes of a computa-
tion tree. For example, a function argument can be moved to the left side of the equals
sign. Also repeated singleton maps in a functional value can be omitted.

3.4 Implementing value observation tracing

In this section I explain how my semantics for value observation tracing can be im-
plemented in Haskell. The presented implementation is a variation on Gill’s tracing
library HOOD1.

The data constructors of Listing 7 implement the syntax of the trace from Figure 11.
Labels and constructor representations are implemented with a String. The syntax of
Haskell is more complex than the syntax of the language in Figure 10, however, value
observation tracing scales to full Haskell because values in Haskell are the same as in
my language.

The trace that is passed in the rules of the semantics from Figure 12 is implemented
using an IORefwhich is written to as a side-e�ect. Listing 8 shows the implementation
of T l t in Haskell. Notice how addEvent returns |T |, that is, the index of t in the
trace.

The function observe is not parametrically polymorphic in the Haskell implemen-
tation because it is impossible to de�ne in a single de�nition how to de�ne a value of
any type. Instead I introduce a class Observable and observe can be applied to any
expression of which the type is Observable (Listing 9).

1The sourcecode of HOOD can be downloaded from http://hackage.haskell.org/package/
hood, note that the latest version of HOOD is extended with the type-generic techniques I present in
the next chapter.

38

http://hackage.haskell.org/package/hood
http://hackage.haskell.org/package/hood

Listing 7 Syntax of the trace implemented as Haskell data constructors.

type Trace = [Event]

data Event = Root String
| Con Parent String Int
| Lam Parent
| MapsTo Parent

data Parent = P Int
| Pc Int Int
| Pa Int
| Pr Int

Listing 8 Implementing a trace and the primitive T l t in Haskell.

addEvent :: Event -> IO Int
addEvent t = do

trace <- readIORef traceRef
writeIORef traceRef (t:trace)
return (length trace)

traceRef :: IORef Trace
traceRef = unsafePerformIO (newIORef [])

Listing 9 Implementing the Observe rule.
.

observe :: (Observable a) => String -> a -> a
observe label f = unsafePerformIO $ do

idx <- addEvent (Root label)
return (obs f (P idx))

39

Every data constructor application needs to be observed in a slightly di�erent way.
The Observable class allows us to specify the ObsCon rule per type by providing an
implementation of the obs method (Listing 10). A Haskell compiler, or interpreter,
chooses between the the various ObsCon implementations based on the type of the
expression obs is applied to.

Listing 10 The obs method.

class Observable a where
obs :: a -> Parent -> a

The ObsCon rule in Figure 12 de�nes how the application of a constructor c applied
to x1, . . . , xn records the arity of c, and passes Pc i j with the index j of xj for further
observation of the value of xj . Both can be obtained with the state monad ObserverM

from Listing 11.

Listing 11 A state monad for counting arguments.

newtype ObserverM a = ObserverM runMO :: Int -> Int -> (a,Int)

instance Functor ObserverM where
fmap = liftM

instance Applicative ObserverM where
pure = return
(<*>) = ap

instance Monad ObserverM where
return a = ObserverM (\c i -> (a,i))
fn >>= k = ObserverM (\c i -> case runMO fn c i of

(r,i2) -> runMO (k r) c i2)

Listing 12 provides the Haskell implementation obsCon of the ObsCon rule for a
constructor c given:

• c, the representation of constructor c

• fn, the data constructor c wrapped in the state monad, observing the arguments
to which c is applied

40

Listing 12 Helper function to implement instances of the ObsCon rule

obsCon :: String -> ObserverM a -> Parent -> a
obsCon c fn p = unsafePerformIO $ do

trace <- readIORef traceRef
let (v,a) = runMO fn (length trace) 0
idx <- addEvent (Con p c a)
return v

• p, the parent of the event that is added to the trace

Now I have all ingredients for writing an instance of the obs method. The simple
case is to observe a data constructor with arity 0. For example a constant value such
as the integer 123 has a representation c = "123" and has no arguments to observe,
hence fn = return 123. Thus, the ObsCon rule for values of types Int and Float

can be implemented as:

instance Observable Int where obs x = obsCon (show x) (return x)

instance Observable Float where obs x = obsCon (show x) (return x)

Other implementations of the ObsCon rule for constants, that is data constructors with
arity 0, follow the same scheme.

How do I observe data constructors with an arity greater than 0? Let us consider
for example the TreeRat type (from the example of Listing 6) with the Node and Leaf

data constructors. Evaluating an observed expression e of type TreeRat by the ObsCon
rule is either evaluated as

Γ1, T1 : e ⇓ Γ2, T2 : Node x1 x2 x3 i= |T2|
Γ1, T1 : obs p e ⇓ Γ2[y1 7→obs (Pc i 1) x1, y2 7→obs (Pc i 2) x2,

y3 7→obs (Pc i 3) x3], T2l(i :Con p “Node” 3) : Node y1 y2 y3

or as

Γ1, T1 : e ⇓ Γ2, T2 : Leaf i= |T2|
Γ1, T1 : obs p e ⇓ Γ2, T2l(i :Con p “Leaf” 0) : Leaf

To implement the behaviour of the ObsCon rule from Figure 12 in Haskell for these
two types the programmer writes an instance of the obs method. The goal of each
instance of class Observable is twofold:

41

1. The obs records in the trace a message with a string representation of the data
constructor of the value, such as “Node" or “Leaf". I cannot use show for value
with an internal structure, such as a Node-value, because it would change the
semantics by demanding the value of the variables Node is applied to.

2. The obs puts further obss on the constructor arguments, the components of the
value value. Each argument is observed with a di�erent port. Finally constructor
and observed arguments have to be recombined to a value.

To record an event in the trace the HOOD library provides the function send. The
send function takes the message to record, the value “wrapped” in the type ObserverM
and the parent for the event. The latter is given to it from the obs function itself.

The type ObserverM is a state monad that counts the constructor arguments of the
observed value and thus gives each the correct port number. The data constructor’s ar-
guments may be evaluated in arbitrary order; an argument may not even be evaluated
at all. Hence port numbers are assigned to each of the arguments’ obs methods. For
example when observing the value Node x1 x2 x3 the obs of argument x1 is assigned
port number 1, x2 gets port number 2 and x3 port number 3.

Listing 13 provides two helper functions that make the ObserverM monad easier to
use. To assign increasing port numbers to constructor arguments the function thunk is
used. Using the ObserverM monad can become rather involved for constructors with
many arguments, therefore the helper function (<<) can be used when de�ning an
instance of the obs method.

Listing 13 Helper functions for counting data constructor arity

thunk :: (Observable a) => a -> ObserverM a
thunk a = ObserverM $ \ i m -> (obs a (Pc i m), m+1)

(<<) :: (Observable a) => ObserverM (a -> b) -> a -> ObserverM b
fn << a = do fn’ <- fn ; a’ <- thunk a ; return (fn’ a’)

To place applications of the obs method on the constructor arguments of a value,
the value is decomposed by pattern matching, e.g. into the constructor Node and the
arguments x1, x2 and x3. From the observed arguments and the original constructor
a transformed value can easily be reassambled.

Overall, the de�nition for observing the tree of the example is:

instance Observable TreeRat where

42

obs (Node x1 x2 x3) = obsCon "Node" (return Node << x1 << x2 << x3)

obs Leaf = obsCon "Leaf" (return Leaf)

Similar, for values of type Rat the ObsCon rule can be implemented as:

instance Observable Rat where

obs ((:%) x1 x2) = obsCon "(:%)" (return (:%) << x1 << x2)

Functional values are recorded as a �nite map from argument value to result value,
as de�ned in the ObsLam and ObsApp rules. In Listing 14 I implement these rules by
providing an instance of the obs method for the function type.

Listing 14 Implementation of the ObsLam and ObsApp rules

instance (Observable a,Observable b) => Observable (a -> b) where
obs fn p = unsafePerformIO $ do

idx <- addEvent (Lam p)
return (obsLam fn (P idx))
where
obsLam fn p arg = obsApp (do arg <- thunk arg

thunk (fn arg)) p

obsApp :: ObserverM a -> Parent -> a
obsApp e p = unsafePerformIO $ do

trace <- readIORef traceRef
let (v,_) = runMO e (length trace) 0
idx <- addEvent (MapsTo p)
return v

Finally, a value observation tracing library needs a place in which it can render the
trace or start an algorithmic debugger. For this the runO annotation is used. Listing 15
gives an example implementation that prints the list of events and their indices. In-
stead render could also print a list of computation statements (with the method from
Section 3.3) or it could use the trace to construct a computation tree (with the method
of Chapter 5 or 6) and start an algorithmic debugging session.

43

Listing 15 Implemenation of the runO annotation with a simple render function

runO prgm = do
prgm
trace <- readIORef traceRef
putStr (render trace)

render :: Trace -> String
render trc = concat $ map showEvent (zip [0..] (reverse trc))

where
showEvent (i,e) = show i ++ ": " ++ show e ++ "\n"

44

4
Type generic value observation tracing

Although writing an instance of class Observable is quite schematic, the requirement
to do so has limited the use of HOOD in practice substantially:

1. Writing all required instances is a substantial burden to the programmer. Imag-
ine the work required for observing an abstract syntax tree of a compiler.

2. During program development programmers tend to change the de�nitions of
data types. Having to adapt the instances of Observable too is another burden.

3. The programmer may accidentally write a wrong instance of class Observable.
Bugs in the debugging tool can make debugging a very hard task.

A wrong instance can easily be written by making a small mistake in the repetitive
schema, or by taking a seemingly innocuous shortcut: A programmer can change the
lazy semantics of observe with the de�nition of their obs instance. For example using
show on the arguments of the constructor can result in a non-terminating program:

instance Observable TreeRat where

obs (Node x1 x2 x3)

= send (show x1 ++ ", left: " ++ show x2

++ ", right: " ++ show x3)

(return (Node x1 x2 x3))

obs Leaf

= send "Leaf" (return Leaf)

I extended HOOD so that the programmer can derive how a value is observed from
its type using data generic programming techniques. This chapter mostly describes

45

my engineering e�ort extending HOOD rather than that the chapter is a scienti�c
contribution. The ability to derive how to observe a value from the value’s type makes
HOOD easier to use and less prone to misuse.

Data generic programming techniques are a well researched area resulting in a
multitude of libraries and language extensions. A fairly complete overview and com-
parison is given by Hinze, Jeuring and Löh (2007). Because of its expressivity and
availability I chose to use the Generic Deriving Mechanism (GDM) (Magalhães et al.
2010). GDM is an extension of Haskell for generic programming. The Glasgow Haskell
compiler1 (GHC) and the Utrecht Haskell compiler2 (UHC) implement GDM.

4.1 The user’s perspective

A user who wants to observe some intermediate data structure does not need to know
how GDM works. They only need to know that all types of such intermediate data
structures have to be instances of the classes Observable and Generic. The instances
of both classes can be derived.

So they either derive the instances in the type declaration

data TreeRat = Node Rational TreeRat TreeRat | Leaf Rational

deriving (Generic, Observable)

or, if the type is de�ned in a separate library that shall not be modi�ed, then they derive
them with standalone declarations:

instance Generic TreeRat

instance Observable TreeRat

Advanced users still can choose to de�ne their own Observable instances: There
is a trade-o� between the risk to make a mistake and change the semantics, and being
able to observe values of a certain type in a special way.

4.2 The implementer’s perspective: product-sum types

Type generic programming de�nes behaviour based on the structure of a value’s type.
GDM is based on the fact that every type is isomorphic to a product-sum type. Figure 17
gives a simpli�ed de�nition of product-sum types. There is one base type Integer.

1http://www.haskell.org/ghc
2http://www.cs.uu.nl/wiki/UHC

46

http://www.haskell.org/ghc
http://www.cs.uu.nl/wiki/UHC

T ::= Integer base type
| T1 :+: T2 sum type, to encode choice
| T1 :∗: T2 product type, to encode structured data
| M c meta type

Figure 17: Syntax of the product-sum types.

The name of a type constructors is encoded with the meta type M . Choice is encoded
with the sum type. For example the Haskell type for Boolean values

data Bool = True | False

is represented in the simpli�ed product-sum type syntax as

(M True) :+: (M False)

The product type is used to represent structured data. For example the Haskell type
for Rational values

data Rational = Integer :% Integer

is encoded as

(M :%) :∗: Integer :∗: Integer

and the Haskell type TreeRat from the introductory example

data TreeRat = Node Rational TreeRat TreeRat | Leaf

is encoded as

((M Node) :∗: Rational :∗: TreeRat :∗: TreeRat) :+: (M Leaf)

4.2.1 Type generic observation

A type generic function is implemented with GDM by converting the observed value of
a type a to a product-sum representation Rep a with the method to, manipulating this
representation and converting back from the changed representation with the method
from. To convert a value into a product-sum representation, its type should be of the
Generic class. Slightly simpli�ed, this class looks as follows:

class Generic a where

type Rep a

from :: a -> Rep a

to :: Rep a -> a

47

For the Generic Deriving framework I provide a default implementation of obs:

class Observable a

where

obs :: a -> Parent -> a

default obs :: (Generic a, GObservable (Rep a)) =>

a -> Parent -> a

obs x c = to (gdmobs (from x) c)

With GDM I de�ne how obs can be derived from a type representation. This repre-
sentation is de�ned for instances of the Generic class.

For each value that I want to observe with my generic obs I use GDM’s from-
function to construct a product-sum representation. The returned type representation
(with observed constructor arguments) is decoded to the original type with GDM’s
to-function.

Now I need to de�ne the method gdmobs that operates on GDM’s product-sum
representation. I decompose the behaviour of gdmobs into three parts: render a shal-
low representation of the value, as a side-e�ect record this representation, and observe
components of the value.

gdmobs x = send (shallowShow x) (observeChildren x)

It the next sections I discuss type generic de�nitions of shallowShow, which produces
the message to record, and observeChildren, which wraps the value. I can use the
polymorphic function send as it is.

I introduce a class GObservable. For each of GDM’s representation-types I de�ne
an instance of GObservable, as I show in the subsequent subsections.

class GObservable f

where

gdmobs :: f a -> Parent -> f a

gdmObserveArgs :: f a -> ObserverM (f a)

gdmShallowShow :: f a -> String

4.2.2 Sum type

Choice between data constructors of the same type is encoded in GDM3 with the fol-
lowing sum type representation:

3 I simpli�ed the actual representation of GDM, the full representation is presented by Magalhães et
al. in (Magalhães et al. 2010). Instance of GObservable with the full representation can be obtained via
https://hackage.haskell.org/package/Hoed.

48

https://hackage.haskell.org/package/Hoed

data (a :+: b) = L1 a | R1 b

When there are more than two constructors, the sum type can be nested.
Our instance of GObservable is straightforward:

instance (GObservable a, GObservable b) => GObservable (a :+: b)

where

gdmobs (L1 x) = send (gdmShallowShow x) (gdmObserveArgs $ L1 x)

gdmobs (R1 x) = send (gdmShallowShow x) (gdmObserveArgs $ R1 x)

gdmShallowShow (L1 x) = gdmShallowShow x

gdmShallowShow (R1 x) = gdmShallowShow x

gdmObserveArgs (L1 x) = do x’ <- gdmObserveArgs x; return (L1 x’)

gdmObserveArgs (R1 x) = do x’ <- gdmObserveArgs x; return (R1 x’)

4.2.3 Product type

Structured data is encoded in GDM using the following product representation:

data (f :*: g) = f :*: g

instance (GObservable a, GObservable b) => GObservable (a :*: b)

where

gdmobs (a :*: b) cxt =

(gdmobs a cxt) :*: (gdmobs b cxt)

gdmObserveArgs (a :*: b) = do

a’ <- gdmObserveArgs a

b’ <- gdmObserveArgs b

return (a’ :*: b’)

Records are a special case of the tuple type where a set of �eld labels index the tuple
(Harper 2013). Currently HOOD does not trace �eld labels, but with my approach it
would be trivial to extend it to do so.

Let us consider how a value of the TreeRat type would be encoded. A value with
constructor Node has three arguments, this is encoded with the product-representation.
Our TreeRat type can either be Node or Leaf. The choice between these data construc-
tors is encoded with L1 for Node-values and R1 for Leaf-values. For example assume
I want to encode a simple tree with two leafs and one node. The values x, y and z

are stored in the tree. I do not elaborate on how these are encoded but just label their
representations as q, r and s:

49

from (Node x (Node y Leaf Leaf) Leaf)
L1 (M1 (q :*: R1 (M1 r) :*: R1 (M1 s)))

4.2.4 Constructor names

Constructor names can be attached as labels to a type. In GDM this meta-information
is encoded with the combination of type M1 and method conName. The type is used in
the representation while the method holds the actual constructor label:

data M1 c a = M1 a

class Constructor c where conName :: c -> String

Note that the M1 data constructor is used for many di�erent types. The types are dis-
tinguished by the c type variable. Types for this variable and corresponding conName

instances need to be generated. In GHC this is done when I derive Generics for a type.
I would for example for my TreeRat generate the types NodeConstr and LeafConstr

such that for some value m of the right type evaluation yields the following results:

conName (m :: M1 NodeConstr a) "Node"

conName (m :: M1 LeafConstr a) "Leaf"

With these I de�ne the following instance for GDM’s representation of meta types:

instance (GObservable a, Constructor c) => GObservable (M1 c a)

where

gdmobs m1 = send (gdmShallowShow m1) (gdmObserveArgs m1)

gdmObserveArgs (M1 x) = do x’ <- gdmObserveArgs x; return (M1 x’)

gdmShallowShow = conName

I query the meta-information to �nd the constructor names and record these.

4.2.5 Base types

Base types such as Integer “have no internal structure as far as the type system is
concerned” (Pierce 2002). Thus there are no further arguments to be observed and I
can use show to produce the representation without forcing further evaluation. Base
types are not de�ned by the user and therefore I can supply an instance such as

instance Observable Integer where obs = observeBase

observeBase x = send (show x) (return x)

for every base type in the value observation tracing library.

50

4.2.6 Special types, including function types

The values of some types are observed di�erently from data constructors. Our natural
semantics already shows that function values are observed rather di�erently. Also for
an abstract type such as IO a I cannot observe a value, but I can record that there is a
value. For all these types I just continue using the de�nitions of Observable included
in the original HOOD (Gill 2000).

4.3 Mixing observed and not-observed values

In the �rst part of this chapter I ignored type constructors. However, type constructors
such as the list type constructor and Maybe are an essential part of writing polymorphic
library functions.

Consider the tree library of Listing 16 that contains the type constructor Tree.
A data type is obtained by applying the type constructor to another data type. For
example Tree Integer describes a tree with all its values of type Integer.

Some function de�nitions are independent of the type of the values in the Tree

and I can de�ne such a function polymorphically. Instead of an actual type I use a type
variable a. Our example library contains a polymorphic function depthwith type Tree
a -> Int -> [a] to return all nodes at a certain depth in a complete tree.

Assume I use my library to �nd the list of possible outcomes of �ipping a coin n
times. When I �ip a coin once it can be heads or tails, I represent that with the following
data type:

data Coin = Heads | Tails

To represent the state after �ipping a coin n times I use the type [Coin]. When the
�rst time I �ip a coin gives us heads and the second time gives us tails I use

[Tails,Heads]

thus, the list is a sequence of coin �ips from most recent outcome to �rst outcome. The
next state after �ipping the coin a third time is created by added the new outcome to
the front of the list. Every state si has two possible next states: Heads : si and Tails
: si. The states of up to three coin-�ips can be represented in a tree as follows:

51

Listing 16 A library with a Tree type constructor, a defective de�nition of polymor-
phic breadth-�rst ordering of the nodes in a tree and a polymorphic de�nition to get
the nodes at a given depth from a complete tree.

data Tree a = Node a (Tree a) (Tree a) | Leaf a

depth :: Tree a -> Int -> [a]
depth tree n = take ((n+1)*2) (drop (2^n-1) (breadthFirst tree))

breadthFirst :: Tree a -> [a]
breadthFirst tree = fold [tree]

where
fold [] = []
fold queue = map nodeVal queue
++ concatMap (fold . subTrees) queue

nodeVal :: Tree a -> a
nodeVal (Node x t1 t2) = x
nodeVal (Leaf x) = x

subTrees :: Tree a -> [Tree a]
subTrees (Node x t1 t2) = [t1,t2]
subTrees (Leaf x) = []

52

[] [HEADS]

[TAILS]

[HEADS,HEADS]

[TAILS,HEADS]

[HEADS,TAILS]

[TAILS,TAILS]

[HEADS,HEADS,HEADS]
[TAILS,HEADS,HEADS]
[HEADS,TAILS,HEADS]
[TAILS,TAILS,HEADS]
[HEADS,HEADS,TAILS]
[TAILS,HEADS,TAILS]
[HEADS,TAILS,TAILS]
[TAILS,TAILS,TAILS]

n=0 n=1 n=2 n=3

The complete tree with all possible states can be de�ned with

mkTree c = Node c (mkTree (Head : c)) (mkTree (Tail : c))

One property of this tree is that given all states at a certain depth, Heads occurs as
often as Tails, expressed in the following QuickCheck property:

prop_depthSound n = length heads == length tails

where

(heads,tails) = partition (==Heads) outcomes

outcomes = concat (depth (mkTree []) n)

However prop_depthSound 3 unexpectedly evaluates to False! To �nd out why
this property fails I want to inspect the argument and result value of the applications of
breadthFirst. This will reveal the structure of the tree visited (helping us to decide
if the de�nition of breadthFirst is sound and it will reveal which values stored in
the nodes are evaluated in the context of this function application helping us to decide
if the de�nition of depth is sound.

To annotate the program the programmer transforms the program as follows:

1. Derive Observable for my Tree type in my library.

data Tree a = Node a (Tree a) (Tree a) | Leaf a

deriving (Generic,Observable)

2. Label the breadthFirst function de�nition for tracing.

breadthFirst = observe "breadthFirst" (\tree -> fold [tree])

3. Now the programmer must also change the type declaration of breadthFirst
because the derived instance of the obsmethod expects a in Tree a to be Observable.
Thus the type declaration becomes

53

breadthFirst
(Node _

(Node _

(Node _

(Node _

(Node (Head : Head : Head : Head : [])
(Node (Head : Head : Head : Head : Head : [])

(Node (Head : Head : Head : Head : Head :
Head : [])
(Node (Head : Head : Head : Head : Head :

Head : Head : []) _ _)
(Node (Tail : Head : Head : Head : Head :

Head : Head : []) _ _))
(Node (Tail : Head : Head : Head : Head : Head :

[]) _ _))
(Node (Tail : Head : Head : Head : Head : []) _ _))

(Node (Tail : Head : Head : Head : []) _ _))
_)

_)
_)

= _ : _ : _ : _ : _ : _ : _ : (Head : Head : Head : Head :
[]) : (Tail : Head : Head : Head : []) : (Head : Head :
Head : Head : Head : []) : (Tail : Head : Head : Head :
Head : []) : (Head : Head : Head : Head : Head : Head :
[]) : (Tail : Head : Head : Head : Head : Head : []) :
(Head : Head : Head : Head : Head : Head : Head : []) :
(Tail : Head : Head : Head : Head : Head : Head : []) : _

Figure 18: Observing a defective breadth �rst implementation.

54

breadthFirst
(Node _
(Node _

(Node _
(Node _

(Node <?>
(Node <?>

(Node <?> _ _)
(Node <?> _ _))

(Node <?> _ _))
(Node <?> _ _))

_)
_)

_)
= _ : _ : _ : _ : _ : _ : _

: <?> : <?> : <?> : <?>
: <?> : <?> : _

breadthFirst
(Node _
(Node _
(Node _
(Node <?> _ _)
(Node <?> _ _))

(Node _
(Node <?> _ _)
(Node <?> _ _)))

(Node _
(Node _
(Node <?> _ _)
(Node <?> _ _))

(Node _
(Node <?> _ _)
(Node <?> _ _))))

= _ : _ : _ : _ : _ : _ : _
: <?> : <?> : <?> : <?>
: <?> : <?> : <?> : <?> : _

Figure 19: Two observations of a tree without observing the elements in the tree. On
the left-hand side the result of observing a defective implementation; on the right-hand
side the result of observing a sound implementation.

breadthFirst :: Observable a => Tree a -> [a]

and hence the programmer also needs to change the type declaration of the
depth function

depth :: Observable a => Tree a -> Int -> [a]

4. But now the changed type declaration is exposed to modules outside my tree
library! Thus the programmer also has to make changes in other modules. They
need to derive Observable for any concrete type a of values with type Tree a

to which depth is ever applied. In the example program that is

data Coin = Head | Tail

deriving (Generic, Observable)

Step three and four are unfortunate, although it is a task that can easily be auto-
mated, I rather not force the programmer to make changes outside a library module.

Furthermore, the traced coin-�ip states do not provide much information to the
programmer to understand their code, in fact they clutter the output printed after eval-
uating the program (Figure 18).

55

The symbol _ is already widely used for expressions unevaluated in this context.
Now I introduce another symbol <?> for evaluated but not observed values. Compare
the value representation on the left in Figure 19 with the value representation of Fig-
ure 18. From the latter it is easier to infer that the defect must be in the de�nition of
breadthFirst: in the last line of the de�nition instead of exploring the subtrees of
the queued nodes and concatenating the result

concatMap (fold . subTrees) queue -- defective

the function should concatenate the subtrees of the queued nodes and then explore
such as in the de�nition

fold (concatMap subTrees queue) -- correct

To record an event with the symbol <?> in our trace for a value of a type for which
the user did not provide a speci�c instance, I provide an overlappable instance4 in my
tracing library:

instance {-# OVERLAPPABLE #-} Observable a where

obs x = obsCon "<?>" (return x)

4.4 Summary

In this chapter I show how to overcome the restriction of hand-written Observable in-
stances for datatypes of values that I want to observe. Furthermore I present a method
for observing up to a certain data type or type variable, which makes HOOD easier to
use in libraries and testing frameworks. I implemented my idea with generic program-
ming techniques.

I introduced an unobserved value <?> that can help to make a cluttered compu-
tation statement simpler and easier to understand for the human programmer. The
mechanism also allows the programmer to annotate polymorphic functions in a li-
brary, without modifying consumers of the library.

4https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.
html#overlapping-instances

56

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#overlapping-instances
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#overlapping-instances

5
Computation tree construction with trace stacks

With the method of Chapter 3 I obtain the nodes of a computation tree, now we need
to derive the edges. In this chapter and the next chapter I discuss two alternative
methods for deriving the edges of a computation tree. The programmer has to answer
less questions and gets a more precise defect location when the algorithmic debugger
uses a computation tree derived with the method of Chapter 6 then when the algorith-
mic debugger uses the method from this chapter (see Section 6.4 for a more detailed
comparison). However, this chapter is not completely obsoleted: this chapter’s method
works with any runtime environment that supports the cost centre stack extension and
can therefore, for example, without further work be applied to parallel and concurrent
computations.

In contrast to debugging, time and space pro�ling of lazy functional programs is
not only well-studied (Sansom and Peyton Jones 1997; Morgan and Jarvis 1998; Marlow
2012), but the Glasgow Haskell Compiler1 (GHC) also provides reliable pro�ling for
real-world Haskell programs. For attributing time and space costs to parts of a program
these parts are labelled with identi�ers. The pro�ling environment maintains a trace
stack of these identi�ers. Section 5.1.2 explains trace stacks in detail. Today most
Haskell libraries are automatically installed with a variant compiled with the pro�ling
�ag.

Key observation in this chapter is that the information required for connecting
individual intermediate computations to a computation tree is closely related to the
information available in trace stacks. Essentially the information from trace stacks is
an approximation of the former and it is su�cient for constructing a computation tree.

