
Lamela Seijas, Pablo, Thompson, Simon, Taylor, Ramsay, Bogdanov, Kirill
and Derrick, John (2014) Synapse: automatic behaviour inference and implementation
comparison for Erlang. Technical report. University of Kent (Unpublished)

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/42784/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/42784/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Synapse: automatic behaviour inference
and implementation comparison for Erlang

Pablo Lamela Seijas, Simon Thompson
Dept. of Computer Science, University of Kent
{p.lamela-seijas,s.j.thompson}@kent.ac.uk

Ramsay Taylor, Kirill Bogdanov, John Derrick
Dept. of Computer Science, University of Sheffield
{r.taylor,k.bogdanov,j.derrick}@dcs.shef.ac.uk

Abstract

In the open environment of the world wide web, it is natural that
there will be multiple providers of services, and that these ser-
vice provisions — both specifications and implementations — will
evolve. This multiplicity gives the user of these services a set of
questions about how to choose between different providers, as well
as how these choices work in an evolving environment.

The challenge, therefore, is to concisely represent to the user the
behaviour of a particular implementation, and the differences be-
tween this implementation and alternative versions. Inferred mod-
els of software behaviour – and automatically derived and graph-
ically presented comparisons between them – serve to support ef-
fective decision making in situations where there are competing
implementations of requirements. In this paper we use state ma-
chine models as the abstract representation of the behaviour of an
implementation, and using these we build a tool by which one can
visualise in an intuitive manner both the initial implementation and
the differences between alternative versions.

In this paper we describe our tool Synapse which implements this
functionality by means of our grammar inference tool StateChum
and a model-differencing algorithm. We describe the main func-
tionality of Synapse, and demonstrate its usage by comparing dif-
ferent implementations of an example program from the existing
literature.

Categories and Subject Descriptors D.2.2 [Design Tools and
Techniques]: Computer-aided software engineering

General Terms Algorithms, design, documentation

Keywords Grammar inference, comparison, machine extraction,
Erlang, Finite State Machines, active learning, passive learning,
model differences

1. Introduction

The work described in this paper is part of a set of new mechanisms
and tools to support effective decision making in situations where
there are competing implementations of requirements. In the open
environment of the world wide web, it is natural that there will be
multiple providers of services, and that these service provisions —
both specifications and implementations — will evolve.

For example, there might be multiple implementations of a partic-
ular web service or component, and typically in such a scenario
each implementation will partially fulfil the requirement, perhaps
in a buggy way. Equally importantly, an evolving system goes

through multiple implementations of requirements that are them-
selves evolving, and it is necessary to revise decisions in the light
of these changes. Finally, we aim to address systems which deliver
the same core functionality, but which behave differently according
to the parametrization or configuration in which they are built.

In this paper we concentrate on the first of these situations, where
we encounter differing implementations of a specification, or im-
plementations that fail to meet the specification in one or more
ways. We provide here a number of different techniques and tools
that attack the problem in complementary ways.

Where there are multiple implementations available, software en-
gineers need to be given a suitably high-level and intuitive under-
standing of the behaviour of each implementation, and of the differ-
ences between implementations. Previous work has demonstrated
the practicality of automatically inferring state machine models of
software behaviour [9, 10, 13, 15, 16]. These models offer easy to
comprehend representations of a system’s behaviour, and offer a
sufficiently abstract platform on which to discuss the differences
between implementations in a systematic but intuitive way [6]. The
work presented in this paper builds on top of the existing techniques
for extracting models from systems, as implemented in StateChum,
including the PTSLDiff algorithm and the Erlang module inference
system [14].

Section 2 introduces the Frequency Server example [8] used in our
earlier work [2, 4], which will be used as our running example. In
Section 3 we provide some background on grammar inference and
difference deduction and their application to Erlang.

In Section 4 we describe our tool that integrates these techniques
into an Erlang framework called Synapse, that provides an Erlang
interface to these facilities. It allows models to be inferred either
passively from traces of an implementation, or actively from an
Erlang module, and the resulting model is presented as an Erlang
data structure. This can then be compared to another model and the
differences recorded and visualised. By presenting both an Erlang
interface to the learning and differencing mechanisms together with
an Erlang representation of the results, the results of this work can
be integrated into existing Erlang development workflows, and used
by existing Erlang analysis tools.

As a guide to the use of Synapse, in Section 5, we present a set of
variants of the Frequency Server example. We see from this that the
differences between two implementations can be visualised as the
“diff” between two machines, highlighting the set of changes that
needs to be made to go from one machine to the other. Finally, in
Section 6, we conclude.

2. Running example

Our running example is a simple program extracted from Erlang
Programming [8], called frequency_server. The program rep-
resents an automatic service for spectrum management that allo-
cates frequencies on demand on a first come, first served basis. A
finite set of frequencies is offered and the server guarantees that
each frequency is allocated to at most one client. Whenever a client
is no longer interested in a frequency that it has previously allo-
cated, it may communicate this to the server using the command
deallocate, this way deallocated frequencies may be reused by
other clients.

2.1 Base implementation

In Listing 1, we provide the source code for the system that we
use as base implementation in the rest of this section. To avoid
redundancy, the code for the other configurations will be expressed
as modifications to this base implementation.

%% Code from
%% Erlang Programming
%% Francecso C e s a r i n i and Simon Thompson
%% O’ R e i l l y , 2008
%% h t t p : / / o r e i l l y . com / c a t a l o g /9780596518189 /
%% h t t p : / / www. er langprogramming . org /
%% (c) Francesco C e s a r i n i and Simon Thompson
%% M o d i f i e d by : Pablo Lamela on Dec 2013

−module (f r e q u e n c y) .
−export ([s t a r t / 0 , s t o p / 0 , a l l o c a t e / 0 ,

d e a l l o c a t e / 1]) .
−export ([i n i t / 0]) .

