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HOMOLOGICAL LOCALISATION OF MODEL CATEGORIES

DAVID BARNES AND CONSTANZE ROITZHEIM

Abstract. One of the most useful methods for studying the stable homotopy category
is localising at some spectrum E. For an arbitrary stable model category we introduce a
candidate for the E–localisation of this model category. We study the properties of this
new construction and relate it to some well–known categories.

Introduction

The stable homotopy category is spectacularly complicated and yet of fundamental
importance to homotopy theorists. A standard and highly successful method of dealing
with this complexity is to “filter out” some of this information via a Bousfield localisation.
In return we obtain a more structured category with useful and interesting patterns.

More precisely, we choose some homology theory E∗ and replace the stable homotopy
category Ho(S) with Ho(LES), the full subcategory of Ho(S) with objects the E–local
spectra. This means that in the passage from Ho(S) to Ho(LES), the E∗–isomorphisms
are formally inverted. Bousfield’s paper [Bou79] is the original source of this idea.

There are a number of other model categories whose homotopy categories share many
of the properties of Ho(S), namely stable model categories. It would be advantageous if
we could generalise the notion of E–localisation to this class of categories. Thus we are
interested in the construction of a homological localisation of a stable model category, one
that is the analogue of forming Ho(LES) from Ho(S).

The main motivation comes again from the study of the stable homotopy category. In
order to understand spectra, Ho(S) and its various E–localisations it is necessary to relate
S and LES to other stable model categories C. For example, one can study to what extent
there is a stable model category C whose homotopy category “models” Ho(LES) and how
similar C is to LES in terms of higher homotopy behaviour. To make those links it would
be a desirable tool to have the corresponding E–localisations of C in order to compare
E–local spectra to other counterparts related to C.

A stable model category C is a model category whose associated homotopy category
Ho(C) is triangulated via the construction of [Hov99, Section 7]. Lenhardt proved in
[Len12] that Ho(C) is a module over Ho(S) whenever C is a stable model category. Hence
we have a tensor product

− ∧L − : Ho(C)×Ho(S) −→ Ho(C)

and an enrichment of Ho(C) in Ho(S). This technique is called stable frames.
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Using this action on the homotopy category of a stable model category one could
try to make a new model structure on C such that the weak equivalences are the “E∗–
isomorphisms”: those maps f :X → Y in C such that

f ∧L E :X ∧L E → Y ∧L E

is an isomorphism in Ho(C). Such a model structure would deserve the name LEC. The
machinery that allows one to create new model structures with larger collections of weak
equivalences is Bousfield localisation, see [Hir03, Part I]. But it seems particularly difficult
to check that LEC exists for general C. For spectra, the argument appears in [EKMM97,
Section VIII.1] and requires numerous unpleasant cardinality arguments.

For well–behaved stable model categories C we are going to produce a new model struc-
ture CE that avoids such set–theoretic awkwardness. This CE is a good candidate for the
E–localisation of C because of the following universal property: CE is the “closest” model
category to C such that any Quillen adjunction from spectra to C

S −−→←− C

gives rise to a Quillen adjunction

LES −−→←− CE
from E–local spectra to CE . We are also able to give another description of CE in terms of
pushouts of model categories, which shows how strong the universal property of this new
model structure is.

We are also able to give an improvement of [BR11, Theorem 9.5]: we can show that
for all E, the homotopy information of E–local spectra is entirely encoded in the Ho(S)–
module structure on the E–local stable homotopy category. This was previously only
possible with the strong restriction that E is smashing. Hence we have the following,
which appears as Theorem 7.1.

Theorem. Let C be a stable model category. Assume we have an equivalence of triangu-
lated categories

Φ : Ho(LES) −→ Ho(C)
then LES and C are Quillen equivalent if and only if Φ is an equivalence of Ho(S)–module
categories.

Organisation. Firstly, we recall some definitions and conventions regarding Bousfield
localisation and stable frames. We also re–introduce the concept of stably E–familiar
model categories: in [BR11] we studied those C such that the action of Ho(S) factors over
the functor Ho(S) → Ho(LES). In particular the homotopy category of such a model
category has an enrichment in the more structured category Ho(LES). We called such
categories stably E–familiar.

We then turn to the question of altering a model structure on a given category so as to
obtain a stably E–familiar model category. In Section 3 we consider the simpler case of
spectral model categories: such a model category is defined in a similar way to a simplicial
model category, but with simplicial sets replaced by the model category of symmetric
spectra. We construct the stable E–familiarisation of a spectral model category in this
section.
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In Section 4 we extend our results to more general stable model categories. We prove
that the stable E–familiarisation of a model category C is the closest stably E–familiar
model category to C in the following sense. The result below also implies that our con-
struction has the universal property we described earlier.

Theorem. Let C be a stable, proper and cellular model category such that the domains
of the generating cofibrations of C are cofibrant. Then there is a model structure CE on C
such that

(1) CE is stably E–familiar,
(2) if F : C → E is a left Quillen functor and E is stably E–familiar, then F factors

over C → CE.

Section 5 consists of several examples of CE for some E and C involving algebraic model
categories, chromatic localisations and module categories over a ringoid spectrum.

In Section 6 we rephrase the universal property of CE in terms of homotopy pushouts of
model categories.

Finally, we prove a full version of the modular rigidity theorem that all homotopy
information of E–local spectra is governed by the Ho(S)–action on Ho(LES) given by
framings.

1. Bousfield localisation

We begin with an introduction to Bousfield localisation at a homology theory E.
Throughout the paper when we refer to spectra, we mean symmetric spectra equipped
with the stable model structure [HSS00] unless stated otherwise.