My work is of broader interest than just Haskell and GHC. Adding a trace stack to
1http://haskell.org/ghc

57

an evaluator of a functional language is a small extension that is useful for numerous
purposes. Already when Marlow (2012) revisited trace stacks, he was aiming to use
them for time and space pro�ling, coverage analysis and traditional debugging. Now
I suggest another use of trace stacks. A trace stack is particularly useful for lazy func-
tional language implementations, where the need for debugging tools is most urgent.
However, I agree with Marlow that also in eagerly evaluated higher-order languages
the call stack does not give accurate information, hence implementing a trace stack
combined with my method would be useful for such languages as well.

Based on this observation I present a novel approach to algorithmic debugging of
Haskell programs. My method needs program annotations only in suspected code,
where the programmer is looking for defects, not in any trusted modules, which the
programmer assumes to be correct. The programmer just compiles all modules of their
faulty program for pro�ling and the executable uses the standard runtime system for
pro�ling.

5.1 Background, observation and idea

I use the example program in Listing 17 throughout this section. The expected result
of the program is the ordered list [3,4,5], but when executed the program prints
[3,5,4] instead 1 . The program uses many standard library functions such as ++
and foldr that are trusted, that is, assumed to be correct. The defect is in the de�nition
of the insert function 2 : the > operator should be replaced with < and xs should be
swapped with ys.

Listing 17 A defective example program for sorting integers.

main :: IO ()
main = print (isort [4,3,5])

isort :: [Int] -> [Int]
isort = foldr insert []

insert :: Int -> [Int] -> [Int]
insert n ms = let (xs,ys) = span (>n) ms

in ys ++ (n : xs)

1 Sort and print result

2 Defect

58

5.1.1 Locating the defect with my algorithmic debugger

In Section 2.2 I discussed how an algorithmic debugger locates the defect in a program
by asking an oracle (e.g. the programmer who tries to locate a defect in their code)
questions about intermediate computations. For the example program the interaction
could look as follows, with the answers of the oracle written in italics:

isort [4,3,5] = [3,5,4]? no

insert 5 [] = [5]? yes

insert 3 [5] = [3,5]? yes

insert 4 [3,5] = [3,5,4]? no

Defect located in the definition of "insert"!

How did the algorithmic debugger generate this sequence of questions and come to
the conclusion? During execution it records information to construct a computation
tree, as shown in Figure 20. Computation statements are the nodes of the tree. A
computation statement is a child of another computation statement, if computing the
latter entails computing the former. I say that the parent computation depends on its
child computations. If a computation statement disagrees with the user’s intentions,
but all child computation statements it depends on do agree with their intentions, then
there must be a defect in the program slice associated with the parent computation
statement. That is the case, because the computation tree is constructed such that a
parent computation is fully determined by its child computations plus the program
slice associated with the parent.

F

main = <IO> ()

isort [4,3,5] = [3,5,4]

insert 4 [3,5] = [3,5,4]insert 5 [] = [5] insert 3 [5] = [3,5]

Figure 20: A computation tree for the sorting program.2

2The monadic IO value of main requires special treatment that goes beyond the scope of this chapter.
Hence I omit monadic IO elsewhere in the chapter.

59

5.1.2 GHC’s cost centre stacks for pro�ling

Pro�ling is the process of attributing time or space costs to parts of a program, for
a particular program execution. The GHC pro�ler expects the user to label program
slices with so-called cost centres (Sansom and Peyton Jones 1997). For example, I can
label the de�nition of the isort function with the cost centre "isort" using the scc
(set cost centre) construct:

isort = scc "isort" isort’

isort’ = foldr insert []

By choosing which expressions the programmer labels with cost centres they choose
the granularity of assigning pro�ling costs. In our example program I can for example
choose not to annotate foldr and thus subsume its computation costs into the cost
centre "isort".

Morgan and Jarvis (1998) noticed that users of pro�lers often want to change the
granularity. For example, they might start with a few cost centres, but on noticing
that one cost centre has particularly high costs, they might introduce more cost cen-
tres to break down the costs of the conspicuous cost centre. However, re-labelling and
re-executing the program takes considerable time. Morgan’s and Jarvis’ solution is to
maintain a stack of cost centres during a computation and attribute a time or space
cost to a stack of cost centres. The pro�ling trace contains cost centre stacks that de-
scribe lexical containment in the call-graph. For example, I may label main, isort and
insert with cost centres. The costs of the function isort without the costs of insert
is attributed to the stack 〈main, isort〉, whereas the costs of the function insert as
called by isort is attributed to the stack 〈main, isort, insert〉. Many di�erent anal-
yses can be performed on the augmented pro�ling trace.

The cost centre stack represents a program context that constructs or calls the cur-
rently evaluated expression. In contrast, in a lazy language the run-time stack repre-
sents a program context that demands the value of the currently evaluated expression.
Hence these two stacks di�er substantially. Consider for example evaluating the ex-
pression prop_absPos 3 which detects a defect in the following program:

isPos x = x > 0

abs y = -y

prop_absPos z = isPos (abs z)

The function appliation abs z is evaluated when y in the body of isPos is demanded,
hence the run-time stack during the evaluation of the body of the abs function is
〈prop_absPos, isPos, abs〉 and the cost centre stack is 〈prop_absPos, abs〉.

60

5.1.3 Idea: dependencies from observed stacks

I have to combine the two sorts of annotations, one for observing a function à la HOOD
and the other one for setting a cost centre, into a single annotation that initiates ob-
serving a function and that also records a snapshot of the cost centre stack with this
observation. The stacks enable us to determine dependencies between computation
statements and thus construct a computation tree.

5.1.4 The computation tree

The stacks provide only an approximation of the run-time dependencies: First, a stack
only contains labels, not complete computations. Hence if for example my program
used isort twice, I would not know which computations of insert belonged to which
computation of isort. Second, as proposed by Morgan and Jarvis, GHC does not
record complete stacks but uses compressed stacks that approximate the real ones, to
minimise the overhead of pro�ling. Thus some precision is lost.

Because I use approximations of the dependencies, I obtain a computation graph
with cycles, not a tree. I transform that graph, again using safe approximations, to
obtain a tree. Finally I can perform standard algorithmic debugging with that compu-
tation tree.

Chitil and Davie (2008) make the point that there are several structurally di�erent
computation trees for the same computation. They study two choices for making a
computation statement f vf = v′f the parent of a computation statement g vg = v′g:
either function identi�er g appears in the de�nition of function f , or the application of
g to vg appears in the de�nition of function f . In a higher-order language the function
identi�er and the application may appear in di�erent program parts. The �rst choice
requires functional values to be represented extensionally as �nite maps, whereas the
second choice requires them to be represented intensionally, usually as partial appli-
cations of function identi�ers and data constructors. Most algorithmic debuggers pre-
sented in the literature (Nilsson and Sparud 1997; Nilsson 1998; Wallace et al. 2001;
Chitil 2005) choose the second structure, but here I choose the �rst: observing values
can represent functional values only as �nite maps, not obtain an intensional repre-
sentation.

61

5.2 Tracing semantics

I de�ne a semantics to unambiguously describe what information I record in a trace
while evaluating an expression. I start with adding adding cost centre stacks following
Marlow (2012) to the semantics of the core language from Section 2.1.2. Subsequently
I extend the semantics with value observation tracing such that a snapshot of the cost
centre stack is included in each observed value.

5.2.1 Adding a stack

I reformulate Marlow’s framework of stacks as implemented in GHC for my computa-
tion statements. Marlow’s semantics is quite di�erent from the semantics of Morgan
and Jarvis (1998); this chapter and the GHC implementation follow the former. First,
in Figure 21 I extend the syntax by an operation for labelling any subexpression within
a program. The nature of labels is irrelevant; in practice I use strings.

Figure 22 shows the semantic rules. I add a stack S of labels to the computation
statements. This stack does not in�uence the result value. The result stack is just a
basic trace of the computation. The statement Γ1,S1 : e ⇓ Γ2,S2 : v means that the
expression e in the context of the heap Γ1 and the stack S1 reduces to the value v
in the context of the modi�ed heap Γ2 and modi�ed stack S2. The Push rule pushes
the label onto the stack using the function /. The heap now stores a stack with every
expression. When the Let rule stores an expression in the heap, it includes the current
stack. The Var rule from the core semantics of Figure 3 is replaced by the VarC rule
for constructor-values and the VarL rule for λ-abstractions. When the VarC and VarL
rules evaluate an expression from the heap, they temporarily restore the stack. The
VarL rule has a stack Sλ for the λ-abstraction and a stack Sapp for the application of

expression e
::= v value
| e x application
| let {xk = ek}nk=1 in e recursive binding
| case e of {ck x1 . . . xmk

→ ek}nk=1 case
| x variable
| x1 ⊕ x2 application of a primitive
| push f e push label f onto stack

Figure 21: Syntax of core language extended to label expressions (di�erence to Figure 2
in bold).

62

Γ,S : λx.e ⇓ Γ,S : λx.e Lam

Γ,S : c x1 . . . xn ⇓ Γ,S : c x1 . . . xn Con

Γ1,Sh : e ⇓ Γ2,S2 : c x1 . . . xn
Γ1[x 7→ (Sh, e)],S1 : x ⇓ Γ2[x 7→ (S2, c x1 . . . xn)],S2 : c x1 . . . xn

VarC

Γ1,Sh : e ⇓ Γ2,Sλ : λy.e′

Γ1[x 7→ (Sh, e)],Sapp : x ⇓ Γ2[x 7→ (Sλ, λy.e′)],Sapp ./ Sλ : λ̂y.e′
VarL

Γ1[xi 7→ (S1, ei)],S1 : e ⇓ Γ2,S2 : v

Γ1,S1 : let{xi = ei} e ⇓ Γ2,S2 : v
Let

Γ1,S1 : e ⇓ Γ2,S2 : v notAbs v

Γ1,S1 : e x ⇓ Γ2,S2 : Exception
EApp

Γ1,S1 : e1 ⇓ Γ2,S2 : λy.e2 Γ2,S2 : e2[x/y] ⇓ Γ3,S3 : v

Γ1,S1 : e1 x ⇓ Γ3,S3 : v
App

Γ1,S1 : e ⇓ Γ2,S2 : v notCon v {ci}ni=1

Γ1,S1 : case e of {ci y1 . . . ymi
→ ei}ni=1 ⇓ Γ2,S2 : Exception

ECase

Γ1,S1 :e ⇓ Γ2,S2 :ck x1 . . . xmk
Γ2,S2 :ek[xi/yi]

mk
i=1 ⇓ Γ3,S3 :v

Γ1,S1 : case e of {ci y1 . . . ymi
→ ei}ni=1 ⇓ Γ3,S3 : v

Case

Γ1,S1 : e1 ⇓ Γ2,S2 : v1 Γ2,S2 : e2 ⇓ Γ3,S3 : v2
Γ1,S1 : e1 ⊕ e2 ⇓ Γ3,S3 : v1⊕ v2

Prim

Γ1,S1 / f : e ⇓ Γ2,S2 : v

Γ1,S1 : push f e ⇓ Γ2,S2 : v
Push

Figure 22: New and updated rules adding a stack to the semantics of the core language.
Di�erences with Figure 3 in bold, new rules VarC and VarL with respect to Var rule
which the two new rules replace.

63

〈f0, . . . , fn〉 / f = 〈f0, . . . , fj, f〉
where f /∈ {f0, . . . fj} and (j = n or fj+1 = f)

〈f0, . . . , fj, fa, . . . , fb〉 ./ 〈f0, . . . , fj, fc, . . . , fd〉
= 〈f0, . . . , fj〉 / fc / . . . / fd / fa / . . . / fb
where fa 6= fc

Figure 23: De�nitions of / and ./ as used in GHC.

event t ::= i :Root f S root with label f and cost centre stack S
| i :Con p c a value is application of constructor c
| i :Lam p value is an abstraction
| i :MapsTo p function application

Figure 24: Extended syntax of events in the observation trace from Figure 11 to record
cost centre stacks (updated event in bold).

this λ-abstraction. In a higher-order language these stacks can di�er substantially. The
function ./ merges the two stacks for the result.

Figure 23 gives Marlow’s de�nitions of the two functions / and ./. My dependency
generation technique is independent of the precise de�nition of these stack operations.
I write the stack as a sequence of labels that grows to the right. The de�nition of / en-
sures that every label occurs at most once in a stack. Limiting the size of stacks limits
the size of (pro�ling and debugging) traces. The de�nition of ./ ensures that informa-
tion of both stacks is used and that the semantics with stacks has useful properties for
program optimisation.

5.2.2 Adding a value observation trace

Finally I reformulate value observation to record the information needed to construct
a computation graph. Starting point is the trace described in Section 3.2.2 which al-
ready contains the information we need to construct computation statements. Here, I
additionally record a snapshot of the cost centre stack when observation of a labelled
expression starts in a root event. Figure 24 gives the updated syntax of events. I store
label and stack separately in the root event because pushing is not lossless.

Consider the example trace in Figure 25. It consists of �ve events. They form
the single tree shown in Figure 26, which represents the observed functional value
{\9->9} with label “id” and stack 〈〉.

To observe the values of an expression I use two pseudo-functions obs and obsλ.

64

0:Root “id” 〈〉 label with empty stack
1:Lam (P 0) abstraction
2:MapsTo (P 1) application of the abstraction
3:Tc (Pa 2) 9 argument of this application
4:Tc (Pr 2) 9 result of this application

Figure 25: Trace produced by evaluating the expression let{id =
push “id” (λx.x), y = 9} (id y).

0:Root “id” 〈〉

1:Lam

2:MapsTo

3:Con 9 4:Con 9

Pa Pr

=⇒ id 9 = 9

Figure 26: Tree of events from the trace in Figure 25. An application event has two
events as children, the argument with parent Pa and the result with parent Pr .

Figure 27 adds them to the syntax. They are never used in a program but appear only
during program execution.

Figure 28 shows the semantics that records the trace I construct computation trees
with. The semantics combines the cost centre stack semantics (Figure 22) and the value
observation tracing semantics (Figure 12). The key change of the new semantics, that
will later allow us to construct a computation tree, is in the Push rule which combines
the behaviour of the Push rule of the cost centre stack semantics and the Observe
rule of the value observation tracing semantics such that the rule records a root event
which includes the current stack. Furthermore it wraps the observed expression with
the pseudo-function obs.

For the ObsCon, ObsLam and ObsApp rule are almost identical to the rules with the
same name from the value observation tracing semantics (Figure 12) but with a stack
S on both left- and right-hand side of every reduction. The remaining rules (Lam, Con,
VarC, VarL, Let, EApp, App, ECase, Case and Prim) are almost identical to the rules
with the same name from the cost centre stack semantics (Figure 22) but with a trace
T on both left- and right-hand side of every reduction.

65

expression e
::= v value
| e x application
| let {xk = ek}nk=1 in e recursive binding
| case e of {ck x1 . . . xmk

→ ek}nk=1 case
| x variable
| push f e push label and observe expression
| obs p e observed expression

value v
::= vλ functional value
| c x1 . . . xn saturated application of

data constructor
functional value vλ

::= λx.e abstraction
| obsλ p vλ observed functional value

Figure 27: Syntax of the language extended to label and observe expressions. Di�er-
ences with Figure 21 in bold.

5.3 Processing the trace

I de�ned how a trace results from evaluating a program. In Section 3.3 I explained how
to construct computation statements from a trace. Now I am ready to use the snapshots
of the stack to derive dependencies between the statements and form a computation
graph.

5.3.1 Constructing a computation graph

For each computation statement cwe have a snapshot of the stack S and a label f from
which I derive dependencies c1 → c2 between computation statements and construct
a computation graph. I need to consider the two ways in which I manipulate the stack
of labels in my semantics: the two functions / and ./.

5.3.1.1 Stack push function /

In my semantics I push a label onto the stack after recording the stack in the trace
and before evaluating the labelled expression. Therefore the computation graph has a
dependency c1 → c2 when S1 / f1 = S2 for statement c1 with label f1 and stack S1,
and c2 with f2 and S2. Consider for example the labelled expressions in the following

66

Γ,S, T : λx.e ⇓ Γ,S, T : λx.e Lam

Γ,S, T : c x1 . . . xn ⇓ Γ,S, T : c x1 . . . xn Con

Γ1,Sh, T1 : e ⇓ Γ2,S2, T2 : c x1 . . . xn
Γ1[x 7→ (Sh, e)],S1, T1 : x ⇓ Γ2[x 7→ (S2, c x1 . . . xn)],S2, T2 : c x1 . . . xn

VarC

Γ1,S1, T1 : e ⇓ Γ2,Sλ, T2 : λy.e′

Γ1[x 7→ (S1, e)],Sapp, T1 : x ⇓ Γ2[x 7→ (Sλ, λy.e′)],Sapp ./ Sλ, T2 : λ̂y.e′
VarL

Γ1[xi 7→ ei]
n
i=1,S1, T1 : e ⇓ Γ2,S2, T2 : v

Γ1,S1, T1 : let {xi = ei}ni=1 in e ⇓ Γ2,S2, T2 : v
Let

Γ,S1, T1 : e ⇓ Γ2, T2 : v notAbs v

Γ, T1 : e x ⇓ Γ2,S2, T2 : Exception
EApp

Γ1,S1, T1 : e ⇓ Γ2,S2, T2 : λx.e′ Γ2,S2, T2 : e′[y/x] ⇓ Γ3,S3, T3 : v

Γ1,S1, T1 : e y ⇓ Γ3,S3, T3 : v
App

Γ1,S1, T1 : e ⇓ Γ2,S2, T2 : v notCon v {ci}ni=1

Γ1,S1, T1 : case e of {ci y1 . . . ymi
→ ei}ni=1 ⇓ Γ2,S2, T2 : Exception

ECase

Γ1,S1, T1 :e ⇓ Γ2,S2, T2 :ck x1 . . . xmk
Γ2,S2, T2 :ek[xi/yi]

mk
i=1 ⇓ Γ3,S3, T3 :v

Γ1,S1, T1 : case e of {ci y1 . . . ymi
→ ei}ni=1 ⇓ Γ3,S3, T3 :v

Case

Γ1,S1, T1 : e1 ⇓ Γ2,S2, T2 : v1 Γ2,S2, T2 : e2 ⇓ Γ3,S3, T3 : v2
Γ1,S1, T1 : e1 ⊕ e2 ⇓ Γ3,S3, T3 : v1⊕ v2

Prim

Γ1,S1 / f, T l (i :Root f S1) : obs (P i) e ⇓ Γ2,S2, T2 : v i = |T |
Γ1,S1, T1 : push f e ⇓ Γ2,S2, T2 : v

Push

Γ1,S1, T1 : e ⇓ Γ2,S2, T2 : c x1 . . . xn i= |T2|
Γ1,S1, T1 : obs p e ⇓ Γ2[y1 7→obs (Pc i 1) x1, . . . , yn 7→obs (Pc i n) xn],

S2, T2 l(i :Con p c (arity c)) : c y1 . . . yn

ObsCon

Γ1,S1, T1 : e ⇓ Γ2,S2, T2 : vλ i= |T2|
Γ1,S1, T1 : obs p e ⇓ Γ2,S2, T2l(i :Lam p) : obsλ (P i) vλ

ObsLam

Γ1,S1, T1 :e ⇓ Γ2,S2, T2 :obsλ p vλ

Γ2[y 7→obs (Pa i) x],
S2, T2 l(i :MapsTo p) :
obs (Pr i) (vλ y) ⇓ Γ3,S3, T3 :v i= |T2|

Γ1,S1, T1 :e x ⇓ Γ3,S3, T3 :v
ObsApp

Figure 28: Cost centre stack and value observation tracing semantics.

67

program:
let {y = 3} (push “A” (λx.((push “B” (λy.y)) x)) y

Evaluation gives us the two computation statements A 3 = 3 and B 3 = 3. Here label
“A” and empty stack 〈〉 are associated with the former statement, and label “B” and
stack 〈“A”〉with the latter statement. Because 〈〉/“A” = 〈“A”〉, there is a dependency
A 3 = 3→ B 3 = 3 in the computation graph.

Recursively applied functions truncate the stack, resulting in additional edges. Con-
sider for example a program with a function r that is recursively applied three times,
and a function m that applies r. Assume m produces statement c1, r applied in m

produces statement c2, the �rst recursive application of r gives us c3 and the second
recursive application c4. Statement c1 has labelm and stack 〈〉, c2 has r and 〈m〉, c3 has
r and 〈m, r〉, and c4 has r and the truncated stack 〈m, r〉. This give us the dependencies
c1 → c2, c2 → c3, c2 → c4 and c3 � c4.

5.3.1.2 Stack merge function ./

The computation graph has dependencies c1 → c2 → c3 when S3 = S1 / f1 ./ S2 / f2
for statement c1 with label f1 and stack S1, c2 with f2 and S2, and c3 with f3 and
S3. The idea is to include dependencies on the constant part of a function de�nition.
Consider for example the following program where the constant part of function f is
underlined:

let {k = 3,

f = push “f” (let {g = λx.x} λy.(push “f_in” g) y)}
push “main” (f k)

Evaluating this program gives us the three computation statements below. Note
how the VarL rule from Figure 22 a�ects the stack of the f_in statement.

main = 3 “main” 〈〉
f 3 = 3 “f” 〈〉
f_in 3 = 3 “f_in” 〈“f”, “main”〉

Because 〈“f”, “main”〉 = 〈“main”〉 ./ 〈“f”〉 I have dependencies main = 3 →
f 3 = 3→ f_in 3 = 3 in my computation graph.

68

r

p q

z
Figure 29: Reducible cycle.

r

p q

z
Figure 30: Irreducible cycle.

5.3.2 From computation graph to tree

So from the trace I obtain a computation graph that may have cycles. For algorithmic
debugging I need to remove the cycles to obtain a directed acyclic graph (DAG). A di-
rected acyclic graph (DAG) is just a more e�cient representation of a tree where equal
subtrees may be shared. Finding faulty nodes in a computation tree is an established
technique (Shapiro 1983).

A computation graph consists of nodes (the computation statements) and edges
(the dependencies). If there is a dependency c → d, then d is a successor of c in the
computation graph. A cycle is formed by a set of statements for which there exists a
path from any statement to any other statement in the set. Node d dominates node
p, if every paths from the root node to p contains d. Node d is the dominator of a
set, if d dominates all other nodes in the set. A cycle is reducible, if the set contains a
dominator, irreducible otherwise (e.g. the cycle in Figure 29 has dominator p whereas
the cycle in Figure 30 has no dominator). If node d dominates node p, then p→ d is a
back edge.

5.3.3 Removing a reducible cycle

The actual computation dependencies form a tree and by de�nition a tree does not
have back edges. Therefore I can safely remove the back edges from my computation
graph. This will break any reducible cycle. Consider for example the reducible cycle
of p and q in the graph of Figure 29. Without back edge q → p this is an acyclic graph.

5.3.4 Removing an irreducible cycle

After removing back-edges some irreducible cycles may remain. I collapse an irre-
ducible cycle by replacing the statements in the cycle with a single node in which
these statements are combined. For example, I replace the statements p and q in the
irreducible cycle of Figure 30 with node {p, q}. If any of the combined statements is

69

judged wrong, then I consider the node wrong. If the node is defective, then the actual
defect is in the union of the program slices associated with the wrong statements in
the node.

Dependencies from a statement outside an irreducible cycle to a statement in the
irreducible cycle are represented by a dependency onto the collapsed node. Vice versa
dependencies from inside the cycle on a statement outside the cycle are represented
by a dependency from the collapsed node. Dependencies between two statements in
the same irreducible cycle are not represented. Any other dependencies in the compu-
tation graph are left unchanged.

Consider the graph of Figure 30 again. The dependencies r → p and r → q into the
cycle are represented by the dependency r → {p, q}. The dependency from p inside
the cycle on z outside the cycle is represented by {p, q} → z. Thus collapsing gives
the following graph:

r

{p, q}

z

5.3.5 Accuracy and order

I �rst remove back edges of all reducible sets, collapse any remaining (irreducible)
cycles and use the resulting DAG to �nd faulty nodes. Instead of both removing back
edges and then collapsing irreducible cycles I could just collapse. However, there is a
good reason not to do so: the collapsed node covers a larger slice of the program than
the individual nodes. If the collapsed node is defective, then I can give the programmer
less precise direction to where they need to correct the program.

A reducible cycle can be nested inside an irreducible cycle. In that case the order
matters: removing back edges can reduce the number of statements in the irreducible
cycle that need to be collapsed. Thus a smaller set of cost centres is covered by the
collapsed node. Figure 31 shows an example.

70

a

b c

d

a

{b, c, d}

a

b c

d

a

{b, c}

d

collapse

collapse

remove

Figure 31: Order of collapse and remove for reducible cycle {c, d} nested in irre-
ducible cycle {b, c, d}.

5.4 Higher-order functions

In Section 2.2.1 I discussed di�erent kinds of computation trees. In general my method
gives an over-approximiation of the FDT and in some cases it produces a sound compu-
tation tree which mixes EDT with FDT. Consider the example program from Listing 3.

Case 1: toggle, app and neg are annotated

Evaluating the example program with toggle, app and neg annotated produces a trace
from which I derive the following computation tree:

F

toggle False = False

app {\False -> False} False = False

neg False = False

71

This is an over-approximation of the FDT and thus sound for algorithmic debugging.
Where does the edge toggle False = False → neg False = False come from?
Let us take a closer look at the recorded cost centre stacks. We have:
Statement cf = toggle False = False with stack Sf = 〈〉
Statement ca = app {\False -> False} False = Falsewith stackSa = 〈“toggle”〉
Statement cn = neg False = False with stack Sn = 〈“toggle”, “app”〉
Two of the arcs are derived from potential stack push operations:

• Sf / “toggle” = Sa therefore cf → ca

• Sa / “app” = Sn therefore ca → cn

The arc cf → cn that makes it an over-approximation of an FDT is derived from a
potential call operation:

• (Sa / “app”) ./ (Sf / “toggle”) = Sn therefore ca → cf and cf → cn

The edge ca → cf is not part of the computation tree because I remove back edges
from the initial estimated computation graph to eliminate cycles (see Section 5.1).

Case 2: app and neg are annotated

When I do not annotate toggle, evaluation gives us a trace from which I derive the
following tree:

F

app {\False -> False} False = False

neg False = False

This computation graph seems worrying because it does not over-approximate the
FDT of this program. However, soundness of this speci�c tree is easily demonstrated.

The actual fault is in the neg function de�nition. The app-statement is right. The
neg-statement is wrong and because the statement has no children in the computation
tree, the statement is identi�ed as faulty. Vice versa, if I assume app to be faulty and
neg to be correct then the app statement is wrong and its child is right. In all possible
cases algorithmic debugging �nds the actual faulty slice, therefore this speci�c tree is
sound.

In the next section I show how I veri�ed that the computation trees constructed
with my method are sound in general.

72

5.5 My algorithmic debugger Hoed-cc

GHC allows programmatic access to the cost centre stack of the pro�ling environment.
Hence my implementation consists of a tracing library based on HOOD and an algo-
rithmic debugger. The algorithmic debugger shows a webpage with the computation
tree and allows the programmer to judge the computation statements in free order.

The language I present in this chapter uses push to both add a label onto the stack
and to observe the value of the enclosed expression. I implement the former with the
GHC pragma Set Cost Centre (SCC) 1 and the latter with the combinator observe
from my tracing library 2 . See for example the annotations of the isort function in
Listing 18.

Annotating a function is a straightforward and mechanical process. A compiler
pass could annotate all top-level functions in a module. The annotation functions can
be derived for values of di�erent types using the generic framework of Chapter ??.

