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Abstract: In this paper, a decentralised observer scheme is proposed for a class of nonlinear
interconnected systems based on higher order sliding mode techniques. It is not required
that the nominal subsystems or the isolated nominal subsystems are linearizable. Under
the assumption that the isolated nominal subsystems have uniform relative degree, local
coordinate transformations are used to transform these systems to a new interconnected system
which facilitates higher order sliding mode design. Observers composed of a set of decoupled
dynamical systems are designed such that the observation error dynamical systems converge
to zero exponentially. The designed observer is continuous and chattering can be avoided. The
configuration is convenient for practical implementation as it is a decentralised scheme.

Keywords: Higher order sliding mode, Interconnected system, decentralised observer, nonlinear
systems.

1. INTRODUCTION

Interconnected systems are often characterised by geo-
graphical separation. Issues such as economic cost and
reliability of communication links have to be considered
thus providing impetus to use a decentralised scheme.
Although many results concerning decentralised schemes
for interconnected systems have been obtained (Bakule,
2008), results applying decentralised higher order sliding
mode (HOSM) strategies to nonlinear interconnected sys-
tems are very limited. Moreover, the state variables of
a system are often incompletely known and thus control
schemes based on state feedback cannot be directly im-
plemented. In order to exploit such control strategies, an
appropriate estimate of the states may be constructed for
use in the original control law. Therefore, observer design
is an important problem in practice (Spurgeon, 2008; Yan
et al., 2013).

Unlike decentralised control, contributions to the develop-
ment of decentralised observation schemes are very rare
because each observer dynamical subsystem cannot em-
ploy information from the other subsystems, which may
produce complex network interactions in the observation
error dynamics. The interactions existing in the observa-
tion error dynamics cannot be rejected by using only local
information. Therefore, nearly all of the existing obser-
vation schemes for nonlinear interconnected systems are
not decentralised. As early as 1977, Sundareshan (1977)
studied decentralised observation where it is clearly stated
that the observers should be decoupled in a decentralised
scheme. A class of linear interconnected systems are con-

sidered in Sundareshan (1977) and Pillosu et al. (2011)
where the proposed observers are coupled together through
networked interconnections and thus are not decentralised.
Later, for a class of nonlinear interconnected systems,
a variable structure observer is proposed in Yan et al.
(2003) and a first order sliding mode observer is proposed
in Yan and Edwards (2008b) to enhance robustness to
uncertainties. However, in both Yan and Edwards (2008b)
and Yan et al. (2003), interconnection terms are employed
in the observer design and thus the designed observers
are not decentralised. Decentralised observers are proposed
for linear large scale systems in Gopal and Ghodekar
(1985) where it is required that the interconnections can
be reconstructed by dynamical systems. Linear systems
with nonlinear interconnections are studied in Tlili and
Braiek (2009) where all the nonlinear terms are consid-
ered as uncertainties and the designed observer is not
decentralised. Although observer design for interconnected
systems has been studied using sliding mode techniques
(Lin and Wang (2010)), methods for decentralised sliding
mode observation appear an open research question.

Note that observers based on first order sliding mode
(Spurgeon (2008); Yan and Edwards (2008a)) require that
the considered system is relative degree one (interconnec-
tions and nonlinear terms may be considered as unknown
inputs). This restriction can be removed using higher order
sliding mode differentiators (see, for example, Fridman
et al. (2011)). Step-by-step vector-state reconstruction
using super-twisting first order robust exact differentia-
tors has been presented in Floquet and Barbot (2007) in



which the systems are transformed to a triangular or the
Brunovsky form and then the states are estimated based
on the equivalent output error injection. These observers
theoretically ensure finite time convergence for all system
states. Although super-twisting first order robust exact
differentiators provide the best possible asymptotic accu-
racy of the derivative estimation at each single realization
step (Levant (1998)), the accuracy is proportional to the
sampling step δ for discrete realisation in the absence of
noise, and to the square root of input noise magnitude if
discretisation error is negligible. Since the step-by-step and
hierarchical observers take the output of super-twisting
algorithm as noisy input at the next step, the overall

observation accuracy is of the order δ1/2r−1

where r is the
observability index of the system. Similarly in the presence
of measurement noise with magnitude ε, the estimation
accuracy is proportional to ε1/2

r

which requires magnitude
of measurement noises less than 10−16 for a fourth-order
observer implementation to achieve an accuracy of 10−1.