Let E be a spectrum and let [−,−]∗ denote maps in the stable homotopy category.
Then E corepresents a homology functor E∗ on the category of spectra via

E∗(X) = [S0, E ∧X]∗

where S0 denotes the sphere spectrum. Bousfield used this to construct a homotopy cate-
gory of spectra where maps which induce isomorphisms on E∗–homology are isomorphisms
[Bou79]. We recap some of the definitions from this work.

Definition 1.1. A map f : X → Y of spectra is an E–equivalence if E∗(f) is an iso-
morphism. A spectrum Z is E–local if f∗ : [Y, Z] → [X,Z] is an isomorphism for all
E–equivalences f :X → Y . A spectrum A is E–acyclic if [A,Z] = 0 for all E–acyclic Z.
An E–equivalence from X to an E–local object Z is called an E–localisation.

Bousfield localisation of spectra gives a homotopy theory that is particularly sensitive
towards E∗ and E–local phenomena. The E–local homotopy theory is obtained from the
category of spectra by formally inverting the E–equivalences.

This can be seen as a special case of a more general result by Hirschhorn. Let C be a
model category. For X,Y ∈ C, we let mapC(X,Y ) ∈ sSet denote the homotopy function
object, see [Hir03, Chapter 17] and Section 2.

Definition 1.2. Let S be a class of maps in C. Then an object Z ∈ C is S–local if

mapC(s, Z) : mapC(B,Z) −→ mapC(A,Z)
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is a weak equivalence in simplicial sets for any s : A −→ B in S. A map f : X −→ Y ∈ C
is an S–equivalence if

mapC(f, Z) : mapC(Y,Z) −→ mapC(X,Z)

is a weak equivalence for any S–local Z ∈ C. An object W ∈ C is S–acyclic if

mapC(W,Z) ' ∗
for all S–local Z ∈ C.

A left Bousfield localisation of a model category C with respect to a class of maps S is
a new model structure LSC on C such that

• the weak equivalences of LSC are the S–equivalences,
• the cofibrations of LSC are the cofibrations of C,
• the fibrations of LSC are those maps that have the right lifting property with

respect to cofibrations that are also S–equivalences.

Hirschhorn proves that if S is a set and C is left proper and cellular then LSC exists.
(We will give rough definitions of these two terms below.) Note that an object is fibrant
in LSC if and only it is fibrant in C and S–local.

In the case of localising spectra at a homology theory one wants to invert the class of E∗–
isomorphisms, i.e. those maps of spectra that induce isomorphisms in the homology theory
E∗. Since this is not a set, one cannot use Hirschhorn’s result directly. In [EKMM97,
Section VIII.1] it is shown that there is a set S whose S–equivalences are exactly the
E∗–isomorphisms. Hence, the key to proving the existence of homological localisations is
to find a set giving the correct notion of equivalence. We shall encounter this idea again
when constructing CE .

A model category is left proper if the pushout of a weak equivalence along a cofibration is
a weak equivalence. A model category is right proper if the pullback of a weak equivalence
along a fibration is a weak equivalence. If a model category is both left and right proper,
we say that it is proper.

We also a need a stronger version of “cofibrantly generation”, one which forces cell
complexes to be better behaved. The actual definition is technical and not particularly
illuminating, so we shall simply say that a model category is cellular if it is cofibrantly
generated by sets I and J , and the domains and codomains of I and J satisfy some nice
cardinality conditions. We leave the details to [Hir03, Definition 12.1.1].

2. Stable framings

Framings are a powerful tool that describe and classify Quillen functors from simplicial
sets or spectra to arbitrary model categories. They were first developed by Hovey in
[Hov99, Section 5.2]. For a model category C, he investigates cosimplicial and simplicial
resolutions of objects in C. These are called “frames”. In more detail, a frame of an object
A ∈ C is a cofibrant replacement of the constant cosimplicial object A ∈ C∆ in the Reedy
model category of cosimplicial objects in C. From these notions one obtains bifunctors

−⊗− : C × sSet −→ C,
mapl(−,−) : Cop × C −→ sSet,

(−)(−) : C × sSetop −→ C,
mapr(−,−) : Cop × C −→ sSet
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satisfying certain adjunction properties. The notation ⊗ stems from the fact that

A⊗∆[0] ' A.

However, this set-up does not equip C with the structure of a simplicial model category
because the “mapping spaces” mapl(X,Y ) and mapr(X,Y ) only agree up to a zig-zag of
weak equivalences for cofibrant X ∈ C and fibrant Y ∈ C [Hov99, Proposition 5.4.7]. But
their derived functors agree, leaving us with the following [Hov99, Theorem 5.5.3].

Theorem 2.1 (Hovey). Let C be any model category. Then its homotopy category Ho(C)
is a closed Ho(sSet)–module category.

In particular, this equips any model category with the notion of a homotopy mapping
space. Moreover, framings satisfy the following important properties.

• If C carries the structure of a simplicial model category [Hov99, Definition 4.2.18],
then the two Ho(sSet)–module structures coming from either framings or the sim-
plicial structure agree [Hov99, Theorem 5.6.2].
• If F : sSet −→ C is a left Quillen functor with F (∆[0]) = A, then the left derived

functors of F and of the framing functor A ⊗ − : sSet −→ C agree. Thus, every
left Quillen functor from simplicial sets to any model category can be described,
up to homotopy, by a frame.

The second property follows from the fact that the category of cosimplicial objects C∆

is equivalent to the category of adjunctions sSet −−→←− C [Hov99, Proposition 3.1.5]. A
cosimplicial object A• corresponds to a Quillen adjunction under this equivalence if and
only if it is a frame, that is A• is cofibrant and homotopically constant, [BR11, Proposition
3.2].