Listing 18 Implementing the push-combinator.

isort :: [Int] -> [Int]
isort = observe "isort" (λxs. {-# SCC "isort" #-}

(foldr insert []) xs)

2 Observe value and stack 1 Push label

5.6 Summary

All previous work on algorithmic debuggers for Haskell required either a specialised
run-time system or a transformation of all modules including libraries. Resulting tools
are therefore of limited use for real-world Haskell programs. In this chapter I described
a method to construct a computation tree for algorithmic debugging that needs only
local annotations and GHC’s pro�ling run-time system.

I implemented my method in the debugger Hoed-stack. Using my debugger on
real-world programs already demonstrated its value, case studies with my debugger
are discussed in Chapter 9. Thorough testing of my approach with randomly gener-
ated expression gives con�dence in the soundness of using my computation trees for
algorithmic debugging.

73

However there is also room for improvement: surplus dependencies can lead the
algorithmic debugger to asking unnecessary questions or to a sound but innacurate
conclusion. Furthermore, not all run-time environments support the cost centre stack
extension. In the next chapter we discuss an alternative method for computatation tree
construction that works with any run-time environment and produces trees without
surplus dependencies.

74

6
Pure computation tree construction

In this chapter I show that the value observation trace contains more information than
previously thought: I use the value-observation trace to derive the parent-child relation
between computation statements for a computation tree without using the cost-centre
stack from GHC’s pro�ling environment.

To derive dependencies between computation statements I discuss in this chapter
a new type of observation trace event: a request event is recorded when evaluation of
an expression starts (the value of the expression is requested). I refer to an event that
records a value as a response event. For the construction of a computation statement
we only need response events (Section 3.3). Therefore I left out request events from
the semantics and example traces in Chapter 3-5.

A request event has a corresponding response event in a value observation trace in
the same way that a left parenthesis has a corresponding right parenthesis in a word
from the language of balanced parenthesis. I call the pair of a corresponding request
and response event a request-response span. Spans can appear nested and in sequence
in the trace.

There is a non-trivial correspondence between span nesting in a trace and the
parent-child relation between computation statements constructed from that trace.
The application of an observed function usually has a request-response span for both
its result and its argument. Consider for example evaluating the expression quickCheck

prop_notBothOdd from Listing 19 which gives us the simpli�ed value observation
trace from Figure 32. Left of the trace I marked request-response spans for function
results with •-brackets, and request-response spans for function arguments with ◦-
brackets. The result span of the events with index 6 and 11 for plusOne is nested
within the result spans of all the other functions. However, it is also nested within the

75

Listing 19 Defective program with observation annotations.

isOdd = observe "isOdd" isOdd’
isOdd’ n = isEven (plusOne n)

isEven = observe "isEven" isEven’
isEven’ n = modTwo n == 0

plusOne = observe "plusOne" plusOne’
plusOne’ n = n + 1

modTwo = observe "modTwo" modTwo’
modTwo’ n = div n 2

prop_notBothOdd :: Int -> Bool
prop_notBothOdd x = isOdd x /= isOdd (x+1)

Defect: primitive div instead of mod

argument span of the events with index 5 and 12, and the span of events with index
4 and 13 for isEven and modTwo. Within these argument spans the computations for
the two functions isEven and modTwo are suspended; the events inside these spans are
actually for the computation of the result of isOdd and hence the computation state-
ment for plusOne has to be a child of the computation statement of isOdd. Overall I
obtain from the value observation trace the computation tree of Figure 6 on page 15.

My main observation is that the events of a value observation trace are organised in
nested request-response spans and whether a computation statement is the parent of
another computation statement follows from the nesting of the various spans forming
the computation statements.

6.1 Creating a value observation trace

The tracing semantics from Chapter 3 is insu�cient here, because it omits the re-
quest events that HOOD provides. Request events are unnecessary for reconstructing
computation statements from the trace but they are essential for my new method of
reconstructing from the trace the parent-child relation for the computation tree. I use
the language de�ned in Figure 10 in this Chapter.

When experimenting with value observation tracing Gill already noted that he can
create an event just before evaluation of a thunk starts, and he added this to his library
HOOD without having a purpose in mind (Gill and Faddegon 2016). Because request

76

events are not necessary for constructing computation statements without dependen-
cies he did not mention request events in his paper (Gill 2000).

6.1.1 Value observation trace

A trace is a sequence of events as de�ned in Figure 33. The events are written in the
order in which the program is evaluated. Each event has a unique event number i,
which is its index in the trace. There are two main types of events: request and corre-
sponding response events. When evaluation of an expression starts, a request event is
recorded (the value of the expression is requested). When evaluation of an expression
ends, a response event records the value of the expression. My semantics will ensure
for a trace that every request event has a later corresponding response event, which
may be an exception.

Every event except for i :Root f has a �eld p, which identi�es its parent event and
its particular role as child of that parent event. Note that this parent/child terminology
of events is taken from HOOD (Gill 2000). As we will see, these parents and children

• 1: request result of isOdd
• 2: request result of isEven
• 3: request result of modTwo
◦ 4: request argument of modTwo
◦ 5: request argument of isEven
• 6: request result of plusOne
◦ 7: request argument of plusOne
◦ 8: request argument of isOdd
◦ 9: response argument of isOdd is 2
◦ 10: response argument of plusOne is 2
• 11: response result of plusOne is 3
◦ 12: response argument of isEven is 3
◦ 13: response argument of modTwo is 3
• 14: response result of modTwo is 1
• 15: response result of isEven is False
• 16: response result of isOdd is False
• 17: request result of isOdd

...
• 32: response result of isOdd is False

Figure 32: Simpli�ed trace for prop_notBothOdd 2.

77

trace event t ::= i :Root l root with label l
| i :Enter p enter evaluating expression (request)
| i :Con p c a value is application of constructor c (response)
| i :Lam p value is an abstraction (response)
| i :MapsTo p function application

Figure 33: Extended syntax of events in observation trace from Figure 11 with a request
event (new event in bold).

express the relation between expressions and their subexpressions; they are unrelated
to the parent/child structure of nodes of the computation tree.

An i : Root f event records the function identi�er f supplied by the expression
observe f e. The event i :Enter p expresses the request for the value of an expression.
There are two possible response events: j : Con p c a and j : Lam p. The former
expresses that the value is a saturated application of a constructor c of arity a, the latter
expresses that the value is a function, a λ-expression. A constructor event j :Con p c a
may be the parent of up to a children, each with a parent Pc j m where 1 ≤ m ≤ a.

Functional values are recorded extensionally, as a �nite map from arguments to
results. Hence an i :Lam p event may have an arbitrary number of j :MapsTo p events
as children. Each j : MapsTo p event describes a pair of an argument and a result.
Note the di�erence in structure: an application expression e x consists of a function
e and an argument x; the whole expression evaluates to some result. In contrast, an
j : MapsTo p event may have an argument child with parent Pa j and a result child
with parent Pr j; its parent is the function that was applied.

Overall, most events can have children, but, because lazy evaluation may not evalu-
ate some function or data constructor arguments, some events do not necessarily have
these children.

6.1.2 Semantics

Figure 34 gives the two rules I change in the tracing semantics of Section 3.2.3 to include
request events in the trace: before reducing e in obs p e the ObsLam and ObsCon
rules add the request event i : Enter p to the trace. When e is reduced to a value, this
value is also recorded in the trace with the same parent p. Thus the trace records the
aforementioned request-response spans.

I mentioned in Chapter 2 that the constructor should not appear in a pattern of a
case expression to catch an exception. It is worth noting here that the reason for not

78

Γ1,T 1 lll (i :Enter p) : e ⇓ Γ2, T2 : c x1 . . . xn i= |T 1| j= |T2|
Γ1, T1 : obs p e ⇓ Γ2[y1 7→obs (Pc j 1) x1, . . . , yn 7→obs (Pc j n) xn],

T2l(j :Con p c (arity c)) : c y1 . . . yn

ObsCon

Γ1,T 1 lll (i :Enter p) : e ⇓ Γ2, T2 : vλ i = |T 1| j= |T2|
Γ1, T1 : obs p e ⇓ Γ2, T2l(j :Lam p) : obsλ (P j) vλ

ObsLam

Figure 34: Updated rules of the tracing semantics of Figure 12 on page 33 to include
request events (di�erence in bold).

allowing to catch an exception with a case construct is that this would substantially
change the equational theory of the language, but if we would allow such a construct
that this would not a�ect tracing itself.

6.1.3 A trace

When my introductory example is annotated as in Listing 19, then the semantics gives
us the trace shown in Figure 35. On the right side the simpli�ed trace of Figure 32 is
given for comparison.

There is a one-to-one correspondence between function calls of observed functions
during the computation and MapsTo events in the trace. MapsTo events that have the
same parent record applications of the same function. For example, the two events
3:MapsTo (P 2) and 32:MapsTo (P 2) have the same parent. They are both recordings
of calling the function isOdd.

In the remainder of the chapter I assume the existence of a trace T of a computation.

6.1.4 Request-response spans

Only the ObsLam rule and the ObsCon rule add request and response events to the
trace. Each rule introduces a pair of a request and a response event. For the trace
threaded through the whole computation each of these rules adds a request event to
the trace coming in and adds a response event just before passing the trace out. Hence
these events always appear as pairs in a trace and they appear in sequence or nested,
like parentheses in the language of balanced parentheses. In the following I call such a
pair a request-response span and write it as 〈i, j〉 where i and j are the numbers of the
request and, respectively, response event.

79

0: Root “isOdd"
1: Enter (P 0)
2: Lam (P 0)
3:MapsTo (P 2)

• 4: Enter (Pr 3) 1: request result of isOdd
5: Root “isEven"
6: Enter (P 5)
7: Lam (P 5)
8:MapsTo (P 7)

• 9: Enter (Pr 8) 2: request result of isEven
10: Root “modTwo"
11: Enter (P 10)
12: Lam (P 10)
13:MapsTo (P 12)

• 14: Enter (Pr 13) 3: request result of modTwo
◦ 15: Enter (Pa 13) 4: request arg. of modTwo
◦ 16: Enter (Pa 8) 5: request arg. of isEven

17: Root “plusOne"
18: Enter (P 17)
19: Lam (P 17)
20:MapsTo (P 19)

• 21: Enter (Pr 20) 6: request result of plusOne
◦ 22: Enter (Pa 20) 7: request arg. of plusOne
◦23: Enter (Pa 3) 8: request arg. of isOdd
◦24: Con (Pa 3) 2 0 9: arg. of isOdd is 2
◦ 25: Con (Pa 20) 2 0 10: arg. of plusOne is 2
• 26: Con (Pr 20) 3 0 11: result of plusOne is 3
◦ 27: Con (Pa 8) 3 0 12: arg. of isEven is 3
◦ 28: Con (Pa 13) 3 0 13: arg. of modTwo is 3
• 29: Con (Pr 13) 1 0 14: result of modTwo is 1
• 30: Con (Pr 8) False0 15: result of isEven is False
• 31: Con (Pr 3) False0 16: result of isOdd is False

32:MapsTo (P 2)
• 33: Enter (Pr 32) 17: request result of isOdd

34:MapsTo (P 7)
...

• 51: Con (Pr 32) False 0 32: result of isOdd is False

Figure 35: Full trace (left) with corresponding simpli�ed events (right).

80

Because request-response spans are like balanced parantheses, we can easily de-
termine for each request event its corresponding response event through a sequential
traversal of the trace from beginning to end.

The ObsLam and ObsCon rule also guarantee the following invariant: the request
and the response event of a request-response span have the same parent. Because a se-
quential traversal of the trace easily determines for each requeust event its correspond-
ing response event, it is not actually necessary for response events to have parents at
all. However, I include parents in response events, because HOOD does so, it simpli�es
some algorithms, and it allows additional sanity checks in my implementation.

Request-response spans are the key to constructing a computation tree from a trace.
In Figure 35 nearly all request-response spans are marked on the left side with vertical
lines terminated by • or ◦. Trivial spans that directly follow a Root event, such as
〈1, 2〉 and 〈6, 7〉, are not marked, because I do not need trivial spans for constructing
a computation tree.

6.1.5 Properties of the trace

Before we continue with constructing a computation tree from the value observation
trace, I �rst give two properties of the trace that help to understand the intuition behind
the tree construction algorithm. I used the same approach as in Section 7.4 and veri�ed
the properties by testing them against a large set of randomly generated expressions.

A word is in the language of balanced parentheses if and only if the word has both
as many left parenthesis as right parenthesis and any pre�x of the word has at least as
many left parenthesis as right parenthesis (Kozen 2012). Let’s consider a request event
as a left parenthesis and a response event as a right parenthesis, then given a trace or a
part of the trace numLeft gives the number of request events in that (part of the) trace
and function numRight gives the number of response events.

Property 6.1. Request and response events are like the language of balanced parentheses.
This is de�ned in the following test-property:

prop_balanced e = wellFormed e ⇒
numLeft T == numRight T && all geqLeft (prefixes T)
where

geqLeft prefix = numLeft prefix >= numRight prefix

{}, 〈〉 : e ⇓ Γ, T : v

Both request and response events record the relation to the event’s parent in the
trace. Assume we are given the function sameParent that evaluates, applied to two

81

events, to True when the parent �eld of the two events is an exact match and to False

otherwise. Note that for example sameParent (Pa 3) (Pr 3) is False.

Property 6.2. A request event (opening parenthese) and corresponding response event
(closing parenthese) found by balancing have the same parent. This is de�ned in the
following test-property:

prop_parentsBalanced e = wellFormed e ==> parentsBalanced trc []

where

{}, 〈〉 : e ⇓ Γ, T : v

parentsBalanced [] stk = stk == []

parentsBalanced (t:trc) stk

| isReq t = parentsBalanced trc (t:stk)

| isResp t = case stk of

[] -> False

(t’:stk’) -> sameParent t t’ && parentsBalanced trc stk’

| otherwise = parentsBalanced trc stk

Thus the request and response event found by balancing form a span.

6.2 From trace to computation tree

I now have a precise de�nition of the value observation trace and have to obtain from
it a computation tree. In the following I assume that I observe only top-level variables
bound to λ-abstractions, such as isOdd, which is bound to λn. isEven (plusOne n)

in Listing 2. I discussed the reasons for this restriction in Section 7.4.4.
Ignoring request events we can just following the method I discussed in Section 3.3

to construct the nodes of the computation tree. I now discuss how to add the edges,
that is, the parent-child relation of the computation tree.

6.2.1 Argument and result spans

Request-response spans are the key to constructing the edges of the computation tree,
that is, determining the parent-child relation between computation statements. In the
sequential value observation trace every request event, that is, an i : Enter p event, is
sooner or later followed by a corresponding response event, that is an i : Con p c a

or i :Lam p event. To determine request-response events and their nesting structure I
focus on the sequential structure of the value observation trace.

82

In this chapter I ignore the trivial 〈i, (i+ 1)〉 spans with i :Enter p and i+ 1:Lam p

that follow each (i− 1) :Root event.
The forest of event trees tells us for every response event to which computation

statement it belongs. Similarly I say for its corresponding request event and even the
whole request-response span that they belong to the same computation statement. So
every computation statement has one or more request-response spans.

Because every computation statement is of the form f = wa 7→ wr and any request
event belonging to it either belongs to the argument value wa or the result value wr, I
can divide the spans of a computation statement into argument spans and result spans.
A value can have more than one span; for example the value (3,4) has three spans: for
the constuctor (,) and for each of the integers 4 and 4. Because of lazy evaluation the
argument of a function may never be evaluated; hence I conclude that a computation
statement can have one or more result spans and zero or more argument spans.

So how do these argument and result spans determine the parent-child relation be-
tween computation statements? As outlined in the introduction, a computation state-
ment is a child, if it contributes to the computation of its parent. Here “contribution”
is de�ned by the fault-localisation property of algorithmic debugging: If a parent com-
putation statement f = wa 7→ wr is wrong but all its child computation statements are
correct, then the de�nition of function f must be defective.

A result span of a computation statement encloses events that record computation
activity of that very computation statement. So when a result span of a computation
statement s1 is directly nested in the result span of a computation statement s2, then
s1 is a child of s2.

6.2.2 Positive and negative spans

Because Haskell is lazily evaluated, function arguments are not evaluated before a
function call but only when needed during the evaluation of the called function. Hence,
an argument span encloses events that record computation activity that did not con-
tribute to the computation statement of the span. Instead, that computation activity
has to be attributed to the function that passed the argument in its de�nition. In the
following I call a span of a computation statement positive, if the events nested in the
span contribute to the computation statement and negative, if they do not.

Because my language is higher-order, not every argument span is negative and not
every result span positive.

Consider the higher-order program in Listing 20. Because function f uses and calls
function i 1 , I expect the computation tree to look as shown in Figure 36. Function

83

Listing 20 A higher-order program.

let { i=observe "i" (λz.z),
f=observe "f" (λg.let {x=42,y=i x}

in g y),
h=λu.u

} in f h

1 Applies i
2 Applies argument

3 Function h as argument

F

f = {42 7→ 42} 7→ 42

i = 42 7→ 42

Figure 36: Computation tree for the higher-order program.

h is passed as argument to function f 3 , but inside the body of the f function h is
applied to an argument 2 and the subcomputation for this argument has to be a child
computation statement for the computation statement of f.

Figure 37 shows the event trees of the value observation trace. All spans of the
computation statement i = 42 7→ 42 are nested in the span 〈9, 18〉 of the argument of
the argument of f. So for the computation statement i = 42 7→ 42 to be considered
a child of the computation statement f = {42 7→ 42} 7→ 42, this span 〈9, 18〉 has to
be positive. Seeing that 〈9, 18〉 is the span of an argument of an argument, the method
for determining whether any span is positive or negative becomes clear: Follow the
path of event parents from the span upwards to the MapsTo event of the computation
statement. If the path has an odd number of Pa i parents, then the span contributes
negatively. If the path has an even number of Pa i parents, then the span contributes
positively. A MapsTo is the one and only contravariant event: It �ips the contribution
of any span concerning its argument from positive to negative and vice versa.

Function isPos de�nes for the number i of a request or response event whether
its span contributes positively:

84

0:Root “f”

2: Lam

3: MapsTo

6: Lam

7: MapsTo

18: 42 19: 42

20: 42
a

a r

r

10:Root “i”

12: Lam

13: MapsTo

16: 42 17: 42
a r

Figure 37: Event trees of the higher-order program.

isPos i =

True , if ti = i :Root f
not (isPos k) , if pi = Pa k

isPos k , if pi = Pr k or P k or Pc k m

where pi is the parent �eld of event ti

6.2.3 Constructing the edges of the computation tree

From the event trees I constructed the computation statements, the nodes of the com-
putation tree. To determine which node is child of which other node, I sequentially
traverse the value observation trace, considering the request-response spans.

Listing 21 shows the �nal algorithm for constructing a computation tree. The func-
tion mkCompTree takes a list of computation statements, a value observation trace (a
list of events), a current node and a current tree to produce the �nal computation tree.
I initially call mkCompTree with the whole value observation trace, the root node F,
and a tree without edges that has the root node and all previously constructed com-
putation statements as nodes. For this �rst application (e:es) = trc. The list of
computation statements can be constructed from the list of events with the method
from Section 3.3.2.

Given an event and a value observation trace the following functions

isStartOfPosSpan :: Event -> [Event] -> Bool

isEndOfPosSpan :: Event -> [Event] -> Bool

85

isStartOfNegSpan :: Event -> [Event] -> Bool

isEndOfNegSpan :: Event -> [Event] -> Bool

determine whether the event starts or ends a span and whether the span is positive or
negative. The start and end of a span correspond with the request and response events
of Figure 33. Section 6.2.2 describes how to determine whether a span is positive or
negative. The function

mkChild :: CompStmt -> CompStmt -> CompTree -> CompTree

applied to the computation statements m and n, and a computation tree t, evaluates to
a computation tree with all edges in t, and a new edge from n to m. Finally

statementOf :: Event -> [CompStmt] -> CompStmt

evaluates, given an event e and the list of computation statement, to the computation
statement associated with e. That is, the computation statement is constructed from
an event tree containing e (see Section 3.3.2). When a response event e’ is associated
with a statement n then the request event that forms a span with e’ is also associated
with n.

Listing 21 Algorithm for constructing the computation tree.

mkCompTree :: [CompStmt] -> [Event] -> [Event]
-> CompStmt -> CompTree -> CompTree

mkCompTree ns [] trc n tree = tree
mkCompTree ns (e:es) trc n tree
| isStartOfPosSpan e trc =

if isChildOf m n tree
then mkCompTree ns es trc m tree
else mkCompTree ns es trc m (mkChild m n tree)

| isEndOfPosSpan e trc || isStartOfNegSpan e trc =
mkCompTree es trc (parentOf n tree) tree

| isEndOfNegSpan e trc =
mkCompTree es trc m tree

| otherwise =
mkCompTree es trc n tree

where m = statementOf e ns

1
Discover
dependency

2 Computation termi-
nated or suspended

3 Computation
continues

Throughout the algorithm, the current node n keeps track of the composition of
nested positive and negative spans. The current node indicates to which computation

86

the next events contribute. The algorithm traverses the sequence of events from the
beginning to the end, performing special operations at the start and end of most spans.
In particular, at the start of a positive span the algorithm checks whether the compu-
tation statement m of that span is already a child of the current computation statement
n within the current tree. If it is not yet, then an edge is added to the tree to make it a
child 1 . The algorithm continues with m as current computation statement.

The end of a positive span terminates the current computation and the start of a
negative span suspends the current computation. Therefore the current node after an
event that is the end of a positive span or the start of a negative span is the parent of
the current node before that event 2 .

The end of a negative span indicates that the computation of the statement m as-
sociated with the span, that was suspended at the beginning of the negative span,
continues. Hence, the current statement is m again 3 .

In every step of the algorithm the current node n has a parent all the way up to
the root node F. At the end of traversing the trace I have the computation tree. In
the resulting tree every statement has exactly one parent: either the root node F or
another statement.

When a statement of a labelled expression is wrong either the expression is wrong
or the computation depends on another computation that is also wrong. For sound
algorithmic debugging therefore a computation statement should depend on another
computation statement if the latter computation contributes to the former. Events
nested in a positive span contribute to the span’s computation statement and events
nested in a negative span do not (Section 6.2.2). Hence a computation statement in a
computation tree constructed with the algorithm of Listing 21 depends on any compu-
tation statement that contributed to the former. From this it follows that a computation
tree constructed with the algorithm of Listing 21 is sound for algorithmic debugging.

6.2.4 Example construction of a computation tree

The program in Listing 22 de�nes recursively a higher-order function foldl over lists
and contains an incomplete de�nition of the function and. Evaluating the expression
foldl and True [False] results in an exception. The trace of the computation is
given in Figure 38. I use • to mark a positive span and ◦ to mark a negative span.
These are not always the same as result, respectively argument spans.

The computation tree has three computation statements, corresponding to the three
highlighted MapsTo events in the trace, two for the function foldl and one for the
function and. The construction of the computation tree starts with the root F. The

87

0: Root “foldl"
1: Enter (P 0)
2: Lam (P 0)
3: MapsTo (P 2)

• 4: Enter (Pr 3)
• 5: Lam (Pr 3)

6: MapsTo (P 5)
• 7: Enter (Pr 6)
• 8: Lam (Pr 6)

9: MapsTo (P 8)
• 10: Enter (Pr 9)
◦ 11: Enter (Pa 9)
◦ 12: Con (Pa 9) (:) 2

13: MapsTo (P 2)
• 14: Enter (Pr 13)
• 15: Lam (Pr 13)

16: MapsTo (P 15)
• 17: Enter (Pr 16)
• 18: Lam (Pr 16)

19: MapsTo (P 18)
• 20: Enter (Pr 19)
◦ 21: Enter (Pa 19)
◦22: Enter (Pc 12 2)
◦23: Con (Pc 12 2) [] 0
◦ 24: Con (Pa 19) [] 0

◦ 25: Enter (Pa 16)
◦ 26: Enter (Pa 3)

27: Root “and"
28: Enter (P 27)
29: Lam (P 27)

◦ 30: Lam (Pa 3)
31: MapsTo (P 30)

◦ 32: Enter (Pr 31)
33: MapsTo (P 29)

• 34: Enter (Pr 33)
• 35: Lam (Pr 33)
◦ 36: Lam (Pr 31)

37: MapsTo (P 36)
◦ 38: Enter (Pr 37)

39: MapsTo (P 35)
• 40: Enter (Pr 39)
◦ 41: Enter (Pa 39)
• 42: Enter (Pa 37)
◦43: Enter (Pc 12 1)
◦44: Con (Pc 12 1) False 0
• 45: Con (Pa 37) False 0
◦ 46: Con (Pa 39) False 0
• 47: Con (Pr 39) Exception 0
◦ 48: Con (Pr 37) Exception 0
◦ 49: Con (Pa 16) Exception 0
• 50: Con (Pr 19) Exception 0
• 51: Con (Pr 9) Exception 0

Figure 38: Trace of computation with higher order function.

F

foldl = {_ 7→ {False 7→ Exception}} 7→ {_ 7→ {[False] 7→ Exception}}

foldl = _ 7→ {Exception 7→ {[] 7→ Exception}}

and = _ 7→ {False 7→ Exception}

Figure 39: Computation tree for trace of Figure 38.

88

Listing 22 Example program with observations.

and = observe "and" and’
and’ b True = b
-- Missing "and’ b False" -> Exception!

foldl = observe "foldl" foldl’
foldl’ f z [] = z
foldl’ f z (h:t) = let z’ = f z h in foldl f z’ t

traversal of the event sequence �rst reaches the span 〈4, 5〉. Consequently the node for
foldl that corresponds to the event 3:MapsTo becomes a child of the current nodeF.
Later the spans 〈7, 8〉 and 〈10, 51〉 just con�rm this parent-child edge. When reaching
the span 〈14, 15〉 the current node is the computation statement that corresponds to
the event 3:MapsTo and hence the computation statement for the event 13:MapsTo
becomes its child. Several subsequent spans change the current node but only at span
〈34, 45〉 the computation statement for and that corresponds to the event 33:MapsTo
is added as new child to F, which is the current node at the time. Again later spans
change the current node, but do not change the tree any more. Figure 39 shows the
�nal tree. The computation statement for and, which given a second argument False
raises an exception, indicates a defect.

6.2.5 Examples of particular language features

Data structures The program in Listing 23 de�nes a data type T with data construc-
tors C and D that each take one argument. The notD function works on this new data
type. We want to check the result of evaluating notD (D True). However, our se-
mantics only tells us that the value of that expression is D x for some heap variable x.
Hence we add the function getC to our program. We trust that its de�nition is correct.
To keep the trace small, we do not observe getC. The computation of getC (notD (D

True) returns 1, although we expected 0.
Figure 40 shows the trace of our computation: on the left side as sequence of events

with spans marked and on the right side as forest of two event trees. Constructing the
two computation statements from the two event trees is straightforward. However, in
this trace there are two positive spans for the computation of notD: the span 〈4, 7〉 for
the constructor D and the span 〈8, 19〉 for the argument of this constructor. Similarly

89

there are two negative spans for the computation of notD: the span 〈5, 6〉 for the con-
structor D and the span 〈15, 16〉 for the argument of this constructor. So because of
data structures a computation statement may have several negative and several posi-
tive spans.

The method for building the computation tree is nonetheless as discussed before.
Here the positive span 〈13, 18〉 of not is directly within one of the positive spans of
notD, namely 〈8, 19〉, and hence the computation statement of the former is a direct
child of the computation statement of the latter. Figure 41 displays the computation
tree. The tree clearly shows that there is a defect in the de�nition of the function not

for the argument True.