HOSM differentiators developed in Levant (2003) for exact
observation design for nonlinear systems with unknown
inputs has been employed in Fridman et al. (2008). The
observation scheme proposed in Fridman et al. (2008) is
based on two steps: i) transformation of the system to the
Brunovsky canonical form and ii) the application of HOSM
differentiators for each component of the output error vec-
tor. The proposed scheme ensures exact finite-time state
estimation of the observable variables and asymptotic ex-
act estimation of the unobservable variables for the case
when the system has stable internal dynamics. This work
has shown that the estimation accuracies increase to d and
ε1/r respectively.

In this paper, HOSM observer is employed, for the first
time, in decentralised observer design for a class of nonlin-
ear interconnected systems. This paper can be considered
as an initial exploration of the problem of decentralised
observation for nonlinear interconnected systems using
HOSM differentiator. It should be emphasised that both
the isolated subsystems and the interconnections are non-
linear in the considered systems. The main contribution
of this paper is that the designed observer is completely
decentralised, which is more convenient for real imple-
mentation than a centralised scheme. The use of HOSM
differentiator provides the best possible asymptotic ac-
curacy in terms of noise and discretisation step. Under
the assumption that the isolated subsystems have uniform
relative degree, a nonlinear geometric coordinate transfor-
mation is employed to explore the structure of the isolated
systems. Then, the considered systems are transformed to
new nonlinear interconnected systems which facilitates the
application of the HOSM technique. A set of sufficient
conditions is developed to guarantee the convergence of
the designed observer. The estimation is split into two
parts: one part converges in finite time and the other
exponentially. The designed observer is continuous thereby
preserving the advantages of sliding mode control and
largely eliminating the chattering.

Notation: In this paper, R+ denotes the nonnegative
set of real numbers {t | t ≥ 0}. For a square matrix
A ∈ Rn×n, the expression A > 0 represents that the
matrix A is symmetric positive definite and the symbol

λmax(A) (λmin(A)) represents its maximum (minimum)
eigenvalue. Suppose function g : Rn 7→ R is differen-
tiable, and f := (f1(·), f2(·), ·, fn(·))T : Rn 7→ Rn. The
notation Lfg(x) denotes the derivative of g(x) along f

defined by Lfg(x) :=
∑n
i=1

∂g
∂xf(x) and Lkfg(x) repre-

sents a recursion defined by Lkfg(x) :=
∂Lk−1

f
g

∂x f(x) with

L0
f := g(x). For vectors x = (x1, x2, . . . , xn1

)T ∈ Rn1 and

y = (y1, y2, . . . , yn2
)T ∈ Rn2 , the expression f(x, y) de-

notes a function f(x1, x2, . . . , xn1
, y1, y2, . . . , yn2

) defined
on Rn1+n2 . Finally, ‖ ·‖ denotes the Euclidean norm or its
induced norm.

2. SYSTEM DESCRIPTION AND PROBLEM
FORMULATION

Consider a nonlinear interconnected system composed of
n ni-th order subsystems described by

ẋi = fi(xi) + gi(xi) (ui + ξi(t, xi)) + ψi(x) (1)

yi = hi(xi), i = 1, 2, . . . , n, (2)

where x := col(x1, . . . , xn) ∈ X := X1 × · · · × Xn, and
xi ∈ Xi ⊂ Rni (Xi is a neighborhood of the origin),
ui ∈ Ui ⊂ Rmi and yi ∈ Yi ⊂ Rmi are state variables,
inputs and outputs of the i-th subsystem respectively. The
terms ξi(·) represent the uncertainty in the input channel
of the i-th subsystems which satisfy

