
Thompson, Simon and Hill, Steve (1995) Functional programming through
the curriculum. In: Hartel, Pieter H. and Plasmeijer, Rinus, eds. Funtional
Programming Languages in Education First International Symposium. Lecture
Notes in Computer Science . Springer, Berlin Germany, pp. 85-102. ISBN
978-3-540-60675-8.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/19094/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/3-540-60675-0_40

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/19094/
https://doi.org/10.1007/3-540-60675-0_40
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Functional programming through the
curriculum

Simon Thompson and Steve Hill

Computing Laboratory
University of Kent at Canterbury� U�K�

fS�J�Thompson�S�A�Hillg�ukc�ac�uk

Abstract� This paper discusses our experience in using a functional
language in topics across the computer science curriculum� After exam�
ining the arguments for taking a functional approach� we look in detail at
four case studies from di�erent areas� programming language semantics�
machine architectures� graphics and formal languages�

� Introduction

We �rst explore our reasons for using a functional programming language� Mi�
randa� as a vehicle for teaching a number of topics across the computer science
curriculum� Figure � gives an overview of the courses we look at� We then give
an overview of the paper itself�

Why�

We see �ve major reasons for using a functional language in a variety of compo�
nents of a computer science course�

A common language First� a functional language provides a commonmedium
in which we can express many of the ideas which come into a variety of courses�
For example�

� rules in operational semantics�
� functions in a denotational semantics�
� sets and other data structures �which appear in many situations� such as
non�deterministic automata �NFAs	 and executable versions of model�based
speci�cations	�

� hardware description� and abstract machines of various sorts�
� geometric transformations and their composition� which appear in courses
on computer graphics�

This language is familiar� so that the student can concentrate on any new ideas
being expressed� rather than the particular way in which they are written down�
There is anecdotal evidence for this from one of the author
s experience� in
covering a simple imperative language and its structured operational semantics

Degree programme Computer Science and related subjects� which in
the English system take three years to complete�

Students Students are specialists� who have suitable qual�
i�cations in mathematics� or are taught the
equivalent material in the �rst year of their
programme�

Courses�

Introductory programming Year �� 	
 � hour lectures � 	� classes�
Formal languages Year 	�
��� lectures� � assessment work�
Machine architectures Year 	� �� lectures� � assessment work�
Formal Semantics Final year� �� lectures� � assessment work�
Computer Graphics Final year�
 lectures� � assessment work�

For each course assessment is by means of a mixture of continuous assessment �typically
allocated 	
� of the marks� and written examination�

Fig� �� Summary of the degree programme and courses

the students preferred the �rather more cluttered	 Miranda rendering to the rules
written out in a natural deduction style�

It is easy for teachers to forget the overhead of learning another formal nota�
tion� our students are perhaps happier learning programming languages� which
all follow the same ground rules� rather than more mathematical sorts of nota�
tion�

Of course there is a trade�o� here� in restricting ourselves to a single �meta�	
language in our studies we may limit some applications� One example might be
denotational semantics� where our meta�language would be sequential�

High�level language The common language we have chosen is high�level� we
gain advantages from this� In particular� the conciseness of the functional de�
scriptions should help rather than overwhelm students�

For project work� the language supports rapid and accurate program devel�
opment which is essential if students are to be able to perform substantial tasks
with limited time available�

Static checking Our third reason is that the language is syntax� and type�
checked� the descriptions we �or our students	 write can be checked for syntactic
correctness� and more importantly for type correctness� We use the types of the

� These lectures occur as parts of larger courses� typically taking �� hours� the �gures
given here show the part allocated to the functional material discussed here�

language� particularly in giving semantic descriptions of programming languages�
this point is discussed in more detail in Section
�

Executable The fourth justi�cation is that the language is executable� We gain�
therefore

� executable semantic descriptions�
� prototypes of model�based speci�cations�
� machines and hardware which are directly executable�

Moreover� it is possible for students to test their solutions to exercises� as well
as to embark upon larger�scale experiments�

Reinforcement Finally� using functional languages through the curriculum re�
inforces an initial exposure to functional programming� The ideas of lazy func�
tional programming are subtle� and it would be naive of us to think that a �rst
exposure would be su�cient for most students� In treating regular expressions
and NFAs� for example� we �nd non�trivial instances of