Listing 23 Annotated program with data structures.

data T = C Int | D Bool

not = observe "not" not’
not’ True = True
not’ False = True

notD = observe "notD" notD’
notD’ (C i) = C i
notD’ (D b) = D (not b)

getC (C i) = i
getC (D True) = 1
getC (D False) = 0

Defect: True in de�nition should be False

Multi-Argument Functions The program in Listing 24 de�nes the logical con-
nectives and and or. Each function takes two arguments. Our core language and
Haskell support multi-argument functions through currying and hence we can view
this program as a simple example of de�ning higher-order functions. This program
also demonstrates that lazy evaluation does not evaluate all arguments, some MapsTo
events in our trace lack arguments, and hence the unknown value _ appears in some
computation statements.

Figure 42 shows the trace for evaluating or False True to the unexpected result
False. On the left side is the sequence of events with marked spans and on the right
side is the forest of three event trees.

90

0: Root “notD”
1: Enter (P 0)
2: Lam (P 0)
3: MapsTo (P 2)

• 4: Enter (Pr 3)
◦ 5: Enter (Pa 3)
◦ 6: Con (Pa 3) D 1
• 7: Con (Pr 3) D 1
• 8: Enter (Pc 7 1)

9: Root “not”
10: Enter (P 9)
11: Lam (P 9)
12: MapsTo (P 11)

• 13: Enter (Pr 12)
◦ 14: Enter (Pa 12)
◦15: Enter (Pc 6 1)
◦16: Con (Pc 6 1) True 0
◦ 17: Con (Pa 12) True 0
• 18: Con (Pr 12) True 0
• 19: Con (Pc 7 1) True 0

0: Root “notD"

〈1, 2〉: Lam

3: MapsTo

〈4, 7〉: D

〈8, 19〉: True

〈5, 6〉: D

〈15, 16〉: True

r

1

a

1

9: Root “not"

〈10, 11〉: Lam

12: MapsTo

〈13, 18〉: True〈14, 17〉: True
ra

Figure 40: Trace and event trees for evaluation of getC (notD (D False)).

notD = D True → D True

not = True → True

Figure 41: Computation tree for trace of Figure 40.

91

There are three event trees for the three observation annotations, but the trace
yields four computation statements. The function not is applied twice in the computa-
tion, yielding the two MapsTo events at indices 11 and 23. Recall that each computation
statement corresponds to a MapsTo event that has a Root event as grandfather.

Consider the event tree of function or. The MapsTo event at index 3 has as result
a Lam event, which is applied at index 6 to the second function argument, which is
computed in the span 〈26, 27〉. So this tree structure clearly shows currying taking
place. For the construction of the computation tree we can view Lam and MapsTo
events in the result of a function similar to a data structure. A computation statement
just has several positive and negative spans. As before, the events for an argument of a
MapsTo event indicate that computation of the corresponding computations statement
is supspended, so for example 〈26, 27〉 is a negative span.

To construct the computation tree we �rst note that the two outermost spans 〈4, 5〉
and 〈7, 34〉 are both positive and belong to the computation statement of or, which
hence is the root of the computation tree. One of the computation statements of not
has the positive span 〈12, 33〉 and hence is a child of the root. Furthermore the spans
〈18, 19〉 and 〈21, 31〉 are positive spans of and, they are within the gap of the negative
span of not, and hence its computation statement is also a child of the root. Finally
the second application of not has positive span 〈24, 29〉, which because of two gaps
made by negative spans is directly within a span of or and hence also is a child of the
computation statement of or. Figure 43 displays the computation tree. The tree shows
that there is a defect in the de�nition of the function not for the argument False.

Listing 24 Annotated program with multi-argument functions.

not = observe "not" not’
not’ True = False
not’ False = False

and = observe "and" and
and’ b True = b
and’ b False = False

or = observe "or" or’
or’ b d = not (and (not b) (not d))

Higher order functions The program in Listing 25 de�nes the third-order function
appN, which takes the function appT as argument, which receives the function not as

92

0: Root “or”
1: Enter (P 0)
2: Lam (P 0)
3: MapsTo (P 2)

• 4: Enter (Pr 3)
• 5: Lam (Pr 3)

6: MapsTo (P 5)
• 7: Enter (Pr 6)

8: Root “not”
9: Enter (P 8)

10: Lam (P 8)
11: MapsTo (P 10)

• 12: Enter (Pr 11)
◦ 13: Enter (Pa 11)

14: Root “and”
15: Enter (P 14)
16: Lam (P 14)
17: MapsTo (P 16)

• 18: Enter (Pr 17)
• 19: Lam (Pr 17)

20: MapsTo (P 19)
• 21: Enter (Pr 20)
◦ 22: Enter (Pa 20)

23: MapsTo (P 10)
• 24: Enter (Pr 23)
◦ 25: Enter (Pa 23)
◦26: Enter (Pa 6)
◦27: Con (Pa 6) True 0
◦ 28: Con (Pa 23) True 0
• 29: Con (Pr 23) False 0
◦ 30: Con (Pa 20) False 0
• 31: Con (Pr 20) False 0
◦ 32: Con (Pa 11) False 0
• 33: Con (Pr 11) False 0
• 34: Con (Pr 6) False 0

0: Root “or"

〈1, 2〉: Lam

3: MapsTo

〈4, 5〉: Lam

6: MapsTo

〈26, 27〉: True 〈7, 34〉: False

r

a r

8: Root “not"

〈9, 10〉: Lam

11: MapsTo

〈13, 32〉:
False

〈12, 33〉:
True

23: MapsTo

〈25, 28〉:
True

〈24, 29〉:
False

a r a r

14: Root “and"

〈15, 16〉: Lam

17: MapsTo

〈18, 19〉: Lam

20: MapsTo

〈22, 30〉: False 〈21, 31〉: False

r

a r

Figure 42: Trace for evaluation of or False True.

93

or = _ → {True → False}

not = False → False

and = _ → {False → False}

not = True → False

Figure 43: Computation tree for trace of Figure 42.

an argument.
Figure 44 shows the trace for evaluating neg False to the unexpected result False.

Again the �gure shows the trace as sequence of events and forest of event trees.
Why, for example, is the span 〈16, 42〉 marked as negative, even though it is for

computing the result of the MapsTo event at index 15? The reason is that this MapsTo
event is an argument of the MapsTo event at index 8. So the computation of this
result actually serves to construct the argument for function appN. When we have
functions as arguments (or as parts of data structures), then to determine whether a
span contributes positively to the computation statement, we have to consider in the
event tree the path from the span upwards to the MapsTo event of the computation
statement (see Section 6.2.2).

From the marked spans left of the trace events the structure of the computation
tree given in Figure 45 follows. The root of the computation tree neg = _ → False

already clari�es that the function neg always returns False, ignoring its argument.
Assuming that the semantics of appN is as intended by the programmer, the computa-
tion tree identi�es the de�nition of neg as defective.

Listing 25 Annotated program with third-order function.

not = observe "not" not’
not False = True
not True = False

appT = observe "appT" appT’
appT’ f = f True

appN = observe "appN" appN’
appN’ g = g not

neg = observe "neg" neg’
neg b = appN appT

94

0: Root “neg”
1: Enter (P 0)
2: Lam (P 0)
3: MapsTo (P 2)

• 4: Enter (Pr 3)
5: Root “appN”
6: Enter (P 5)
7: Lam (P 5)
8: MapsTo (P 7)

• 9: Enter (Pr 8)
10: Enter (Pa 8)
11: Root “appT”
12: Enter (P 11)
13: Lam (P 11)
14: Lam (Pa 8)
15: MapsTo (P 14)

◦ 16: Enter (Pr 15)
17: MapsTo (P 13)

• 18: Enter (Pr 17)
◦ 19: Enter (Pa 17)
• 20: Enter (Pa 15)

21: Root “not”
22: Enter (P 21)
23: Lam (P 21)

• 24: Lam (Pa 15)
◦ 25: Lam (Pa 17)

26: MapsTo (P 25)
◦ 27: Enter (Pr 26)

28: MapsTo (P 24)
• 29: Enter (Pr 28)

30: MapsTo (P 23)
• 31: Enter (Pr 30)
◦ 32: Enter (Pa 30)
◦ 33: Enter (Pa 28)
•34: Enter (Pa 26)
•35: Con (Pa 26) True 0
◦ 36: Con (Pa 28) True 0
◦ 37: Con (Pa 30) True 0
• 38: Con (Pr 30) False 0
• 39: Con (Pr 28) False 0
◦ 40: Con (Pr 26) False 0
• 41: Con (Pr 17) False 0
◦ 42: Con (Pr 15) False 0
• 43: Con (Pr 8) False 0
• 44: Con (Pr 3) False 0

0: Root “neg"

〈1, 2〉: Lam

3: MapsTo

〈3, 44〉: False
r

5: Root “appN"

〈6, 7〉: Lam

8: MapsTo

〈9, 43〉: False〈10, 14〉: Lam

15: MapsTo

〈16, 42〉: False〈20, 24〉: Lam

28: MapsTo

〈29, 39〉: False〈33, 36〉: True

ra

ra

ra

11: Root “appT"

〈12, 13〉: Lam

17: MapsTo

〈18, 41〉: False〈19, 25〉: Lam

26: MapsTo

〈27, 40〉: False〈34, 35〉: True

ra

ra

21: Root “not"

〈22, 23〉: Lam

30: MapsTo

〈31, 38〉: False〈32, 37〉: True
ra

Figure 44: Trace for evaluation of neg False.

neg = _ → False

appN = {{True→False}→False}→False

appT = {True→False}→False

not = True → False

Figure 45: Computation tree for trace of Figure 44.

neg = _ → False

appN = appT → False

appT = not → False

not = True → False

Figure 46: Evaluation dependency tree (EDT) for neg False.

In Section 2.2.1 I discussed the two tree structures, evaluation dependency tree
(EDT) and function dependency tree (FDT), that are both computation trees for al-
gorithmic debugging. With the method discussed in this chapter we construct FDTs.
Consider the EDT in Figure 46 for the evaluation of neg False with the program of
Listing 25, in contrast to the FDT shown in Figure 45.

6.2.6 Properties of the computation tree

Property 6.3. All computation statements are reachable from the root. This is de�ned
in the following test-property:

prop_connected e =

wellFormed e ⇒ all (reachableRoot []) (statements tree)

where

reachableRoot seen F = True

reachableRoot seen c | c ‘elem‘ seen = False

96

reachableRoot seen c = case predecessors t c of

[c’] -> reachableRoot seen c’
_ -> False

t = mkCompTree T
{}, 〈〉 : e ⇓ Γ, T : v

A computation graph from the previous chapter approximates a computation tree
and has surplus edges: edges that are not necessary for sound algorithmic debugging
and that can make it harder to locate the defect (Section 2.2.1). The algorithm of List-
ing 21 processes the trace and at the start of a positive span adds an edge from the
current node to the node associated with the start of the positive span 1 . Several
positive spans can be associated with the same node; multiple successors can be added
but only one predecessor.

Property 6.4. A statement in the computation tree has no more than one parent state-
ment. This is de�ned in the following test-property:

prop_minimal :: Expr -> Property

prop_minimal e =

wellFormed e ⇒ all (\c -> length (predecessors t c) <= 1)

(statements t)

where

t = mkCompTree T
{}, 〈〉 : e ⇓ Γ, T : v

Thus the computation tree is indeed a tree and not a graph and a computation
statement has a unique predecessor which I will call the parent:

parent t c | c /= F = case predecessors t c of [p] -> p

In an observable misbehaving program there is a chain of wrong statements that
connects the root node F with a faulty node. Consider for example path of dashed
arrows () in the computation tree below in which statements are annotated with
right/wrong (4/8) judgements:

F

positiveAndEven -3 = False 4

positive -3 = True 8 even -3 = False 4

positiveAndEven -4 = True 8

positive -4 = True 8 even -4 = True 4

97

There can be an additional faulty statement that is wrong but did not cause the
program to misbehave, for example in above computation tree, because -3 is not even
the (wrong) outcome of positive -3 is irrelevant for the behaviour of the program.
I do not model that by chance an infection is stopped in my test environment.

Property 6.5. For every statement that is wrong, the parent statement is also wrong or
the parent is the special root nodeF. This is de�ned in the following test-property:

prop_reachable e = wellFormed e ⇒
all parentWrong (filter (\c -> c /= F && isWrong c)

(statements t))

where

parentWrong c = let p = parent t c in p == F || isWrong p

t = mkCompTree T
{}, 〈〉 : e ⇓ Γ, T : v

When we invert this property we get: a wrong statement is reachable from the
special root nodeF via a chain of wrong statements. This is true in my test environ-
ment where an infected value always causes further infection but in a real program
infection may be stopped. However, a program that produced the wrong result must
have at least one chain were the infection was not stopped.

6.3 My algorithmic debugger Hoed-pure

I implemented my method for Haskell in the tracer and algorithmic debugger Hoed-
pure. For simplicity Hoed-pure includes a reimplementation of HOOD. Hoed-pure
is also just a library. After execution of the main program has terminated, Hoed-pure
constructs the computation tree from the trace and then serves an interactive webpage
to any browser. The webpage provides both free exploration of the computation tree
and guided algorithmic debugging. Hoed-pure has the same run-time overhead as
HOOD. It de�nes a type class Observable. A class instance implements tracing for
a type. The type of any argument and the result of an observed function has to be
an instance of Observable. Instances are derived with type-generic programming
techniques (Section ??).

The manipulation of the trace in my natural semantics is implemented like in
HOOD by using side-e�ects that write the trace. An optimising compiler might trans-
form the program such that the order of trace events is changed. Gill (2000) already

98

F

isOdd 2 = False

plusOne 2 = 3

isEven 3 = False

modTwo 3 = 1

isOdd 3 = False

plusOne 3 = 4

isEven 4 = False

modTwo 4 = 2

Figure 47: Hoed-cc’s computation tree (graph).

argues that a compiler is unlikely to change the order of the side-e�ects and I have not
observed any such problem in practice.

My semantics describes how to handle exceptions in principle, but in Haskell ex-
ceptions are not simple constructors. Hence my implementation follow HOOD in that
every instance of class Observable catches any exception. If an exception occurs, then
a response event for it is recorded in the trace and afterwards the same exception is
re-raised.

6.3.1 Non-terminating programs

Some defective programs do not terminate. To obtain a trace, the programmer lets
the program run for a while and interrupts it. The interrupt will be recorded as an
exception in the trace and Hoed-pure will produce a computation tree. However, such
an asynchronous exception is not modelled in the semantics presented in this chapter.
The computation tree can still help the programmer understand why a program is
misbehaving but algorithmic debugging is not guaranteed to �nd the defect.

6.4 Comparison with Hoed-cc

Hoed-cc, discussed in the previous chapter, is a library that combines value observa-
tion tracing with the cost centre stack provided by the pro�ling option of the Glasgow
Haskell compiler. Implementing Hoed-cc’s tracing method for other Haskell imple-
mentations or other languages would require extending the compiler and run-time

99

F

{isEven 1 = True,
isEven 3 = True,
isOdd 2 = True,
isOdd 4 = True}

F

isOdd 4 = True

isEven 3 = True

isOdd 2 = True

isEven 1 = True

Figure 48: Computation trees of Hoed-cc and Hoed-pure

system with cost centre stack support. For example, the interpreter GHCi does not
support cost centre stacks. Hoed-pure works with any Haskell run-time system and
the pure computation tree construction method can easily be implemented for other
functional languages.

Because cost centre stacks only contain function names, not arguments of spe-
ci�c calls, and are also compressed, Hoed-cc generates many surplus child-parent de-
pendencies. Figure 47 shows Hoed-cc’s computation tree (actually an acyclic directed
graph) for the example I used in the beginning of this chapter. Compare it with Fig-
ure 6. Surplus dependencies in a Hoed-cc computation tree increase the number of
statements an algorithmic debugger asks the oracle to judge. Algorithmic debugging
with the computation tree of Figure 6, constructed purily from the observation trace,
may require up to 5 questions and the tree from Figure 47, constructed with cost centre
stacks, may require up to 8 questions.

Algorithmic debugging with a Hoed-pure computation tree locates the defect more
precisely because a node in a Hoed-cc computation tree may contain a set of computa-
tion statements. Consider evaluating isOdd 4 for the program in Listing 26. Figure 48
shows Hoed-cc’s computation tree on the left and Hoed-pure’s on the right. An al-
gorithmic debugger that uses Hoed-cc’s tree tells us that the defect is in one of the
functions isEven and isOdd. In contrast, with Hoed-pure’s tree the debugger can tell
us that the defect is in isEven when applied to 1.

Listing 26 Program with mutual recursion.

isEven x = if x == 1 then True else isOdd (x-1)
isOdd x = if x == 1 then True else isEven (x-1)

100

A Hoed-cc annotation requires the introduction of a lambda expression and certain
compiler optimisations must be disabled to keep the lambda expression in place. To
observe for example isOdd with Hoed-cc the following annotation is used:

isOdd = observe "isOdd" (\ n -> {-# SCC "isOdd" #-} (isOdd’ n))

6.5 Summary

I have presented a new lightweight method for generating a computation tree. The
starting point is my formal de�nition of the trace generated by the original HOOD li-
brary. The de�nition enables us to see the existence of request-response spans in traces
and realise how their nesting determines the structure of a computation tree. The or-
der of events in the trace re�ects the evaluation order, but the computation tree has a
structure independent of evaluation order and re�ects the program structure instead.
My tracing semantics is speci�c to lazy evaluation, but my idea of observing values by
simple instrumentation by a library and transforming the resulting trace into a com-
putation tree is independent of evaluation order and applicable to many programming
languages. Negative request-response spans are not only required for lazy evaluation
but also call-by-value languages can bene�t from the method for relating function calls
in the presence of higher-order functions.

I implemented my method in the library Hoed-pure. Hoed-pure supports Haskell
language extensions and any Haskell compiler. The user only has to import the li-
brary and annotate functions of interest; untraced code remains unchanged. Therefore
Hoed-pure is well suitable for debugging real-world Haskell programs, which may use
libraries written in other programming languages.

In contrast to Hoed-cc, Hoed-pure is portable and produces a precise computation
tree. I showed that the algorithmic debugger asked substantially fewer questions using
Hoed-pure’s computation tree.

101

7
Sound algorithmic debugging

Di�erent kind of computation statements and dependencies exist. Some of these are
sound for algorithmic debugging. Firstly I discuss constants and free variables and why
I only observe top-level functions with my method. Secondly I explain how to test an
algorithmic debugger and how I tested the methods for computation tree construction
described in the previous chapters.

7.1 Constants in a computation tree

Consider construction of a computation tree for the computation

prop_conj_commutative True False

from Listing 27. How should the constant ctable be represented in the computation
tree? There are at least three possible trees that can be used for sound algorithmic
debugging:

Figure 49-a: The computation tree has a statement for each use of the constant. Such
a statement shows the part of the value demanded for that use of the constant.

Figure 49-b: The computation tree has one statement s per constant, showing all
parts of the constant that are demanded at some point during evaluation of the
program. When a computation depends on the value of the constant, then the
computation statement depends on s. Thus, the computation tree is actually a
directed acyclic graph, copying s for each statement dependent on s gives a tree.

102

Figure 49-c: The computation tree has a separate subtree directly nested under the
special root nodeF for the constant statement and its dependencies. The con-
stant statement shows all parts of the statement that are demanded at some point
during evaluation of the program. For sound algorithmic debugging the state-
ments of constants need to be considered �rst, a constant that was demanded
before another constant needs to be considered before a constant that was de-
manded later (Nilsson and Sparud 1997). When di�erent parts of constants are
demanded at di�erent times during the evaluation, it is hard to determine which
constant is to be considered �rst.

Listing 27 Conjunction and disjunction de�ned by a lookup table.

(h:t) !! 0 = h
(h:t) !! i = t !! (i-1)

toInt False False = 0
toInt False True = 1
toInt True False = 2
toInt True True = 3

disj b1 b0 = dtable !! (toInt b1 b0)
dtable = [False, True, True, True]
conj b1 b0 = ctable !! (toInt b1 b0)
ctable = [False, False, True, True]

prop_disj_commutative x y = disj x y == disj y x
prop_conj_commutative x y = conj x y == conj y x

Defect: value at position 2
should be False (because
True∧False = False)

Interpret two boolean values as bit 1 (with
value 21 = 2) and bit 0 (with value 20 = 1)
of a two bit integer value

A constant de�nition can contain function applications and constants. Consider for
example the following recursive de�nition of a list with all numbers in the Fibonacci
sequence:

fibs = 0 : 1 : [a * b | (a, b) <- zip fibs (tail fibs)]

Defect: * should be +

When the constant or applied function is also traced, then the fibs-computation
statement depends on the statement of the function application or constant from the
de�nition. Thus, the computation tree of fibs !! 2 is:

103

F

fibs = 0 : 1 : 0 : _

fibs = 0 : 1 : _ tail (0:1:_) = 1 : _

zip (0:1:_) (1:_) = (0,1) : _

In Section 7.3 I discuss programs with constants and my tracing method.

7.2 Free variables in a computation statement

As discussed in Section 2.1.1, a variable can occur bound or free in an expression.
Consider for example free variable xs in local function myFilter of Listing 28 on
page 106.

In Section 2.2 I de�ned a computation statement as a function applied to argument
values and the result value. Consider the following computation statement for the
function myFilter from Listing 28:

myFilter [3,2,4] = [3,2,4]

Is this statement right or wrong?
There is not enough information in above computation statement for the oracle

to judge the correctness of the statement: if xs was for example [1,3,2,4] then the
statement is wrong, but the statement is right when xs is for example [5,3,2,4]. To
soundly reason about the computation statement it should include name and value
of any free variable used in the de�nition associated with the statement’s function
(Nilsson 1998). That is, above computation statement should really be:

myFilter [3,2,4] = [3,2,4] where xs = [5,3,2,4]

The function minimum is also free in the de�nition of myFilter, however, there
is no need to add minimum to the myFilter-statement because the oracle judges the
myFilter-statement assuming minimum behaves as expected.

In the rest of this thesis I avoid having to keep track of free variables by only tracing
top-level functions and constants. Turning local functions into top-level functions is a
well known transformation (Peyton Jones and Lester 1992, Chapter 6).

104

F

prop_conj_commutative True False = False

conj True False = True

toInt True False = 2

ctable = _:_:True:_

conj False True = False

toInt False True = 1

ctable = _:False:_

(a) Constant as demanded in context.

F

prop_conj_commutative True False = False

conj True False = True

toInt True False = 2

conj False True = False

toInt False True = 1

ctable = _:False:True:_

(b) Constant in furthest evaluated form.

F

prop_conj_commutative True False = False

ctable = _:False:True:_

conj True False = True

toInt True False = 2

conj False True = False

toInt False True = 1

(c) Constant as seperate subtree.

Figure 49: Three di�erent trees of computating prop_conj_commutative True
False. Library function (!!) omitted.

105

Listing 28 Defective program to remove all occurances of the minimum from a list.

minimum = λ xs . case xs of {
[x] → x,
(h:t) → let m = minimum t in if h < m then m else h }

rmMinimum = λ xs .
let myFilter = λ ys . case ys of {

[] → [],
(h:t) → if h == minimum xs then minimum t

else h : minimum t }
in myFilter xs

Defect: to return smallest of h and m
the expression h<m should be h>m.

Variable xs is free in de�nition of local
function myFilter and bound in de�ni-
tion body rmMinimum.

7.3 Constants and their dependencies

Sharing makes keeping track of all computations that depend on the value of a constant
di�cult: the techniques from Chapter 5 and Chapter 6 only record the �rst dependency.
This problem also arises when tracing functions, consider for example the program of
Listing 29 with the constants main and k.

Listing 29 Program with re-used constant.

f = observe "f" λ x . x+1
g = observe "g" λ y . y-k
k = f 2
main = g (g 8)

Function f is only applied the �rst time k is demanded, then k on the heap refers
no longer to f 3 but to 4. Using my method gives the following computation tree:

106

F

g 8 = 5 g 5 = 2

f 2 = 3

This tree is not sound for algorithmic debugging: assume function f is faulty, then
as a result statement g 5 = 2 may be wrong while g is right. But g 5 = 2 does not
have any dependencies and an algorithmic debugger could incorrectly conclude that
function g is to blame!

No sharing The missing-dependency problem can be avoided by preventing con-
stants to be shared. Sharing can for example be prevented with a program transforma-
tion that introduces an unused argument. The program of Listing 29 becomes:

f = observe "f" λ x . x+1

g = observe "g" λ y . y - (k undefined)

k z = f 2

main = g (g 8)

A drawback of this approach is that preventing sharing impacts performance, and
that the approach requires transformation of any constant that is suspected or that
(indirectly) depends on the application of a suspected function.

Sharing through arguments To handle constants Nilsson (1998) suggests a pro-
gram transformation that eliminates constants that are free in a function de�nition by
adding arguments to the function. For example, the transformed program of Listing 29
would be:

f = observe "f" λ x . x+1

g = observe "g" λ c y . y-c

k = f 2

main = g k (g k 8)

Computing main then gives us the computation tree:

F

g 3 8 = 5 g 3 5 = 2f 2 = 3

107

The transformation can be automated, and the statement g 3 8 = 5 presented to
the user as “g 8 = 5 under the assumption k = 3".

A drawback of this approach that it requires transformation of any constant that
is suspected or that (indirectly) depends on the application of a suspected function.

Tracking use Another option is to track the use of constants through annotations.
This approach requires any constant that (indirectly) applies a suspected function to be
annotate with observe. To track the use of a constant we introduce a new expression:

use l e

The program of Listing 29 with use-annotation is:
f = observe "f" λ x . x+1

g = observe "g" λ y . y-(use "k" k)

k = observe "k" (f 2)

main = g (g 8)

Evaluating a use l e expression adds an event i : Use l to the trace.

Γ1, T1 l (i : Use l) : e ⇓ Γ2, T2 : v i= |T 1|
Γ1, T1 : use l e ⇓ Γ2, T2 : v

Use

When processing the trace with the method of Chapter 6 computation statement m
of a Use-event is determined by label l (not by the usual reversal of parent-pointers).
Then, if the current statement n does not yet depend on m a dependency is added.
Unlike an event that indicates the start of a positive span statement n stays the current
node.

| isUse e if isChildOf m n tree

then mkCompTree trc n tree

else mkCompTree trc n (mkChild m n tree)

In most cases in practice constants do not depend on suspected functions and then
nothing needs to be done. Future work may explore which method is best to be sure
that the computation tree is correct.

7.4 Soundness

I assume that any defective program slice is labelled. Algorithmic debugging is known
to be sound for a computation tree, that is, if the root node of the computation tree

108

disagrees with the programmer’s intentions, then the algorithmic debugging process
will �nd a faulty node in the tree (Shapiro 1983; Naish 1997b).

However, does my two methods, described in the previous chapters, allow me to
construct a computation tree? In other words, can we trust, given a computation tree
constructed with either method, and judgements of the computation statements in the
tree, that the following property holds: if a node is faulty, then the node is associated
with a program slice that is really defective.

A proof would be a major undertaking, because in the preceding sections I formally
de�ned only central parts of my method and even the relatively small prototype imple-
mentation is quite complex. Hence instead of a proof I test, following Marlow (2012),
who veri�ed properties of the stack operations / and ./ with the property-based test-
ing tool QuickCheck (Claessen and Hughes 2000a). Already during development of my
idea thorough testing proved useful: it uncovered several mistakes in earlier versions.