%% These are t h e s t a r t f u n c t i o n s used t o
%% c r e a t e and i n i t i a l i z e t h e s e r v e r .

s t a r t () −>
r e g i s t e r (f r e q u e n c y , spawn (f r e q u e n c y ,

i n i t , [])) .

i n i t () −>
p r o c e s s _ f l a g (t r a p _ e x i t , t rue) ,
F r e q u e n c i e s = { g e t _ f r e q u e n c i e s () , [] } ,
l oop (F r e q u e n c i e s) .

% Hard Coded
g e t _ f r e q u e n c i e s () −> [10 ,11] .

%% The c l i e n t F u n c t i o n s

s t o p () −> c a l l (s t o p) .
a l l o c a t e () −> c a l l (a l l o c a t e) .
d e a l l o c a t e (Freq) −> c a l l ({ d e a l l o c a t e , Freq }) .

%% We h i d e a l l message p a s s i n g and t h e
%% message p r o t o c o l i n a f u n c t i o n a l
%% i n t e r f a c e .
c a l l (Message) −>

f r e q u e n c y ! { r e q u e s t , s e l f () , Message } ,
r e c e i v e

{ r e p l y , Reply } −> Reply
end .

r e p l y (Pid , Message) −>

Pid ! { r e p l y , Message } .

l oop (F r e q u e n c i e s) −>
r e c e i v e

{ r e q u e s t , Pid , a l l o c a t e } −>
{ NewFrequencies , Reply } =

a l l o c a t e (
s o r t f r e q s (F r e q u e n c i e s) ,
P id) ,

r e p l y (Pid , Reply) ,
l oop (NewFrequenc ies) ;

{ r e q u e s t , Pid , { d e a l l o c a t e , Freq } } −>
NewFrequenc ies =

d e a l l o c a t e (F r e q u e n c i e s , Freq) ,
r e p l y (Pid , ok) ,
l oop (NewFrequenc ies) ;

{ ’EXIT ’ , Pid , _Reason } −>
NewFrequenc ies =

e x i t e d (F r e q u e n c i e s , P id) ,
l oop (NewFrequenc ies) ;

{ r e q u e s t , Pid , s t o p } −>
r e p l y (Pid , ok)

end .

s o r t f r e q s ({ Freqs , A l l o c a t e d }) −>
{ l i s t s : s o r t (F r e q s) , A l l o c a t e d } .

a l l o c a t e ({ [] , A l l o c a t e d } , _P id) −>
{ { [] , A l l o c a t e d } ,

{ error , n o _ f r e q u e n c i e s } } ;
a l l o c a t e ({ [Freq | F r e q u e n c i e s] , A l l o c a t e d } ,

P id) −>
l i n k (P id) ,
{ { F r e q u e n c i e s , [{ Freq , P id } | A l l o c a t e d] } ,

{ ok , F req } } .

d e a l l o c a t e ({ Free , A l l o c a t e d } , F req) −>
{ va lue , { Freq , P id } } =

l i s t s : k e y s e a r c h (Freq , 1 , A l l o c a t e d) ,
unl ink (P id) ,
NewAlloca ted = l i s t s : k e y d e l e t e (Freq , 1 ,

A l l o c a t e d) ,
{ [Freq | F ree] , NewAlloca ted } .

e x i t e d ({ Free , A l l o c a t e d } , P id) −>
case l i s t s : k e y s e a r c h (Pid , 2 , A l l o c a t e d) of

{ va lue , { Freq , P id } } −>
NewAlloca ted =

l i s t s : k e y d e l e t e (Freq , 1 ,
A l l o c a t e d) ,

{ [Freq | F ree] , NewAlloca ted } ;
f a l s e −>

{ Free , A l l o c a t e d }
end .

Listing 1: Listing for base implementation

2.2 Alternative implementations

With this base implementation in mind, we can think of several
variants of this, including the following.

1. Regarding the implementation of deallocate: what should
happen whenever a client tries to deallocate a frequency it has
not allocated?

(a) noop: the server must act as if deallocation was successful
but do nothing.

(b) cannot: the server must crash by throwing an exception and
returning an error.

2. Regarding the order of frequency allocation: in what order must
frequencies be allocated?

(a) smallf: the server must always allocate the smallest avail-
able frequency first.

(b) lifo: the server must always allocate first the most recently
deallocated frequency. If the frequencies have never been
allocated yet, allocation starts with the highest frequencies.

3. Regarding the initial number of frequencies: before starting the
frequency_server we must make a number of frequencies
available, which for our purposes we consider finite. In this
paper we consider two possibilities:

(a) 2 initial frequencies: which we will represent with numerals
10 and 11.

(b) 3 initial frequencies: which we will represent with numerals
10, 11, and 12.

From now on we will represent any set of configurations as an
Erlang tuple in the form {DeallocationMethod, Allocation
Method, InitialFrequencies}. Since it is the simplest, we
will use {cannot, smallf, 2} as the base configuration for
comparisons.

For example, we might be given the code for the deallocation
behaviour. This is given as a modification of the implementation
above, so that it does not produce an error when a client tries
to deallocate a frequency that is not allocated, see Listing 2. The
differences here are highlighted by red / green representing removal
/ addition respectively - of course the challenge in practice is that
usually one doesn’t know precisely which bits of code have been
altered.

d e a l l o c a t e ({ Free , A l l o c a t e d } , F req) −>
{ va lue , { Freq , P id } } = l i s t s : k e y s e a r c h (

Freq , 1 , A l l o c a t e d) ,
unl ink (P id) ,
NewAlloca ted =

l i s t s : k e y d e l e t e (Freq , 1 , A l l o c a t e d) ,
{ [Freq | F ree] , NewAlloca ted } .
case l i s t s : k e y s e a r c h (Freq , 1 , A l l o c a t e d) of

{ va lue , { Freq , P id } } −>
unl ink (P id) ,
NewAlloca ted =

l i s t s : k e y d e l e t e (Freq , 1 ,
A l l o c a t e d) ,

{ [Freq | F ree] , NewAlloca ted } ;
_ −> { Free , A l l o c a t e d }

end .