‖ξi(t, xi)‖ ≤ γξi , i = 1, 2, . . . , n

for some positive constants γξi . The terms ψi(x) are inter-
connections of the i-th subsystem. The function matrices
gi(xi) := [gi1(xi), gi2(xi), . . . , gimi(xi)] describe the input
distribution, and hi(xi) := [hi1(xi), hi2(xi), · · · , himi(xi)]
the output distribution. All the vector fields fi(xi) ∈ Rni ,
hi(xi) ∈ Rmi and gil(·) ∈ Rni are assumed to be smooth
enough for i = 1, 2, . . . , n and l = 1, 2, . . . ,mi. It is
assumed that all the control signals are bounded, that is,
there exist constants γui such that ‖ui‖ ≤ γui , which is
consistent with engineering practice.

Definition 1. Consider system (1)–(2). The system

ẋi = fi(xi) + gi(xi)(ui + ξi(t, xi))

yi = hi(xi), i = 1, 2, . . . , n,

is called the i-th isolated subsystem of system (1)–(2), and
the system

ẋi = fi(xi) + gi(xi)ui (3)

yi = hi(xi), i = 1, 2, . . . , n, (4)

is called the i-th nominal isolated subsystem of system
(1)–(2).

In this paper, the objective is to design n ni-th order
dynamical systems

˙̂xi = Φi(t, x̂i, yi, ui), i = 1, 2, . . . , n (5)

where x̂i ∈ Rni , such that the solutions x̂i(t) of system (5)
are convergent to xi(t) exponentially for i = 1, 2, . . . , n,
that is, there exist constants αi > 0 and βi > 0 such that

‖xi(t)− x̂i(t)‖ ≤ αi exp{−βit}, i = 1, 2, . . . , n



where xi(t) are the solutions of the interconnected sys-
tems (1)–(2). The systems in (5) comprise an exponential
observer for the interconnected system (1)–(2).

It should be noted that in the context of decentralised
control, only local information xi can be used if state
feedback is considered, and only local output information
yi can be used for the case of output feedback. Now,
consider the dynamical observer (5). The i-th dynamical
system in (5) is only dependent on the time t and the
local information x̂i, yi and ui, and does not involve
states xj , inputs uj or outputs yj (j 6= i) of the other
dynamical systems. Thus, the n dynamical systems in
(5) are clearly decoupled from each other. Such a set of
dynamical systems (5) is called a decentralised observer
for the system (1)–(2). Such a decentralised observation
scheme is illustrated in Figure 1 by using an interconnected
network with 3 subsystems.

 

Fig. 1. Block-diagram of the proposed decentralised obser-
vation scheme

From Figure 1, it is clear that the inputs of the i-th
observer dynamics are ui and yi and the output is x̂i.
The figure clearly shows the decentralised nature of the
framework.

3. BASIC ASSUMPTIONS AND STRUCTURE
ANALYSIS

Consider the interconnected system (1)–(2). Note that
the input function matrices gi1(xi), gi2(xi), . . . gimi(xi)
are smooth in the domain Xi for i = 1, 2, . . . , n. The
distributions generated by gi1, gi2, . . . , gimi are smooth in
Xi and are denoted by

Gi(xi) := span {gi1(xi), gi2(xi), . . . , gimi(xi)} (6)

for i = 1, 2, . . . , n. The following assumptions are imposed
on the system (1)–(2).

Assumption 1. The i-th nominal isolated subsystem (3)–
(4) has a uniform relative degree vector

(ρi1, ρi2, · · · , ρimi)
and the distribution Gi(xi) is involutive in the domain Xi
for i = 1, 2, . . . , n.

Let ρi :=
∑mi
j=1 ρij for i = 1, 2, . . . n. From the definition of

relative degree, ρij are nonnegative constants and ρi ≤ ni
(see, Isidori (1995)). Under Assumption 1, the differentials

dhij(xi), dLfihij(xi), · · ·, dL
ρij−1
fi

hij(xi) are linearly inde-
pendent for j = 1, 2, . . . ,mi and i = 1, 2, . . . , n. Let

zij =


hij(xi)

Lfihij(xi)
...