7.4.1 How to test an algorithmic debugger

Tools for property-based testing search for test cases where expected properties fail.
The library QuickCheck allows the programmer to de�ne a property as an executable
function and checks for a number of randomly-generated inputs that the property
expressed holds.

I can easily generate a random program expression. I can also evaluate such an
expression with a Haskell implementation of my semantics to obtain a trace.1 However,
to test with a QuickCheck property that my method indeed constructs a computation
tree for algorithmic debugging, I need to clarify three tasks:

1. I need to declare some randomly chosen slices to be defective, so that I know
where the defects are and can compare with what my algorithmic debugger �nds.

2. During evaluation a defective slice somehow has to cause an infection such that
unintended values are computed.

3. After the computation tree has been constructed from the recorded trace, I need
to judge automatically whether a given computation statement is intended or
not. Normally a human user does this interactively.

I implement these three related tasks with a Boolean type. To emphasise the purpose,
I write correctness values as 4 and 8 instead of true and false, respectively

1 Evaluation may not terminate. I abort evaluation after a given number of steps. An expression
may be ill-formed. I abort evaluation when a constant is applied to some argument. QuickCheck allows
me to ignore these cases, considering them neither as counter examples nor as successful tests.

109

7.4.2 Defective slices and infection during evaluation

To mark a program slice as defective, and to infect other parts of the program during
evaluation I introduce a pseudo-function infect, which traverses its argument and
makes all of its parts wrong. So for testing, any occurrence of infect is a defect in
the program. Infection of a data structure infects all components of that data struc-
ture. Infection of a function yields a function that always returns an infected value.
Infection never turns a constructor application into a λ-abstraction or vice versa, be-
cause I assume the presence of a type system that prevents such a defect. Evaluating
a case expression continues with an infected value, if the inspected data constructor
is wrong. Hence a data structure may contain infected components, but as long as a
computation does not demand any of these infected components, the computation is
not infected.

In a generated program the infect-expression occurs as the immediate nested
expression of a defective slice, and only there. For example in

push “outer” (λx.push “inner” (infect x))

the slice labelled “outer” is a working slice, but that labelled “inner” is a defective slice.
To keep track of which values are infected during evaluation I annotate every data

value, that is, saturated application of a data constructor, with a �ag b stating its cor-
rectness. In a generated program the �ag of all constructors are annotated with 4,
during evaluation infect changes 4 into 8. For example the expression

let f = push “f” (infect (λx.x)); y = f 34

in push “just” (λx.Just4x) y

evaluates to

Just4 38

A functional value is not annotated with a �ag, instead further infection is caused
by applying infect to the body of the abstraction. For example the de�nition

infect (λx.x)

of the function f in above program evaluates to

λx.infect x

110

Applying a defective function returns an infected result value irrespective of the
argument. In reality defective code does not cause an infection in every program run.
However, if it does not cause an infection, then the program behaves as intended and
no debugging will take place.

My mechanism with annotated data constructors and infect-expressions is de-
signed to not change order of evaluation in any way. Applying a defective function
still forces evaluation of the argument, if that argument was demanded in the standard
semantics.

Figures 50 and 51 show how I modi�ed the syntax of the language and trace events.
Figure 52 lists the most important rules of the altered semantics. I add rules for evalu-
ating the pseudo-function infect. Infection of a data structure infects all components
of that data structure. Infection of a function yields a function that always returns an
infected value. Infection never turns a constructor application into a λ-abstraction or
vice versa, because I assume the presence of a type system that prevents such a defect.
All semantic rules handling data constructors need to be altered, but the most interest-
ing one is Case: Only if the inspected data constructor is wrong, then the computation
continues with an infected value. Hence a data structure may contain infected compo-
nents but as long as a computation does not demand any of these infected components,
the computation is not infected.

7.4.3 Judging computation statements

From the trace I construct computation statements and their dependencies and subse-
quently transform the graph into a computation tree. Finally algorithmic debugging
requires judging whether a computation statement is as intended or not. Usually the
judgement is given by the user. Let us consider the program:

let {i = 4; dbl = push “dbl” (λx.x)}
push “main” (dbl i)

and assume that the function dbl is intended to double its argument. With my algo-
rithmic debugger the programmer is asked the two questions:

main = 4 ? no
dbl 4 = 4 ? no

and the body of dbl is correctly identi�ed as defective. The corresponding program
for testing is:

let {i = 44; dbl = (push “dbl” 8 (λx.x)}
push “main” 4 (dbl i)

111

expression e
::= v value
| e x application
| let {xk = ek}nk=1 in e recursive binding
| case e of {ck x1 . . . xmk

→ ek}nk=1 case
| x variable
| push f e push label and observe expression
| obs p e observed expression
| infect e infected expression

value v
::= vλ functional value
| cb x1 . . . xn saturated application of

data constructor
correctness b

::= 4 right (true)
| 8 wrong (false)

Figure 50: Altered program syntax for testing.

event t ::= i :Root f S root with label f and cost centre stack S
| i :Con b p c a value is application of constructor c
| i :Lam p value is an abstraction
| i :MapsTo p function application

Figure 51: Extended trace event for data constructor application with correctness �eld.

112

Γ1,S1, T1 : e ⇓ Γ2, T2 : λx.e2
Γ1,S1, T1 : infect e ⇓ Γ2, T2 : λx.infect e2

InfLam

Γ1,S1T1 : e ⇓ Γ2,S2, T2 : cb x1 . . . xn

Γ1,S1, T1 : infect e ⇓ Γ2[y1 = infect x1, . . . , yn = infect xn],

S2, T2 : c8 y1 . . . yn

InfCon

Γ1,S1, T1 : e ⇓ Γ2,S2, T2 : c8k x1 . . . xmk

Γ2,S2, T2 : infect (ek[xi/yi]
mk
i=1)

⇓ Γ3,S3, T3 : v

Γ1,S1, T1 : case e of {ci y1 . . . ymi
→ ei}ni=1 ⇓ Γ3,S3, T3 : v

InfCase

Γ1,S1, T1 : e ⇓ Γ2,S2, T2 : c4k x1 . . . xmk

Γ2,S2, T2 : ek[xi/yi]
mk
i=1

⇓ Γ3,S3, T3 : v

Γ1,S1, T1 : case e of {ci y1 . . . ymi
→ ei}ni=1 ⇓ Γ3,S3, T3 : v

NoInfCase

Γ1,S1, T1 : e ⇓ Γ2,S2, T2 : cb x1 . . . xn i= |T2|
Γ1,S1, T1 : obs p e ⇓ Γ2[y1 7→obs (Pc i 1) x1, . . . , yn 7→obs (Pc i n) xn],

S2, T2 l(i :Con b p c (arity cb)) : cb y1 . . . yn

ObsCon

Figure 52: New and modi�ed rules for testing the tracing semantics.

For testing the judgement is based on the infected and normal values appearing
in the computation statement. Figure 53 de�nes the judgement function (| · |). Again
conjunction and implication regard 4 as true and 8 as false. If a function takes infected
arguments, then these might violate the pre-condition of the function and hence I
conservatively judge the function to meet intentions. A data structure is wrong if any
part of it is wrong. Unevaluated parts are right. The judgements for the computation
tree of my example are:

(|main = 48|) = 8

(|dbl 44 = 48|) = 8

which correctly identi�es the defective slice.
Computation statements for higher-order functions are often hard to judge. A ben-

e�t of my approach is that higher-order functions (often imported from libraries) are
easy to trust. However, when the user writes their own higher-order functions, it can
be necessary to annotate these functions for tracing. Now let us consider a program
with a higher-order function:

let {i = 2; f = λx.x; h = λf.λy.f y} h f i

113

(|f = a|) = (|a|)
(|w1 → w2|) = (|w1|)⇒ (|w2|)

(|cb w1 . . . wn|) = b ∧ (|w1|) ∧ . . . ∧ (|wn|)
(|{a1, . . . , ak}|) = (|a1|) ∧ . . . ∧ (|ak|)

(|_|) = 4

Figure 53: Judgement of a computation statement.

Next I create an equivalent program for testing and mark h as defective. I obtain
the following three computation statements with their automatic judgements:

(|main = 28|) = 8

(|h {\24 → 24} 24 = 28|) = 8

(|f 24 = 24|) = 4

From these h is correctly identi�ed as defective.
Let us now assume that h is correct and mark f as defective. Then the computation

statements and automatic judgements that I obtain are:

(|main = 28|) = 8

(|h {\24 → 28} 24 = 24|) = 4

(|f 24 = 28|) = 8

which correctly identi�es f as defective.

7.4.4 Restrictions on observation annotations

I discussed that a program with a constant that is used more than once, or with a
free variable is challening for algorithmic debugging. Here I test debugging a program
where a labelled expression has no free variable other than a global function. For
example a program containing the following expression cannot be used for testing:

f = observe "f" (\x -> let k = 3

g = observe "g" (\y -> k)

h = observe "h" (\y -> y)

in (g k) + (h k))

That does not mean I cannot allow free variables at all. The following expression can
be used to test my method:

114

f = observe "f" (\x -> let k = 3

g = observe "g" (\y -> y)

h = observe "h" (\y -> y)

in (g k) + (h k))

To formulate my test-property I assume there is function noFreeVars that applied
to a program returns True when the program does not contain any variables that are
free outside an annotated program slice, and False otherwise.

Listing 30 shows the form of an annotated program that guarantees the generation
of a computation tree suitable for algorithmic debugging. My example program of
Listing 19 is of this form (modulo syntactic sugar). Currently the programmer has to
annotate the functions of interest. In the future a simple tool or compiler pass could
annotate all top-level functions of a module.

Listing 30 General annotated program.
let { f = observe "f" (λx.ef),

g = observe "g" (λx.eg),
...
h = eh,
x = ex,
...

} in e

}
unobserved functions and data structures

Firstly, only a complete let-bound expression is annotated with the observe func-
tion and the label given as �rst argument to observe has to be the name of the let-
bound variable. This ensures that a computation statement corresponds to the original,
unannotated program.

Secondly, only expressions bound by the top-level let are annotated. All local
bindings, that is, of lets nested within the top-level let, are excluded, because the
bound expressions might contain free variables. Values of free variables are currently
not included in a computation statement and hence such a computation statement is
an incomplete description of a subcomputation. The question whether such a compu-
tation statement is right or wrong cannot be answered without knowing the values of
free variables. For example, consider evaluating myMain for the program

f x = let g = observe "g" g’

g’ y = x+y

in g 42

myMain = (f 3) + (f 5)

115

The observed two computation statements g 42 = 45 and g 42 = 47 even break
equational reasoning (also see discussion of free variables in Section 7.2).

The restriction to top-level de�nitions limits the precision of my algorithmic de-
bugger. If a local function is defective, only the surrounding top-level function will be
identi�ed as defective. In my example I can only observe function f and any possible
defect in the de�nition of g can only be identi�ed as a defect in the de�nition of f. In
the future I intend to lift this restriction by also recording the values of free variables
in the value observation trace and adding the information to computation statements
in the computation tree.

Finally, the sharing of computations because of lazy evaluation can prevent con-
struction of a computation tree. Consider the example

ones = observe "ones" (1:ones)

f = observe "f" (\x -> (head ones) + x)

myMain = (f 2) + (f 4)

Section 3.3 describes only how to construct computation statements for function appli-
cations. However, the method can easily be extended to also construct a computation
statement such as ones = 1:_. The problem is in determining the parent-child rela-
tionships.

The spans of ones = 1:_ are nested in the spans of the result of f 2. When
f 3 is evaluated, no events for ones = 1:_ are recorded any more. Hence in the
computation tree the node f 2 = 3 has the child ones = 1:_ but the node f 4 = 5

has no child. On the other hand, for the program

onesA = observe "onesA" (\x -> (1:onesA x))

f = observe "f" (\x -> (head (onesA x)) + x)

myMain = (f 2) + (f 4)

each application of onesA adds new spans and hence each node f 2 = 3 and f 4 =

5 has a separate child node onesA _ = 1:_.
A constant is a variable that is let-bound to an expression. The value of a constant

may be required for several, otherwise independent subcomputations of a program.
The constant is evaluated only once and then its value is stored in the heap to be
provided for all other subcomputations.

I discuss approaches for handling constants in Section 7.3, but with my base method
I have to be careful with constants in a program. Most constants in Haskell programs
do not cause any problem, because either they do not use any other observed expres-
sions, for example overloaded variables such as (+), or they are evaluated only once,
such as main, which is the initial expression for evaluating a Haskell program.

116

Finally, only λ-abstractions are annotated, because data structures in normal form
are of little interest.

In summary, I only observe top level λ-abstractions and no observed expression
may directly or indirectly use a constant that directly or indirectly uses an observed
expression. My examples obey these restrictions and so do my case studies in Chap-
ter 9. To de�ne test properties in this and the next chapter I assume there is a function
obeysRestrictions that applied to a program e evaluates to True when e is of the
form of Listing 30 and False otherwise.

7.4.5 Testing computation tree construction with trace stacks

I implemented the modi�ed semantics for testing in Haskell.
The semantics may get “stuck" when evaluating a program, for example when try-

ing to apply an already fully satis�ed data constructor to a variable:

let {f = 3; y = 5} in f y

Other programs may never terminate, such as:

let {f = λ x . f x; y = 4} in f y

The function wellFormed applied to a program returns False when the programs
gets “stuck" or when the program does not terminate after 5000 reduction steps, and
True otherwise.

The function labels applied to a node evaluates to the list of labels the node is
associated with (a computation statement is associated with just one label, but after
cycle removal a node in the tree may contain multiple computation statements.)

The function algoDebug evaluates the random expression e, constructs a compu-
tation tree and uses the algorithmic debugging method to produce a set of labels of
defective program slices. The function defects returns a set of all slices in e that con-
tain the pseudo-function infect. Algorithmic debugging does not guarantee �nding
all defects and some program parts may not even be evaluated, but the set of labels
found with algorithmic debugging should be a subset of the set of labels of defective
slices.

With these functions I de�ne the following QuickCheck property in pseudo-Haskell.
The property holds for 100000 randomly generated programs. Programs for which the
precondition does not hold are not counted.

117

Property 7.1. For all well-formed programs obeying the restrictions: for every node n
that algorithmic debugging �nds to be faulty, there exists at least one identi�er f associ-
ated with n such that f is the identi�er of a program slice that is actually faulty. This is
de�ned in the following test-property:

prop_stack_sound e =

wellFormed e && obeysRestrictions e ⇒ all anyDefective (algoDebug t)

where

anyDefective n = any (λ f . f ⊆ defects e) (labels n)

t = mkCompTree T
{}, 〈〉 : e ⇓ Γ, T : v

7.4.6 Testing pure computation tree construction

The method of chapter 6 and my implementation Hoed-pure construct a value obser-
vation trace and from that a tree for any program with observe annotations. However,
these annotations need to meet some conditions for the tree to be a computation tree
suitable for algorithmic debugging. The restrictions of Section 7.4.4 also apply here.

To verify the complete implementation of tracing, tree construction and algorith-
mic debugging I checked that constructed computation trees have the property that
if a node is wrong but all its children are right, then the de�nition of the function
appearing in the parent node actually contains a defect (Shapiro 1983; Naish 1997a).

Property 7.2. For all well-formed programs obeying the restrictions: A labelled expres-
sion that algorithmic debugging �nds faulty actually contains a defect. This is de�ned in
the following test-property:

prop_pure_sound e =

wellFormed e && obeysRestrictions e ⇒ algoDebug t ⊆ defects e

where

t = mkCompTree T
{}, 〈〉 : e ⇓ Γ, T : v

118

8
Properties as oracle for algorithmic debugging

An algorithmic debugger �nds defects in programs by systematic search. It relies on
the programmer to direct the search by answering a series of yes/no questions about
the correctness of speci�c function applications and their results. If the size or number
of questions is too great for the programmer to handle, the technique breaks down.

In this chapter I propose a method that re-uses properties, already present in the
code for testing, to answer automatically some of the questions arising during algo-
rithmic debugging, and to replace others by simpler questions.

Judging computation statements by an automated oracle has often been suggested
(Shapiro 1983; Drabent and Nadjm-Tehrani 1989). Such an oracle might be based on a
previous working version of the program, or a formal speci�cation. But what if these
things are not available?

Automatic property-based testing, using QuickCheck or a similar tool, is now a
widespread practice of developers using functional languages. Many programs already
have associated test properties de�ned, and questions asked by the algorithmic debug-
ger can inspire the programmer to add new test properties. However, not all properties
are equally suitable to be used as oracle. Consider for example the following property:

prop_odd n = n >= 0 ==> odd (2*n+1) == True

The expression prop_odd 0 evaluates to False from which we incorrectly might con-
clude that the statement odd 0 = False is wrong. So we reach the motivating obser-
vation and question for this chapter: There must surely be ways we can use test properties
to help judge computation statements, but how?

Properties can be used to encode a speci�cation or for testing against a reference
implementation. In this chapter I present requirements and techniques to draw sound
conclusions when using test properties to provide an oracle. For judging a computation

119

8 ��� � �
7 � � ���
6 � " � �
5 ��� � �
4 � � � "
3 � � " �
2 � � ���
1 " � � �

a b c d e f g h

8 � � � �
7 � � � �
6 � � � �
5 � � � �
4 � � � �
3 � � � �
2 � � � �
1 "�"�"�"�

a b c d e f g h

Figure 54: A correct 8-queens solution, and an incorrect one!

statement for function f it is not required that the test property has f at top level, or
that the property fully speci�es f .

8.1 Defective example program with properties

Consider the defective program in Listing 31. The program is intended to �nd all so-
lutions to the n-queens problem: place n queens on an n×n board in such a way that
no queen threatens any other (by occupying the same row, column or diagonal). For
examples of correct and incorrect solutions when n=8, see Figure 54.

The program represents a board with queens on it by listing row-numbers at which
a queen is placed in successive columns

type Board = [Int]

The correct solution in Figure 54 is represented by [1,5,8,6,3,7,2,4].
The �rst solution in the list that queens 8 evaluates to however, is an incorrect

solution, with all queens in the bottom row. An algorithmic debugger locates the defect
after 15 answers from the human programmer (in italics):

1: queens 8 = (1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : []) : _ ? wrong

2: valid 8 8 = (1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : []) : _ ? wrong

3: valid 7 8 = (1 : 1 : 1 : 1 : 1 : 1 : 1 : []) : _ ? wrong

4: valid 6 8 = (1 : 1 : 1 : 1 : 1 : 1 : []) : _ ? wrong

120

5: valid 5 8 = (1 : 1 : 1 : 1 : 1 : []) : _ ? wrong

6: valid 4 8 = (1 : 1 : 1 : 1 : []) : _ ? wrong

7: valid 3 8 = (1 : 1 : 1 : []) : _ ? wrong

8: valid 2 8 = (1 : 1 : []) : _ ? wrong

9: valid 1 8 = (1 : []) : _ ? right

10: valid 2 8 = (1 : 1 : []) : _ ? wrong

11: extend 8 ((1 : []) : _) = (1 : 1 : []) : _ ? right

12: valid 2 8 = (1 : 1 : []) : _ ? wrong

13: safe (1 : 1 : []) = True ? wrong

14: no_threat 1 (1 : []) 1 = True ? wrong

15: no_threat _ [] _ = True ? right

Fault located in no_threat applied to 1 (1 : []) 1!

A human programmer judges the statements from question 2-8, 10 and 12 as wrong
because a valid Board has no more than one queen on the same row. In other words, a
valid Board is a set. With my method, the programmer can give as response to question
2 the property

prop_valid_set m n = all (\b -> isSet b) (valid m n)

where

isSet xs = all (\ x -> length (filter (==x) xs) == 1) xs

The algorithmic debugger automatically uses this property to answer question 3-8,
10 and 12. For question 9 the algorithmic debugger can inform the programmer that
prop_valid_set holds for valid 1 8, however because prop_valid_set is not a full
speci�cation of valid the algorithmic debugger has to ask the human programmer to
con�rm. In Section 9.2 I document an in-depth case study of the defective n-queens
solver in which my algorithmic debugger locates the the defect using test properties
without consulting a human oracle.

8.2 Dynamic and static dependencies

Consider the defective Haskell implementation of the parity functions even and odd in
Listing 32. The program includes two test properties specifying the intended behaviour
of these functions. Using the property-based testing tool QuickCheck (Claessen and
Hughes 2000b) we detect that the program is defective:

> quickCheck spec_even

121

Listing 31 A defective solver of the n-queens problem.

queens :: Int -> [Board]
queens n = valid n n

valid :: Int -> Int -> [Board]
valid 0 _ = [[]]
valid m n = filter safe (extend n (valid (m-1) n))

extend :: Int -> [Board] -> [Board]
extend n bs = consEach [1..n] bs

consEach :: [a] -> [[a]] -> [[a]]
consEach [] _ = []
consEach (a:x) y = map (a:) y ++ consEach x y

safe :: Board -> Bool
safe (a:b) = no_threat a b 1

no_threat :: Int -> Board -> Int -> Bool
no_threat a [] m = True
no_threat a (b:y) m =
a+m /= b && a-m /= b && no_threat a y (m+1)

Repeatedly add a
queen and select
valid boards

Possible ways
of placing a
queen on new
left column

Is queen in left column
no threat to any other?

Defect: detects diagonal but
not horizontal threat

122

*** Failed! Falsifiable: 2

> quickCheck spec_odd

*** Failed! Falsifiable: 1

So property spec_even does not hold for the value 2 and property spec_odd does not
hold for the value 1.

Listing 32 A defective program with parity tests for positive integers, and properties
that specify the functions in the program.

even 0 = True
even n | n > 0 = odd (n-1)

odd 0 = False
odd n | n > 0 = even n

spec_even n = n >= 0 ==> even n == (n ‘mod‘ 2 == 0)
spec_odd n = n >= 0 ==> odd n == (n ‘mod‘ 2 == 1)

Defect: should
be “even (n-1)"

Even though we have for every function in the program a property that fully speci-
�es that function, testing alone does not locate the defect in the code. To locate defects
discovered by testing, we could perhaps try to sort properties by call-dependencies.
But such analysis may not help if there are mutual recursive functions such as even
and odd. Furthermore, in a language with higher-order functions, call dependencies
may not be known statically (Nilsson 1998, p.105).

To locate the defect we could use an algorithmic debugger. The interaction between
an algorithmic debugger and an oracle (whose responses are shown in italics) could be:

Q1: even 2 = False ? wrong
Q2: odd 1 = False ? wrong
Q3: even 1 = False ? right
Defect located in odd.

In the small example above, the potential usefulness of the test properties is clear:

spec_even 2 evaluates to False (cf. answer Q1),
spec_odd 1 evaluates to False (cf. answer Q2), and
spec_even 1 evaluates to True (cf. answer Q3).

123

8.3 Testing properties to judge statements

Tools for property-based testing search for test cases where expected properties fail.
Test properties are de�ned as functions with one or more test-value arguments and a
boolean result. (Conditional properties de�ned for QuickCheck (Claessen and Hughes
2000b) instead have the result type Property which translates to True/False or an
inconclusive outcome.) The intended interpretation is that the body of the function is
a universally quanti�ed assertion: the property should be true for all choices of argu-
ments. Libraries for property-based testing check for counter-examples by evaluating
properties with many di�erent arguments, generated either at random or in some sys-
tematic sequence.

Given an f -statement S, I aim to use tests of already-de�ned properties involving
f to judge S — or to assist in that task. In doing so, I assume that each such property
correctly expresses a partial speci�cation of f .

8.3.1 Judging statements wrong

I set out here su�cient further requirements on a property p, and the test cases to
which p is applied, to ensure that if a test fails we may safely mark an f -statement S
wrong. If S is

f v1 . . . vn = vr

and p is

∀x̄ . e[f ā] (Requirement 1)

and

dom(θ) = x̄ θ(ā) = v1 . . . vn (Requirement 2)

and

eval(θ(e)[vr]) = False (Requirement 3)

then S is wrong.

Requirement 1: unique suspicion All functions other than f applied in p can be
trusted as correct.

Explanation: Otherwise, if a test of p fails, the fault may be incorrect behaviour
of a function other than f . A distinction between trusted and suspect functions is

124

commonly made in algorithmic debugging to reduce the size of computation trees —
only statements about suspect functions are recorded. Prelude and library functions
are trusted. Functions de�ned as properties, or only as auxiliaries of properties, are
trusted. Programmers may also declare trust in speci�ed application modules or func-
tions.

Can this requirement be relaxed? Properties involving multiple suspect functions
may still be useful. If testing fails, we know at least one of these suspect functions is
faulty. If the failure is simple it may reveal a faulty computation tree simpler than the
one currently being considered.

Requirement 2: domain restriction For any application of f in p each argument is
either exactly as in S or it is one of p’s argument variables.

Explanation: By �xing those test-value arguments of p that are also arguments of
f , we can ensure that in any test f is only applied to the argument values recorded in
S. If a test of p involved an application of f to other arguments, and the test failed,
we might be able to conclude that f is faulty, but not that S is wrong. A bug search
should not home in on a faultless subtree!

Requirement 3: range restriction The result of the application of f in p is not de-
manded to any greater extent than recorded in S.

Explanation: If p demands the result of f to a greater extent than S records, and
a test fails, here too we could not safely mark S wrong. This requirement is hardly
amenable to syntactic checking; instead we apply a constraining wrapper to f , raising
an exception if its result is demanded to an unsafe extent — see Section 8.4.

Can this requirement be relaxed? What if property testing gives an unde�ned re-
sult in every case because of this restriction, though without it there is a well-de�ned
outcome for one or more properties and test-cases? We consider in Section 8.5 how
such unrestricted test results might be used. See also Section 8.6 and Section 8.7 for
techniques to avoid unde�ned test results.

8.3.2 Judging statements right

Most properties are only partial speci�cations of the functions they involve. Also,
unless Requirement 2 demands that all arguments of a property p are �xed in testing,
p remains a universal property that is only checked for a limited set of test values.
For both of these reasons, although an f -statement S can be judged wrong if some

125

property pmeeting Requirements 1–3 fails when tested, S cannot in general be judged
right if testing p succeeds.

Option: declared speci�cation Programmers may tag a property, or a group of prop-
erties, as a full speci�cation of f .

Explanation: Such tagging may enable statements to be judged right by property
testing, or right in all cases tested — see Section 8.3.3. In practice, I tag speci�cations
by a naming convention, introducing properties with names of the form spec_f.

What if this option is declined? In the tree for a faulty computation, there is a path
of wrong statements from the root to an f -statement for some defective function f .
Even without any properties providing a full speci�cation, in the best case, automatic
judgement could �nd that path, assuming only that properties are partial speci�ca-
tions. However, to con�rm that f is indeed defective, we must somehow judge that all
children of the f -statement are right — using properties known to be full speci�cations,
or relying on a human oracle, or by some other means.

So the bene�ts are greater if we have full speci�cations. But even without them,
we may hope to judge faulty statements as wrong without troubling the programmer.
Though without full speci�cation right statements cannot be veri�ed with certainty,
we might assist the user by pointing out associated properties that have been checked.

Option: trusted testing Programmers may choose to accept as veri�ed a universal
property that holds in all test cases evaluated.

Explanation: The risks attached to this choice depend on the quality of the test-
value generator, and the resources used for testing. Often it may speed up the progress
of algorithmic debugging towards a fault elsewhere, but sometimes it may turn atten-
tion away from the actual location of a fault.

What if this option is declined? The programmer can be advised of the outcome of
testing in such cases, but they must act as oracle.

8.3.3 Summary of valid conclusions from property tests

Beyond the requirements of Section 8.3.1, I note two important characteristics that
each property p may or may not have, a�ecting its use to judge an f -statement:

• Is p only a partial speci�cation of f , or a complete one?

• Does p have additional arguments, beyond those used in its application of f , for
which test values must be generated?

126

Depending on these distinctions, and drawing upon the observations of Section 8.3.1
and Section 8.3.2, we have the following rules for drawing conclusions about an f -
statement S from the results of testing p.

1. If p is a complete speci�cation of f , without any additional arguments, and the
result of testing p is True, we may conclude that S is right.

2. If p is a complete speci�cation of a f , but with additional arguments, and for
each of a randomly generated set t of test-values for these arguments the result
of testing p is True, we may draw the quali�ed conclusion that so far as tests
using t reveal S is right.

3. If p is a complete or partial speci�cation of f , without any additional arguments,
and the result of testing p is False, we may conclude that S is wrong.

4. If p is a complete or partial speci�cation of a f , but with additional arguments,
and for at least one assignment of test-values to these arguments the result of
testing p is False, we may conclude that S is wrong.

Note also the cases where no �rm conclusion can be drawn. If p is only a partial
speci�cation of f , and testing p gives only True results, then regardless of whether
p has additional arguments we cannot judge the f -statement S — we can only report
the property-test results as advice to a human oracle. There is also the possibility,
whatever the characteristics of p, that we obtain only unde�ned results from testing.

We obtain an unde�ned result ⊥ when evaluating p times out, when p evaluates
to an exception, when a precondition in p is not met or when evaluating p requires
untrusted computation that are not recorded in the computation statement (e.g. an
unevaluated value in the argument is demanded).

Figure 55 sets out all cases of the above summary in diagrammatic form.
Often there will be more than one property that meets the requirements to be tested

with the aim of judging a statement. Though testing one property may lead only to an
unde�ned or inconclusive outcome, another may provide a conclusive judgement.

8.4 Restricting results of subject functions

To meet Requirement 1 in Section 8.3.1, we must limit the demand made on the result
of subject functions when properties are tested.

127

8
8 x

x

8
8 4 t

4

?

?
?

?

spec

prop
p

False ⊥ True

direct
under t

8 statement is wrong
4 statement is right
4t statement is right

under test
x give human oracle

advice
? no information

Figure 55: Which conclusion can we draw?

Listing 33 Defective minimum of tuple and a property.

tmin t = f (tsort t)
tsort (x,y) = if x > y then (s (x,y), x) else (x,y)
f (x,y) = y
s (x,y) = x

Defect causing observed faulty behaviour
Defect that may cause faulty be-
haviour in other cases

First in ordered tuple is minimum

Constrained applications Consider the program in Listing 33. The property

prop_tsort_compl (x,y) =

x ‘telem‘ (tsort (x,y)) && y ‘telem‘ (tsort (x,y))

where telem x (y,z) = x == y || x == z

seems suitable for judging a tsort-statement wrong when the property evaluates to
False. Evaluation of tmin (4,3) gives the following computation tree:

tmin (4,3) = 4

f(_,4) = 4 tsort (4,3) = (_,4)

Statement tsort (4,3) = (_,4) is right (more on how an oracle should interpret
unevaluated expressions in Section 8.7). However, prop_tsort_compl (4,3) evalu-
ates to False because it forces the whole result (and the computation s (4,3) = 4

that is not part of the original computation tree), and detects that 3 is not in the result
(4,4) of tsort. To soundly use a property as oracle we need to constrain the result of
a given function by a given partial result.

To do so, I de�ne a type-generic operator conAp such that with

128

tsort’ = conAp tsort (⊥,4)

where ⊥ is an expression that always evaluates to an exception, the program

let (x,y) = tsort’ (4,3) in print y

prints the value 4, but the program

let (x,y) = tsort’ (4,3) in print x

raises an exception.
To introduce constrained application in a property, we �rst abstract the subject

function to become a property argument — a mechanical modi�cation that can easily
be automated. For example, with the property de�nition

prop_tsort_compl’ subjFn (x,y) =

x ‘telem‘ (subjFn (x,y)) && y ‘telem‘ (subjFn (x,y))

where telem x (y,z) = x == y || x == z

the expression

prop_tsort_compl’ (conAp tsort (⊥,4)) (4,3)

would raise an exception signalling an inconclusive result.

Constrained values It remains to implement a mechanism to constrain a value to
another value, that is ensure a value is equal-to or a subvalue of another value. For
this purpose I de�ne a class of constrainable types

class Constrainable t where

constrain x c :: t -> t -> t

in order that we may simply de�ne conAp as follows.

conAp :: Constrainable b => (a ->b) -> b -> a -> b

conAp f r x = constrain (f x) r

I give a type-generic de�nition of the constrain method. I de�ne the default in-
stance of the constrain method as

default constrain x c =

to (gconstrain (from x) (from c))

129

To enable automatically derived Constrainable instances, I provide a generic de�ni-
tion of gconstrain for the sum-of-products representation just as I did in Chapter ??
for observer.

gconstrain (L1 x) (L1 c) = L1 (gconstrain x c)

gconstrain (R1 x) (R1 c) = R1 (gconstrain x c)

gconstrain (x1 :∗: x2) (c1 :∗: c2) =

(gconstrain x1 c1) :∗: (gconstrain x2 c2)

gconstrain x c = ⊥

Base types such as Int and Char are atomic, that is, these types cannot be divided into
smaller parts and are evaluated as a whole. For these I use equality:

bconstrain x c | x == c = x

| x /= c = ⊥

instance Constrainable Int

where constrain = bconstrain

instance Constrainable Char

where constrain = bconstrain

For function types I provide the instance:

instance Constrainable b => Constrainable (a->b)

where

constrain f g x = constrain (f x) (g x)

8.5 Testing with an unrestricted subject function

Having a restricted subject function allows us to judge a statement wrong when a test
property evaluates to False. But what if restriction makes a test result unde�ned,
though the same test with an unrestricted subject function evaluates to False?

We can record a second computation tree during the evaluation of a property. This
tree has at its root an application and result of the subject function currently under in-
vestigation. This new computation tree might be simpler than the current computation
tree. So algorithmic debugging with the new tree might be less work than continuing

130

treeComplexity tree = sum (map length (unjudgedStmts tree))

unevalCount tree = sum (map (length . (filter (==’_’)))
(unjudgedStmts tree))

Figure 56: Basic method for estimating complexity of a computation tree.

with the current one. If a user opts to switch to a di�erent computation tree, they are
still guaranteed to �nd a defect in the program, but it may not be the defect that caused
the originally investigated computation to go wrong.

To decide whether or not to switch the focus of debugging to an alternative com-
putation tree, we need an appropriate way to compare trees. The simple algorithm
treeComplexity of Figure 56 expresses the complexity of a tree as the combined
size of all its unjudged statements (i.e. statements that are neither marked as right
or wrong).

Unevaluated expressions can result in an inconclusive judgement from properties
as oracle. A re�nement is to keep an additional separate count of _ occurrences. The
algorithm unevalCount in Figure 56 assigns an equal weight to each unevaluated ex-
pression, a possible variation assigns a weight based on the combined sizes of type
formulae. For example, an unevaluated expression of type Int would be less complex
than an unevaluated expression of type (Int,Int).

Listing 34 A defective de�nition of idMatrix and a property specifying that it should
be equivalent to a reference implementation idMatrix_ref.

data IntMatrix = M [[Int]]

idMatrix :: Int -> IntMatrix
idMatrix n = M (take n (iterate
(\(x:xs) -> xs ++ [x]) row0))
where row0 = 1 : take (n-1) (repeat 0)

spec_idMatrix im n = im n == idMatrix_ref n
idMatrix_ref 1 = M [[1]]
idMatrix_ref n = M (row0 : map (0:) m)
where row0 = 1 : take (n-1) (repeat 0)

M m = idMatrix_ref (n-1)

Defect: rotates
next row left in-
stead of right

131

8.6 Parallel equality

Consider the defective function idMatrix for constructing a n × n identity matrix
from Listing 34. I represent a row in the matrix as a list of integers and a matrix as a
list of rows. Thus the 3× 3 identity matrix1 0 0

0 1 0

0 0 1

is in the example program represented as [[1,0,0], [0,1,0], [0,0,1]].

When debugging a program that includes the idMatrix function we may need to
judge a statement such as:

idMatrix 3 = M (_ : [0,0,1] : _)

Could the test property from Listing 34 be used to judge the statement? The sec-
ond row should have the 1 at the second position, so it cannot equal the second row
in idMatrix_ref 3. From this observation we may expect the property test to give
False. However, as the �rst �eld of the con�guration is unevaluated, comparison with
(==) fails and the property gives an inconclusive result.

Equality is used very frequently in test properties, many of which take the form of
equations or conditional equations. Often the equality test is between data structures
containing more information than a subject function uses. As a result the test, and
hence the property, evaluate to bottom even when there is an observable di�erence
between two values. To make such properties more useful for judging computation
statements, we need an equality test that keeps looking for inequalities even when the
result of comparing some components is unde�ned.

So we wish to de�ne an equality function (|==|) such that, for example,

⊥ : [3,4]|==| ⊥: [3,6] and 7 : ⊥|==| 8 : ⊥

both evaluate to False.
I de�ne a new class Pareq. It has a comparison method (|==|) that returns True

or False when (in)equality is determined and ⊥ otherwise.

class Pareq t where

pareq :: t -> t -> Bool

default x|==| y = (from x) |===| (from y)

132

(L1 x) |===| (L1 y) = x |===| y
(R1 x) |===| (R1 y) = x |===| y
(x1 :∗: x2) |===| (y1 :∗: y2) = (x1 |===| y1) |&&| (x2 |===| c2)
x :: b |===| y :: b | b is a basetype = x == y
x |===| y = False

⊥ |&&| False = False
p |&&| q = p && q

Figure 57: De�nitions of parallel equality in the sum of products representation of
Figure 17, and of parallel conjunction — where the ⊥ argument pattern is matched by
exception handling.

Figure 57 gives the type-generic de�nition |===| making the type class Pareq deriv-
able. Its de�nition is similar to how the sequential comparison method (==) is derived,
but replacing sequential conjunction (&&) by parallel conjunction (|&&|).

In an actual implementation of parallel conjunction, bottom can be detected by
catching exceptions raised when trying to match other de�ning equations (Runciman,
Naylor and Lindblad 2008). We can similarly implement a parallel version of other
commonly used operators such as a parallel disjunction and replace sequential logical
operators with their parallel equivalent.

To make use of parallel equality in a test property, the programmer, a compiler pass
or a specialized transformation tool must ensure two things:

1. In the property (==) is replaced by, or rede�ned as, (|==|).

spec_idMatrix im n = im n |==| idMatrix_ref n

2. Parallel equality is derived for the type of values compared in the property.

data IntMatrix = M [[Int]] deriving (Generic,ParEq)

To further reduce dependencies on unevaluated values sequential logic operators in
the property are replaced by their parallel equivalent.

8.7 Quantifying unevaluated expressions

In Section 2.2.2 I discussed that we should interpret the computation statement

paint (Square Red _) = Paint Red _

133

from the program of Listing 4 as

∀x.∃y. paint (Square Red x) = Paint Square y

So paint (Square Red _) = Paint Red _ should be judged right. But can we
determine this without consulting a human oracle? Although the test property in List-
ing 35 fully speci�es paint, testing the property spec_paint for the recorded argu-
ments gives an unde�ned result — even when paint is not restricted in its result.

Listing 35 A test property that fully speci�es the defective program of Listing 4.

spec_paint p (Square c x) =
p (Square c x) == Paint c (x*x)

spec_paint p (Rect c w h) =
p (Rect c w h) == Paint c (w*h)

As we did for properties with more arguments than the subject function, we can
generate values for unevaluated expressions in the recorded argument and obtain a set
of completed arguments. Then we test if the property holds for all completed argu-
ments:

quickCheck (\x -> spec_paint paint (Square Red x))

If this check succeeds, and the property fully speci�es the subject function, we have
support for a judgement that the statement is right. According to the user’s preference,
we may either judge statements that are supported by tests as (provisionally) right, or
we may report the test outcome to the user and leave the judgement to them.

If we �nd a counter-example for a test property, we cannot judge the current state-
ment to be wrong if we are testing with an unrestricted subject function. However,
there is another option. The counter-example may provide a new faulty computation
tree involving the same subject function but simpler than the subtree originally under
investigation. If so, we can give the user the option of switching to the new tree as the
scope for algorithmic debugging (see Section 8.5).

8.8 Two-oracle strategies

Current algorithmic debugging strategies aim to minimize the total number of ques-
tions (Section 2.2.3). For property-assisted algorithmic debugging, we could simply
adopt one of these existing strategies. We select a statement as usual according to the
strategy, and

134

1. use associated properties as oracle with a restricted subject function,

2. if inconclusive, use associated properties as oracle with an unrestricted subject
function,

3. if inconclusive, and an argument of the subject function includes an unevaluated
expression, use associated properties as test-case oracles with randomly generate
values completing arguments,

4. if inconclusive, consult the human oracle.

However, as we now have two oracles, we might instead ask: how can we reduce
the number of questions the human oracle has to answer?

A brute-force strategy sets the lower-bound on the number of statements the hu-
man oracle has to answer. The debugger tries the automatic steps 1–3 on every com-
putation statement. If a computer with multiple processors is used some time can be
saved by judging statements in parallel.

During this process su�cient information may be obtained to locate a defect. If
not, we compare the complexities (e.g. as in Figure 56) of all subtrees with a wrong
statement at the root, along with any candidate trees found in step 2 or 3, and select
the simplest. Then algorithmic debugging using one of the standard strategies can
locate the defect in the simplest subtree, asking the human oracle to provide missing
judgements. When switching to a newly discovered tree we may use the brute-force
strategy again on that tree.

The All-children strategy is a variation on the Top-down strategy that can be used
when Brute-force is not feasible. When a computation statement has multiple children
(a common case) we apply steps 1–3 to them all. If any of the children is found to be
wrong, we repeat the process with the children of that statement. We only consult the
human oracle when applying properties as oracle to the children of a wrong statement
gives a mixture of right and inconclusive results.

8.9 Implementing property-assisted debugging

I implemented my method in a property-assisted extension of Hoed-pure. After run-
ning a program and connecting to the debugging session the user is o�ered three op-
tions:

135

• Manually judge a statement as right or wrong. Either the defect is now located
or the next statement is shown. Which statement is next is determined by either
the top-down or the divide-and-query strategy.

• Use properties as oracle for the current statement. If the result is conclusive,
either the defect is located or the next statement is shown. If the result is incon-
clusive, advice is o�ered to the user who still has the �rst option.

• Use properties as oracle on many statements according to either the All-children
strategy or the Brute-force strategy.

Using properties as oracle is implemented as follows. For each property applica-
ble to a statement, we �rst generate a program in which the property is applied to a
restricted subject function and the recorded argument values. For any unevaluated ex-
pression we generate (error "unevaluated expression"). This program is com-
piled, linked with the modules containing the property and the subject function, and
run. If we cannot draw a conclusion from the result, we generate and run a further
program where the property is applied to the unrestricted subject function. If this too
is inconclusive, we substitute a fresh variable for each unevaluated expression and use
QuickCheck to generate and run random tests.

Because a property may cause a function to diverge, we interrupt evaluation of the
property after a set time limit.

I also use the Hoed-pure tracer to obtain the computation tree for generated pro-
grams. When a program uses a set of test-values, we disable the generation of the tree.
If a counter-example is found, we re-run the program for the counter-example only,
this time generating the computation tree.

8.10 Summary

I presented a new semi-automated method for defect location in functional programs,
based on algorithmic debugging and property-based testing. It has often been sug-
gested that a reference program or formal speci�cation could be used as oracle in al-
gorithmic debugging, but to my knowledge no previous work explains how either of
these can be used soundly when the traced program is evaluated lazily.

My method re-uses properties to answer automatically some of the questions aris-
ing during algorithmic debugging, and to replace others by simpler questions. Prop-
erties may already be present in the code for testing; the programmer can also encode

136

a speci�cation or reference implementation as a property, or add a new property in
response to a statement they are asked to judge.

During a debugging session, if it turns out that test properties are insu�cient to
locate a defect, then the programmer may choose to add a property in response to a
computation statement presented by the debugger, or they may manually judge the
statement. In the former case a debugging session not only locates the defect but also
retains the information put into the debugging session by the programmer in the form
of properties that can be used for future testing and debugging sessions.

To be applicable, a property need not fully specify a subject function, though I
do assume that test properties are correct assertions. We may trust some functions
involved in a property though we suspect others; most useful are properties where the
subject function is the only suspected part of the property.

A property is associated with a subject function and used to help judge computa-
tion statements about it as right or wrong. Depending on the characteristics of the
property, and on the outcome of property tests incorporating values from the com-
putation statement, we may potentially draw di�erent conclusions contributing to a
judgement.

When properties associated with the subject function of a computation statement
evaluate to True, if these properties together fully specify the subject function then
the statement can be judged right, or if the properties only partially specify the subject
function we can at least assist the user by con�rming properties that hold.

When a property associated with the subject function of a computation statement
evaluates to False, if the subject function in the property is not applied to any further
extent than recorded in the computation statement then the statement can be judged
wrong, or if the subject function is applied to a further extent we may �nd a simpler
computation tree for investigation. As a conservative check for application of a sub-
ject function within a recorded computation, we provide a type-generic mechanism to
constrain a function application to a speci�ed result value.

Recorded values in non-strict evaluated programs may contain unevaluated ex-
pressions. I reduce dependencies on unevaluated expressions by introducing a par-
allel equality operator that can be used as a drop-in replacement for normal equality
in a property. My de�nition for parallel equality is type-generic and automatically
derivable for user de�ned types. When a property still gives an inconclusive result,
randomly generated test-values can be used as substitutes for unevaluated subexpres-
sions. A counter-example may lead to a simpler computation tree for investigation.

137

A statement may (provisionally) be judged right if a property fully speci�es the state-
ment’s subject function and no counter-example can be found after testing has ex-
hausted some speci�ed resource.

Current strategies for algorithmic debugging focus on minimizing the total number
of questions. As we now have two oracles, the human programmer and test properties,
I propose new strategies for exploring the computation tree. To achieve the aim that
the human programmer judges fewer or simpler statements, these strategies may opt
to judge more statements in total.

I have implemented my method in a property-assisted extension of Hoed-pure. The
task of associating properties with subject functions and abstracting these functions
as property arguments is currently performed by hand; it is routine and could readily
be automated.

138

9
Case Studies

Here I present �ve case studies of defective programs:

1. A defective program with a higher order function

2. A defective solver of a chess puzzle

3. A defective pretty printer

4. A defective video game

5. A defective window manager

The �rst two cases studies are constructed programs and the �nal three studies are
existing programs. I locate the defect in case study 2, 3 and 5 using algorithmic de-
bugging with properties as oracle. In study 5 I use only the properties written by the
original developers.

9.1 A defective higher-order function

Listing 36 gives a library with a parity test and a higher order function for �ltering ele-
ments from a list (top-half of �gure), and properties and speci�cations of the functions
in the library (bottom-half). Using QuickCheck we �nd that spec_odds does not hold
and that spec_isEven does hold.

To �nd the location of the defect we might trace the evaluation of spec_odds ap-
plied to the counter example [3,4] (as found by QuickCheck), the computation tree
is given in Figure 58. Note how functional arguments are represented as a �nite map-
ping from argument to result. Higher order functions in computation trees are well

139

Listing 36 Top: a defective program for �ltering elements of a list based on parity.
The code contains a higher-order polymorphic function. Bottom: properties to test
the program and assist in locating the defect.

odds :: [Int] -> [Int]
odds xs = filter (not . isEven) xs

isEven :: Int -> Bool
isEven x = (x .&. 1) == 0

filter :: (a -> Bool) -> [a] -> [a]
filter pred [] = []
filter pred (x:xs)

| pred x = filter pred xs
| otherwise = x : filter pred xs

Bit 1 is 0 for even values

Defect: guards’ de�nitions
swapped

spec_odds xs x =
x ‘elem‘ xs ==> if odd_ref x then p else not p
where p = x ‘elem‘ (odds xs)

spec_isEven x = isEven x == even_ref x

even_ref x = (x ‘div‘ 2) * 2 == x

odd_ref x = not (even_ref x)

prop_filter_t p xs x =
x ‘elem‘ xs && p x ==> x ‘elem‘ (filter p xs)

prop_filter_f p xs x =
x ‘elem‘ xs && not (p x) ==>
not (x ‘elem‘ (filter p xs))

140

odds [3,4] = [4]) 8

isEven 3 = False 4

isEven 4 = True 4

filter {\3 -> True;
\4 -> False} [3,4] = [4] 8

filter {\4 -> False} [4] = [4] 8

filter _ [] = [] x
Figure 58: Computation tree with observed higher order function from Listing 36.

understood (Nilsson 1998; Wallace et al. 2001; Caballero, López-Fraguas and Rodríguez-
Artalejo 2001; Braßel and Siegel 2008; Chitil and Davie 2008). With the recorded func-
tional values and QuickCheck properties our tool judges the computation statements
(marked with 4 or 8 in Figure 58) and leaves only one last statement for the human
oracle to judge as right (marked with x) to locate the defect.

9.2 A defective n-queens problem solver

Here I discuss locating the defect in the solver from Section 8.1 of the the n-queens
problem, place n queens on an n×n board in such a way that no queen threatens any
other (by occupying the same row, column or diagonal), in more detail.

One property we expect of the function queens, intended to compute a list of so-
lutions, is that no solution has a row-number that occurs more than once. That is, for
all n the following function should evaluate to True:

prop_queens_sets n = all isSet (queens n)

The function isSet tests if every element in the list to which it is applied occurs exactly
once. Using QuickCheck (Claessen and Hughes 2000b), we get:

> quickCheck prop_queens_sets

*** Failed! Falsifiable: 4

When n= 4, the property does not hold for queens as de�ned in Listing 31. Indeed,
the �rst item in queens 4 is [1,1,1,1] — the incorrect solution of Figure 54 with all
queens in the bottom row. How do we use properties as oracle to �nd this defect?

141

properties as oracle human oracle
right wrong advice right wrong

Top-down 3 6 0 0 0
Divide-and-query 2 4 0 0 0

All-children 7 6 1∗ 0 0
Brute-force 11 8 5∗ 0 0

∗) Property produced advice but defect could be determined without actually consult-
ing the human oracle.
Figure 59: Computation statements that need to be judged to locate the defect in the
n-queens solver of Listing 31.

valid 2 4 = [1,1] : _ 8

4 valid 1 4 = [1] : _

4 extend 4 ([1] : _) = [1,1] : _

safe [1,1] = True 8

no_threat 1 [1] 1 = True 8

no_threat _ [] _ = True 4

Figure 60: A subtree of the full computation tree of queens 4. The statements with 4

are right and statements with 8 are wrong.

First we mark the functions de�ned in Listing 31 as suspected and we associate with
each function test properties that fully specify the function. We evaluate prop_queens_set
with the argument 4 that testing found as counter-example for the property. The com-
putation tree for this evaluation has 28 computation statements.

Details under the top-down strategy The debugger starts by considering the state-
ment at the root of the tree:

queens 4 = [1,1,1,1] : _

This is the same function for which prop_queens_sound detected a defect. So it is no
surprise that prop_queens_sound with a restricted subject function and 4 evaluates to

142

False: the statement is wrong. The debugger therefore selects a child of the current
statement to consider next:

valid 4 4 = [1,1,1,1] : _

With the arguments from this statement the property prop_valid_ sound with a re-
stricted subject function evaluates to False: another wrong statement. The debugger
goes a step deeper into the tree, next considering the following child of the current
statement:

valid 3 4 = [1,1,1] : _

Again the property prop_valid_ sound fails with a restricted subject function, as the
statement is wrong. A child of the current statement is:

valid 2 4 = [1,1] : _

One property can be used to judge many computation statements that show simi-
lar faulty behaviour. As before, testing prop_valid_ sound shows the statement is
wrong. The debugger selects the child statement:

valid 1 4 = [1] : _

This time prop_valid_sound evaluates to bottom with an restricted subject function.
Unrestricted, valid 1 4 evaluates to [[1], [2], [3], [4]] and textttprop_valid_sound
holds. The property prop_valid_complete is also associated with valid and to-
gether these two properties fully specify the function. The completeness property
takes a board as extra argument: on testing with a restricted subject function, the
property is found to hold for 100 test-case boards, and is provisionally judged right.

As this statement is judged right, the debugger returns to the parent statement in
the tree and considers another child of computation statement valid 2 4 = [1,1]

: _ :

extend 4 ([1] : _) = [1,1] : _

Property prop_extend_sound evaluates to True. On the other hand, property prop_extend_complete
is inconclusive, whether or not the subject function is restricted, as it demands the un-
evaluated expression in the argument. The debugger therefore generates values that
could complete the argument, and for all these completed argument values the prop-
erty is found to hold. Together the two properties fully specify extend, so the state-
ment is judged right. The debugger now tries the third child of the statement valid
2 4 = (1 : 1 : []) : _, which is:

143

safe [1,1] = True

Property spec_safe evaluates to Falsewith a restricted subject function. So the state-
ment is wrong and the debugger again steps a statement deeper into the tree:

no_threat 1 [1] 1 = True

Property spec_no_threat with restricted subject function evaluated to False: another
wrong statement, and the only child is:

no_threat _ [] _ = True

Here spec_no_threat evaluates to True. Indeed this statement is right. And with
that the debugger has located the defect. Figure 60 gives an overview of the last six
steps.

StrategyComparison We have seen how application of the top-down strategy, with
specifying properties as oracle, �nds the defect in our implementation of a solver for
the n-queens problem. Nine statements are judged automatically. No statement has to
be judged by a human oracle.

Figure 59 lists for each of the two conventional strategies, Top-down and Divide-
and-query, and for each of our two new strategies, All-children and Brute-force, how
many questions can be answered by properties as oracle and how many questions are
left for the human oracle to answer. All strategies �nd the defect without consulting
the human oracle. So the conventional strategies, designed with a single oracle in
mind, outperform the Brute-force and All-children strategies.

We conclude that evaluation of test properties as an oracle can indeed reduce, and
even eliminate, the work of the human oracle in the ideal situation where for each
suspected function we have properties that fully specify the function.

In practice, however, the available properties are unlikely to be so comprehensive.
They may not fully specify their subject functions. Some subject functions may not
even have any associated and applicable properties. Such observations are part of the
motivation for the next case study, involving a real-world Haskell program.