� polymorphism� we use sets of various types of element�
� type abstraction� sets are a prime example�
� modularisation�
� higher�order functions� parsing regular expressions�

In �rst teaching Miranda we make links with imperative programming� these
links can be strengthened as we continue to use the language�

Other issues In the longer term� we see the mathematical elegance of func�
tional languages as a�ording opportunities for formal proof in a variety of areas�
such as machine simulation and compiling� This is one area into which we hope
to move in the future�

Finally� a rather more negative justi�cation is that an isolated course in
functional programming which is not followed up has a strong implicit negative
message� �we teach you this stu� because we feel we ought to� but we don
t use
it ourselves��

Overview of the paper

In the remainder of the paper we give a description of how we use functional
programming in a number of areas� evaluating our approach as we go along�
After giving a short description of how we introduce programming� we discuss
in turn how we use a functional approach in covering the topics of program�
ming language semantics� machine architectures� computer graphics and formal
languages� before concluding the paper�

Some of the materials mentioned are available over the World Wide Web or
by FTP� we detail this in the appropriate sections�

� Learning to program

Functional programminghas strong support at our institution� and we are able to
draw on the expertise of some six lecturers and similar numbers of postgraduates
and research sta�� The topic is introduced in the �rst year with �� lectures of
basic material supported by a similar number of practical classes� The material
is taught in parallel with
� lectures and classes on the imperative language
Modula�
�

In teaching functional programming we are mindful that our students also
write imperative programs� We see the two approaches as complementary� with
functional programming providing a valuable perspective on the imperative in a
number of ways�

� A functional language is a useful design language for imperative programs�
especially those which manipulate dynamic data structures� We can give
functional list�processing programs which can be translated into an impera�
tive language by adding the appropriate memory manipulating code�

� The di�erent approach of functional programming can make plain what is
happening in an imperative language� the di�erent notions of �variable
 come
to mind� for instance�

� A functional approach can also illuminate de�ciencies in imperative lan�
guages� or alternative approaches which are unfamiliar to a more traditional
programmer�

� Semantics of Programming Languages

Since the inception of computing there has been interest in explaining in a clear
and comprehensible way the behaviour of programs� that is giving a semantics
to programming languages� The denotational school of Scott and Strachey� ����
aimed to give a mathematical model of �sequential� imperative	 programs as
functions from machine state to machine state� In order to �nd the appropriate
structures to model these states and functions domain theory ��� was developed�

In retrospect� if not at the time� it is clear that the denotational semantics
of a programming language can be factored into two parts�

� A functional model of the language is built� using an existing functional
programming language � in this paper we shall use Miranda� Under this
approach� the meaning of a command� for instance� is a function of the
appropriate type� stores �� stores�
In other words� the functional programming language is used as a semantic
meta�language�

� The functional programming language itself is given a domain�theoretic se�
mantics�

This separation makes clear the two quite di�erent processes underlying the
semantic description of the language�

� Using the basic notions of value� type� function and recursion we give a model
of the more complex structures of an imperative language� These include
� commands �as state transformers	�
� expression evaluation� which will in general have side�e�ects�
� styles of parameter passing� with their corresponding styles of variable
declaration ����	�

� di�erent forms of binding� sequential or �parallel
� static or dynamic� and
so forth�

� In the second stage� analyses of type� function and recursion have themselves
to be given� It is only at this stage that the more technical aspects of domain
theory need to be apparent�

This split shows that much can be gained by a student who only follows the
�rst of these phases� s�he is able to see how the complex behaviour of a modern
imperative language is rendered in simple �and hopefully familiar	 terms�

The second phase� which involves further technicality� is optional� If it is
examined� the �rst phase gives motivation for a closer examination of recursion
in the de�nition of both functions and data� and so gives a clear reason for
domains to appear� If the two phases are merged� it has been our experience
that students �nd it more di�cult to grasp what is going on� this is simply the
lesson of �divide and conquer
 in the context of semantic descriptions rather than
program development�

In the rest of this section we give an overview of our material on semantics
in Miranda� This consists of descriptions of various aspects of a Pascal�like pro�
gramming language together with an examination of its operational semantics�
in the style of Plotkin� We discuss potential exercises and projects for students
as we go along� and conclude with an evaluation of the approach advocated here�
as well as looking at other advantages of the treatment�

The Miranda code and a reference document for the material can be found
on the World Wide Web using the �Further material
 section given under the
URL

http���www�ukc�ac�uk�computer	science�Miranda	craft�

or via anonymous FTP from the directory
ftp���ftp�ukc�ac�uk�pub�sjt�Craft�

Basic semantics

In writing the semantics we identify three stages� First we look at the base types
we shall need to consider� then clarify the types of the major semantic functions�
and �nally we write the de�nitions of these functions�

Types First we have to establish how we model the programs themselves� we
can use algebraic �or concrete	 types to specify the structure of each syntactic
category �commands� expressions and so on	� The Miranda de�nition of command
in Figure � shows how commands can be speci�ed� note how the algebraic type

command ��
 Skip �
If	Then	Else b	expr command command �
While	Do b	expr command �
Sequence �command
 �
Assignment ident expr

values

 num
lookup �� ident �� stores �� values
update �� stores �� ident �� values �� stores

command	value �� command �� stores �� stores
expr	value �� expr �� stores �� values
nop	value �� nop �� values �� values �� values

command	value Skip st
 st

command	value �If	Then	Else e c� c�� st

 command	value c� st � if b	expr	value e st

 command	value c� st � otherwise

command	value �While	Do e c� st

 command	value �While	Do e c� �command	value c st�

� if b	expr	value e st

 st � otherwise

command	value �Sequence �
� st
 st
command	value �Sequence �c�cs�� st

 command	value �Sequence cs� �command	value c st�

command	value �Assignment i e� st

 update st i �expr	value e st�

Fig� �� Basic denotational semantics

corresponds to a BNF�style syntax de�nition� and also that the type of com�
mands is de�ned in terms of the types expressions expr and boolean expressions�
b expr�

Programs are to be modelled as functions from stores to stores� taking the
machine state before executing the command to the state after the command
terminates� We therefore need a type to model the store� at this level of the
semantics we simply specify the signature required of the stores type� as is
done in Figure �� various implementations exist�

Typing the semantic functions Central to our approach is how we model
commands� each command is seen as a function from stores to stores� The
function interpreting commands� command value� will therefore have type

command �� stores �� stores

The other declarations in the second part of Figure � show the value of typing
the semantic functions in a separate phase� since these type declarations contain
important information about the interpretation of various parts of the language�
For example� we see that to give expressions a value we need a store �to interpret
any variables in the expression	� whilst to interpret a binary numerical operator
�an object of type nop	 no store is needed � operators have �xed values�

Were we to adapt the semantics to model a language with side�e�ects� this
would be apparent in the type of expr value� instead of returning an object of
type values alone� the result would be of type �values�stores� in which the
second component gives the state of execution after the expression evaluation
has terminated�

De�ning the semantic functions The de�nition of the functions themselves
is straightforward� for commands we exhibit the de�nition in the �nal part of
Figure �� At this point it becomes clear that recursion is used in the modelling�
a structural recursion runs along a Sequence of commands� while a potentially
non�terminating recursion is used to interpret the While Do loop�

Assessment In teaching this material we ask students to write de�nitions for
themselves� It is instructive to look at repeat and for loops� as well as �parallel
assignment
� x�y�
e�f� One obvious advantage for the student is that they can
check their solutions for syntax and type errors using the Miranda system� and
then for correctness by executing against example programs�

A second assessment building on the basic semantics is to add side�e�ects�
which we do with the expression

Do	Return c e

whose e�ect is to execute the command c before evaluating the expression e�
This requires students to think of changes to the types of the semantic functions
before re�examining their de�nitions� Particularly instructive in this case is the
parallel assignment command�

Extending the semantics

We have built a number of extensions of the basic semantics which illustrate
various aspects of programming languages�

The de�nition mechanism An environment is used to keep track of the de��
nitions in scope at any point during execution� this structure is quite separate

def	value �� def �� env �� stores �� env
command	value �� command �� env �� stores �� stores
expr	value �� expr �� env �� stores �� values