L
ρij−1
fi

hij(xi)

 := zij(xi), j = 1, 2, . . . ρi (7)

for i = 1, 2, . . . , n. Since the distribution Gi(xi) with
i = 1, 2, . . . , n is involutive, there always exist ni − ρi
functions wi1, wi2, · · ·, wi(ni−ρi) defined in Xi such that
the Jacobian matrix of the mapping

Ti : xi 7→ col(zi1, · · · , ziρi , wi1, · · · , wi(ni−ρi)) (8)

is nonsingular in Xi. Thus the transformations col(zi, wi) =
Ti(xi) defined by

Ti :


zi1 = zi1(xi)
zi2 = zi2(xi)

...
ziρi = ziρi(xi)
wi = wi(xi)

are diffeomorphisms in Xi, where zij ∈ Rρij with j =
1, 2, . . . , ρimi are defined in (7) and wi := col(wi1(xi),
wi2(xi), · · · , wi(ni−ρi)) for i = 1, 2, . . . , n. Let

T (x) :=


T1(x1)
T2(x2)

...
Tn(xn)

 (9)

It is clear that T (x) defines a new coordinate system
col(z1, w1, z2, w2, · · · , zn, wn). Let Zi×Wi := Ti(Xi) where
Zi ∈ Rρi and Wi ∈ Rni−ρi for i = 1, 2, . . . , n.

Assumption 2. The interconnection terms ψi(x) satisfy
the following, for any x ∈ X , j = 1, 2, . . . ,mi and i =
1, 2, . . . , n,

i)

Lψi(x)hij(xi) = 0 (10)

Lψi(x)Lfi(xi)hij(xi) = 0 (11)

· · · · · ·
Lψi(x)L

ρij−2

fi(xi)
hij(xi) = 0 (12)

ii) there exist constants γψi such that for any x ∈ X∥∥∥Lψi(x)L
ρij−1

fi(xi)
hij(xi)

∥∥∥ ≤ γψi , (13)

iii)
[
∂Ti(xi)
∂xi

ψi(x)
]
xi=T

−1
i

(zi,wi)
=

[
?

Φi(zi, wi)

]
where

Φi(·) ∈ R
(ni−

∑m

j=1
ρij) are Lipschitz with respect

to the variables wi in Wi uniformly for zi ∈ Zi
and ? represents uninterested entries of appropriate
dimension.

Remark 1 From the fact that Φi(·) are Lipschitz in the
condition iii) in Assumption 2, it follows that for any
wi ∈ Wi and ŵi ∈ Wi

‖Φi(zi, wi)− Φi(zi, ŵi)‖ ≤ LΦi(zi)‖wi − ŵi‖ (14)



for zi ∈ Zi where LΦi(·) are the generalised Lipschitz
constants of the functions Φi(·) with respect to wi and
uniformly for zi for i = 1, 2, . . . , n.

By direct computation, it follows that under Assumptions
1-2, the interconnected system (1)–(2) can be described by

żi1 =Ai1zi1 +Bi1
(
ui1 + ηij(t, zi)

+Lψi(x)L
ρi1−1
fi(xi)

hi1(xi)
)

(15)

żi2 =Ai2zi1 +Bi2
(
ui2 + ηij(t, zi)

+Lψi(x)L
ρi2−1
fi(xi)

hi2(xi)
)

(16)

...

żimi =Aimizimi +Bimi
(
uimi + ηij(t, zimi)

+Lψi(x)L
ρimi−1

fi(xi)
himi(xi)

)
(17)

ẇi = qi(zi, wi) + Φi(zi, wi) (18)

yij =Cijzij (19)

where zi := col (zi1, zi2, · · · , zimi) with zij ∈ Rρij and
wi := col

(
wi1, wi2, · · · , wi(ni−ρi)

)
∈ Rni−ρi , the triples

(Aij , Bij , Cij) have the Brunovsky standard form as fol-
lows

Aij =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
0 0 0 · · · 0 0


ρij×ρij

, Bij =


0
0
...
0
1


ρij×1

(20)

Cij = [1 0 · · · 0]1×ρij (21)

for j = 1, 2, . . . ,mi, and ηi1(t, zi)
...

ηimi(t, zi)

 := [ξi(t, xi)]xi=T−1
i

(zi,wi)
(22)

where ηil(·) ∈ R for l = 1, 2, . . . ,mi and the intercon-
nection terms Φi(·) is defined in iii) in Assumption 2 for
i = 1, 2, . . . , n and j = 1, 2, . . . , ρmi .

Remark 2. It should be noted that the interconnected
system (15)–(18) is the expression of the system (1)–(2) in
the new coordinate system col(z1, w1, z2, w2, · · · , zn, wn).
Saif and Guan (1992) pointed out that if interconnections
are not used in the observer design, the observer perfor-
mance is usually unsatisfactory and the convergence of the
observation error dynamics cannot be guaranteed. Here,
in order to get a completely decentralised scheme, the
conditions on the interconnection as given in Assumption
2 are required to guarantee the exponential stability of the
observation error dynamics.

Remark 3. The functions wij for j = 1, 2, . . . , ni − ρi
with i = 1, 2, . . . , n in (8) can be obtained by solving
the partial deferential equation Lgiwij(xi) = 0 for j =
1, 2, . . . , ni − ρi and i = 1, 2, . . . , n. Once wij is obtained,
then the coordinate transformation z = T (x) is available
and thus system (15)-(19) is well defined. Specifically,
if ρi = ni, then the coordinate transformation can be
directly obtained from (7) and in this case, the nominal
isolated subsystem is linearisable.

4. HOSM-BASED DECENTRALISED OBSERVER
DESIGN

In this section, a hybrid decentralised sliding mode ob-
server will be presented using HOSM techniques. Consider
system (15)–(19). The i-th subsystem of (15)-(17) can be
written as

żij =Aijzi +Bij
(
uij + ηij(t, zi)

+Lψi(x)L
ρij−1

fi(xi)
hij(xi)

)
, (23)

yij(t) = zij1(t) := hij(xi(t)) (24)

for i = 1, 2, . . . , n and j = 1, 2, . . . ,mi, where zij :=
col(zij1, zij2, · · · , zijρij ) ∈ Rρij , yi := col(yi1, yi2, · · · ,
yimi) and the pairs (Aij , Bij) are defined in (20). Since
ui is bounded, it follows from (13) in Assumption 2 that
there exist constants Li > 0 such that the inequalities∣∣∣uij + ηij(t, zi) + Lψi(x)L

ρij−1

fi(xi)
hij(xi)

∣∣∣ ≤ Li,
hold in x ∈ X for i = 1, 2, . . . , n and j = 1, 2, . . . ,mi.

For the i-th subsystem (23)–(24), consider the higher order
sliding surfaces defined by

sij = Lgisij = L2
gisij = · · · = Lρijgi sij = 0

where the scalar sij(t) := ẑij1(t) − yij(t). The variables
yij represent the j-th component of the outputs of the
i-th subsystem, and the scalar ẑij1 is determined by
the following HOSM differentiator algorithm from Levant
(2003)

˙̂zij1 = νij1 (25)

νij1 =−λij1 |sij |
ρij−1

ρij sign(sij) + zij1 (26)

˙̂zij2 = νij2 (27)

νij2 =−λij2 |ẑij2 − νij1|
ρij−2

ρij−1 sign(zij1

−νij0) + zij2 (28)

...

˙̂zij(ρij−1) = νij(ρij−1) (29)

νij(ρij−1) =−λij(ρij−1) |ẑij(ρij−1) − νij(ρij−2)|
1
2

sign(zij(ρij−1) − νij(ρij−2)) + zijρij (30)

˙̂zijρij =−λijρij sign(ẑijρij − νij(ρij−1)) (31)

where λijk are positive parameters for i = 1, 2, . . . , n,
j = 1, 2, . . . ,mi and k = 1, 2, . . . , ρij .

From Levant (2003), it follows that by choosing appro-
priate parameters λijk, zijk will converge to the k − th

derivative of yij(t), y
(k)
ij in finite time Tij .