Listing 2: Modifications for noop deallocation

What we wish to do now is to both calculate the difference between
this new implementation and the original one, and then represent
visually these alterations to the user in the most intuitive manner
possible. To do this we will use grammar inference techniques to
build models of the original system, the variant, and the differences
between these.

3. Background work: grammar and difference
inference

The previous section has introduced the example Erlang implemen-
tation of the frequency server, and some potential variants. This
section will introduce the techniques by which an implementation’s
behaviour can be automatically inferred, producing a Finite State
Machine model of the behaviour that is easily understood by a soft-
ware engineer who wants to understand the system’s operation.

Our previous work has demonstrated the use of grammar inference
techniques to infer models of behaviour for Erlang implementa-
tions [7, 14]. Grammar inference techniques work by considering
sequences of operations in the system — hereafter referred to as
traces of the system. A sufficiently diverse set of such traces (per-
haps derived from log data or from unit tests) can be considered the
language of the system, and techniques exist to infer a grammar for
this language in the form of a state machine that accepts the valid
traces and rejects the invalid traces. This state machine is then an
effective abstract model of the system’s behaviour [10].

3.1 Grammar Inference

Algorithmic approaches to language learning started in the 1960s
with Gold [11], building on earlier work to formalise natural lan-
guage. In the 1980s, Angluin published the L*-algorithm [1] that
learns a language from an expert oracle by presenting queries. The
queries take the form of sequences that may or may not be in the
language, and the expert oracle replies simply whether they are
or are not valid language elements. The L*-algorithm queries the
language incrementally and exhaustively, attempting each alphabet
element from each state and iterating until no new states are iden-
tified. This produces the complete automaton but requires lengthy
exploration of the language and heavy use of an expert oracle.

Later work has aimed to learn state machine language representa-
tions from partial data – usually a subset of the possible sequences
of the language – without user queries. Evidence driven state merg-
ing (EDSM) algorithms such as BlueFringe [12] operate on a set of
positive and negative traces from a system or language and produce
a state machine that accepts positive traces and rejects (in the form
of a transition to a failure state) negative traces.

The inference algorithm starts by constructing what is called a
Prefix Tree Acceptor (PTA) which is a tree that represents ex-
actly the traces given to a learner. Taking the first three posi-
tive traces above, the corresponding PTA is shown at the top of
Figure 1. Here path start,allocate/1,deallocate(1) corre-
sponds to a trace + start allocate/1 deallocate(1). Trace
+ start allocate/2 deallocate(2) is assumed to have en-
tered the state after start and added two more states. Note that the
second positive trace is subsumed by the third one.

The problem of inference from such a graph is identification of
loops; where one is confident that two states correspond to the same
state of a target graph, they can be merged into a single state. In
the figure, there are two states from which the path allocate/1,
deallocate(1) can be followed, suggesting a commonality in
their behaviour. It does not necessarily mean that these states corre-
spond to the same target state but is often a good indication of this.
The outcome of merging them is shown at the bottom of the fig-
ure. A well-known method of model inference called K-Tails [5] is
based on this observation and merges pairs of states where all out-
going paths of length k are the same. The value k is the parameter
that determines how much is merged; with a value of zero, one ends

Figure 1: Illustration of the model inference

up with a single-state automaton, with a very large k, no mergers
are possible and the PTA is returned.

The passive inference method used in this work to infer models
(EDSM from [13]) is more complex: it is using an idea of a blue
fringe to control the exploration of PTA and an idea of scores to
rank potential mergers. In addition, reject-paths are used to block
clearly erroneous mergers. The idea of scores is to evaluate the
number of states that will be removed if a pair is merged. In the
above example, the merger turned a PTA into a graph with two
fewer states and hence the score will be 2. Where a pair of states
have a lot in common, their merger is more likely to be correct
compared to a pair with little in common; a merge of such a pair
is also likely to significantly reduce the graph size. This is why
scoring is based on the reduction of graph size.

It is easy to encounter many states with little in common. This is
particularly true for the tail-end states of a graph where scoring
would give a zero which makes it hard to tell whether to merge
or not. The presence of paths leading to a reject-state is key to
effective learning. The middle graph of Figure 1 contains a few
negative traces from the above-mentioned set of traces added to
the top PTA. Reject-states are drawn as rectangles. A merger is
not permitted to merge a normal (positive) state and a reject-state.
For instance, where one attempts to merge the source and target
states of the start transition, this implies that allocate/1 should
be both possible (it is present from the target state of the start
transition) and impossible (it is present as a reject-transition from
the initial state). In such cases, no merger is performed and the
score is assumed to be negative.

Merging is improved where one uses a systematic approach to
exploration of a graph with the aim to consider pairs of states that
have higher scores first. The idea of a blue fringe [13] is to view
the graph as a collection of states that were considered and are
not mergeable pairwise (red states) and then evaluate a boundary
of this set of states (called blue fringe) as candidates for mergers
with some of the red ones. Where a blue state cannot be merged
(which is the case when the score between it and all of the red
states is negative), it is coloured red and the new blue boundary
is computed. Initially, the set of red states contains only the initial
state.