Fig� �� Extending the denotational semantics

config ��
 Inter command stores � Final stores

step �� config �� config

step �Inter �If	Then	Else e c� c�� st�

 �Inter c� st� � if b	expr	value e st

 �Inter c� st� � otherwise

step �Inter �While	Do e c� st�

 �Inter �If	Then	Else e �Sequence �c�While	Do e c
� Skip� st�

step �Inter �Assignment i e� st�

 Final �update st i �expr	value e st��

Fig� �� Basic operational semantics

from the store� which models the e�ect of commands on the machine state�
The types of the main semantic functions are illustrated in Figure
�

Abstraction� procedures and functions� There is considerable room for exper�
imentation here�
� We treat di�erent forms of parameter passing� value and reference as in

Pascal� but with the possibility of adding others�
� We illustrate the di�erence between static and dynamic binding�
� We model recursive and non�recursive procedures�

Jumps We show the di�culty of interpreting languages with goto by extending
the basic language with labels and jumps� the example illustrates the fact
that modularity breaks down� with the interpretation function becoming a
mutual�recursion involving the meanings of all the labels in the program�

In each of these cases there is room for students to experiment with the material�
modifying or extending it and gaining feedback about the syntactic correctness
of their work before executing it�

Operational semantics

An alternative semantic view is operational� we see the e�ect of a command as a
series of execution steps for an abstract machine� Part of an operational model

for our basic language is illustrated in Figure �� The configuration of a machine
is either

Final st � the machine has terminated in state st� or�
Inter c st � the command c is to be executed� starting at state st�

One step of execution takes one config to the next� and various cases of step
are given in the �gure�

On teaching this material� the rules were presented in functional form as
well as more traditional �deduction rule
� it became apparent that although the
latter form was more abstract �and to us easier to read	 the students preferred
the Miranda version because the syntax was familiar� and so they were able to
concentrate on the ideas� rather than on the surface syntax�

Conclusion

This section shows how a functional language is adequate for the functional
description of many aspects of modern programming languages� Further details
of this work are to be found in ����

The advantages of this approach are threefold

� The semantics are presented in a language which is executable� In doing
assessment work� students are able to check the syntax and typing of their
work� before executing their solutions�

� The semantics are presented in a familiar language� Even if de�nitions are
somewhat less elegant� readers can concentrate on the ideas rather than the
syntax�

� The two phases of the semantics � going to a functional language� inter�
preting that language � are explicit here� and we have found this avoids
some of the confusions of other expositions�

� Machine Architectures

The work in this area arose from the need to provide a platform for the sim�
ulation of microprocessor architectures suitable for undergraduate students of
the core computer science course� The problem was this� in the second year of
our undergraduate programme� two groups of students study a digital systems
course� The �rst group study Computer Systems Engineering which is oriented
more towards electronics than the second group who are reading a Computer
Science degree� Originally� the digital systems course contained a laboratory ex�
periment which involved a fair amount of practical electronics� We decided that
it was an unreasonable requirement that the mainstream computer scientists�
especially those from largely mathematical or computing backgrounds� should
have to perform this experiment� It was proposed� therefore� that these students
be o�ered a software�based project as an alternative�

This provided an ideal opportunity for an experiment in using a functional
platform� which we wanted to do for reasons discussed in the Introduction� in

particular we wanted a concise yet precise description of machines� as well as a
platform upon which to build project work�

We chose to provide simulations for two architectural styles � a register ma�
chine and a stack machine� Both machines share a common core which is ex�
tended to provide their peculiar instruction sets� The simulations are constructed
in three levels�

� The core machine provides the basic architecture described by means of
primitive transitions of machine state�

� The micro�code provides a specialisation of the core machine by implement�
ing an instruction set in terms of the basic transitions�

� The assembly language interface is implemented by an assembler and loader
which together construct an initial machine state� This is then run until the
machine halts�

ALUMAR MDR R0 R1

A−Bus

B−Bus

C−Bus

D−Bus

Memory

Fig� �� Architecture of the Core Machine

Implementation

The core machine� depicted in Figure �� provides a characterisation of a generic
machine architecture� It comprises a type of �machine state� along with a set
of permitted state transitions� These transitions are the only ones allowed� The
style is similar to that adopted by Peyton Jones and Lester �
� for the description
of abstract machines for the implementation of functional languages�

Ideally� the type of machine state would have been made abstract� but it
is not possible to cover abstract datatypes in su�cient detail in the �rst�year
functional programming course to allow this�

The machine was decomposed into the following parts�

� Memory � the memory is modelled as an association list between address
and contents�

� Memory Interface � the memory interface comprises two special purpose
registers � the memory address register �MAR	 and the memory data register
�MDR	�

� Register File � the registers are modelled as an association list between reg�
ister number and register contents� The core machine thus makes no com�
mitments as to the number of registers available�

� Buses � the machine has four internal buses or data highways�
� Statistics � the statistics �eld is used to accumulate measures of the machine
s
performance�

� Halt Flag � this indicates if the machine has halted�

These components are conveniently represented in Miranda as a tuple�

address

 num

word

 num

memory

 alist address word

interface

 �word� word�

registers

 alist num word

buses

 �word� word� word� word�

machine

 �memory� interface� registers� buses� stats� bool�

The core machine is augmented by a set of transitions which de�ne the valid
actions a machine may make� Most transitions involve the movement of data
from one place to another� Thus they also de�ne the data paths that exist within
the machine� Some example transitions are given�

transition

 machine �� machine

regToAbus �� num �� transition

regToAbus n �m� i� r� �a� b� c� d�� s� h�

 �m� i� r� �a�� b� c� d�� s� h�

where a�
 aLookup n r

mdrToAbus �� transition

mdrToAbus �m� �mar� mdr�� r� �a� b� c� d�� s� h�

 �m� �mar� mdr�� r� �mdr� b� c� d�� s� h�

The primitive transitions are combined via a small set of combinators� The most
important comma is a version of function composition�

comma �� transition �� transition �� transition

�t� �comma t�� m
 t� �t� m�

and is used to construct the derived combinator�

do �� �transition
 �� transition

do �

 id

do �t�ts�
 t �comma do ts

The switch transition is more specialised� It allows a transition to be selected
from a table according to the contents of a register� Its role mimics the operation
of the mapping PROM in a micro�code engine� Similarly� it is often the case
that a section of micro�code is parametrised on a register value and the function
passReg is provided for this purpose�

switch �� num �� alist num transition �� transition

passReg �� num �� �num �� transition� �� transition

We are now in a position to be able to de�ne transitions which correspond more
closely to the register transfer style� The �rst allows the contents of one register
to be copied to another and might be written as�

Rs� Rd

regToReg �� num �� num �� transition

regToReg rs rd

 do � regToAbus rs�

aluCycle AluA�

cbusToReg rd

Finally� some compound transitions for combining registers via the ALU are
provided� These might be written in the register transfer style thus�

�Rn � Rd

Rn �Rm � Rd

The second of these transitions is presented�

op� �� num �� aluOp �� num �� num �� transition

op� rn op rm rd

 do � regToAbus rn�

regToBbus rm�

aluCycle�

cbusToReg rd

Combinations of transitions are used to implement a fetch�execute cycle where
each instruction is coded as a compound of basic or derived transitions�

The �nal stage of the simulation was to provide an assembly language� loader
and functions to run programs to completion �ie� until the halt �ag is set	 and
to print out statistics� Using a functional programming environment here was
of great bene�t� Programs were represented simply as lists of instructions which
were themselves elements of an algebraic datatype� There was no need to have
a concrete syntax for assembly language programs� nor parsing�unparsing func�
tions� Instead� the syntax of lists and constructors is used directly� and the
compiler provides adequate checking and error messages�

For simplicity� labels were not implemented� although in retrospect this was
probably a mistake� Many of the errors that students encountered in their test
data were due to incorrect jumps�

Assessment

Students perform a single sixteen�hour assessment based on the simulation�Their
tasks include the following�

� Read the core machine de�nition and produce a schematic diagram similar
to Figure ��

� Implement the instruction sets of two similar machines and perform some
optimisations on these machines�

� Write test programs for the machines� and collate performance statistics�

The �rst task provides a useful revision of Miranda syntax� this being the �rst
functional programming that the students encounter after their �rst year course�
It provides a useful revision exercise� as well as getting them to think about the
machine architecture� The transitions are named such that a detailed under�
standing of their operation is not required�

Conclusion

The core de�nitions can be regarded as de�ning a meta�language or micro�code
for the core machine� For the purposes of the simulation exercise� the students
need only be pro�cient in a small subset of the Miranda language� namely the
syntax of lists� function application and de�nition� Experience would suggest
that the approach is successful� When students have problems with the work� it
is most often to do with the implementation of their machine� rather than the
details of functional programming�

However� we must be somewhat cautious� The groups that attempt this as�
sessment are self�selecting� Any student who struggled with functional program�
ming in the �rst year is unlikely to want to attempt this work� Between a half
and a third of the CS cohort opt for the alternative hardware�based experiment
each year�

From the point of view of the implementer� the simulator has been a great
success� During the three years of its use� we have identi�ed only a few minor

bugs which were �xed in a matter of minutes� One was due to a typographical
error and a couple of others were introduced when the simulation was modi�ed
to emulate a new architecture� Performance was not a problem for us since the
students
 test programs were quite small� Further details of this implementation
can be found in ����

� Computer Graphics

In their text� Salmon and Slater ��� use a notation based on Standard ML to
describe many features of higher�level graphics libraries� The reason for using a
functional notation which they cite is conciseness� In particular the expression
of values of simple datatypes is uncluttered and requires no explicit memory
allocation�

Similar motivations lead to our use of Miranda in a �nal year course on com�
puter graphics� We have found it to be a convenient language for the description
of geometric transformations and building upon this hierarchical geometric mod�
els�

The �rst stage of this part of the course introduces the following notions�

� the abstract concept of a geometric transformation
� an implementation based on homogeneous transformation matrices where

composition is achieved via matrix product
� an implementation based on functions where composition is achieved via

functional composition

In the Miranda implementation� the homogeneous matrices are treated as an
abstract data type with given implementations of the common transformations
and matrix product� The function�based implementation is typi�ed by de�nitions
such as�

translate �� point� �� point� �� point�

translate �tx� ty� �x� y�

 �x � tx� y � ty�

rotate �� num �� point� �� point�

rotate t �x� y�

 �x � cos t � y � sin t�

x � sin t � y � cos t�

Such transformations can be combined naturally with function composition� but
for consistency with the matrix notation �which uses row vectors for points	�
we chose a variant with the arguments reversed giving a natural left�to�right
reading�

�t� �o t�� p
 t� �t� p�

The next stage in the course introduces the notion of a symbol �sometimes called
a structure	� Symbols are essentially parametrised �over transformation and pos�
sibly a graphics environment	 graphical objects� We describe two approaches for
representing symbols�

� a symbol is a function taking a transformation to a sequence of graphical
commands� or

� a symbol is a list of graphical commands� An instance of the symbol is
obtained by applying a transformation to each of the commands to obtain a
sequence of graphical commands�

The �nal step is to construct hierarchical geometric models from the symbols�
Again� we present two techniques�

� A hierarchy is constructed using functions parametrised on a �global	 trans�
formation� The transformation is applied to all graphical operations at this
level� All children are invoked with augmented transformations which are
the composition of the global transformation and any local transformations
required to position them correctly within the model� For example�

robot t p m

base m ��

arm� �a� �o m� ��

arm� �a� �o m�

where

a�
 rotate t �o

translate � l�

a�
 rotate p �o

translate � l� �o

a�

where arm�� leg� and base are the symbols which constitute the relevant
parts of the robot�

� A hierarchy is constructed as a tree� Each node contains a symbol� a local
transformation and a list �possibly empty	 of children� A function is provided
to instance a tree� It visits each node maintaining a current transformation
which is the composition of any global transformation and all the local trans�
formations on the path from the root to the current position in the tree�

tree ��
 Node symbol trans �tree

figure m

Node body m �

Node arm arm� �
�

Node arm arm� �
�

Node leg leg� �
�

Node leg leg� �
�

Node head head� �

matches �� reg �� string �� bool

matches �Or r� r�� st

 matches r� st �� matches r� st

matches �Then r� r�� st

 or � matches r� s� � matches r� s� � �s��s����splits

where
splits
 � �take n st�drop n st� � n �� �����st

Fig� �� Regular expression matching

draw	tree m� �Node sym m� l�

sym m� ��

concat �map �draw	tree m�� l�

where

m�
 m� �o m�

Here arm� leg and head are symbols� and arm� etc� are the local transfor�
mations which position these symbols within the model�

Conclusion

As with Salmon and Slater� we found the major advantage of the use of Miranda
to be conciseness� The ease with which new datatypes can be de�ned and values
of these types can be expressed makes the presentation of material of this nature
much easier� Many imperative languages have a baroque syntax for literal values
of anything but the prede�ned datatypes and this is both distracting and waste�
ful of space� When lists or trees are involved the notation becomes unwieldy and
often impractical to present on� say� a single OHP slide� Miranda has a concise
notation for the values of all algebraic datatypes� with a particularly concise
notation for lists�

In their text� Salmon and Slater also use Pascal� They state that one should
regard the Pascal as an implementation of the higher�level ML presentation�
This is precisely one of the messages we try to give in our �rst year courses�

� Formal Languages

In a short module on the processing of formal languages we cover regular expres�
sions� and the di�erent sorts of automaton used to recognise them� as described
in ���� Chapter
� We use Miranda as a description and implementation language
for various of the ideas here� This material is also available through the URL

http���www�ukc�ac�uk�computer	science�Miranda	craft�

Matching

After describing regular expressions as a Miranda type� we are able to give a
Miranda de�nition of when a string matches an expression� the function matches
of Figure �� The description is short� and more importantly unambiguous� In this
context we are using Miranda as a formal speci�cation language�

The system

In our system we give implementations of

� A type of NFAs� and a simulation of NFAs�
� a function transforming a regular expression into an NFA�
� a function making an NFA into a deterministic machine� a DFA�
� a function optimising a DFA by minimising its state set�

Much of the code can be re�used� we discuss a particular case in the next section�

Sets

The automata used to recognise matches are built from sets� we exploit the
Miranda abstype mechanism to hide the particular implementation of the sets�
Moreover� in di�erent parts of the implementation we need to consider sets of
di�erent type� in the simple non�deterministic automaton we consider sets of
numbers� in building a deterministic version we use sets of sets of numbers�
polymorphism supports this sort of re�use�

Programming the system

Using a programming language forces us to consider both the details of the
system and how it is built from its constituent parts� A functional language
is su�ciently high�level that the details do not engulf the wider picture� for
example� we need do no explicit memorymanagement in a functional description�
The Miranda language also has a module system� and this is most helpful in
putting together the complete implementation�

As in earlier sections� the twin advantages of type�syntax checking and ex�
ecutability give us assurance that what we have written is sensible� as well as
allowing students to experiment with the systems and their assessment work�

� Conclusions

In the introduction to this paper we argued that there were considerable advan�
tages to using a functional language as a teaching vehicle in a computer science
degree� We illustrated our arguments with examples from four areas� semantics�
architecture� graphics and formal languages� We believe that there are other
parts of the degree in which a functional approach will be equally useful� speci��
cation animation and program veri�cation being two obvious examples� and we
hope to explore these and other topics in the years to come�

References

�� Alfred V� Aho� Ravi Sethi� and Je�rey D� Ullman� Compilers� Principles� Tech�

niques and Tools� Addison�Wesley� ��

�
	� Steve Hill� The functional simulation of a simple microprocessor� Technical Report

������ UKC Computing Laboratory� ����� Available by ftp from unix�hensa�ac�uk

in the directory pub�misc�ukc�reports�comp�sci�reports as the �le ������ps�Z�
�� Simon L� Peyton Jones� Implementing Functional Languages� Prentice�Hall� ���	�
�� Rod Salmon and Mel Slater� Computer Graphics � Systems and Concepts� Addison�

Wesley� ��
��

� Joseph E� Stoy� Denotational Semantics� The Scott�Strachey approach to program�

ming language theory� MIT Press� �����
�� Robert D� Tennent� Principles of Programming Languages� Prentice Hall� �����
�� Simon Thompson� Programming language semantics using Miranda� Technical

Report ���
� Computing Laboratory� University of Kent at Canterbury� ���
�

� Glynn Winskel� The Formal Semantics of Programming Languages� MIT Press�

�����

This article was processed using the LaTEX macro package with LLNCS style