9.3 A defective pretty-printer

Within the implementation of Hoed-pure I used version 1.0 of the library FPretty (Olaf
Chitil 2012) to pretty-print computation statements over several lines with appropriate

144

Listing 37 Part of XMonad’s code with a defect.

data StackSet i l a sid sd =
StackSet { current :: !(Screen i l a sid sd)

, visible :: [Screen i l a sid sd]
, hidden :: [Workspace i l a]
, floating :: M.Map a RationalRect
}

data Screen i l a sid sd =
Screen { workspace :: !(Workspace i l a)

, screen :: !sid
, screenDetail :: !sd }

data Workspace i l a =
Workspace { tag :: !i

, layout :: l
, stack :: Maybe (Stack a) }

data Stack a = Stack { focus :: !a
, up :: [a]
, down :: [a] }

view :: i -> StackSet i l a s sd
-> StackSet i l a s sd

view i s
| i == currentTag s = s
| Just x <- List.find ((i==).tag.workspace)

(visible s)
= s { current = x, visible = current s

: List.deleteBy (equating screen) x
(visible s) }

| Just x <- List.find ((i==).tag) (hidden s)
= s { current = (current s) { workspace = x }

, hidden = workspace (current s)
: (hidden s) }

| otherwise = s

145

shiftWin (NonNegative 1) ’d’
(StackSet
(Screen (Workspace (NonNegative 2) _ (Just (Stack ’c’ [] "z")))
2 1)

((Screen (Workspace (NonNegative 0) _ (Just (Stack ’d’ [] [])))
1 -2)
: (Screen (Workspace (NonNegative 3) _ (Just (Stack ’v’ [] [])))

3 -1)
: (Screen (Workspace (NonNegative 4) _ (Just (Stack ’w’ [] "i")))

0 -2)
: [])

((Workspace (NonNegative 1) _ (Just (Stack ’n’ [] [])))
: (Workspace (NonNegative 0) _ Nothing)
: (Workspace (NonNegative 4) _ Nothing) : []) _)

= StackSet
(Screen (Workspace (NonNegative 2) _ (Just (Stack ’c’ [] "z")))
2 1)

((Screen (Workspace (NonNegative 0) _ Nothing) 1 -2)
: (Screen (Workspace (NonNegative 3) _ (Just (Stack ’v’ [] [])))

3 -1)
: (Screen (Workspace (NonNegative 4) _ (Just (Stack ’w’ [] "i")))

0 -2)
: [])
((Workspace (NonNegative 1) _ (Just (Stack ’d’ [] "n")))
: (Workspace (NonNegative 2) _ (Just (Stack ’c’ [] "z")))
: (Workspace (NonNegative 1) _ (Just (Stack ’n’ [] [])))
: (Workspace (NonNegative 0) _ Nothing)
: (Workspace (NonNegative 4) _ Nothing) : []) _

Figure 61: Some questions can be di�cult to answer for the programmer. The answer
to this question is wrong because WorkSpace with tag 1 (in bold) occurs once in the
argument but twice in result.

146

insertUp ’d’
(StackSet (Screen
(Workspace (NonNegative 1) _ (Just (Stack ’n’ [] []))) 2 1)
((Screen (Workspace (NonNegative 0) _ Nothing) 1 -2)
: (Screen (Workspace (NonNegative 3) _ (Just (Stack ’v’ [] []
))) 3 -1)

: (Screen (Workspace (NonNegative 4) _ (Just (Stack ’w’ []
"i"))) 0 -2)

: [])
((Workspace (NonNegative 2) _ (Just (Stack ’c’ [] "z")))
: (Workspace (NonNegative 1) _ (Just (Stack ’n’ [] [])))
: (Workspace (NonNegative 0) _ Nothing)
: (Workspace (NonNegative 4) _ Nothing) : []) _)

= StackSet (Screen
(Workspace (NonNegative 1) _ (Just (Stack ’d’ [] "n"))) 2 1)

((Screen (Workspace (NonNegative 0) _ Nothing) 1 -2)
: (Screen (Workspace (NonNegative 3) _ (Just (Stack ’v’ [] [])))
3 -1)

: (Screen (Workspace (NonNegative 4) _ (Just (Stack ’w’ [] "i")))
0 -2)

: [])
((Workspace (NonNegative 2) _ (Just (Stack ’c’ [] "z")))
: (Workspace (NonNegative 1) _ (Just (Stack ’n’ [] [])))
: (Workspace (NonNegative 0) _ Nothing)
: (Workspace (NonNegative 4) _ Nothing) : []) _

Figure 62: Some questions can be di�cult to answer for the programmer. The answer
to this question is right: the �rst argument inserted in the current stack (in bold) and
StackSet is unchanged otherwise. Although there are two WorkSpaces with tag 1 in
the resulting StackSet, the statement is not wrong because the two WorkSpaces also
occur in the second argument.

147

view (NonNegative 1)
(StackSet
(Screen (Workspace (NonNegative 2) _ (Just (Stack ’c’ [] z̈)̈))

2 1)
((Screen (Workspace (NonNegative 0) _ Nothing) 1 -2)
: (Screen (Workspace (NonNegative 3) _ (Just (Stack ’v’ [] [])))
3 -1)

: (Screen (Workspace (NonNegative 4) _ (Just (Stack ’w’ [] ï)̈))
0 -2)

: []
)
((Workspace (NonNegative 1) _ (Just (Stack ’n’ [] [])))
: (Workspace (NonNegative 0) _ Nothing)
: (Workspace (NonNegative 4) _ Nothing) : []

) _)
= StackSet
(
¯
Screen (Workspace (NonNegative 1) _ (Just (Stack ’n’ [] []))) 2 1)

((Screen (Workspace (NonNegative 0) _ Nothing) 1 -2)
: (Screen (Workspace (NonNegative 3) _ (Just (Stack ’v’ [] []))) 3 -1)
: (Screen (Workspace (NonNegative 4) _ (Just (Stack ’w’ [] "i"))) 0 -2)
: []

)
((Workspace (NonNegative 2) _ (Just (Stack ’c’ [] "z")))
: (Workspace (NonNegative 1) _ (Just (Stack ’n’ [] [])))
: (Workspace (NonNegative 0) _ Nothing)
: (Workspace (NonNegative 4) _ Nothing) : [])
_

Figure 63: Some questions can be di�cult to answer for the programmer. The answer
to this question is wrong because WorkSpace with tag 1 (in bold) occurs once in the
argument but twice in result.

148

Listing 38 Some of XMonad’s properties.

prop_shift_win_I (n :: NonNegative Int)
(w :: Char) (x :: T) =

n ‘tagMember‘ x && w ‘member‘ x
==> invariant $ shiftWin (fromIntegral n) w x

prop_view_I (n :: NonNegative Int) (x :: T) =
invariant $ view (fromIntegral n) x

invariant (s :: T) = nub ws == ws
where
ws = concat [focus t : up t ++ down t

| w <- workspace (current s)
: map workspace (visible s)
++ hidden s

, t <- maybeToList (stack w)]

indentation. I noticed that the library sometimes indents more than I expected and
investigated with Hoed-pure.

FPretty is a small library with just 12 functions. Because most of them are higher-
order functions that take other higher-order functions as arguments, it was non-trivial
to understand what each function should do. I annotated all 12 top-level functions
in the library. Then I pretty-printed an example, during which 15327 events were
collected. These events translated to 65 computation statements which Hoed-pure
organised in a computation tree with 65 edges and branch factor 1.8. I found the defect
after judging 11 statements. After I found the defect, I proposed a �x which is included
in FPretty 1.1.

With Hoed-cc the 65 computation statements are organised in a tree with 7 nodes,
9 edges and branch factor 3.0. After judging 65 statements the defect was found in a
node with computation statements of the defective function and three other functions.

9.4 A video game

The game Raincat (Game Creation Society, Carnegie Mellon 2014) consists of approx-
imately 2500 lines of Haskell code and uses libraries such as OpenGL that are not
written in Haskell. Raincat cannot easily be traced with the Haskell tracer Hat.

149

The user of Raincat can use the mouse cursor to click on rectangular buttons. When
the user of Raincat clicks somewhere the coordinates of the mouse cursor are compared
to the position and size of the buttons to check whether a button is clicked. This check
is performed by a function pointInRect. I introduced a defect in this function such
that many of the user’s clicks on a button are incorrectly rejected (see Listing 39).

While my debugger is most useful on pure computations, it proved no problem for
Hoed-cc or Hoed-pure to generate a computation tree for a program that also contained
IO.

Because Raincat is an interactive game, its trace is di�erent for every run. Some
parts of the code are executed when a timer times-out or when the cursor is moved.
Hence I cannot compare debugging sessions in detail. To reduce the size of the com-
putation tree, and hence the amount of questions that need to be judged, it proved
worthwhile to perform a scenario that makes Raincat to misbehave and to immedi-
ately terminate the program after the unexpected behaviour is observed.

Listing 39 Defective function from Raincat to determine if a point is inside a rectangle.

pointInRect (x, y) (Rect x’ y’ w h) =
x >= x’ && x <= (x’ + w) && y <= y’ && y >= (y’ + h)

Comparison only matches when y = y′

because comparison operators (<=) and
(>=) are swapped.

9.5 A defective window manager

XMonad1 is a dynamically tiling X11 window manager written in Haskell. Our discus-
sion here is based on version 0.11.1 of XMonad, which has a core of around 1300 lines
of code. As property-based testing was used during the development of XMonad, the
code comes with 112 already-de�ned properties (not included in the core line-count).
Listing 38 gives some examples of these properties.

XMonad organizes windows in a stack. A stack with a tag is a workspace. XMonad
can manage one or more screens, each screen has a unique id and can display one
workspace at a time. All screens and the current active workspace are organized in
a stack set. There can be more workspaces than screens, and the workspaces that are

1http://xmonad.org

150

http://xmonad.org

not visible on a screen are hidden. (The user presses the alt-button together with one
of the numbers 0-9 to select which of the workspaces to display on the current screen
— a feature is also referred to as virtual desktops). The top half of Listing 37 shows the
data types used in XMonad to represent these abstractions.

Introducing a defect Listing 37 also shows the de�nition of the function view, the
only part of the code we changed. The view function is applied to an identi�er i and a
Stackset s. The intention is that the function �nds the Workspace whose identi�er
is equal to i and sets that Workspace in focus. This is implemented as follows. The
�rst guard checks if the current workspace has identi�er i, in which case we can just
return s as it is. The second guard checks if a workspace with identi�er i is already
shown on one of the screens, in which case the screen with that workspace is made the
current screen. The third guard checks if one of the hidden workspaces (say workspace
x) has identi�er i, in which case x is set as the workspace of the current screen. The
underlined expression in this part of the de�nition is where we introduced a defect:
the previously current workspace is now also hidden, but we forget to remove x from
the set of hidden workspaces. The �nal guard covers the case where the user tries to
switch to a workspace that does not exist.

Detecting and locating the defect We take the role of a programmer who notices
that windows sometime appear twice on their screen. Our �rst step is to run XMonad’s
extensive property-based test-suite. Testing �nds counter-examples for no less than 20
properties!

151

• prop_shift_win_I

• prop_shift_I

• prop_swap_right_I

• prop_swap_left_I

• prop_swap_master_I

• prop_delete_local

• prop_delete_insert

• prop_delete_I

• prop_insertUp_I

• prop_greedyView_

reversible

• prop_view_greedyView_I

• prop_view_local

• prop_view_reversible

• prop_view_I

• prop_invariant

• prop_focus_I

• prop_focusDown_I

• prop_focusMaster_I

• prop_focusUp_I

• prop_ensure

These failing properties give us some indication of where the defect is likely to be
—in something that shifting, swapping and focussing a window have in common— but
they do not tell us exactly where the defect is.

We arbitrarily pick the failing property prop_shift_win_I, and its counterexam-
ple, to trace and debug.

I annotated the 9 functions in the code related to the failing property and Hoed-
pure generated a computation tree with 12 nodes (the arti�cial root node and a node
for each computation statement), 11 edges and a branch factor, the average number
of children of non-leaf nodes, of 2.2. The 11 statements describe three applications of
findTag, one application of insertUp, two applications of member, one application
of shiftWin and four applications of view. The statement of Figure 61 is at the root
of the recorded computation tree.

Hoed-cc also generated 11 computation statements but organised in a tree with
7 nodes (an arti�cial root node, four nodes with one statement, a statement with 3
applications of view and a node with two applications of member, an application of
insertUp and an application of shiftWin), 7 edges and branch factor 2.33. Because
the defect was not in one of the nodes with multiple statements the precision with
Hoed-cc is in this case the same as with Hoed-pure.

Properties suitable for algorithmic debugging are provided by the XMonad authors

152

for all but the member function: this function only occurs in properties that also con-
tain other suspected functions. None of the functions is speci�ed completely by their
properties.

Details under the top-down strategy Figure 65 shows part of the recorded com-
putation tree. Top-down debugging considers the statement at the root �rst, and by
evaluating prop_shift_win_I we determine that this statement is wrong. The next
statement is an application of insertUp. The properties we have for this statement do
not fully specify the function. Therefore the human oracle is needed to con�rm that
the statement is right. The �nal statement we consider with the top-down strategy
is an application of view. Using property prop_view_I (see Listing 38) the debugger
determines that this statement is wrong, and because the statement has no children
the defect is located in view.

Strategy Comparison We have seen that using the top-down strategy we �nd the
defect after judging just three statements, for one of which the human oracle is con-
sulted.

Figure 66 lists for each of four strategies the number of judgements made using
properties as oracle, and the number requiring a human oracle, before the defect in
XMonad is located. Although the All-children and Brute-force strategies both require
more statements to be judged than the usual human-oracle strategies, they each locate
the defect without needing to consult the human programmer.

We compared for the deliberately introduced defect described above, and for �ve
more defects introduced in other functions, how many statements have to be judged to
locate the defect (Figure 64). The best strategy is one that consults the human oracle
least. If several strategies require the same number of human judgements, then the
best is one that requires the smallest number of judgements by properties as oracle.
By these criteria, for four cases in Figure 66 the All-children and Divide-and-query
strategies are equally good.

As we explained in Section 8.3.2, when a statement is right but the subject func-
tion’s properties do not fully specify it, successful property tests cannot give a conclu-
sive judgement. Using a conventional top-down strategy, the only option may be to
consult the human oracle. However, the All-children and Brute-force strategies queue
statements. Often statements in the queue do not have to be considered at all, because
there is a chain of wrong statements from the root of the computation tree leading to
the defective statement.

Suppose a parent statement is wrong and has n children, of which one is wrong

153

de
fe

ct
op

tim
al

pr
op

er
tie

sa
so

ra
cl

e
hu

m
an

or
ac

le
st

ar
tin

g
po

in
t

lo
ca

tio
n

st
ra

te
gy

rig
ht

w
ro

ng
ad

vi
ce

rig
ht

w
ro

ng
p
r
o
p
_
s
h
i
f
t
_
w
i
n
_
I

v
i
e
w

A
ll-

ch
ild

re
n

0
3

4
0

0
p
r
o
p
_
g
r
e
e
d
y
V
i
e
w
_
l
o
c
a
l

g
r
e
e
d
y
V
i
e
w

D
iv

id
e-

an
d-

qu
er

y
0

1
0

0
0

p
r
o
p
_
a
l
l
W
i
n
d
o
w
s
M
e
m
b
e
r

m
e
m
b
e
r

D
iv

id
e-

an
d-

qu
er

y
0

1
0

1
0

p
r
o
p
_
a
l
l
W
i
n
d
o
w
s
M
e
m
b
e
r

f
i
n
d
T
a
g

D
iv

id
e-

an
d-

qu
er

y
0

2
0

0
0

p
r
o
p
_
i
n
s
e
r
t
U
p
_
I

f
i
n
d
T
a
g

D
iv

id
e-

an
d-

qu
er

y
0

3
0

0
0

p
r
o
p
_
s
w
a
p
_
a
l
l
_
r

r
e
v
e
r
s
e
S
t
a
c
k

D
iv

id
e-

an
d-

qu
er

y
0

1
0

0
1

Fi
gu

re
64

:C
om

pu
ta

tio
n

st
at

em
en

ts
th

at
ne

ed
to

be
ju

dg
ed

to
lo

ca
te

a
de

fe
ct

in
ea

ch
of

six
fa

ul
ts

in
tro

du
ce

d
in

XM
on

ad
.

154

shiftWin . . . (Figure 61) 8

insertUp . . . (Figure 62) 4

view . . . (Figure 63) 8

. . . (4 more)

Figure 65: A subtree of the the computation tree recorded evaluating XMonad’s prop-
erty prop_shift_win_I applied to a counter-example.

properties as oracle human oracle
right wrong advice right wrong

Top-down 0 2 0 1 0
Divide-and-query 0 2 0 1 0

All-children 0 3 4∗ 0 0
Brute-force 0 3 6∗ 0 0

∗) Property produced advice but defect could be determined without actually consult-
ing the human oracle.
Figure 66: Computation statements that need to be judged before locating the defect
in XMonad.

155

and n−1 are right. If all properties are partial speci�cations, then using the Top-down
strategy the human oracle may be consulted up to n−1 times before the properties as
oracle �nally judge the nth child wrong. But using a strategy that places the children
in a queue, properties as oracle may �nd that the nth child is wrong without consulting
the human oracle, and then the other children can be removed from the queue.

9.6 Summary

Comparison of the trees of Hoed-cc and Hoed-pure in case studies con�rmed that a
tree purily generated from the value observation trace requires fewer answers from
the oracle compared to a tree generated with cost centre stacks. In one case I also
found that the Hoed-cc tree gives a less precise defect location compared to algorithmic
debugging with the Hoed-pure tree.

I compared conventional algorithmic debugging strategies with the two new strate-
gies from Section 8.8 that queue statements for which properties as oracle is inconclu-
sive. Conventional strategies ask the oracles fewer questions in total and therefore
perform best in the ideal case where our properties fully specify their subject function.
With properties that partially specify their subject function, such as those for XMonad,
a strategy that queues questions for which properties as oracle do not have a conclu-
sive answer asks the oracles more questions in total, but fewer questions have to be
answered by the human oracle.

In our case studies properties as oracle, combined with the right strategy, judged
enough statements to locate the defect. Consulting the human oracle was not neces-
sary. Our methods can indeed make test properties suitable as an oracle for algorithmic
debugging. In this way, algorithmic debugging can be applied to some programs for
which a human oracle alone would be overwhelmed by the size or number of questions.

156

10
Related work

Methods for locating the defect in a misbehaving program’s code are studied by re-
searchers for decades because defective programs cause all kinds of problems and lead
to huge economic costs for society (Tassey 2002). Zeller (2009) gives an overview of
many debugging techniques across di�erent paradigmes. Throughout this thesis I also
use Zeller’s terminology of defect, infection and failure.

Here I give an overview of the work most closely related to mine. I focus on al-
goritmic debugging, computation tree construction for algorithmic debugging of lazy
functional programs and debugging methods of lazy functional programs in general.
I also discuss pro�ling, used in my computation tree construction method with cost
centre stacks, and generic programming frameworks which can be used to implement
my type-generic de�nition for value observation tracing.

10.1 Kinds of defects

Gerhart and Yelowitz (1976) divide defects in three classes: a defective speci�cation, a
defectively constructed program and a defect in a program’s correctness proof.

The speci�cation should express unambiguously and completely what the require-
ments of the program are. A common error in the speci�cation is failure to be complete.
When parts of the input or output are split in separate sets it is easy to not cover the
whole domain or range. Other defects are the use of terms with an implicit under-
standing, and slips in the translation from concepts to formal speci�cation.

Program construction is the implementation of a program that satis�es the require-
ments. Defects result from the assumptions and informal reasoning inherent to the

157

nature of writing code. Shapiro (1983) lists incorrect output, missing output and non-
termination as the three symptoms of an error in the implementation of a program.

Proving is the use of mathematical systems to show that the implemented program
is correct according its speci�cation. The most common error in proving is failing to
de�ne what should be proved in order to guarantee correctness. Skipping steps in the
proof, or using an approach that is too informal are other causes for defects.

Shapiro (1983, Section 1.3.1) concludes that “a program can be proven correct for-
mally only with respect to another formal description of its intended behaviour, [prov-
ing] does not solve the problem of program debugging, but simply reduces it to the
problem of debugging speci�cations"

10.2 Algorithmic debugging

Shapiro (1983) invented the algorithmic debugging method for �nding defects in Prolog
programs. Shapiro’s method records applications of �rst order functions and their
results in a computation tree. He uses the human programmer as oracle to judge the
statements in the tree. Later work generalized algorithmic debugging to deal with
concepts such as higher-order functions, laziness and loops.

10.2.1 Computation tree tracing for Haskell

The algorithmic debuggers Freja (Nilsson and Sparud 1997; Nilsson 1998), Hat (Wal-
lace et al. 2001) and Buddha (Pope 2006) use di�erent but complex implementations to
obtain a computation tree for a Haskell execution.

Freja (Nilsson and Fritzson 1992; Nilsson and Sparud 1997; Nilsson 1998) is the �rst
algorithmic debugger for a substantial subset of Haskell. Freja is a complete compiler
and uses an instrumented runtime system to construct the computation tree. The sys-
tem handles CAFs and provides many features for making algorithmic debugging easy
to use. The compiler front-end ensures that all information about the source code that
is required for algorithmic debugging is passed to the back-end. Adding a language
feature would require extending many of the compiler passes and the runtime system.

Hat (Sparud and Runciman 1997; Wallace et al. 2001; Chitil, Runciman and Wallace
2003) is a set of tools for tracing Haskell 98 programs. The tracing tool transforms a
Haskell program into another Haskell program that, when executed, writes a detailed
trace into a �le in addition to performing the same computation as the original pro-
gram. The trace includes a computation tree plus additional information. Hat provides
many viewing tools for exploring a trace, one of which is an algorithmic debugger.

158

Chitil, Runciman and Wallace (2001) compare an old version of Hat with Freja and
HOOD. Like Freja, Hat supports trusting a module. Computations of a trusted mod-
ule are not traced and hence do not appear in the computation tree. However, trusted
modules still have to be transformed by the tracing tool and hence can use only sup-
ported language features. Adding a language feature to Hat would require extending
the source-to-source transformation tool.

Buddha (Pope 2005, 2006) is another algorithmic debugger for Haskell. Like Hat,
Buddha is also based on program transformation. The trace is a computation tree. The
transformation is di�erent from Hat and the resulting program uses a primitive for
observing an expression of any type without forcing its evaluation. That primitive
was implemented in the Glasgow Haskell compiler. Buddha is the �rst algorithmic
debugger that provides an extensional representation of functional values, that is a
�nite map from argument to result values. Adding a language feature would require
extending the source-to-source transformation and possibly the primitive.

10.2.2 Computation tree tracing for other languages

Shapiro constructed computation trees for the logic language Prolog (Shapiro 1983).
Algorithmic debugging has since been applied to many other languages; I give a few
notable examples.

Fritzon et al. generalized computation tree tracing to languages with side e�ects
(Fritzson et al. 1992). An algorithmic debugger with a framework to record side-e�ects
in the computation tree is for example available for Java (Caballero, Hermanns and
Kuchen 2007; Cabrera and Silva 2010). Tail call optimization is forbidden and higher
order functions are not supported.

Cabrera (2016) de�ned several techniques to make algorithmic debugging more
suitable for imperative programs by converting loops into recursive function calls. He
proposes a new method of searching the computation tree that asks the oracle fewer
questions. Cabrera also proposes a hybrid technique for that combines traditional step-
wise debugging for imperative programs with algorithmic debugging.

Algorithmic debugging is also applied to strict functional languages such as Erlang
(Caballero et al. 2014). The implementation is complex and uses a speci�c run-time
system to transform all code, including libraries, during evaluation of the program.

10.2.3 Display of functional values

Davie and Chitil (2006a) list three ways of displaying a functional value:

159

First of all, the name of a function as used in the function de�nition. Note that
many languages allow function de�nition without a name, the anonymous or lambda
function.

Secondly, as a �nite map of argument-result values as used before by Gill (2000) in
HOOD and by Pope (2006) in his algorithmic debugger Buddha.

Finally, as the function body. An hybrid approach is imaginable where, depending
on the situation, one of these three methods is chosen.

Furthermore Pope and Naish (2002) discuss displaying partial application. For ex-
ample the list of functional values returned by map (+) [1,2] could be shown as the
function name followed by the value given as �rst argument: [(+) 1, (+) 2].

10.2.4 Automated oracles

Papers on algorithmic debugging tend to focus on the construction and soundness of
computation trees. The possibility in principle of using an automated oracle may be
mentioned, but it is rarely investigated in practice. Actual implementations of algo-
rithmic debuggers rely on a human oracle.

Drabent and Nadjm-tehrani (Drabent and Nadjm-Tehrani 1989) describe an algo-
rithmic debugger for Prolog where the user can next to right/wrong also respond with
an assertion (property). An assertion is also just Prolog and can contain calls to trusted
library functions. Assertions are parametrised by recorded (�rst order) inputs and out-
puts. However, for many computation statements in non-strict functional programs
these assertions are not powerful enough to derive a judgement (even when we do not
consider unevaluated expressions, a function as argument can easily lead to evaluating
parts of the code that were not part of the traced computation).

Fritzson, Auguston and Shahmehri (1994) de�ne a speci�c language to de�ne prop-
erties in that describe the desired behaviour of statements with side-e�ects in imper-
ative languages.

Claessen et al. (2003) �nd that detecting a failure (and thus the existence of a defect
in the code) with property-based testing and �nding the defect with tracing play well
together. Interaction with the trace uses a human oracle.

Tamarit et al. (2016) keep a database of computation statements and their judge-
ment collected during debugging sessions of defective Erlang programs. Erlang is a
strict functional language, hence the values in the statements are always fully evalu-
ated. The statements can both be used to answer questions in future debugging ses-
sions and for unit testing.

An alternative approach to defect location is based on the idea of annotating a

160

function with a contract, that is the function’s pre and post conditions (Findler and
Felleisen 2002; Chitil 2012). To locate a defect contracts need to be full speci�cations
and all suspected functions must be annotated. There is no hybrid approach that com-
bines contracts with judgements from a human oracle.

Lazy SmallCheck (Runciman, Naylor and Lindblad 2008) also de�nes parallel logical-
operators for use in properties but the library does not de�ne a parallel equivalence
method.

10.3 Other debugging methods

Many other methods for �nding defects in lazy functional programs have been ex-
plored. Here I give an incomplete overview of approaches most closely related to mine.

10.3.1 Walking backward

Sparud and Runciman (1997) describes how to use a redex trail to start from a function
application that resulted in an exception. We start from the redex whose reduction
resulted in the exception. The redex consists of a function and one or more arguments
which are the result of reduction of another redex: the dependencies of the current
redex. The user repeatedly selects dependencies until the location of the bug in their
code is revealed. Hat’s augmented redex trails can be walked in similar fashion with
hat-trail Wallace et al. (2001).

10.3.2 Generating redex trails with Hat

Computation based on graph reduction is achieved by repeatedly replacing one sub-
graph by another. At each step a redex is replaced by its reduct, parts no longer at-
tached to the main graph are normally discarded.

Sparud and Runciman (1997, 1998) describe a system to generate an acyclic graph
with the history of redex reductions called the redex trail. The redex trail is constructed
by adding a link from each newly created node of the graph made to its parent redex.
Old redexes stay connected and are not discarded. As a result the computation con-
structs its own trace.

This behaviour is achieved with a source to source transformation combined with
a library. Some non-standard unsafe functions are used to trace, and some Haskell
extensions are used to connect to the trace after termination (Chitil, Runciman and
Wallace 2001).

161

Every value is wrapped in a special data type containing the original value and a
trace for that value. The wrapping requires that either the whole program is annotated,
or that values around trusted code are (un)wrapped appropriately. The wrapping and
unwrapping can have the consequence that the relation between two reduced redexes
of traced functions that are in each others lexical scope is not made. For example,
assume annotated function de�nition f x = h g xwith trusted higher order function
h and annotated function g. No connection between the g-part of the redex trail and
the f-part of the redex trail is made.

Lacking these connections would break most of the Hat viewers. Therefore Hat
does annotate trusted code in such a way that reductions of redexes originating from
the trusted code are not traced, but connections between traced reductions are made.

Shackell and Runciman (2005) investigate generating redex trails by modifying the
underlying abstract machine instead of transforming the source. The goal of this ap-
proach is to make tracing faster. Their work looks promising but the paper lacks detail
and to my knowledge no further research into this subject has been published.

The redex trail contains most of the information needed to construct an evaluation
dependency tree (Chitil, Runciman and Wallace 2001). Wallace et al. (2001) extended
Hat to generate an augmented redex trail that contains the information of the redex
trails plus the information required to derive an evaluation dependence tree. The aug-
mented redex trail is written to �le and can be viewed in a number of di�erent ways.

