
Boiten, Eerke Albert, Derrick, John, Bowman, Howard and Steen, Maarten
(1995) Unification and multiple views of data in Z. In: van Vliet, J.C., ed.
Computer Science in the Netherlands 1995. . pp. 73-85. Stichting Mathematisch
Centrum, Amsterdam ISBN 90-6196-460-1.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21226/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21226/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Uni�cation and multiple views of data in Z

Eerke Boiten� John Derrick� Howard Bowman and Maarten Steen

Computing Laboratory� University of Kent

Canterbury� CT� �NF� UK�

Phone ��� ���� 	��

�

Email� feab��jd��hb
�mwasg
ukc�ac�uk �

Abstract

This paper discusses the uni�cation of Z speci�cations� in particular speci�

�cations that maintain di�erent representations of what is intended to be the

same datatype� Essentially� this amounts to integrating previously published

techniques for combining multiple viewpoints and for combining multiple views �

It is shown how the technique proposed in this paper indeed produces uni�ca�

tions� and that it generalises both previous techniques�

� Why uni�cation�

There is a wide interest in multiple�viewpoint speci�cation in software engineering
�FGH���� Jac��� ZJ��	
 This method allows di�erent speci�ers to work indepen�
dently� and to observe systems from various perspectives
 Objects and behaviours in
the system that are of interest to multiple viewpoints may have overlapping descrip�
tions in each of those viewpoints
 Due to the independence of viewpoints� however� the
various descriptions need not be identical� and may even turn out to be contradictory�
i
e
 inconsistent
 One de�nition of consistency is that two speci�cations are consistent
whenever a common implementation of them exists
 A constructive way of checking
this is by constructing a uni�cation of two viewpoints
 The uni�cation of two speci�
�cations A and B is the most general speci�cation C such that all implementations
that satisfy C also satisfy both A and B

Our particular interest in this subject arises from the Open Distributed Processing

Model �ITU��	
 In our project
Cross Viewpoint Consistency in Open Distributed

�This work was partially funded by the U�K� Engineering and Physical Sciences Research Council
under grant number GR�K����� and by British Telecom Labs�� Martlesham� Ipswich� U�K�

Processing� we aim to develop tools and techniques that enable the consistency of
ODP speci�cations to be maintained
 The multiple viewpoints model is a cornerstone
of ODP
 In previous papers �DBS��� BDS��	 we have investigated uni�cation and
consistency in two of the main ODP speci�cation languages� LOTOS �BB��	 and Z
�Spi��	

For Z� it seems relatively clear what uni�cation entails� because it is a logic�based

language with a well understood notion of re�nement
 A uni�cation of two Z viewpoint
speci�cations is �just� a common re�nement of the two� and preferably the �least�
common re�nement
 A previous paper �DBS��	 describes a uni�cation algorithm for
Z speci�cations which assumes that names and data types that are to be combined in
the uni�cation have already been made almost identical in the viewpoints
 We now
extend this method by also allowing di�erent descriptions of the same datatype in the
viewpoints
 This means that relations between the datatypes have to be explicitly
formulated
 �Such formulations might make up some of the correspondence rules

described in the ODP Reference Model
� Thus� we tie in uni�cation with notions of
data re�nement and speci�cation through various views �Jac��	

This paper is not written with Z experts in mind � we hope that everyone with a

little knowledge of set theory� predicate calculus� and types will be able to follow our
expositions
 For an introduction to Z� see �BSC��� Rat��� Spi��	

� Why multiple views of data�

A convincing paper on the use of multiple views of data in Z speci�cations is one
by Daniel Jackson �Jac��	� and we will be using part of one of his� examples as our
running example as well

Consider the text bu�er of an editor� with a cursor somewhere in it
 One could

imagine various views of this entity
 We will be presenting two of those� the File
view and� later� the Grid view
 Each view has particular operations that are most
naturally speci�ed in it� as we will see

In the File view� the bu�er is represented by two sequences of some given type

Char�

File

left �right � seqChar

This schema� named File � contains two sequences ��seq� is prede�ned in Z� which
represent the text to the left and to the right of the cursor� respectively