In [Len12] Fabian Lenhardt described an analogous set-up for spectra and stable model
categories. Now let C be a stable model category. First, Lenhardt shows that the category
of adjunctions between spectra and a stable model category C is equivalent to the category
of “Σ–cospectra” C∆(Σ). An object in C∆(Σ) consists of a sequence of cosimplicial objects
Xn ∈ C∆ together with structure maps

ΣXn+1 −→ Xn.

The suspension of cosimplicial objects is described in [Len12, Section 3.3]. He then char-
acterises those Σ–cospectra that give rise to Quillen adjunctions under this equivalence,
calling them stable frames. These give rise to bifunctors −∧− and Map(−,−) satisfying
the expected adjunction properties.

As in the unstable case, this is not rigid enough to equip any stable model category C
with the structure of a spectral model category. However, the above bifunctors give rise
to the following [Len12, Theorem 6.3].

Theorem 2.2 (Lenhardt). Let C be a stable model category. Then Ho(C) is a closed
Ho(S)–module category.

As expected, this satisfies the following key properties.

• If C is already a spectral model category, then the Ho(S)–module structure derived
from the spectral structure agrees with the Ho(S)–module structure coming from
stable frames [BR11, Example 6.7].
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• By construction, every left Quillen functor F : S −→ C is, up to homotopy, of the
form X ∧ − : S −→ C for some fibrant–cofibrant X ∈ C.
• In particular, for any fibrant–cofibrant X ∈ C there is a left Quillen functor S −→ C

that sends the sphere spectrum to X.
• Any stable frame and thus any Quillen functor S −→ C is, up to homotopy, entirely

determined by its image on the sphere.

As we have already mentioned, the homotopy theory of LES is often much better
understood than S. So it is worth asking if some stable model categories have more in
common with LES than S. We answer this question and obtain several useful results
using this idea in [BR11]. We give the fundamental definitions below.

Definition 2.3. We say that a stable frame X ∈ C∆(Σ) is an E–local frame if it gives
rise to a Quillen functor pair

X ∧ − : LES −−→←− C : Map(X,−).

A stable model category C is stably E–familiar if every stable frame is an E–local frame.

This is [BR11, Definition 7.1]. This generalises the notion of an LES–model category
in the following sense: if C is already an LES–model category, then the Ho(LES)–module
structure on Ho(C) agrees with the Ho(LES)–module structure given by E–local frames
[BR11, Proposition 7.6]. We can further characterise stably E–familiar model categories
as follows [BR11, Theorem 7.8].

Theorem 2.4. Let C be a stable model category. Then C is stably E–familiar if and only
if the homotopy mapping spectrum RMapC(X,Y ) is an E–local spectrum for all X,Y ∈ C.

We can use the theory of E–local framings to study algebraic model categories. An alge-
braic model category is a Ch(Z)–model category in the sense of [Hov99, Definition 4.2.18].
Thus a Ch(Z)–model category is enriched, tensored and cotensored over chain complexes
and satisfies the Ch(Z)–analogue of the compatibility axiom (SM7). This implies that
the homomorphism spectra obtained via framings are products of Eilenberg–Mac Lane
spectra [GJ99, Proposition III.2.20], [DS07, Proposition 1.6]. Using the computations of
Gutiérrez in [Gut10] one can draw the following conclusions [BR11, Section 9].

• For n ≥ 1 there are no algebraic stably K(n)–familiar model categories, where n
denotes the nth Morava–K–theory.
• Let E(n) denote the nth chromatic Johnson–Wilson spectrum. An algebraic model

category is stably E(n)–familiar if and only if it is rational.

Now we turn to the question of whether any model category can be made stably E–
familiar in some natural way.

3. E–Familiarisation of spectral model categories

For any homology theory E we can consider the category of spectra with the E–local
model structure, LES. Hence we would like to know if a reasonable notion of E–localisation
exists for an arbitrary stable model category C.

Intuitively, a promising definition would be a Bousfield localisation LEC of C where one
localises at the class of “E–equivalences” given by

{f : X −→ Y ∈ C | f ∧L E : X ∧L E −→ Y ∧L E is an isomorphism in Ho(C)},
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where the action ∧ of a spectrum on an element of C is defined via stable frames. However,
showing the existence of Bousfield localisations at a class of maps is set–theoretically
awkward. The standard method to circumvent this difficulty is to find a set of maps
S such that the S–equivalences are precisely the E–equivalences. This is an extremely
difficult task, see [EKMM97, Section VIII.1], so it is not clear if a good notion of E–
localisation exists for general model categories.

Instead, we will construct the stable E–familiarisation CE of C which is the “closest”
stably E–familiar model category to C. We will then draw some conclusions about its
properties which will show that this construction is the right choice for an analogue of
E–localisation for general stable C. For example, the first theorem will show that every
Quillen adjunction

S −−→←− C
will give rise to a Quillen adjunction

LES −−→←− CE .

The first question to answer is: what kind of maps do we want to invert in order to
construct CE? In a stably E–familiar model category D any map of the form

X ∧L j :X ∧L A→ X ∧L B

for j :A → B an E–equivalence of spectra and X ∈ D is a weak equivalence. Hence we
could try to localise C at this class of maps. So we must find some set of maps S such
that the S–equivalences equals this class.

We need a couple of technical results first. For this section we shall work with S–
model categories in the sense of [Hov99, Definition 4.2.18], where S again denotes the
model category of symmetric spectra. Such a model category D is enriched, tensored and
cotensored over symmetric spectra in simplicial sets and satisfies the appropriate analogue
of Quillen’s (SM7) axiom for simplicial model categories. We shall refer to D as being
a spectral model category. We may also talk about LES–model categories, where we use
the E–local model structure on S. A spectral model category is in particular stable and
simplicial, see [SS03, Lemma 3.5.2]. We will see later that the restriction to spectral model
categories is not as big a restriction as it might seem at first.