10.3.3 List of observations

Sinclair (1992) proposed debugging programs by observing the data �ow: tracing in-
termediate values between functions. How the observing is to be done is not speci�ed
in this paper. GHC and most other Haskell compilers come with the trace function
which allows users to print strings from otherwise pure functions. Careless use of
trace however can change the order of evaluation.

HOOD is a library to trace the evaluated part of intermediate data structures (Gill
2000). With HOOD’s observe function a list of values at an annotated point in the
code can be obtained. With Hat a similar list can be extracted from the redex trail.
This method does not guide the programmer to the bug in their program: they have
the freedom to annotate their code where insight into intermediate values is required.
Chitil, Runciman and Wallace (2001) suggest to apply a top-down strategy in case a
wrong result is produced, and a bottom-up strategy when a program fails with a mes-
sage that reveals the position.

Hugs keeps a type-representation of all values during runtime. HugsHood allows

162

observation all values through type re�ection and the user of HugsHood does not need
to write instances of Observable to observe values of a user-de�ned type (Jones et al.
2004). Most other Haskell compilers do not provide run-time type information. It
would therefore be hard to implement the Hugs debugging primitives in these com-
pilers (Braßel et al. 2004). HugsHood extends Hood with an interesting “breakpoint”
feature that shows the development of traces over time.

GHood extends HOOD with a graphical representation of the trace showing devel-
opment over time (Reinke 2001).

COOSy is an adaptation of HOOD for the functional logic language Curry. COOSy’s
observe function takes a type description, somewhat similar to the list of types we
specify in our Partial Observe from Template approach. Partly this was done because
Curry lacks a class system, but like our extension it also enables the user to specify per
observation up to which type to observe (Braßel et al. 2004). However, unlike COOSy,
we also allow to observe into a polymorphic value, at the cost of needing to add a class
predicate to the type signature of the value under observation.

10.3.4 Breakpoint-style debugging

An alternative to tracing is an interactive breakpoint-style debugger (Marlow et al.
2007). An interactive debugger is attractive, because its implementation is relative
straightforward. Traced code in which breakpoints can be set and other code can be
combined. However, exposure to evaluation order can be confusing. Furthermore, the
debugger changes the behaviour of the program when the user requests to see the
value of an otherwise unevaluated expression.

10.4 Pro�ling

Sansom and Peyton Jones (1997) associate cost centres with expressions in Haskell and
attribute cost of evaluating an expression to its cost centre. Soundness of the semantics
for cost centres is proven. Later Morgan and Jarvis (1998) the idea of cost centres is
generalized to a stack of cost centres

To minimise overhead of pro�ling, GHC does not record complete stacks but com-
presses stacks by truncating on recursion. Compressed stacks provide less information
forcing us to approximate dependencies. Allwood, Peyton Jones and Eisenbach (2009)
suggest an alternative scheme of stack compression that maintains linear space over-
head while providing greater precision by telling us where labels are dropped.

163

The cost centre stack idea is further re�ned and implemented in GHC, soundness
of the semantics of the GHC implementation is veri�ed with QuickCheck by Marlow
(2012). He presents a Launchbury based semantics and veri�es with QuickCheck that
inlining non-recursive functions does not a�ect the stack.

The GHC pro�ler uses cost centre stacks to attribute time and space to annotated
expressions. Libraries are generally shipped already with a version compiled for pro-
�ling.

10.5 Generic programming frameworks

Hinze, Jeuring and Löh (2007) did a broad comparison of approaches to generic pro-
gramming, and Rodriguez et al. (2008) de�ned a generic programming benchmark to
compare 9 generic programming libraries Both were valuable sources of information
writing this thesis.

Scrap Your Boilerplate allows querying and mapping over the components of a
value (Lämmel and Peyton Jones 2003).

The Scrap Your Boilerplate With Class approach and the Smash Your Boilerplate
variant are similar to SYB but introduce a dictionary-approach to add new methods to
the Data class. (Lämmel and Peyton Jones 2005; Kiselyov 2006).

The Uniplate and Strafunsky libraries are variations on SYB o�ering di�erent in-
terfaces but neither allows mapping over more types compared to SYB (Mitchell and
Runciman 2007; Lämmel and Visser 2001).

The Generic Deriving Mechanism (Magalhães et al. 2010) manipulates a value through
its product-sum representation (in my implementation Hoed I implement the type-
generic de�nition of Chapter ?? with the Generic Deriving Mechanism).

Macro-like expansion are possible with the meta-language Template Haskell (Sheard
and Peyton Jones 2002).

The Generics for the Masses approach is captured completely in Haskell 98. A class
is used that the user has to adapt for each new type. This approach is therefore not
suitable to implement a type generic method (Hinze 2004; Lämmel and Peyton Jones
2005). Later work addressed this problem at the cost of introducing boilerplate code
that was not in the original approach (Oliveira, Hinze and Löh 2006).

Hinze and Löh (2006) introduces the Lifted Spine View as a generalization of the
SYB approach. Next to data constructors, with this view also type constructors can
be represented. Unlike TH we cannot infer if a type is of a certain class, or if a type
variable has a class predicate. To my knowledge, there is no working implementation
of this approach.

164

PolyP is an extension to Haskell allowing the de�nition of type generic functions
over types of kind * and over higher kinded types as long as the types do not contain
function spaces (Jansson and Jeuring 1997).

DrIFT allows the programmer to add directives to the program which create code
from rules de�ned in a separate �le (Winstanley and Meacham 2008). DrIFT’s direc-
tives are comparable to splicing in TH, and its rules are comparable to the templates
of TH. DrIFT is not as powerful as TH: data types with higher kinded type variables
(e.g. Tree a) are not handled (Hinze, Jeuring and Löh 2007).

165

11
Summary and conclusion

A computation tree is a key means for understanding how a program works, or why it
does not work. A computation tree can be explored freely, or an algorithmic debugger
can be used to systematically traverse a computation tree and �nd the location of a
defect. I have presented two new lightweights method for generating a computation
tree. The implementation supports all of Haskell and requires minimal maintance in
case of future language extension.

My �rst methods constructs a computation tree for algorithmic debugging that
needs only local annotations and GHC’s pro�ling run-time system. Already when
Marlow (2012) revisited trace stacks, he was aiming to use them for time and space
pro�ling, coverage analysis and traditional debugging. Now my method provides in-
sight into the relationship between computation trees and pro�ling.

However there is also room for improvement: surplus dependencies can lead the
algorithmic debugger to asking unnecessary questions or to a sound but inaccurate
conclusion. Furthermore, not all run-time environments support the cost centre stack
extension.

Starting point of the second method is my formal de�nition of the value obser-
vation trace generated by the original HOOD library. The de�nition enables us to
see the existence of request-response spans in traces and realise how their nesting
determines the structure of a computation tree. The order of events in the trace re-
�ects the evaluation order, but the computation tree has a structure independent of
evaluation order and re�ects the program structure instead. Our tracing semantics is
speci�c to lazy evaluation, but our idea of observing values by simple instrumentation
by a library and transforming the resulting trace into a computation tree is indepen-
dent of evaluation order and applicable to many programming languages. Negative

166

request-response spans are not only required for lazy evaluation but also call-by-value
languages can bene�t from the method for relating function calls in the presence of
higher-order functions.

The algorithmic debugging technique breaks down when the human oracle be-
comes overwhelmed by the size and number of computation statements. I have pre-
sented a new semi-automated method for defect location in functional programs, based
on algorithmic debugging and property-based testing. It has often been suggested that
a reference program or formal speci�cation could be used as oracle in algorithmic de-
bugging, but to my knowledge no previous work explains how either of these can be
used soundly when the traced program is evaluated lazily. My method re-uses proper-
ties to answer automatically some of the questions arising during algorithmic debug-
ging, and to replace others by simpler questions.

Properties may already be present in the code for testing; the programmer can
also encode a speci�cation or reference implementation as a property, or add a new
property in response to a statement they are asked to judge. Properties that are added
during a debugging session may be used again for further testing in the future.

I implemented all these techniques in the tracer and algorithmic debugger Hoed
for Haskell. Case studies with defective programs from open-source projects show
that Hoed makes algorithmic debugging useable for a much wider range of Haskell
programs. Hoed is available for download from

http://hackage.haskell.org/package/Hoed

In conclusion, my contribution makes algorithmic debugging applicable to more
programs because an implementation of my computation tree tracing method is less
complex than existing methods. Furthermore, adding support for new language fea-
tures is expected to require less e�ort compared to adding support to existing com-
putation tree tracing approaches. Using test-properties as oracle I made algorithmic
debugging scale to large and complex programs

167

http://hackage.haskell.org/package/Hoed

12
Further work

My computation tree tracing method is implemented in a library with annotations for
suspected functions. Adding an annotation to a function is a mechanical process and
could be automated. I discussed di�erent methods of dealing with constants and their
dependencies, future work may explore which method is best.

In some cases the programmer does not want to give a right/wrong judgement but
for example investigate where the value a function is applied to comes from. Future
work may explore producing Hat-like traces based on value observation. A �rst step
into this direction is already made (Chitil, Faddegon and Runciman 2016).

A programmer might �nd it di�cult to de�ne the right properties for their func-
tions. Research in this area has produced tools that help programmers to discover
properties of a correct function (Claessen, Smallbone and Hughes 2010; Braquehais
and Runciman 2016), future work may explore how the programmer can be assisted in
�nding properties of a (possibly) defective function.

In Chapter 5 I showed the relation between pro�ling and tracing and use pro�ling
information for constructing a computation tree. In Chapter 6 I show a less invasive
method for constructing a computation tree that requires no changes to the run-time
system. Pro�ling currently still requires a specialized run-time system, and it would be
worthwhile to investigate if also pro�ling can be implemented with a tracing library.

The pro�ling library could introduce additional additional cost events that are added
to the trace e.g. upon allocating memory. The algorithm from Listing 21 can be mod-
i�ed to assign the cost of a cost event to the stack of labels from the current node to
the root of tree. Consider for example the value observation trace with cost events 11,
15 and 17 in Figure 67. Cost A would be assigned to 〈plusOne, isOdd〉, cost B would
be assigned to 〈modTwo, isEven, isOdd〉, and cost C to 〈isEven, isOdd〉.

Alternatively an increasing cost (e.g. the number of clock-ticks since starting the

168

• 1: request result of isOdd t1
• 2: request result of isEven t2
• 3: request result of modTwo t3
◦ 4: request argument of modTwo t4
◦ 5: request argument of isEven t5
• 6: request result of plusOne t6
◦ 7: request argument of plusOne t7
◦ 8: request argument of isOdd t8
◦ 9: response argument of isOdd is 2 t9
◦ 10: response argument of plusOne is 2 t10

11: cost A
• 12: response result of plusOne is 3 t12
◦ 13: response argument of isEven is 3 t13
◦ 14: response argument of modTwo is 3 t14

15: cost B
• 16: response result of modTwo is 1 t16

17: cost C
• 18: response result of isEven is False t18
• 19: response result of isOdd is False t19
• 20: request result of isOdd t20

...
• 38: response result of isOdd is False t38

Figure 67: Trace with cost for prop_notBothOdd 2 from Listing 19 on page 76.

program) could be added to every event. Then the cost of a span is equal to the di�er-
ence between the recorded cost in the span’s request and result event. Cost could be
computed by subtracting cost of all nested spans and accumulated cost can be deter-
mined by subtracting the cost of spans nested in negative spans. Consider for example
the events 1-20 in value observation trace of Figure 67, ignoring the cost events. The
cost of isOdd is (t20 − t1) − (t18 − t2). Similarly, the accumulated cost for isOdd is
(t20 − t1)− (t9 − t8).

169

Bibliography

Allwood, T. O., Peyton Jones, S. and Eisenbach, S. (2009). Finding the needle: stack
traces for GHC. In Proceedings of the symposium on Haskell, pp. 129–140.

Augustsson, L. (1999). Partial evaluation in aircraft crew planning. In Partial Evalua-
tion, Springer, pp. 231–245.

Av-Ron, E. (1984). Top-down diagnosis of Prolog programs. Ph.D. thesis, Weizmann In-
stitute.

Barendregt, H. P. and Barendsen, E. (1984). Introduction to lambda calculus.

Beizer, B. (1990). Software testing techniques. Van Nostrand Reinhold.

Bird, R. and Wadler, P. (1988). Introduction to functional programming, vol. 1. Prentice
Hall New York.

Braquehais, R. and Runciman, C. (2016). Fitspec: Re�ning property sets for functional
testing. In Proceedings of the 9th International Symposium on Haskell, New York, NY,
USA: ACM, Haskell 2016, pp. 1–12.

Braßel, B. and Siegel, H. (2008). Debugging lazy functional programs by asking the
oracle. In Implementation and Application of Functional Languages, 19th International
Workshop, IFL 2007, Freiburg, Germany, September 27-29, 2007. Revised Selected Papers,
LNCS 5083, pp. 183–200.

Braßel, B. et al. (2004). Observing functional logic computations. In Practical Aspects of
Declarative Languages, Springer LNCS 3057.

170

Brehm, T. (2001). A toolkit for multi-view tracing of Haskell programs.

Caballero, R., Hermanns, C. and Kuchen, H. (2007). Algorithmic debugging of Java
programs. Electronic Notes in Theoretical Computer Science, 177, pp. 75–89.

Caballero, R., López-Fraguas, F. J. and Rodríguez-Artalejo, M. (2001). Theoretical foun-
dations for the declarative debugging of lazy functional logic programs. In Functional
and Logic Programming, LNCS 2024, pp. 170–184.

Caballero, R. et al. (2014). EDD: A Declarative Debugger for Sequential Erlang Pro-
grams. In Tools and Algorithms for the Construction and Analysis of Systems, Springer,
pp. 581–586.

Cabrera, D. I. (2016). Optimization Techniques for Algorithmic Debugging. Ph.D. thesis,
Universitat Politecnica de Valencia.

Cabrera, D. I. and Silva, J. (2010). An algorithmic debugger for Java. In Software Main-
tenance (ICSM), 2010 IEEE International Conference on, IEEE, pp. 1–6.

Chitil, O. (2005). Source-based trace exploration. In C. Grelck, F. Huch, G. J. Michaelson
and P. Trinder, eds., Implementation and Application of Functional Languages, 16th
International Workshop, IFL 2004, Springer, LNCS 3474.

Chitil, O. (2012). Practical typed lazy contracts. In Proc. 17th ACM SIGPLAN Intl. Conf.
on Functional Programming (ICFP’12), pp. 67–76.

Chitil, O. and Davie, T. (2008). Comprehending �nite maps for algorithmic debugging
of higher-order functional programs. In Proceedings of the International Conference
on Principles and Practice of Declarative Programming, PPDP 2008, pp. 205–216.

Chitil, O., Faddegon, M. and Runciman, C. (2016). A Lightweight Hat: Simple, Type-
Preserving Instrumentation for Self-Tracing Lazy Functional Programs. In Imple-
mentation of Functional Languages, presented and submitted to post-proceedings.

Chitil, O. and Luo, Y. (2007). Structure and properties of traces for functional programs.
Electronic Notes in Theoretical Computer Science, 176(1), pp. 39–63.

Chitil, O., Runciman, C. and Wallace, M. (2001). Freja, Hat and Hood — a comparative
evaluation of three systems for tracing and debugging lazy functional programs. In
Implementation of Functional Languages, LNCS 2011.

171

Chitil, O., Runciman, C. and Wallace, M. (2003). Transforming Haskell for tracing. In
Implementation of Functional Languages, LNCS 2670, pp. 165–181.

Church, A. (1936). An unsolvable problem of elementary number theory. American
journal of mathematics, 58(2), pp. 345–363.

Claessen, K. and Hughes, J. (2000a). QuickCheck: A Lightweight Tool for Random
Testing of Haskell Programs. In Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming, ICFP 2000, pp. 268–279.

Claessen, K. and Hughes, J. (2000b). QuickCheck: A Lightweight Tool for Random
Testing of Haskell Programs. In Proc. 5th ACM SIGPLAN Intl. Conf. on Functional
Programming, ICFP 2000, pp. 268–279.

Claessen, K., Smallbone, N. and Hughes, J. (2010). Quickspec: Guessing formal speci-
�cations using testing. In International Conference on Tests and Proofs, Springer, pp.
6–21.

Claessen, K. et al. (2003). Testing and tracing lazy functional programs using
QuickCheck and Hat. In Advanced Functional programming, Springer, pp. 59–99.

Davie, T. and Chitil, O. (2006a). Display of functional values for debugging. In Pro-
ceedings of the 18th International Symposium on Implementation and Application of
Functional Languages, IFL 2006, pp. 326–337.

Davie, T. and Chitil, O. (2006b). One right does make a wrong. In Pre-Proceedings of the
Seventh Symposium on Trends in Functional Programming, TFP 2006.

Drabent, L. and Nadjm-Tehrani, S. (1989). Algorithmic debugging with assertions. In
Meta-programming in logic programming, Citeseer.

Faddegon, M. and Chitil, O. (2014). Type Generic Observing. In Trends in Functional
Programming, Springer, LNCS 8843.

Faddegon, M. and Chitil, O. (2015). Algorithmic Debugging of Real-World Haskell Pro-
grams: Deriving Dependencies from the Cost Centre Stack. In Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2015, pp. 33–42.

172

Faddegon, M. and Chitil, O. (2016). Lightweight computation tree tracing for lazy func-
tional languages. In Proceedings of the 37th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, New York, NY, USA: ACM, PLDI ’16, pp.
114–128.

Faddegon, M. and Chitil, O. (2017). Type generic observation of intermediate data struc-
tures for debugging lazy functional programs.Computer Languages, Systems & Struc-
tures.

Faddegon, M. and Runciman, C. (2016). Test Properties as Oracle for Algorithmic De-
bugging of Lazy Functional Programs. In Implementation of Functional Languages,
presented and submitted to post-proceedings.

Findler, R. B. and Felleisen, M. (2002). Contracts for higher-order functions. In Proc. 7th
ACM SIGPLAN Intl. Conf. on Functional Programming (ICFP’02), pp. 48–59.

Fritzson, P., Auguston, M. and Shahmehri, N. (1994). Using assertions in declarative
and operational models for automated debugging. Journal of Systems and Software,
25(3), pp. 223–239.

Fritzson, P. et al. (1992). Generalized algorithmic debugging and testing. ACM Lett Pro-
gram Lang Syst, 1(4), pp. 303–322.

Game Creation Society, Carnegie Mellon (2014). Raincat, http://www.

gamecreation.org/game/raincat.

Gerhart, S. L. and Yelowitz, L. (1976). Observations of fallibility in applications of mod-
ern programming methodologies. Software Engineering, IEEE Transactions on, (3), pp.
195–207.

Gibbons, J., Lester, D. and Bird, R. (2006). Functional pearl: Enumerating the rationals.
Journal of Functional Programming, 16, pp. 281–291.

Gill, A. (2000). Debugging Haskell by Observing Intermediate Data Structures. Elec-
tronic Notes in Theoretical Computer Science, 41, ACM SIGPLAN Workshop on
Haskell.

Gill, A. and Faddegon, M. (2016). Private correspondence.

Graham, R. L., Knuth, D. E. and Patashnik, O. (1989). Concrete Mathematics: A Founda-
tion for Computer Science, AIP Publishing, chap. 4. Number Theory. pp. 116–123.

173

http://www.gamecreation.org/game/raincat
http://www.gamecreation.org/game/raincat

Harper, R. (2013). Practical foundations for programming languages.

Hinze, R. (2004). Generics for the masses. In Proceedings of the International Conference
on Functional Programming, ACM Press.

Hinze, R., Jeuring, J. and Löh, A. (2007). Comparing approaches to generic program-
ming in Haskell. In Datatype-Generic Programming, Springer LNCS 4719.

Hinze, R. and Löh, A. (2006). “Scrap your boilerplate” revolutions. In Mathematics of
Program Construction, Springer LNCS 4014.

Hudak, P. et al. (2007). A history of haskell: being lazy with class. In Proceedings of
the third ACM SIGPLAN conference on History of programming languages, ACM, pp.
12–1.

Hughes, J. (1989). Why functional programming matters. The computer journal, 32(2),
pp. 98–107.

Jansson, P. and Jeuring, J. (1997). PolyP—a polytypic programming language extension.
In Proceedings of the symposium on Principles of programming languages, ACM Press.

Jones, M. P. et al. (1994 – 2004). The Hugs 98 User’s Guide. url-
http://www.haskell.org/haskellwiki/Hugs.

Kiselyov, O. (2006). Smash your boilerplate without class and typeable. http://
article.gmane.org/gmane.comp.lang.haskell.general/14086.

Kozen, D. C. (2012). Automata and computability. Springer Science & Business Media.

Lämmel, R. and Peyton Jones, S. (2003). Scrap Your Boilerplate: A Practical Design
Pattern for Generic Programming. In ACM SIGPLANWorkshop on Types in Language
Design and Implementation, vol. 38, ACM Press.

Lämmel, R. and Peyton Jones, S. (2005). Scrap Your Boilerplate with Class: Extensi-
ble Generic Functions. In Proceedings of the International Conference on Functional
Programming, ACM Press.

Lämmel, R. and Visser, J. (2001). Generic Programming with Strafunski.

Launchbury, J. (1993). A natural semantics for lazy evaluation. In Proceedings of the
symposium on Principles of programming languages, POPL 1993, pp. 144–154.

174

http://article.gmane.org/gmane.comp.lang.haskell.general/14086
http://article.gmane.org/gmane.comp.lang.haskell.general/14086

Magalhães, J. P. et al. (2010). A Generic Deriving Mechanism for Haskell. In Proceedings
of the Symposium on Haskell, ACM Press.

Marlow, S. (2012). Solving an old problem: How do we get a stack trace in a lazy
functional language? Haskell Implementors Workshop 2012, http://community.
haskell.org/~simonmar/Stack-traces.pdf.

Marlow, S. et al. (2007). A lightweight interactive debugger for Haskell. In Proceedings
of the Haskell workshop, pp. 13–24.

Marlow, S. et al. (2010). Haskell 2010 language report.

Mitchell, N. and Runciman, C. (2007). Uniform boilerplate and list processing. In Pro-
ceedings of the Haskell workshop, ACM Press.

Morgan, R. G. and Jarvis, S. A. (1998). Pro�ling Large-Scale Lazy Functional Programs.
J Funct Program, 8(3), pp. 201–237.

Naish, L. (1992). Declarative debugging of lazy functional programs. Department of
Computer Science, University of Melbourne.

Naish, L. (1997a). A declarative debugging scheme. Journal of Functional and Logic
Programming, 3.

Naish, L. (1997b). A declarative debugging scheme. Journal of Functional and Logic
Programming, 3.

Nilsson, H. (1998). Declarative debugging for lazy functional languages. Ph.D. thesis,
Linköpings universitet.

Nilsson, H. and Fritzson, P. (1992). Algorithmic debugging for lazy functional lan-
guages. In M. Bruynooghe and M. Wirsing, eds., Programming Language Implemen-
tation and Logic Programming, LNCS 631, PLILP ’92, pp. 385–399.

Nilsson, H. and Sparud, J. (1997). The evaluation dependence tree as a basis for lazy
functional debugging. Automated Software Engineering, 4(2), pp. 121–150.

Olaf Chitil (2012). FPretty, http://hackage.haskell.org/package/FPretty.

Oliveira, B. C., Hinze, R. and Löh, A. (2006). Extensible and modular generics for the
masses. In Proceedings of Trends in Functional Programming, Elsevier.

175

http://community.haskell.org/~simonmar/Stack-traces.pdf
http://community.haskell.org/~simonmar/Stack-traces.pdf
http://hackage.haskell.org/package/FPretty

Peyton Jones, S. and Lester, D. (1992). Implementation Functional Languages: a tutorial.
Prentice Hall.

Peyton Jones, S. L. et al. (2003). Haskell 98 language and libraries: the revised report.
Cambridge University Press.

Pierce, B. C. (2002). Types and programming languages. The MIT Press.

Pope, B. (2005). Declarative Debugging with Buddha. In Advanced Functional Program-
ming, LNCS 3622, pp. 273–308.

Pope, B. (2006). A Declarative Debugger for Haskell. Ph.D. thesis, The University of
Melbourne, Australia.

Pope, B. and Naish, L. (2002). Specialisation of higher-order functions for debugging.
Electronic Notes in Theoretical Computer Science, 64, pp. 277–291.

Ray, B. et al. (2014). A large scale study of programming languages and code qual-
ity in github. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ACM, pp. 155–165.

Reinke, C. (2001). GHood – Graphical Visualisation and Animation of Haskell Object
Observations. In Proceedings of the Haskell Workshop.

Rodriguez, A. et al. (2008). Comparing Libraries for Generic Programming in Haskell.
In Proceedings of the Symposium on Haskell, ACM Press.

Runciman, C., Naylor, M. and Lindblad, F. (2008). Smallcheck and Lazy Smallcheck:
automatic exhaustive testing for small values. In Proc. 1st ACM SIGPLAN Haskell
Symposium (Haskell’08), ACM, pp. 37–48.

Sansom, P. M. and Peyton Jones, S. L. (1997). Formally based pro�ling for higher-order
functional languages. ACM Trans Program Lang Syst, 19(2), pp. 334–385.

Shackell, T. and Runciman, C. (2005). Faster production of redex trails: The Hat G-
Machine. In Proc. 6th Symposium on Trends in Functional Programming (TFP 2005),
pp. 135–150.

Shapiro, E. Y. (1983). Algorithmic program debugging. MIT press.

Sheard, T. and Peyton Jones, S. (2002). Template meta-programming for Haskell. In
Proceedings of the Workshop on Haskell, ACM Press.

176

Silva, J. (2007). A comparative Study of Algorithmic Debugging Strategies. In Logic-
Based Program Synthesis and Transformation, LNCS 4407, pp. 143–159.

Sinclair, D. C. (1992). Debugging by Data�ow—Summary. In Functional Programming,
Glasgow 1991, Springer, pp. 347–351.

Sparud, J. and Runciman, C. (1997). Tracing lazy functional computations using re-
dex trails. In Programming Languages: Implementations, Logics, and Programs, LNCS
1292, PLILP ’97, pp. 291–308.

Sparud, J. and Runciman, C. (1998). Complete and partial redex trails of functional
computations. In Implementation of Functional Languages, Springer, pp. 160–177.

Tamarit, S. et al. (2016). Debugging Meets Testing in Erlang, Cham: Springer Interna-
tional Publishing. pp. 171–180.

Tassey, G. (2002). The economic impacts of inadequate infrastructure for software test-
ing. National Institute of Standards and Technology, RTI Project, 7007(011).

Wadler, P. (1998a). Functional programming: An angry half-dozen. In Database Pro-
gramming Languages, Springer, pp. 25–34.

Wadler, P. (1998b). Why No One Uses Functional Languages. SIGPLAN Not, 33(8), pp.
23–27.

Wallace, M. et al. (2001). Multiple-view tracing for Haskell: a new Hat. In Proceedings
of the 2001 ACM SIGPLAN Haskell Workshop.

Winstanley, N. and Meacham, J. (2008). DrIFT Manual. http://repetae.net/

computer/haskell/DrIFT/drift.html.

Zeller, A. (2009). Why Programs Fail, 2nd Edition. Morgan Kaufmann.

Zielonka, T. and the GHC Team (2005). http://www.haskell.org/ghc/

survey2005-summary.

177

http://repetae.net/computer/haskell/DrIFT/drift.html
http://repetae.net/computer/haskell/DrIFT/drift.html
http://www.haskell.org/ghc/survey2005-summary
http://www.haskell.org/ghc/survey2005-summary