In the running example, the initial state is red and the blue fringe
only contains the target state of start. Such a blue state cannot
be merged into the initial state hence it is coloured red and the
two target states of allocate-transitions are made blue. These are
once again have to be coloured red and the outcome is shown in
the middle of the figure. The target state of deallocate(2) can

be merged into the target state of start with a score of 2; the
remaining blue state can be merged into any red one with each such
merger scoring a zero. A pair with a higher score is chosen and the
inference arrives at the graph at the bottom of Figure 1. Ideally,
one would proceed to (erroneously) merge the remaining blue state
with the initial state. This can be most easily handled either by
using a larger range of positive traces or by using a threshold where
only pairs with scores above it are merged. In this work, the former
approach is used.

The BlueFringe algorithm [13] was shown to be highly effective
in the Abadingo One competition for learning algorithms, and does
not require the use of an expert oracle, operating exclusively on
the positive and negative traces presented. The QSM algorithm [9]
reintroduces the oracle query approach by producing queries from
the new traces that are possible in the system after the proposed
merge and requires the oracle to either confirm that they are positive
traces, or supply the shortest negative prefix. If the response is the
same as the classification of those traces by the outcome of the
proposed merge then QSM will continue to suggest merges. If the
response contradicts the merged automaton the algorithm restarts
from the beginning, with this additional negative trace. Eventually
enough information is accumulated for the learning process to
converge.

QSM does not aim to learn the complete automaton, its purpose
is to generalise the supplied traces. It can be supplied a subset of
traces with “interesting” behaviours, and it will generalise from
these using queries. Consequently, it is more tolerant of initial trace
sets that are not representative samples of the system’s behaviour,
so long as they contain enough significant features to allow query
generation to operate.

Non-exhaustive language learning algorithms have significant ap-
plication to software testing as they present an opportunity to ex-
plore the behaviour of the software system, without the resource
and time requirements of exhaustive model checking. Additionally,
passive inference can be performed on existing program traces —
perhaps from system log data, or by instrumenting existing tests
— and active inference techniques can derive suitable parameter
values from this existing information. As well as providing a repre-
sentation of the behaviour of the system, this can provide a measure
of the test or trace set used, since a test set that explores more of
the potential behaviour of a system will produce a more detailed
and/or accurate model during inference. Using behaviour inference
for test assessment was first suggested by [19], and has been shown
to provide a better metric of test adequacy [10].

3.2 The tools StateChum and PTSLDiff

The StateChum [7] system was developed to implement the QSM
algorithm with the objective of reverse engineering state machine
representations of software behaviour from software trace data
[16]. StateChum takes sets of positive and negative traces and treats
them as a prefix closed language — so, if any trace is accepted by
the system then all prefixes of that trace must also be accepted; for
any negative trace of the system all prefixes are positive traces but
the final event “crashes” the system and cannot be recovered. The
positive traces are composed into a prefix tree automaton that starts
from an initial state and adds branches as traces diverge.

StateChum also includes the implementation of a model differenc-
ing tool PTSLDiff produced at the University of Sheffield [6]. This
allows two FSM models to be compared and computes a structural
difference. The difference is expressed in terms of the smallest set
of modifications required to convert the first state machine into the

second. Modifications include adding and removing states, adding
and removing edges, and renaming of states and edges.

Most traditional methods of FSM comparison expect the initial
states of the two to match; in software models, there is nothing pre-
venting extended initialisation routines to be added to a new version
which means that differencing cannot have an a-priori knowledge
where to start. The idea of differencing is (1) to compute pairwise
scores between states of the graphs to compare, followed by (2)
identification of landmarks and subsequent (3) construction of a
difference. Where a pair of states has most of the outgoing transi-
tions in common, this is deemed a better match than the one with
only a fraction of outgoing transitions that match; moreover, where
matching transitions lead to states considered similar, this is a bet-
ter case compared to target states being very different. This is why
a score between a pair of states depends on scores of pairs of states
reached by matched transitions; this can be seen as a system of
linear equations and solving it gives a good guess of state simi-
larity. It can also be computed both in forward and inverse direc-
tion and results averaged. Landmarks are pairs which are not only
well-matched but also where any of the two states in a pair are not
well matched to any other state (an idea also known as ‘stable mar-
riage’). Construction of a difference starts by choosing such well-
matched pairs and then propagating matches along matched transi-
tions that lead to pairs with best scores; this is done both in forward
and inverse direction. This corresponds to a traveller matching the
landscape around them to a map and looking at streets in a simi-
lar direction, expecting them to lead to matched places. For each
new matched pair, matched outgoing transitions are considered and
so on. After such an partial injective map between states of two
considered graphs is computed, all transitions that do not match
are to be either added or removed and are hence are included in
the difference. The construction of a map is aimed to construct a
good match so as to minimise the number of transitions to add or
remove; it is not guaranteed to always find the smallest difference.
It is guaranteed, however, to construct a valid difference, in that
it can be applied to the first graph and this would yield a graph
isomorphic to the second one. The differencing works on arbitrary
directed graphs, however in this work is it only applied to deter-
ministic ones.

Finally, StateChum contains code to visualise models and model
differences. All of these features are accessible through the Synapse
interface that is the focus of the next section.

4. The Synapse interface

StateChum provides various powerful features for model inference,
model differencing, and visualisation. To leverage this toolset for
Erlang applications, and to allow its integration into automated Er-
lang development processes, this work has developed the Synapse
tool. Synapse provides a simple and modular Erlang interface to
grammar inference and Finite State Machine analysis tools. Cur-
rently, Synapse interfaces to the StateChum tool allow for passive
and active inference, and for a range of visualisation and differ-
encing functions. The framework has been designed in a modular
fashion to allow easy integration of other learning or analysis tools
in the future.

The Synapse interface provides separate functions for each stage of
a typical behaviour inference workflow, allowing time-consuming
steps such as model inference to be performed once, and the re-
sults to be stored or manipulated as Erlang terms. The principal
operations supported are: learning (both active and passive), FSM
visualisation, model differencing, and difference visualisation.