We denote the pushout–product of two maps by �, so for f : X −→ Y and g : A −→ B
the pushout–product of f and g is

f�g : X ∧B
∐
X∧A

Y ∧A −→ Y ∧B.

Recall that a set of maps S in a stable model category D is said to be stable if the class
of S–local objects is closed under suspension. By [BR13, Proposition 4.6] if D and S are
stable then so is LSD.

Proposition 3.1. Let D be a left proper, cellular and spectral model category. Let S be a
stable set of maps in D. Then LSD is also a spectral model category.

Proof. Since D is left proper and cellular, LSD exists by [Hir03, Theorem 4.1.1]. We must
prove that if i is a cofibration of LSD and j is a cofibration of S then i�j is a cofibration
of LSD that is a weak equivalence (in LSD) if either of i or j is. Since D is spectral
and the cofibrations are unchanged by left Bousfield localisation, we know that i�j is a
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cofibration whenever i and j are. Furthermore if j is an acyclic cofibration of symmetric
spectra, then i�j is a weak equivalence in D and hence it is also an S–equivalence.

The third case is where i is an acyclic cofibration of LSD and j is a cofibration of
symmetric spectra. We must show that i�j is an S–equivalence. By [Hov99, Lemma
4.2.4] it suffices to prove this for j a generating cofibration of symmetric spectra and i a
generating acyclic cofibration of LSD. By [HSS00, Proposition 3.4.2] we may assume that
j is of the form

FnK → FnL

where Fn is the left adjoint to evaluation at level n, and K and L are simplicial sets. By
[Hir03, Proposition 4.5.1] the domain of i is cofibrant, so it follows that both the domain
and codomain of i�j are cofibrant. The set S is stable, so the class of S–equivalences in
Ho(D) is closed under suspension and desuspension. Thus i�j is an S–equivalence if and
only if

Σn(i�j) ∼= i�Σnj

is an S–equivalence for all n.
We know that ΣnFnK is weakly equivalent to F0K in S. Hence for any cofibrant X ∈ D,

X ∧ ΣnFnK → X ∧ F0K

is a weak equivalence of D. We also know that the domains of the maps i�Σnj and
i�(F0K → F0L) are pushouts of cofibrations between cofibrant objects. It follows that
i�Σnj is weakly equivalent to the map i�(F0K → F0L). The bifunctor

− ∧ F0− :D × sSet→ D

gives D the structure of a simplicial model category. We may now use [Hir03, Theorem
4.1.1], which states that since D is simplicial, so is LSD. Consequently we see that
i�(F0K → F0L) is an S–equivalence. Hence i�j is also an S–equivalence and LSD is a
spectral model category. �

Proposition 3.2. Let D be a left proper, cellular and spectral model category with generat-
ing cofibrations ID and generating acyclic cofibrations JD. Let JE be the set of generating
acyclic cofibrations for LES. Define

S = ID�JE = {i�j | i ∈ ID, j ∈ JE}.

Then LSD is an LES–model category and hence is stably E–familiar.

Proof. The set JE is closed under desuspension in the sense that for any element j ∈ JE
there is an element j′ with Σj′ ' j. It follows that the same holds for S, so it is stable in
the sense of [BR13, Definition 3.2]. Thus LSD is also a stable model category. By Lemma
3.1 it is also an S–model category.

To see that it is an LES–model category we only need to check that if i is a cofibration
of LSD and j is an acyclic cofibration of LES then i�j is an S–equivalence. By [Hov99,
Lemma 4.2.4] it suffices to prove this for i ∈ ID and j ∈ JE . But then i�j is an element
of S and hence is an S–equivalence. �

Proposition 3.3. Let D be a left proper, cellular and spectral model category and S as in
Proposition 3.2. Assume that the domains of the generating cofibrations of D are cofibrant.
Then if D is a monoidal model category so is LSD.
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Proof. Since D is spectral, the maps in S are cofibrations between cofibrant objects. Thus
by [BR13, Lemma 6.1] LSD is monoidal if and only if

ID�S = ID�(ID�JE) ∼= (ID�ID)�JE

lies in the class of S–equivalences. As D is monoidal, ID�ID consists of cofibrations.
By Proposition 3.2, LSD is an LES–model category. Hence the pushout product of a
cofibration of D and an acyclic cofibration of LES is an S–equivalence as required. �

We now show that this set S has the correct homotopical behaviour in terms of E–
familiarity by giving another description of the weak equivalences of LSD.

Proposition 3.4. Let D be a left proper, cellular spectral model category, such that the
domains of the generating cofibrations of D are cofibrant. Let T be the class of maps

T = {X ∧L f | X ∈ D, f is an E–equivalence of spectra}.

Then the class of T–equivalences is equal to the class of S–equivalences.

Proof. Take some cofibrant X ∈ D. Then the functor

X ∧ − :LES → LSD

is a left Quillen functor by Proposition 3.2. Hence X ∧ − takes E–equivalences between
cofibrant spectra to S–equivalences. Thus every element of T is a weak equivalence in
LSD.