An operation to move the cursor one position to the right can be speci�ed as

follows

�The example has a longer history� dating back to 	Suf
���

csrRight

�File

right ��h i

left �� left a hhead�right�i
right �� tail �right�

By convention� primed components in an operation schema like this one denote the
components of the state �left and right� after the operation
 The declaration �File
stands for all components of File and its primed version File �� plus all properties that
hold for them according to the File schema �i
e
� none�
 The new left string is the
concatenation of the old left string with the character directly to the right of the old
cursor� the new right string is its tail
 There is one precondition for moving the cursor
right� it may not be at the end of the bu�er� as re�ected by the predicate right ��h i

Another operation that is easily speci�ed in this view is inserting a character�

insertChar

�File
c��Char

left �� left a hc�i
right ��right

Input variables of an operation schema are conventionally denoted with question mark
decorations

A completely di�erent view of the same text bu�er is the Grid view that we will

present below
 Here� we model the bu�er as a sequence of sequences of limited length�
assuming a constant maxlinelength�

maxlinelength �N

A legal line is one that has a space or a newline as its last character� with no internal
newlines

nl �sp �Char

nl ��sp

legallines � P seqChar

� l � seqChar �
l � legallines � �� i � dom l � l �i 	�nl � i��l���l ��l 	 � fnl �spg�

Sequences are functions from numbers to some type� so their domains are their index
ranges
 A sequence of lines is wrapped if it has all legal lines of limited length

wrapped � P seq seqChar

� ls � seq seqChar �
ls � wrapped � �ran ls � legallines ���� l � ran ls � �l 	 maxlinelength �

The complete Grid view of the bu�er is then the following

Grid

lines � seq seqChar
x �y �N

lines � wrapped

y � dom lines

x � dom�lines �y	�

De�ning operations like csrRight and insertChar in this view would be quite a lot
of work� since we need to specify what happens �near the end of the line�
 On the
other hand� the following operations cannot be de�ned on the File view� moving the
cursor up a line

csrUp

�Grid

y�� � y ��y
�
x �� min�x ��lines �y �	�
lines �� lines

or deleting until the end of a line

delEol

�Grid

lines ��y	 � lines �y	�� � � x 	
� z � dom lines � z ��y � lines ��z 	 � lines �z 	
x ��x � y ��y

The invariant relating the two views is that the concatenations of both are equal�
and that the cursor is indeed at the end of the left sequence
 In Jackson�s approach�
this link is achieved by introducing a schema�

Editor

File �Grid

left a right� a� lines ��left�x � �i � � � � y
� � �lines �i 	

and then promoting the operations on the individual views to operations on the
combined schema � the invariant ensures that the �other� representation is suitably
updated
 This provides for a nice way of using multiple views for natural speci�cation�
each operation can be speci�ed in the view it is most easily expressed in

There is a small catch� though
 The Grid view has a few restrictions on its state�

and one of these in�uences the File operations as well
 Consider what happens if
insertChar is used to create a word of length maxlinelength � � �This word can never
be part of a wrapped line in the Grid view� even though it seemed to cause no problem
for File
 The way of combining views used by Jackson prohibits such use of operations�
i
e
 one view can actually restrict the applicability of operations de�ned in another
view
 Is this the desired e�ect� or would we rather have a situation where a view
sometimes has no current representation because the link between the two views is
not �total�� We choose the latter option� as you will see
 The most obvious reason
for this choice is that we prefer to weaken� not strengthen� preconditions when we
re�ne Z speci�cations

� Integrating multiple views into uni�cation

We will recap the simple rule for uni�cation of viewpoints as we presented it in
�DBS��	

For uni�cation of data de�nitions in Z� we assume they have been normalised to

the form shown below� where S and T are the maximal types of x in the respective
schemas
 The strict typing system of Z allows full type checking� which has the
advantage of allowing us to talk about the maximal type of an expression� but it has
disadvantages as well� as we will see shortly
 Our goal is to unify the schemas below

D

x �S

pred
S

D

x �T

pred
T

We have assumed that normalisation and identi�cation of commonality have already
taken place� and identi�ers are only identical if they refer to one common object
 So�
to unify these two schemas we need to �nd some common type for the two occurrences
of x
 Informally� this is how it is done�

D

x �S � T

x � S � pred
S

x � T � pred
T

However� the rigid type system of Z will insist that S �T is a type error� unless S and
T happen to be equal
 �In practice these types will be equal relatively often because
of the normalisation to maximal types
 For example with declarations x �
� � � � and
y�fz �N � z � zg� x and y would both have �maximal� type Z� the restrictions would
be added to their schema predicates in normalisation
� Generally� we would have to
introduce some kind of disjoint union here� with additional clutter of injections and
their inverses
 Moreover� if we have the following enumerated types�

S�a j b j c �T �a j d

our convention that equal identi�ers refer to the same entity implies we want

S � T�a j b j c j d

� which seems increasingly hard to describe in Z
 �A disjoint union would include a
twice
�
An entirely di�erent argument for not taking the uni�cation of two types to be

some union is based on the observation that di�erent viewpoints may be on di�erent
levels of abstraction
 One way in which this variation in abstraction level may show
up is in a di�erent view of the datatypes involved
 Actually� two viewpoints may
even have a di�erent view of the same datatype without one of them being more
abstract than the other
 This implies that we cannot resolve this by performing a data
re�nement step on the �more abstract� viewpoint �rst� before applying uni�cation

We have no choice but to stick with both representations in the uni�ed de�nition�
then
 We only have to link them � using something very similar to the invariant in
the Editor schema

Before we can present the rule for uni�cation� we have to make a small sidestep�

we have to introduce �bottom� values for each of the representations� for those cases
where only one of the representations is currently valid

For any type S �note� type� not set�� we de�ne the type S� by the following free

type de�nition�

S� ��� �S j justS hhS ii

which states that any value of the type S� is either the constant �S � or a value from
S labeled with the constructor justS � We assume that� for all such types� a function
theS �a partial surjection� is de�ned as the inverse of the injection justS �

theS �S�
�� S

dom theS� ran justS
� x �S � theS justS x�x

and a generic construction for making a partial relation total in both domain and
range� by relating all elements that had no image or no original to the correct bottom
value�

�S �T 	
tot � �S � T ��� �S� � T��

�R �S � T �
tot R � justS o

�
R o

�
theT

�fx � S n domR � �justS x ��T�g � fy �T n ranR � ��S �justT y�g

Here� o� denotes relational composition� � is Cartesian product� and tot is declared to
be a bijection
 �End of sidestep
�
In our previous uni�cation rule� the uni�cation between types S and T was rather

implicit� if they contained identical values those were assumed to be equal
 Since
we wish to generalise this� we need to ask explicitly of the speci�er to provide a
correspondence between the two types� stating which value of one type is assumed to
represent which value of the other type

Now� assuming the correspondence for x �S and x �T is given by the relation R �

S � T � we unify the schemas D given at the beginning of this section to

D

x��S�
x��T�

�x��x�� � tot R

� x �S � x��justS x � pred
S

� x �T � x��justT x � pred
T

Informally� we maintain two representations of the data
 It can be the case that they
are both related by the correspondence R� in which case each is required to satisfy its
original viewpoint predicate
 If one of the representations is outside the �left or right�
domain of R� it still satis�es its viewpoint predicate� but the other representation is
set to the bottom value in that case

In the next section we will show how this generalises both Jackson�s approach and

our simple uni�cation rule

So much for unifying data type de�ning schemas � we also need to adapt or possibly

unify operation schemas
 For an operation that is de�ned only in the �rst viewpoint
by the following schema�

OpX

�D
Decls

pred

in the uni�ed speci�cation we take

OpX

�D
Decls

x� � ran justS
x�

� � ran justS

let x �� theS x� � x � �� theS x�
� � pred

That is� we assert that this operation is de�ned only if the representation it was
de�ned on is valid
 The inclusion of �D where D is the uni�ed schema ensures that
the other viewpoint representation will change according to the invariant