4.1 Model inference from traces

Synapse provides a flexible interface to the StateChum inference
system. There are parsing functions to support several trace for-
mats, including the format used by the STAMINA competition
[17], and the parametrised format used in Mint [18].

These traces must demonstrate sequences of operations in the im-
plementation that is being studied. The level of abstraction chosen
will determine the level of abstraction of the inferred model. These
traces could be sourced by extracting sessions from log data, by
instrumenting unit tests, or by random testing with a tool such as
QuickCheck [3].

The traces should be classified as positive and negative depending
on whether the model should accept them or reject them. State-
Chum operates on prefix closed languages, so any negative traces
should be positive traces up until the last operation. Defining neg-
ative is an abstraction decision: it could represent operations that
will crash the system, cause an exception, or operations that are
simply not available at that point.

Currently, StateChum builds Finite State Machine models, that do
not have data or parameter components. Although there is work
being undertaken to infer Extended Finite State Machine models of
software (such as [18]) that is not considered here. The example
operations used in this paper use a limited set of parameters and
make these explicit in the operations — so deallocate(1) and
deallocate(2) are considered to be entirely distinct operations.

Some STAMINA format traces from the base implementation de-
scribed in Section 2 are shown below. These represent function
calls, with any arguments used in brackets (()), and the result of
the function call after the slash (/). Where no return value is spec-
ified the model ignores the return value, and would accept any run
of the system that performs the operation with the specified param-
eters. Where a return value is specified, this is the return value ex-
pected at this point. Non-deterministic systems cannot be modelled
by StateChum.

+ start allocate/1 deallocate(1)
+ start allocate/2 deallocate(2)
- start allocate/2 deallocate(1)
- allocate/1
- deallocate(1)
- allocate/2
- deallocate(2)
- start deallocate(1)
- start deallocate(2)
- start allocate/2 deallocate(2) deallocate(1)
+ start allocate/2 deallocate(2) allocate/1
deallocate(1)
+ start allocate/1 deallocate(1) allocate/2
deallocate(2)
+ start allocate/2 allocate/1 deallocate(2)
deallocate(1)
+ start allocate/1 allocate/2 deallocate(1)
deallocate(2)

These can be presented to Synapse and are parsed into Erlang terms
as:

Traces =
[{pos,[start,’allocate/1’,’deallocate(1)’]},
{pos,[start,’allocate/2’,’deallocate(2)’]},
{neg,[start,’allocate/2’,’deallocate(1)’]},
{neg,[’allocate/1’]},
{neg,[’deallocate(1)’]},

{neg,[’allocate/2’]},
{neg,[’deallocate(2)’]},
{neg,[start,’deallocate(1)’]},
{neg,[start,’deallocate(2)’]},
{neg,[start,’allocate/2’,’deallocate(2)’,

’deallocate(1)’]},
{pos,[start,’allocate/2’,’deallocate(2)’,

’allocate/1’,’deallocate(1)’]},
{pos,[start,’allocate/1’,’deallocate(1)’,

’allocate/2’,’deallocate(2)’]},
{pos,[start,’allocate/2’,’allocate/1’,

’deallocate(2)’,’deallocate(1)’]},
{pos,[start,’allocate/1’,’allocate/2’,

’deallocate(1)’,’deallocate(2)’]}]

Similar traces could be produced directly by an Erlang testing tool.
These can be stored or manipulated as Erlang terms before being
presented to the inference component to produce an FSM.

To infer a state machine model of the system these traces are passed
to StateChum through the Synapse interface:

SM1 = synapse:passive_learn(Traces).

This passes the trace set above to StateChum with the default
configuration options necessary for passive learning. The function
synapse:learn can take additional parameters that control the
behaviour of the learner for specialist tasks.

Additionally, Synapse provides an interface to the StateChum Er-
lang active inference mechanisms through the learn_erlang
function. This can be called with a path to an Erlang source file
to apply the Erlang module inference described in [14].

The return value of all of the learn functions is an Erlang record
representing the state machine that was inferred.

-record(statemachine,{
states :: list(state()),
transitions :: list(transition()),
initial_state :: state(),
alphabet :: list(event())

}).

For the small set of traces above this is a simple machine:

SM1 = synapse:passive_learn(Traces).
Progress: 24 states
Progress: 20 states
Progress: 17 states
Progress: 15 states
Progress: 14 states, 14 red states
Progress: 12 states
Progress: 11 states
Progress: 10 states
Progress: 9 states
Progress: 8 states, 8 red states
Progress: 7 states
Progress: 6 states
{statemachine,[’P1000’,’N1000’,’P1001’,’P1004’,

’P1002’,’P1008’],
[{’P1000’,’allocate/1’,’N1000’},
{’P1000’,’allocate/2’,’N1000’},
{’P1000’,’deallocate(1)’,’N1000’},
{’P1000’,’deallocate(2)’,’N1000’},
{’P1000’,start,’P1001’},
{’P1001’,’allocate/1’,’P1004’},
{’P1001’,’allocate/2’,’P1002’},
{’P1001’,’deallocate(1)’,’N1000’},

{’P1001’,’deallocate(2)’,’N1000’},
{’P1004’,’allocate/2’,’P1008’},
{’P1004’,’deallocate(1)’,’P1001’},
{’P1002’,’allocate/1’,’P1008’},
{’P1002’,’deallocate(1)’,’N1000’},
{’P1002’,’deallocate(2)’,’P1001’},
{’P1008’,’deallocate(1)’,’P1002’},
{’P1008’,’deallocate(2)’,’P1008’}],

’P1000’,
[’allocate/2’,start,’deallocate(1)’,
’deallocate(2)’,’allocate/1’]}

This encodes the states, initial state and transition matrix, as well
as the alphabet, into a form that can be stored or manipulated by
other Erlang based tools. The negative state is always encoded as
N1000. This state is the endpoint for the last event in any negative
traces.

As well as passive learning — building a state machine from sup-
plied traces — Synapse provides an interface to StateChum’s active
learning systems [14]. This approach can use the exported inter-
face of an Erlang module, or the standard call and cast operations
of an OTP behaviour and apply the QSM active learning algorithm
to infer the module’s behaviour. The system will load the selected
module and determine the available API functions. These are com-
bined in random orderings to produce some initial traces for the
learner, but as the QSM algorithm progresses it produces queries,
which can be answered by executing the traces as tests on the mod-
ule itself. The active learning process can produce a more accurate
state machine, as it is able to improve its state merging by checking
potential merges through interactive queries answered by a user.
However, it requires that the Erlang module can be executed, and is
relatively independent of other modules and behaves deterministi-
cally.

4.2 Visualisation of the inferred model

Synapse allows Erlang programmers to utilise the visualisation
components of StateChum independently of the learning process.
This allows time consuming inference processes to be run once and
the results stored, manipulated, and displayed independently.

The StateChum visualisation is initiated by calling the function
synapse:visualise. The visual interface allows the user to re-
arrange the state machine, and save and load layouts. Several visu-
alisation windows can be opened simultaneously, allowing visual
comparison of state machines. This is further aided by the layout
saving mechanism, which allows a layout to be applied to different
machines with the same state names. This places the states in the
same configuration on two different FSMs, making visual compar-
ison easier.

By default, the negative state and the final (“crashing”) transitions
leading to it are hidden to make the diagram more readable, but
this can be changed either by adding parameters to the visualise
function, or through the user interface. This is shown in Figure 2,
depicting the visualisation of the model inferred from the above set
of traces, including a negative state visible in the top right corner.

4.3 Measuring and visualising model differences

Model inference techniques also allow us to record and then vi-
sualise the differences between implementations. Specifically, the
structural differencing algorithms described in [6] are implemented
in StateChum, and the Synapse interface allows these to be used on
stored Erlang LTS representations.

Figure 2: FSM visualisation with negative state

The synapse:diff function takes two state machine record repre-
sentations and returns an Erlang record representing the structural
difference computed as described in Section 3.2.

-record(statemachinedifference,{
added_transitions :: list(transition()),
deleted_transitions :: list(transition()),
added_states :: list(state()),
deleted_states :: list(state()),
name_mapping :: list({state(),state()}),
initial_state :: state()

}).

For example, adding an extra frequency to the very short set of
traces above and inferring a new machine (SM2):

Diff = synapse:diff(SM1,SM2,[]).
Synapse started.
StateChum at <0.62.0>
{statemachinedifference,

[{’P1000’,’allocate/3’,’N1000’},
{’P1000’,’deallocate(3)’,’N1000’},
{’P1001’,’allocate/3’,’P1008’},
{’P1001’,allocate2,’P1000’},
{’P1008’,’deallocate(3)’,’P1008’}],

[],[],[],
[{’P1004’,’P1005’},{’P1008’,’P1015’}],
’P1000’}

This model difference can be stored and manipulated as an Erlang
term. This allows meta-differencing, or difference metrics to be
calculated and fed back to testing tools.

Having produced an Erlang representation, the final component
of StateChum that is available through the Synapse interface is
difference visualisation. This allows the difference between two
FSM models to be visualised in a single image. The function
synapse:visualise_diff requires an FSM record for the “origi-
nal” state machine and a difference record representing the changes
to move from the “old” to the “new” state machine.

Figure 3: Difference visualisation

Added states and transitions are labelled green, removed states and
transitions are labelled red. This allows a user to quickly identify
areas of difference, and it can provide some insights into the effects
of particular changes that may not be apparent from a review of
the source code. For example, Figure 3 visualises the differences
between the base implementation and the implementation with
three frequencies: it is thus the visualisation of the difference record
above.

5. Applying Synapse to the Frequency Server

This section illustrates the use of Synapse as applied to our running
example. As described in Section 4, Synapse provides an Erlang
interface to the grammar inference and model differencing imple-
mentations in StateChum and PTSLDiff. We discuss three variants
of the base implementation described in Section 2. For each of these
we will show three models representing the original implementa-
tion, the variant and the difference. The first two are generated by
using StateChum’s active learning from two independent configu-
rations of the frequency_server; the third diagram is generated
by using PTSLDiff on the first two, and shows which changes have
to be done in the first model to transform it into the second.

In the model generated by PTSLDiff, which from now on we will
call the diff diagram, added transitions are represented in green,
removed transitions are represented in red, and transitions that are
common to both diagrams are represented in black. Nevertheless,
all the states are represented in green, we already know that states
that only have green transitions are added states, and that states
that only have red transitions are deleted states. The initial state —
the state in which the frequency_server is before it is started —
is represented by a 7-pointed star. Illegal transitions — transitions
that would produce an exception — are omitted from the diagram
for clarity.

Figure 6: Differences between cannot and noop deallocation

Figure 7: Base smallf configuration Figure 8: Alternative lifo deallocation

5.1 Deallocation behaviour

The first differences that we consider are in deallocation behaviour.
To illustrate this configuration we use the modification given above
in Listing 2 (in Section 2), where the code does not produce an error
when a client tries to deallocate a frequency that is not allocated.

In Figure 4 we show the model for the base configuration {cannot,
smallf, 2} and in Figure 5 we show the behaviour for the alter-
native deallocation implementation {noop, smallf, 2}. We can
see that the models are very similar in this case. In the middle we
have the initial state, and every call to stop ends up in it. The other

Figure 9: Differences between smallf and lifo allocation

Figure 10: Base 3-freq conf. Figure 11: Alternative configuration with 4 frequencies

four states represent all the possible sets of available frequencies
that can occur with two existing frequencies: 10 and 11.

We can identify the state with no allocated frequencies in the end
of the start transition, and we can identify the state with no free
frequencies by finding the self-transition of allocate that returns
{error, no_frequencies}.

We can easily see in the diff diagram, (Figure 6), that the only
effect of the configuration noop is the self-transitions that try to
deallocate frequencies that are already deallocated, since in the
cannot configuration these produce an exception and, thus, they
are omitted from the diagram.

These three diagrams succinctly represent the behaviour of the
two implementations, and the difference between them. The colour

Figure 12: Differences between using 2 and 3 frequencies

Figure 4: Base cannot configuration

Figure 5: Alternative noop deallocation

coded diff diagram is ideal for focussing the attention of software
engineers on only those parts of the system that are altered. This
approach does so at the behaviour level, rather than a simple code
diff, which could highlight several disparate areas of the source that
require some considerable understanding to link. This simplicity
and informative power is the critical contribution of this work.

5.2 Allocation behaviour

Now we illustrate the effect of different allocation implementa-
tions. In order to do that, we use again the configuration {cannot,
smallf, 2}, this time as an example of smallf configuration,
which we show again in Figure 7 for clarity, and we use {cannot,
lifo, 2}, (shown in Figure 8), as an example of lifo configura-
tion, the modifications made on the base configuration are listed in
Listing 3 (illustrating code differences by red and green arcs).

We can intuitively guess that the lifo configuration needs a higher
number of states because the order in which frequencies were
deallocated must be stored too. In Figure 8 we can indeed see
that an extra state P1024 exists without any allocated frequencies.
But unlike state P1001, calling allocate from this new state will
allocate 11, instead of 10.

In Figure 9 we can clearly see that deallocating 11 after 10 pro-
duces a difference between the lifo and smallf configurations.

5.3 Number of initial frequencies

Finally, we illustrate the effects of increasing the number of ini-
tial frequencies. Once more we use the configuration {cannot,
smallf, 2} as base (Figure 10), and this time we use the config-
uration {cannot, smallf, 3} as target (Figure 11). This is the
result of a small modification in the base code, see Listing 4.

We can guess that even though the order of deallocations does not
matter because we are using a smallf allocation configuration,
we will have considerably more states because of the new added
frequency. In particular, from the state in the diagram we must
be able to tell unequivocally whether we may or may not have
allocated each of the possible frequencies, giving 23 = 8 states
plus the initial state. Indeed, the diagram for three frequencies is a
bit more complicated than usual, but we can still manually identify
some similarities, such as the self-transition returning {error,
no_frequencies}.

This time the use of Synapse produces a diff diagram (Figure 12),
that shows much more information. In addition, the colour code
helped us in finding a more intuitive layout.

With this new layout we can immediately see that the behaviour
with two frequencies is a subset of the behaviour with three fre-
quencies. In the moment we allocate the frequency 12, the system
behaves as only two frequencies existed, as long as we do not deal-
locate the frequency 12 or re-start the server, which is of course a
coherent behaviour.

But if we look closer, we can also see that the behaviour in green
is also analogous to the behaviour in black, with the difference that
we can transition to the inner black section if we call allocate
when both frequencies 10 and 11 are already allocated.

6. Conclusion

In this paper we have described the framework Synapse, which
makes use of the facilities provided by StateChum to allow the user

loop (F r e q u e n c i e s) −>
r e c e i v e

{ r e q u e s t , Pid , a l l o c a t e } −>
{ NewFrequencies , Reply } =

a l l o c a t e (s o r t f r e q s (F r e q u e n c i e s) ,
P id) ,

a l l o c a t e (F r e q u e n c i e s , P id) ,
r e p l y (Pid , Reply) ,
l oop (NewFrequenc ies) ;

. . .

s o r t f r e q s ({ Freqs , A l l o c a t e d }) −>
{ l i s t s : s o r t (F r e q s) , A l l o c a t e d } .

Listing 3: Modifications for lifo allocation

F r e q u e n c i e s = { g e t _ f r e q u e n c i e s () , [] } ,
l oop (F r e q u e n c i e s) .

% Hard Coded
g e t _ f r e q u e n c i e s () −> [10 ,11] .
g e t _ f r e q u e n c i e s () −> [10 ,11 ,12] .

%% The c l i e n t F u n c t i o n s

s t o p () −> c a l l (s t o p) .
a l l o c a t e () −> c a l l (a l l o c a t e) .
d e a l l o c a t e (Freq) −> c a l l ({ d e a l l o c a t e , Freq }) .

Listing 4: Modifications for 3 frequencies

to compare different implementations of systems with similar be-
haviours. As far as we are aware this is the first such system by
which a user can see the differences between inferred models. Cru-
cially, the abstraction and simplification provided by an FSM view
– rather than concrete code – can make it easier for a user to locate
and understand the material differences between implementations,
or discrepancies between specification and implementation.

We have illustrated some of the main features, and we have shown
in practice how it can help understand the effect that different de-
sign choices have in the general behaviour of a system. These anal-
ysis tools have proven useful for visually discovering properties in
the program as well as for achieving a higher confidence in that
the program works as expected. The information provided by these
tools can also make the choices easier when comparing different
implementations with similar behaviours, and it can help for docu-
menting purposes or as a visual aid for cooperative discussion.

Clearly, there is scope for extending this systems. For example, the
current inference process doesn’t incorporate data or parameters
into the model. Ongoing research work into inferring EFSM mod-
els could be incorporated into the Synapse interface to make it easy
to select between inference approaches.

Additionally, the inference process operates on a single Erlang
module and produces a model whose behaviour is presented as be-
ing sequential. This is often appropriate for a high level abstraction
of the API of a system, but the particular emphasis on concurrency
and distributed systems in Erlang would benefit from a system that
was able to capture this aspect of the system’s behaviour.

Acknowledgments

This work was done as part of the EU FP7 project PROWESS,
http://www.prowess-project.eu, grant no. 317820.

References
[1] D. Angluin. Learning regular sets from queries and counterexamples.

Inf. Comput., 75:87–106, 1987. ISSN 0890-5401. . URL http:
//dl.acm.org/citation.cfm?id=36888.36889.

[2] T. Arts and S. J. Thompson. From test cases to FSMs: augmented test-
driven development and property inference. In S. L. Fritchie and K. F.
Sagonas, editors, Erlang Workshop, pages 1–12. ACM, 2010. ISBN
978-1-4503-0253-1.

[3] T. Arts, J. Hughes, J. Johansson, and U. Wiger. Testing telecoms
software with Quviq QuickCheck. In Proceedings of the 2006 ACM
SIGPLAN workshop on Erlang, pages 2–10. ACM, 2006.

[4] T. Arts, P. L. Seijas, and S. Thompson. Extracting QuickCheck
Specifications from EUnit Test Cases. In Proceedings of the 10th ACM
SIGPLAN Workshop on Erlang, Erlang ’11, pages 62–71. ACM, 2011.
ISBN 978-1-4503-0859-5.

[5] A. W. Biermann and J. A. Feldman. On the synthesis of finite-
state machines from samples of their behavior. IEEE Transaction on
Computers, 21:592–597, 1972.

[6] K. Bogdanov and N. Walkinshaw. Computing the Structural Differ-
ence between State-Based Models. In A. Zaidman, G. Antoniol, and
S. Ducasse, editors, WCRE, pages 177–186. IEEE Computer Society,
2009. ISBN 978-0-7695-3867-9.

[7] K. Bogdanov, N. Walkinshaw, and R. Taylor. StateChum. http:
//statechum.sourceforge.net/ [Accessed 14th January 2014].

[8] F. Cesarini and S. Thompson. ERLANG Programming. O’Reilly
Media, Inc., 1st edition, 2009. ISBN 0596518188, 9780596518189.

[9] P. Dupont, B. Lambeau, C. Damas, and A. V. Lamsweerde. The QSM
algorithm and its application to software behavior model induction.
Applied Artificial Intelligence, 22:77–115, 2008.

[10] G. Fraser and N. Walkinshaw. Behaviourally Adequate Software
Testing. In Proceedings of the Fifth International Conference on
Software Testing, Verification and Validation (ICST), 2012.

[11] E. M. Gold. Language identification in the limit. Information and
Control, 10(5):447–474, 1967. URL http://www.isrl.uiuc.edu/
~amag/langev/paper/gold67limit.html.

[12] K. J. Lang, B. A. Pearlmutter, and R. A. Price. Results of the ab-
badingo one DFA learning competition and a new evidence-driven
state merging algorithm. In Proceedings of the 4th International Col-
loquium on Grammatical Inference, pages 1–12. Springer, 1998. URL
http://portal.acm.org/citation.cfm?id=645517.655780.

[13] K. J. Lang, B. A. Pearlmutter, and R. A. Price. Results of the Ab-
badingo One DFA learning competition and a new evidence-driven
state merging algorithm. In V. Honavar and G. Slutzki, editors, Gram-
matical Inference; 4th International Colloquium, ICGI-98, volume
1433 of LNCS/LNAI, pages 1–12. Springer, 1998.

[14] R. Taylor, K. Bogdanov, and J. Derrick. Automatic Inference of Erlang
Module Behaviour. In E. B. Johnsen and L. Petre, editors, IFM,
volume 7940 of Lecture Notes in Computer Science, pages 253–267.
Springer, 2013. ISBN 978-3-642-38612-1, 978-3-642-38613-8.

[15] N. Walkinshaw and K. Bogdanov. Inferring finite-state models with
temporal constraints. In Proceedings of the 2008 23rd IEEE/ACM
International Conference on Automated Software Engineering, ASE
’08, pages 248–257. IEEE Computer Society, 2008. . URL http:
//dx.doi.org/10.1109/ASE.2008.35.

[16] N. Walkinshaw, K. Bogdanov, M. Holcombe, and S. Salahuddin. Re-
verse engineering state machines by interactive grammar inference. In
Proceedings of the 14th Working Conference on Reverse Engineering
(WCRE). IEEE, 2007.

[17] N. Walkinshaw, B. Lambeau, C. Damas, K. Bogdanov, and P. Dupont.
STAMINA: a competition to encourage the development and assess-

ment of software model inference techniques. Empirical Software En-
gineering, 18(4):791–824, 2013.

[18] N. Walkinshaw, R. Taylor, and J. Derrick. Inferring Extended Finite
State Machine models from software executions. In R. Lämmel,
R. Oliveto, and R. Robbes, editors, WCRE, pages 301–310. IEEE,
2013.

[19] E. J. Weyuker. Assessing Test Data Adequacy through Program Infer-
ence. ACM Transactions on Programming Languages and Systems, 5
(4):641–655, 1983.

http://www.prowess-project.eu
http://dl.acm.org/citation.cfm?id=36888.36889
http://dl.acm.org/citation.cfm?id=36888.36889
http://statechum.sourceforge.net/
http://statechum.sourceforge.net/
http://www.isrl.uiuc.edu/~amag/langev/paper/gold67limit.html
http://www.isrl.uiuc.edu/~amag/langev/paper/gold67limit.html
http://portal.acm.org/citation.cfm?id=645517.655780
http://dx.doi.org/10.1109/ASE.2008.35
http://dx.doi.org/10.1109/ASE.2008.35