Now we will show that every element of S is also a T–equivalence. Consider i�j ∈ S
for i :X → Y a generating cofibration of D and j :A→ B a generating acyclic cofibration
for LES. Since X, Y , A and B are all cofibrant, the maps X ∧ j and Y ∧ j are in
the class T . Let P be the domain of i�j, then by [Hir03, Lemma 3.4.2], the map from
Y ∧A→ P is also a T–equivalence. It follows by the two–out–of–three property that i�j
is a T–equivalence. �

If the category D is already stably E–familiar then the class T is already contained in
the category of weak equivalences. Hence so is the set S, and D is in fact an LES–model
category.

Corollary 3.5. Let D be a left proper cellular spectral model category that is stably E–
familiar. Assume that the domains of the generating cofibrations of D are cofibrant. Then
D is an LES–model category. �

4. E–Familiarisation of stable model categories

We now want to consider model categories that are not necessarily spectral. Consider
a proper and cellular stable model category C. By [BR13, Theorem 8.2] C is Quillen
equivalent to a spectral model category, namely the category D = SΣ(sC) of symmetric
spectra in simplicial objects in C equipped with a non–standard model structure. Hence
there is a Quillen equivalence which by abuse of notation we call

Σ∞ : C −−→←− D = SΣ(sC) : Ω∞

This model category D is also proper and cellular. Furthermore, if the generating cofibra-
tions for C have cofibrant domains, then so do the generating cofibrations for D.
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Theorem 4.1. Let C be a stable, proper and cellular model category, such that the do-
mains of the generating cofibrations of C are cofibrant. Let D = SΣ(sC), with generating

cofibrations ID and fibrant replacement f̂ . We set S = ID�JE as in Proposition 3.2.
Define CE to be the left Bousfield localisation of C at the set of maps Ω∞f̂S. Then

(1) CE is stably E–familiar,
(2) the weak equivalences of CE are the T ′–equivalences, for T ′ the class below

T ′ = {X ∧L f | X ∈ C, f is an E–equivalence of spectra}

(3) if F : C → E is a left Quillen functor and E is stably E–familiar, then F factors
over C → CE , i.e. F : CE −→ E is also a left Quillen functor.

Proof. The model categories C and D = SΣ(sC) are Quillen equivalent. Hence [Hir03,
Theorem 3.3.20] tell us that the adjunction

Σ∞ : C −−→←− D : Ω∞.

induces a Quillen equivalence between LΩ∞f̂SC and LΣ∞ĉΩ∞f̂SD. (Here, ĉ denotes the

cofibrant replacement in C.) The model category LΣ∞ĉΩ∞f̂SD is equal to LSD since

(Σ∞,Ω∞) is a Quillen equivalence. Thus we have a Quillen equivalence between CE =
LΩ∞f̂SC and LSD. The second category is stably E–familiar by Proposition 3.2. Hence

so is CE by [BR11, Lemma 7.10].
We may also conclude that the left derived functor of Σ∞ induces an bijection between

the weak equivalences of CE (considered as a class in Ho C) and the S–equivalences of
HoD. Proposition 3.4 tells us that the class of S–equivalences in D is equal to the class
of T–equivalences where

T = {X ∧L f | X ∈ D, f is an E–equivalence of spectra}.

Consider the class of maps

T ′ = {X ∧L f | X ∈ C, f is an E–equivalence of spectra}.

Let LΣ∞ and RΩ∞ denote the left and right derived functors of Σ∞ and Ω∞ respectively.
By [Len12, Theorem 6.3]

LΣ∞(X ∧L f) = (LΣ∞X) ∧L f.

Hence LΣ∞ takes elements of T ′ to elements of T . Consider some element Y ∧L f of T .
This is weakly equivalent to

(LΣ∞RΩ∞Y ) ∧L f

and hence is in LΣ∞T ′. Thus the derived functor of Σ∞ induces a bijection between
the class T ′ and the class T up to weak equivalence. As a consequence the derived func-
tor of Σ∞ induces a bijection between the class of T ′–equivalences and the class of T–
equivalences. It follows that the T ′–equivalences must be the class of weak equivalences
of CE .

For the final point, let F : C → E be a left Quillen functor. If E is stably E–familiar,
then the left derived functor of F takes the T ′–equivalences to weak equivalences of E .
Hence F : CE → E is also a left Quillen functor. �
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Remark 4.2. Let C be a stable, proper and cellular model category, such that the domains
of the generating cofibrations of C are cofibrant. Then the above result says that CE is the
“closest” stably E–familiar model category to C.

In particular a model category C is stably E–familiar if and only if CE = C.

Remark 4.3. The assumptions on C are more reasonable than they might seem in practice.
Since we want to perform a left Bousfield localisation, we will have to assume that C is left
proper and cellular. To assume that C is also right proper is not too much of a restriction.

We also need another assumption: that the domains of the generating cofibrations of
C are cofibrant. This is a subtle assumption that occurs elsewhere in the literature, for
example in [Hov01]. We note that this assumption holds for almost all of the cofibrantly
generated model categories that arise naturally.

It is easy to check that the homotopy mapping spectra for CE are given by the formula
below, where YE is the fibrant replacement of Y in CE .

RMapCE (X,Y ) = RMapC(X,YE)

In particular, this mapping spectrum is E–local. We can use this to draw some immediate
consequences of E–familiarisation.

For example, the chromatic Johnson–Wilson theories E(n) satisfy

LE(n−1)LE(n) = LE(n−1)

[Rav92, 7.5.3]. Thus,

Corollary 4.4. For a proper and cellular stable model category C we have

(CE(n))E(n−1) = CE(n−1).

�

We can further use our knowledge of stably E–familiar algebraic model categories de-
scribed at the end of Section 2 to read off the following corollaries.

Corollary 4.5. Let C be an algebraic model category and K(n) the nth Morava–K–theory
for n ≥ 1. Then CK(n) is trivial. �

Corollary 4.6. Let C be an algebraic model category and let E(n) denote the nth chromatic
Johnson–Wilson spectrum. Then CE(n) = CHQ. �

If we assume that localisation at E is smashing, we can obtain a nicer description of
the weak equivalences of CE : in the smashing case CE is precisely the “naive” localisation
of C at LES

0 as described in the introduction of Section 3. That is, the left Bousfield
localisation of C at the class of LES

0–equivalences (which we denote as LLES0C) exists
and is equal to CE . With this extra assumption we also see that

CE = CLES0 .

However, for a general model category C and smashing E it is unclear whether the model
category LEC exists and if it would be Quillen equivalent to LLES0C.

Lemma 4.7. In addition to the assumptions of Theorem 4.1, assume that localisation at E
is smashing. Then a map f in CE is a weak equivalence if and only if f ∧LLES

0 is a weak
equivalence in C. Hence the weak equivalences of CE are precisely the LES

0–equivalences.
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Proof. We first show the statement for a spectral model category D. Recall the model
category LSD for S the set ID�JE from the previous section. We will show that the
S–equivalences are precisely the LES

0–equivalences of D.
Every map in the set S is an LES

0–equivalence, hence every S–equivalence is a LES
0–

equivalence. Now take some LES
0–equivalence f :X → Y in D. The map

X → X ∧L LES
0

is a T–equivalence with

T = {X ∧L f | X ∈ D, f is an E–equivalence of spectra}

defined earlier in this section. Hence it is an S–equivalence. Thus the commutative square

X
f

//

��

Y

��

X ∧L LES
0

f∧LLES0

// Y ∧L LES
0

shows that f is S–equivalent to a weak equivalence in D. Weak equivalences in D are in
particular S–equivalences, so by the 2–out–of–3 axiom of model categories, f must be an
S–equivalence.

To move this result from a spectral D to a general C we use a similar argument to
that of the second point of Theorem 4.1. The Quillen equivalence (Σ∞,Ω∞) takes the
LES

0–equivalences of D = SΣ(sC) bijectively to the LES
0–equivalences of C. It follows

that the LES
0–equivalences of C are precisely the weak equivalences of CE . �

The following corollary shows that stable E–familiarisation restricts to E–localisation
in the case of spectra. This shows that the notion of CE is indeed a good candidate for an
analogue of E–localisation of a general C.

Corollary 4.8. Consider the category of modules over a ring spectrum R. Then

(R –mod)E = LE(R –mod)

where the right hand side is the naive localisation of R –mod. It has weak equivalences those
maps of R–modules which forget to E–equivalences of spectra and the same cofibrations as
R –mod. In particular

SE = LES.

Proof. We start by noting that LE(R –mod) is equal to the model structure of R-modules
in LES from [SS00, Theorem 4.1]. Hence this model structure has generating sets of
cofibrations and acyclic cofibrations R ∧ IS and R ∧ JE [SS00, Lemma 2.3].

We claim that every map in R ∧ JE is a T ′–equivalence, where T ′ is from Theorem
4.1. We know that the domains of JE are cofibrant, hence R ∧ j is weakly equivalent to
R ∧L j for any j ∈ JE . Thus the claim holds. It follows that every acyclic cofibration of
LE(R –mod) is a weak equivalence (and also a cofibration) of (R –mod)E .

We must now show the converse. Every acyclic cofibration of (R –mod)E is an E–
equivalence of underlying spectra and hence is an acyclic cofibration of LE(R –mod). Thus
the two model structures agree. �
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We can now give a simple proof that stable E–familiarisation preserves Quillen equiv-
alences.

Proposition 4.9. Let C and E be proper, cellular and stable model categories such that
the domains of their generating cofibrations are cofibrant. Let

F : C −−→←− E : G

be a Quillen equivalence. Then there is a Quillen equivalence between the E–familiarised
model categories

F : CE −−→←− EE : G.

Proof. Composing F with the identity on E gives us a left Quillen functor

F : C → EE
and EE is of course stably E–familiar. Hence by the universal property of CE proved in
Theorem 4.1 we have a left Quillen functor F : CE → EE . We now need to show that gives
us a Quillen equivalence. We do so using Proposition 3.4 and the method of the second
part of the proof of Theorem 4.1.

Let T be the class of maps

T = {A ∧L f | A ∈ C, f is an E–equivalence of spectra}.
Similarly, let T ′ be the class of maps

T ′ = {B ∧L f | B ∈ E , f is an E–equivalence of spectra}.
Then CE = LTC and EE = LT ′E . Let LF and RG denote the left and right derived functors
of F and G respectively. By [Hir03, Theorem 3.3.20], the adjunction (F,G) induces a
Quillen equivalence between LTC and LLF (T )E . But the set LF (T ) is isomorphic in Ho E
to the set T ′ because Quillen equivalences induce equivalences of Ho(S)–module categories
[Len12, Theorem 6.3]. �

Remark 4.10. One could try to prove an analogue of Proposition 3.3 and show that if C
is monoidal then so is CE. This would require the adjunction (Σ∞,Ω∞) at the beginning
of this section to be monoidal. However we do not know if this is the case.

5. Examples

Let C be a spectral model category, such that the domains of its generating cofibrations
are cofibrant. (Recall from [BR13, Theorem 7.2] that any stable, proper and cellular model
category is Quillen equivalent to a spectral one.) Assume that C has a set of compact
generators for its homotopy category, [SS03, Definition 2.1.2]. Schwede and Shipley prove
in the above–mentioned paper that any such C is Quillen equivalent to a category mod–E
where E can be thought of as a “ring spectrum with several objects”. In the case of C
having a single compact generator, E is simply a ring spectrum.

Let us briefly recap some of the definitions and constructions of that result. Let G
denote the set of generators of C. Then the S–enriched category E is simply defined as
the full S–enriched subcategory of C with objects G. An object M ∈ mod–E consists of a
spectrum M(G) for each G ∈ G plus morphisms of spectra

E(G′, G) ∧M(G) −→M(G′) for G,G′ ∈ G
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satisfying certain coherence conditions. By adjunction, such an M is the same as a con-
travariant spectral functor from E to S. A standard example of an object of mod–E is
given by the spectral functor E(−, G) for fixed G ∈ G. The model structure on mod–E
is has weak equivalences and fibrations defined objectwise [SS03, Theorem A.1.1]. This
means that a natural transformation f : M −→ N is a weak equivalence or a fibration if
and only if

fG :M(G) −→ N(G)

is so for each G ∈ G. Theorem 3.9.3 of [SS03] then describes a Quillen equivalence

Hom(G,−) : C ←−−−→ mod–E : − ∧E G
for spectral C.

This is a highly useful description of a stable model category and we would like to obtain
a description of the E–familiarisation CE of C in terms of mod–E . We note that this is
a rather special case as not every stable model category has a set of compact generators
[HS99, Corollary B.13].

By Proposition 4.9 we know that CE and (mod–E)E are Quillen equivalent, so we shall
find another description of (mod–E)E .

Since mod–E is a spectral model category, it is easily seen that (mod–E)E is given
by LS mod–E as in Pro position 3.2. Recall that S = I�JE for I the set of generat-
ing cofibrations for mod–E . Hence in (mod–E)E any map of the form below is a weak
equivalence.

E(−, G) ∧ (i�j)

In the above, G is a cofibrant and fibrant replacement of one of the compact generators
for C, i is a generating cofibration for S and j is a generating acyclic cofibration for LES.

We can make another model structure on mod–E by taking the same cofibrations as
before, but taking the generating set of acyclic cofibrations to be those maps of the form

E(−, G) ∧ j

for G a generator and j a generating acyclic cofibration for LES. We shall call this set of
maps K and let mod–EK denote the corresponding model structure. One can either check
directly that these sets give a model structure or one can alter [SS03, Theorem A.1.1] to
use LES instead of S.

We claim that this model structure equals the model structure of (mod–E)E . An element
of K can be described as

E(−, G) ∧
(
(∗ → S0)�j

)
.

Hence every element of K is an acyclic cofibration of (mod–E)E . Conversely, mod–E
equipped with this new model structure is stably E–familiar. Hence the identity func-
tor (mod–E)E → mod–EK is a left Quillen functor. Hence every acyclic cofibration of
(mod–E)E is an acyclic cofibration of mod–EK . Thus these two model structures have the
same cofibrations and acyclic cofibrations. We have therefore shown the following.

Proposition 5.1. The model category (mod–E)E is the category of contravariant spectral
functors from E to LES, equipped with the model structure where fibrations and weak
equivalences are defined objectwise. Thus the fibrant objects are those functors M such
that M(G) is fibrant in S and E–local for all G ∈ E. �
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Consider the case where C has a single compact generator. Following the above we can
replace this by a category of functors to S. Indeed, [SS03, Theorem 3.1.1] states that C is
Quillen equivalent to the category of R–modules, mod–R, for some ring spectrum R. In
this case, the above proposition recovers the result of Corollary 4.8.

6. E–familiarisation and homotopy pushouts

We want to give another description of CE via a universal property. We will relate CE to
a pushout of model categories. While the pullback of model categories is well–understood,
[Ber11], the pushout is more complicated and is not often used. Roughly speaking, the
homotopy pushout of a corner diagram of Quillen adjunctions

C ←−−−→ D −−→←− E

is supposed to be a model category P that satisfies a universal property analogous to the
pushout of a diagram within a category. Unfortunately, the homotopy–theoretic pushout
construction is rather delicate and its existence and description not always clear.

However there is a special case where we can construct pushouts of model categories and
verify that they have the correct universal property. By working in a particular context,
we avoid the general question of whether homotopy pushouts of model categories exist in
general.

Let M2 be a left Bousfield localisation of M1 at a class of maps W . Without loss
of generality we assume that the maps in W are morphisms between cofibrant objects.
(If the elements of W did not satisfy this, one can replace them with weakly equivalent
morphisms between cofibrant objects. This would then give rise to the same Bousfield
localisations.) In particular, this gives us a Quillen pair

Id:M1
−−→←− M2 = LWM1 : Id

Assume that we have a Quillen adjunction

F :M1
−−→←− N1 : G.

We are now going to discuss the homotopy pushout of the corner diagram below for this
special case

LWM1 =M2
←−−−→ M1

−−→←− N1.

Definition 6.1. The homotopy pushout of the above diagram is defined, if it exists, as the
Bousfield localisation LLFWN1 of N1. Here, LF denotes the left derived functor of F .

To justify this definition we need to see that N2 = LLFWN1 (provided it exists) satisfies
the desired properties that a homotopy pushout is supposed to have. First we note that
by [Hir03, Theorem 3.3.20] F and G induce a Quillen adjunction

F :M2
−−→←− N2 : G

Assume that there is a model category D with Quillen adjunctions

M2
−−→←− D

F ′ : N1
−−→←− D : G′
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such that in the diagram below, the two different composites of left adjoints from M1 to
D agree up to natural isomorphism.

M1
//

��

N1

��

oo

M2

OO

,,D

dd

\\

Because the vertical functors in the square below are simply identity functors it follows
immediately that we may add N2 and obtain a commutative diagram of adjoint pairs.