If an operation is de�ned on both viewpoints� we �rst adapt both schemas to the

new uni�ed state as above
 Then� to combine them� we make use of the fact that it
is possible in Z to compute the pre� and postcondition of an operation and use the
rule for operation uni�cation we gave in �DBS��	
 Suppose A and B are schemas
representing the same operation� both adapted to operate on the same state� they can
be uni�ed by the following schema�

unionAB

Decls

preA� preB

preA � postA
preB � postB

where pre and post are the operations that compute pre� and postconditions of a
schema
 Provided that there are no con�icts between local declarations of both
schemas� and no data type uni�cations besides that for D � Decls is obtained by
�textually� unifying the declarations of both schemas

A proof that these rules result in a �most general� common re�nement� with the

consistency conditions on operations that are needed to guarantee this� can be found
in a forthcoming paper �BDBS��	

� Examples

Three cases for S and T can be distinguished in our previous rule� they are identical�
they are disjoint� or they have some overlap
 �The latter two cases require an explicit
new datatype de�nition to satisfy Z�s typing restrictions
� We show in which ways
these are all instances of the new rule

� When S and T are equal� we take R to be the identity relation on S � i
e

fx �S � �x �x �g
 Since the identity relation is a total relation� tot R�fx �S �
�justS x �justS x �g
 The resulting schema is equivalent� by the isomorphism�

�justS x �justS x �� x � to�

D

x �S

pred
S

pred
T

as expected
 For example� the schemas

D

x �
� � � �
D

x �fz �N � z � zg

would get normalised to

D

x �Z

� 	 x 	 �

D

x �Z

� z �N � x�z � z

and their uni�cation with R�Z � Z would essentially be their intersection�

D

x �Z

� 	 x 	 �
� z �N � x�z � z

i
e
 x�� or x��� If we wanted the union or disjoint union of these sets� we would
take di�erent R�

�Isomorphisms in this context are just renamings of the inhabitants of a schema� i�e� total and
one
to
one data re�nements in both directions�

� When S and T are disjoint� they are in no way related� and thus we need
to take R��� Then tot R only contains pairs of the forms �justS x ��T� and
��S �justT y�
 This is actually a di�erent representation of the disjoint union of
S and T
 We would de�ne this as

uniST ��� inS hhS ii j inT hhT ii

By the isomorphism �justS x ��T �� inS x � ��S �justT y� � inT y� the schema
resulting from uni�cation is equivalent to�

D

xx �uniST

� x �S � xx�inS x � predS
� x �T � xx�inT x � pred

T

as we would expect
 For example� if S�a j b and T�c j d � the uni�ed
schema would contain the pairs �justS a��T �� �justS b��T �� ��S �justT c� and
��S �justT d� satisfying the relevant predicates� and so we might as well take
the isomorphic schema�

D

x �a j b j c j d

x � fa�bg � pred
S

x � fc�dg � pred
T

� For the case that S and T overlap� we will look at the concrete example used
earlier� S�a j b j c �T�a j d
 If we take R to be f�a�a�g� tot R is

f�justS a�justT a���justS b��T ���justS c��T ����S �justT d�g

which is obviously isomorphic to the type a j b j c j d �

These were all examples of the new rule resulting in schemas equivalent to the ones
produced by the old rule� and in all cases R was a subset of the identity relation

For applying the new rule to the File�Grid example we need to adapt the schemas

in the speci�cation slightly
 The rule is de�ned on single components only� whereas
we need to relate� on the one hand� components left and right to� on the other hand�
components lines � x and y
 One way of doing this would be to rede�ne File and
Grid to have single tupled components� introducing a clutter of extra names and
projections
 However� Z�s schema calculus allows us to use the name of a schema as

a record type� with the components as the �elds� restricted to the records satisfying
the predicate
 We just have to add two dummy schemas�

FileFile

x �File
GridGrid

x �Grid

and unify these two
 The correspondence between the types File and Grid is then
expressed by the relation R de�ned by

R �File � Grid

� f �File � g�Grid � �f �g� � R � f �left a f �right� a� g�lines
��f �left�g�x � �i � � � � g�y
� � �g�lines �i 	

Because the predicates for FileFile and GridGrid are true� their uni�cation with R is
the simple schema

FileandGrid

x��File�
x��Grid�

�x��x�� � tot R

We observed earlier that every Grid can be represented as a File � and vice versa i�
there is no word longer than maxlinelength
 Thus� the above schema is equivalent to