Choose T0 > Tij and let ẑij := col
(
ẑij1, ẑij2, · · · , ẑijρij

)
for j = 1, 2, . . . ,mi and i = 1, 2, . . . , n. Considering the
structure of (Aij , Bij) in (23)–(24), when t ≥ T0,

ẑi1 = zi1, ẑi2 = zi2, · · · , ẑimi = zimi
for i = 1, 2, . . . n.

Consider system (15)–(17). The analysis above shows that
ẑij produced by the differentiator (25)–(31), is an estimate
of zij . The objective now is to estimate the variables wi.
The following assumptions are imposed on (18).



Assumption 3 The nonlinear functions qi(zi, wi) satisfy
the following, for i = 1, 2, . . . , n

i) qi(zi, wi) are Lipschitz with respect to the variables
wi in Wi uniformly for zi ∈ Zi;

ii) there exist Pi > 0 (Pi ∈ R(ni−ρi)×(ni−ρi)) and
positive functions ki(zi) such that for any varaibles
ϑi ∈ Rni−ρi , zi ∈ Zi and wi ∈ Wi

ϑTi Pi
∂qi(zi, wi)

∂wi
ϑi ≤ −ki(zi)‖ϑi‖2 (32)

where ∂qi(zi,wi)
∂wi

denote the Jacobian matrices of qi(·)
with respect to the variables wi.

Remark 4 The condition ii) in Assumption 2 and the
condition i) in Assumption 3 are fundamental in the local
case and will hold in any bounded compact set due to the
smoothness of the associated nonlinear functions and the
continuity of qi(zi, wi). The condition ii) of Assumption
3 has been employed by Tsinias (1989) and Jo and Seo

(2000). If the matrix ∂qi(zi,wi)
∂wi

at col(zi, wi) = 0 is

Hurwitz, then the condition ii) in Assumption 3 holds in
a neighbourhood of the origin col(zi, wi) = 0 (see, Jo and
Seo (2000)).

Construct the following dynamical systems
˙̂wi = qi(ẑi, ŵi) + Φi(ẑi, ŵi), i = 1, 2, · · · , n (33)

where ẑi := (ẑi11, ẑi12, · · · , ẑi1ρi1 , · · · , ẑimi1, · · · , ẑimiρi1)
and ẑijk are given by (25)–(31). Clearly the n systems
defined in (33) are decoupled from each other. Let ei(t) =
wi(t)− ŵi(t). It follows from Assumption 2 that the error
dynamics are described by

ėi = qi(zi, wi)− qi(ẑi, ŵi) + Φi(zi, wi)− Φj(ẑi, ŵi) (34)

for i = 1, 2, . . . , n. The following result can be presented.

Theorem 1. Under Assumptions 1–3, the error dynamical
system (34) is exponentially stable if for i = 1, 2, . . . , n

inf
zi

{
ki(zi)− ‖Pi‖LΦi(zi)

}
:= βi > 0 (35)

where Pi and ki(zi) satisfy (32) and Φi(zi) are given in
Assumption 2.

Proof: Since the solutions of the system (1)–(2) are
continuous, and the coordinate transformation defined by
(9) is a diffeomorphism, the solutions of systems (18) and
(33) are continuous. Therefore, the solutions to system
(34) are continuous and thus eij(t) are bounded in t ∈
[0, T0]. This shows that system (34) has no finite escape
time . Note that after t ≥ T0, zij(t) = ẑij(t). Now, consider
the system (33) when t ≥ T0.

The analysis above shows that when t ≥ T0, ẑi = zi. The
error dynamical system (33) can be described by

ėi = qi(zi, wi)− qi(zi, ŵi) + Φi(zi, wi)− Φj(zi, ŵi)(36)

For system (36), consider the candidate Lyapunov function

V (e1, e2, · · · , en) =

n∑
i=1

eTi (t)Piei(t) (37)

where Pi > 0 are defined in Assumption 3. Then, the time
derivative of V (·) along the trajectories of system (36) is
given by

V̇ = 2

n∑
i=1

eTi Pi (qi(zi, wi)− qi(zi, ŵi))

+2

n∑
i=1

eTi Pi

(
Φi(zi, wi)− Φj(zi, ŵi)

)
(38)

From Assumption 3, it follows that for i = 1, 2, . . . , n

eTi Pi (qi(zi, wi)− qi(zi, ŵi))

= eTi Pi

(∂qi(zi, wi + θi(wi − ŵi))
∂wi

(wi − ŵi)
)

= eTi Pi
∂qi(zi, wi + θiei)

∂wi
ei

≤−ki(zi)‖ei‖2 (39)

where θi are scalar parameters relating to the variables ei
and satisfy 0 ≤ θi ≤ 1.

From (14)

n∑
i=1

eTi Pi

(
Φi(zi, wi)− Φj(zi, ŵi)

)
≤

n∑
i=1

∥∥eTi ∥∥ ‖Pi‖LΦi(zi) ‖wi − ŵi‖

=

n∑
i=1

‖Pi‖LΦi(zi) ‖ei‖
2

(40)

Now, substituting (39) and (40) into (38) yields

V̇ ≤−2

n∑
i=1

(
ki(zi)− ‖Pi‖LΦi(zi)

)
‖ei‖2

≤−2β

n∑
i=1

‖ei‖2 = −2β‖e(t)‖2 (41)

where mini{βi} := β > 0 and e(t) := col(e1(t), e2(t),
. . . , en(t)). From the definition of V in (37),

min
i
{λmin(Pi)}

n∑
i=1

‖ei‖2 ≤ λmin(Pi)‖ei(t)‖2

≤ V (e(t)) ≤
n∑
i=1

λmax(Pi)‖ei(t)‖2

≤max
i
{λmax(Pi)}

n∑
i=1

‖ei‖2

Therefore,

min
i
{λmin(Pi)}‖e‖2 ≤ V (e(t)) ≤ max

i
{λmax(Pi)}‖e‖2 (42)

From (41) and (42), it follows that for t ≥ T0

V̇ (t) ≤ − 2β

maxi{λmax(Pi)}
V (t)

which implies that

V (t) ≤ V (e(T0)) exp{− 2β

maxi{λmax(Pi)}
(t− T0)} (43)

Therefore, from (43) and (42),

‖e(t)‖ ≤
√

1

min
i
{λmin(Pi)}

V (e(t))



≤

√√√√ V (e(T0))

min
i
{λmin(Pi)}

exp
{
− β

maxi{λmax(Pi)
(t− T0)

}

≤

√√√√max
i
{λmax(Pi)}

min
i
{λmin(Pi)}

‖e(T0)‖

· exp
{
− β

maxi{λmax(Pi)}
(t− T0)

}
Hence, the error dynamical system (34) is exponentially
stable. 2

Remark 5 From the structure of the dynamical system
(25)–(31) and the dynamical system (33), it is straight-
forward to see that the designed dynamics are decoupled
and thus they are decentralised observers which compares
favourably with the existing results (Sundareshan, 1977;
Sundareshan and Elbanna, 1990; Pillosu et al., 2011; Yan
and Edwards, 2008b; Yan et al., 2003).

Remark 6 From the analysis above, it is clear that the ob-
servable variables ẑi converge to zi := col (zi1, zi2, · · · , zimi)
in finite time for i = 1, 2, . . . , n. Theorem 1 shows that the
unobservable variables ω̂i converges to ωi exponentially for
i = 1, 2, . . . , n.

5. CONCLUSIONS

In this paper, a decentralised observer scheme has been
proposed for a class of nonlinear interconnected systems
based on HOSM techniques. By employing structural char-
acteristics, the system is transformed to a new nonlinear
interconnected system for which HOSM differentiator can
be used for design. A set of sufficient conditions is de-
veloped such that the error dynamical system relating to
the interconnected systems and the designed dynamical
systems converges to zero. The result developed in this
paper shows that for nonlinear large scale interconnected
systems, a completely decentralised observation scheme is
possible if HOSM properties are appropriately employed.
Further research will focus on exploring structures of in-
terconnection terms so that the developed results can be
expanded to a larger class of systems.
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