M1
//

��

N1

��

oo

��

M2

OO

//

,,

N2
oo

OO

  

D

dd

\\

``

We must check that the adjunction below is a Quillen adjunction.

F ′ : N2
−−→←− D : G′

The model category N2 is the Bousfield localisation of N1 with respect to the class of maps
Ff where f is a weak equivalence between cofibrant objects of M2. Thus (F ′ ◦ F )(f) is
a weak equivalence in D. This means that F ′ uniquely factors over N2. Furthermore, by
construction, N2, if it exists, is unique up to Quillen equivalence.

Recall that the stable E–familiarisation CE satisfies the following universal property.
Given a left Quillen functor F : C −→ D with D stably E–familiar, F also gives rise to a
left Quillen functor CE −→ D via

C F //

id
��

D.

CE

77ppppppppppppp

This fact allows us to relate CE and certain homotopy pushouts. Let X ∈ C be fibrant
and cofibrant. Then we have a Quillen adjunction

X ∧ − : S −−→←− C : Map(X,−).

Using Definition 6.1 we can read off the following for a proper and cellular stable model
category C.

Lemma 6.2. The homotopy pushout PX of the diagram

LES ←−−−→ S −−→←− C
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exists and is the Bousfield localisation of C with respect to the set of maps below, where
JE is the set of generating acyclic cofibrations of LES.

X ∧L JE = {X ∧L j | j ∈ JE}
�

So in particular we know that this homotopy pushout exists. Because CE is stably
E–familiar we have a commutative square of Quillen adjunctions

S //

��

Coo

��

LES

OO

// CE

OO

oo

By the universal property of PX , there is a Quillen adjunction PX −−→←− CE for each X.
We can show that CE is the “closest” model category to those pushouts in the following
sense.

Theorem 6.3. Let C be a stable, proper and cellular model category, such that the domains
of the generating cofibrations of C are cofibrant. The Quillen adjunction

C −−→←− CE
factors over

PX −−→←− CE
for all fibrant–cofibrant X ∈ C. If there is any other stable D with a Quillen adjunction

F : C −−→←− D : G

that factors over
PX −−→←− D

for all fibrant–cofibrant X, then (F,G) also factors over CE.

Proof. The pushout PX is defined as the Bousfield localisation of C at the set of maps
X ∧L j with j ∈ JE . By Proposition 3.4 we know that CE is the localisation of C at the
class of maps of the form X ∧L f for f an E–equivalence of spectra. Thus we see that for
every X ∈ C the identity gives us a Quillen adjunction

Id : PX −−→←− CE : Id

because every weak equivalence in PX is also a weak equivalence in CE .
If the given Quillen adjunction (F,G) induces a Quillen adjunction

F : PX −−→←− D : G,

then F sends all morphisms of the form X ∧L j, for j ∈ JE , to weak equivalences in D.
Hence F also sends all maps of the form X ∧L f , for f an E–equivalence of spectra, to
weak equivalences in D.

If (F,G) gives such Quillen adjunctions for all fibrant–cofibrant X then it must send
any map of the form X ∧L f with X fibrant–cofibrant and f an E–equivalence of spectra
to a weak equivalence in D. Thus it induces a Quillen adjunction

CE −−→←− D
by Theorem 4.1, which is what we wanted to prove. �



HOMOLOGICAL LOCALISATION OF MODEL CATEGORIES 18

7. Modular rigidity for E–local spectra

We can show that stable frames encode all homotopical information of the E–local
stable homotopy category. The triangulated structure of Ho(LES) alone is not sufficient
for this: given just a triangulated equivalence

Φ : Ho(LES) −→ Ho(C)

for a stable model category C does not imply in general that LES and C are Quillen
equivalent. In fact, Quillen equivalence can only be deduced from a triangulated equiva-
lence of homotopy categories in some very special cases. To this date, the only nontrivial
cases known of this ‘rigidity’ are the stable homotopy category itself [Sch07] and the case
E = K(2) [Roi07]. However, if we do not only have a triangulated equivalence as above
but also assume that this equivalence is a Ho(S)–module equivalence, we can show that
LES and C are Quillen equivalent.

We now give a more general version of [BR11, Theorem 9.5], in particular the assumption
that E is smashing is no longer required.

Theorem 7.1. Let C be a stable model category. Assume we have an equivalence of
triangulated categories

Φ : Ho(LES) −→ Ho(C)
then LES and C are Quillen equivalent if and only if Φ is an equivalence of Ho(S)–module
categories.

Proof. The “only if” part is true by [Len12, Theorem 6.3]: a Quillen equivalence induces
a Ho(S)–module equivalence.

Now let us assume that we have a Ho(S)–module equivalence

Φ : Ho(LES) −→ Ho(C)

It follows that Φ−1 induces a weak equivalence of homotopy mapping spectra

Φ−1 :RMapC(X,Y ) −→ RMapLES(Φ−1X,Φ−1Y )

for X,Y ∈ C. The right–hand–side is an E–local spectrum as LES is stably E–familiar.
Hence every homotopy mapping spectrum of C is E–local, so C is stably E–familiar by
[BR11, Theorem 7.8].

Thus for fibrant and cofibrant X ∈ C , the Quillen functor

X ∧ − : S −→ C

factors over LES as a Quillen functor

X ∧ − : LES −→ C.

Now let X be a cofibrant–fibrant replacement of Φ(S0). Because Φ is a Ho(S)–module
equivalence we see that

X ∧L (−) = Φ(S0) ∧L (−) = Φ(S0 ∧L −) = Φ(−).

This means that Φ is derived from a Quillen functor. This Quillen functor must therefore
be a Quillen equivalence, which is what we wanted to prove. �
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