FileandGrid

x��File
x��Grid�

�x��theGrid x� � � R��x���Grid�x� � Fileswithwordslongerthanmax �

for a suitably de�ned set

This schema� in turn� can serve as an implementation of the Editor schema result�

ing from Jackson�s method
 If we strengthen the predicate by removing the second
disjunct� and then �unpack� the record types File andGrid � we get the Editor schema

We observed that taking R to be a partial identity relation reduces the new rule

to the rule we presented earlier �DBS��	
 It is also clear that taking R to be a total
relation reduces the new rule to Jackson�s method
 Without a limit on the length
of lines� both uni�ed schemas would be identical
 The di�erence is caused by the
invariant relation being partial in one of its domains� Jackson reduces the domain
to make the invariant total again� we extend the relation using bottoms� making it
�total� on a larger domain

� Conclusions and further research

We have succeeded in integrating previously published methods for unifying Z spec�
i�cations using di�erent views and viewpoints
 Thus� we allow an element of data
type re�nement or translation to be included in uni�cation
 This has the advantage
that� whenever di�erent datatype representations of one entity are used in a modular
speci�cation e�ort� we do not need to choose one representation over another at an
early stage
 Several representations can coexist� and the speci�cations they are used
in can be checked for consistency using uni�cation

A technical problem with this approach is the abundance of bottom values and

newly de�ned free types with all their constructor functions and their inverses
 It
would be nice if we could do away with some of these� and we will be investigating
this topic

Another issue that we would like to explore is the relevance of this generalisa�

tion for viewpoint speci�cations in the RM�ODP framework
 Is it helpful to allow
multiple representations of the same entity across viewpoints� in particular for the
viewpoints that Z will be used in� Will some of the RM�ODP correspondence rules
represent data type transformations� We aim to apply our techniques to RM�ODP
viewpoint speci�cations to answer such questions� and thus to check the usability of
these methods for ODP speci�cation

References

�BB��	 T
 Bolognesi and E
 Brinksma
 Introduction to the ISO Speci�cation Lan�
guage LOTOS
 Computer Networks and ISDN Systems� ������������ ����

�BDBS��	 E
 Boiten� J
 Derrick� H
 Bowman� and M
 Steen
 Consistency and re�ne�
ment for partial speci�cation in Z
 Submitted for publication� ����

�BDS��	 H
 Bowman� J
 Derrick� and M
 Steen
 Some results on cross viewpoint con�
sistency checking
 In IFIP International Conference on Open Distributed

Processing
 Chapman Hall� ����

�BSC��	 R
 Barden� S
 Stepney� and D
 Cooper
 Z in practice
 Prentice Hall� ����

�DBS��	 J
 Derrick� H
 Bowman� and M
 Steen
 Maintaining cross viewpoint con�
sistency using Z
 In IFIP International Conference on Open Distributed

Processing
 Chapman Hall� ����

�FGH���	 A
C
W
 Finkelstein� D
 Gabbay� A
 Hunter� J
 Kramer� and B
 Nuseibeh

Inconsistency handling in multiperspective speci�cations
 IEEE Transac�

tions on Software Engineering� �������!���"�� August ����

�ITU��	 ITU Recommendation X
������� # ISO$IEC ��"�! ���
 Open Distributed

Processing � Reference Model � Parts ���� July ����

�Jac��	 D
 Jackson
 Structuring Z speci�cations with views
 Technical Report
CMU�CS������!� School of Computer Science� Carnegie Mellon University�
����

�Rat��	 B
 Ratcli�
 Introducing speci�cation using Z
 McGraw�Hill� ����

�Spi��	 J
M
 Spivey
 The Z notation� A reference manual
 Prentice Hall� ����

�Suf��	 B
A
 Sufrin
 Formal speci�cation of a display�oriented text editor
 Science
of Computer Programming� ����"����� ����

�ZJ��	 P
 Zave and M
 Jackson
 Conjunction as composition
 ACM Transactions

on Software Engineering and Methodology� ������"������ October ����

This paper was typeset in LaTEX using the MathPad �http���www�win�tue�nl�win�cs�wp�mathspad��

editing tool with specially written stencils for using oz�sty�

To appear in the proceedings of Computing Science in the Netherlands� November �����

