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Functional programming through the
curriculum

Simon Thompson and Steve Hill

Computing Laboratory
University of Kent at Canterbury� U�K�

fS�J�Thompson�S�A�Hillg�ukc�ac�uk

Abstract� This paper discusses our experience in using a functional
language in topics across the computer science curriculum� After exam�
ining the arguments for taking a functional approach� we look in detail at
four case studies from di�erent areas� programming language semantics�
machine architectures� graphics and formal languages�

� Introduction

We �rst explore our reasons for using a functional programming language� Mi�
randa� as a vehicle for teaching a number of topics across the computer science
curriculum� Figure � gives an overview of the courses we look at� We then give
an overview of the paper itself�

Why�

We see �ve major reasons for using a functional language in a variety of compo�
nents of a computer science course�

A common language First� a functional language provides a commonmedium
in which we can express many of the ideas which come into a variety of courses�
For example�

� rules in operational semantics�
� functions in a denotational semantics�
� sets and other data structures �which appear in many situations� such as
non�deterministic automata �NFAs	 and executable versions of model�based
speci�cations	�

� hardware description� and abstract machines of various sorts�
� geometric transformations and their composition� which appear in courses
on computer graphics�

This language is familiar� so that the student can concentrate on any new ideas
being expressed� rather than the particular way in which they are written down�
There is anecdotal evidence for this from one of the author
s experience� in
covering a simple imperative language and its structured operational semantics



Degree programme Computer Science and related subjects� which in
the English system take three years to complete�

Students Students are specialists� who have suitable qual�
i�cations in mathematics� or are taught the
equivalent material in the �rst year of their
programme�

Courses�

Introductory programming Year �� 	
 � hour lectures � 	� classes�
Formal languages Year 	� 
��� lectures� � assessment work�
Machine architectures Year 	� �� lectures� � assessment work�
Formal Semantics Final year� �� lectures� � assessment work�
Computer Graphics Final year� 
 lectures� � assessment work�

For each course assessment is by means of a mixture of continuous assessment �typically
allocated 	
� of the marks� and written examination�

Fig� �� Summary of the degree programme and courses

the students preferred the �rather more cluttered	 Miranda rendering to the rules
written out in a natural deduction style�

It is easy for teachers to forget the overhead of learning another formal nota�
tion� our students are perhaps happier learning programming languages� which
all follow the same ground rules� rather than more mathematical sorts of nota�
tion�

Of course there is a trade�o� here� in restricting ourselves to a single �meta�	
language in our studies we may limit some applications� One example might be
denotational semantics� where our meta�language would be sequential�

High�level language The common language we have chosen is high�level� we
gain advantages from this� In particular� the conciseness of the functional de�
scriptions should help rather than overwhelm students�

For project work� the language supports rapid and accurate program devel�
opment which is essential if students are to be able to perform substantial tasks
with limited time available�

Static checking Our third reason is that the language is syntax� and type�
checked� the descriptions we �or our students	 write can be checked for syntactic
correctness� and more importantly for type correctness� We use the types of the

� These lectures occur as parts of larger courses� typically taking �� hours� the �gures
given here show the part allocated to the functional material discussed here�



language� particularly in giving semantic descriptions of programming languages�
this point is discussed in more detail in Section 
�

Executable The fourth justi�cation is that the language is executable� We gain�
therefore

� executable semantic descriptions�
� prototypes of model�based speci�cations�
� machines and hardware which are directly executable�

Moreover� it is possible for students to test their solutions to exercises� as well
as to embark upon larger�scale experiments�

Reinforcement Finally� using functional languages through the curriculum re�
inforces an initial exposure to functional programming� The ideas of lazy func�
tional programming are subtle� and it would be naive of us to think that a �rst
exposure would be su�cient for most students� In treating regular expressions
and NFAs� for example� we �nd non�trivial instances of

� polymorphism� we use sets of various types of element�
� type abstraction� sets are a prime example�
� modularisation�
� higher�order functions� parsing regular expressions�

In �rst teaching Miranda we make links with imperative programming� these
links can be strengthened as we continue to use the language�

Other issues In the longer term� we see the mathematical elegance of func�
tional languages as a�ording opportunities for formal proof in a variety of areas�
such as machine simulation and compiling� This is one area into which we hope
to move in the future�

Finally� a rather more negative justi�cation is that an isolated course in
functional programming which is not followed up has a strong implicit negative
message� �we teach you this stu� because we feel we ought to� but we don
t use
it ourselves��

Overview of the paper

In the remainder of the paper we give a description of how we use functional
programming in a number of areas� evaluating our approach as we go along�
After giving a short description of how we introduce programming� we discuss
in turn how we use a functional approach in covering the topics of program�
ming language semantics� machine architectures� computer graphics and formal
languages� before concluding the paper�

Some of the materials mentioned are available over the World Wide Web or
by FTP� we detail this in the appropriate sections�



� Learning to program

Functional programminghas strong support at our institution� and we are able to
draw on the expertise of some six lecturers and similar numbers of postgraduates
and research sta�� The topic is introduced in the �rst year with �� lectures of
basic material supported by a similar number of practical classes� The material
is taught in parallel with 
� lectures and classes on the imperative language
Modula�
�

In teaching functional programming we are mindful that our students also
write imperative programs� We see the two approaches as complementary� with
functional programming providing a valuable perspective on the imperative in a
number of ways�

� A functional language is a useful design language for imperative programs�
especially those which manipulate dynamic data structures� We can give
functional list�processing programs which can be translated into an impera�
tive language by adding the appropriate memory manipulating code�

� The di�erent approach of functional programming can make plain what is
happening in an imperative language� the di�erent notions of �variable
 come
to mind� for instance�

� A functional approach can also illuminate de�ciencies in imperative lan�
guages� or alternative approaches which are unfamiliar to a more traditional
programmer�

� Semantics of Programming Languages

Since the inception of computing there has been interest in explaining in a clear
and comprehensible way the behaviour of programs� that is giving a semantics
to programming languages� The denotational school of Scott and Strachey� ����
aimed to give a mathematical model of �sequential� imperative	 programs as
functions from machine state to machine state� In order to �nd the appropriate
structures to model these states and functions domain theory ��� was developed�

In retrospect� if not at the time� it is clear that the denotational semantics
of a programming language can be factored into two parts�

� A functional model of the language is built� using an existing functional
programming language � in this paper we shall use Miranda� Under this
approach� the meaning of a command� for instance� is a function of the
appropriate type� stores �� stores�
In other words� the functional programming language is used as a semantic
meta�language�

� The functional programming language itself is given a domain�theoretic se�
mantics�

This separation makes clear the two quite di�erent processes underlying the
semantic description of the language�



� Using the basic notions of value� type� function and recursion we give a model
of the more complex structures of an imperative language� These include
� commands �as state transformers	�
� expression evaluation� which will in general have side�e�ects�
� styles of parameter passing� with their corresponding styles of variable
declaration ����	�

� di�erent forms of binding� sequential or �parallel
� static or dynamic� and
so forth�

� In the second stage� analyses of type� function and recursion have themselves
to be given� It is only at this stage that the more technical aspects of domain
theory need to be apparent�

This split shows that much can be gained by a student who only follows the
�rst of these phases� s�he is able to see how the complex behaviour of a modern
imperative language is rendered in simple �and hopefully familiar	 terms�

The second phase� which involves further technicality� is optional� If it is
examined� the �rst phase gives motivation for a closer examination of recursion
in the de�nition of both functions and data� and so gives a clear reason for
domains to appear� If the two phases are merged� it has been our experience
that students �nd it more di�cult to grasp what is going on� this is simply the
lesson of �divide and conquer
 in the context of semantic descriptions rather than
program development�

In the rest of this section we give an overview of our material on semantics
in Miranda� This consists of descriptions of various aspects of a Pascal�like pro�
gramming language together with an examination of its operational semantics�
in the style of Plotkin� We discuss potential exercises and projects for students
as we go along� and conclude with an evaluation of the approach advocated here�
as well as looking at other advantages of the treatment�

The Miranda code and a reference document for the material can be found
on the World Wide Web using the �Further material
 section given under the
URL

http���www�ukc�ac�uk�computer	science�Miranda	craft�

or via anonymous FTP from the directory
ftp���ftp�ukc�ac�uk�pub�sjt�Craft�

Basic semantics

In writing the semantics we identify three stages� First we look at the base types
we shall need to consider� then clarify the types of the major semantic functions�
and �nally we write the de�nitions of these functions�

Types First we have to establish how we model the programs themselves� we
can use algebraic �or concrete	 types to specify the structure of each syntactic
category �commands� expressions and so on	� The Miranda de�nition of command
in Figure � shows how commands can be speci�ed� note how the algebraic type



command ��
 Skip �
If	Then	Else b	expr command command �
While	Do b	expr command �
Sequence �command
 �
Assignment ident expr

values 

 num
lookup �� ident �� stores �� values
update �� stores �� ident �� values �� stores

command	value �� command �� stores �� stores
expr	value �� expr �� stores �� values
nop	value �� nop �� values �� values �� values

command	value Skip st 
 st

command	value �If	Then	Else e c� c�� st

 command	value c� st � if b	expr	value e st

 command	value c� st � otherwise

command	value �While	Do e c� st

 command	value �While	Do e c� �command	value c st�

� if b	expr	value e st

 st � otherwise

command	value �Sequence �
� st 
 st
command	value �Sequence �c�cs�� st


 command	value �Sequence cs� �command	value c st�

command	value �Assignment i e� st

 update st i �expr	value e st�

Fig� �� Basic denotational semantics

corresponds to a BNF�style syntax de�nition� and also that the type of com�
mands is de�ned in terms of the types expressions expr and boolean expressions�
b expr�

Programs are to be modelled as functions from stores to stores� taking the
machine state before executing the command to the state after the command
terminates� We therefore need a type to model the store� at this level of the
semantics we simply specify the signature required of the stores type� as is
done in Figure �� various implementations exist�



Typing the semantic functions Central to our approach is how we model
commands� each command is seen as a function from stores to stores� The
function interpreting commands� command value� will therefore have type

command �� stores �� stores

The other declarations in the second part of Figure � show the value of typing
the semantic functions in a separate phase� since these type declarations contain
important information about the interpretation of various parts of the language�
For example� we see that to give expressions a value we need a store �to interpret
any variables in the expression	� whilst to interpret a binary numerical operator
�an object of type nop	 no store is needed � operators have �xed values�

Were we to adapt the semantics to model a language with side�e�ects� this
would be apparent in the type of expr value� instead of returning an object of
type values alone� the result would be of type �values�stores� in which the
second component gives the state of execution after the expression evaluation
has terminated�

De�ning the semantic functions The de�nition of the functions themselves
is straightforward� for commands we exhibit the de�nition in the �nal part of
Figure �� At this point it becomes clear that recursion is used in the modelling�
a structural recursion runs along a Sequence of commands� while a potentially
non�terminating recursion is used to interpret the While Do loop�

Assessment In teaching this material we ask students to write de�nitions for
themselves� It is instructive to look at repeat and for loops� as well as �parallel
assignment
� x�y�
e�f� One obvious advantage for the student is that they can
check their solutions for syntax and type errors using the Miranda system� and
then for correctness by executing against example programs�

A second assessment building on the basic semantics is to add side�e�ects�
which we do with the expression

Do	Return c e

whose e�ect is to execute the command c before evaluating the expression e�
This requires students to think of changes to the types of the semantic functions
before re�examining their de�nitions� Particularly instructive in this case is the
parallel assignment command�

Extending the semantics

We have built a number of extensions of the basic semantics which illustrate
various aspects of programming languages�

The de�nition mechanism An environment is used to keep track of the de��
nitions in scope at any point during execution� this structure is quite separate



def	value �� def �� env �� stores �� env
command	value �� command �� env �� stores �� stores
expr	value �� expr �� env �� stores �� values

Fig� �� Extending the denotational semantics

config ��
 Inter command stores � Final stores

step �� config �� config

step �Inter �If	Then	Else e c� c�� st�

 �Inter c� st� � if b	expr	value e st

 �Inter c� st� � otherwise

step �Inter �While	Do e c� st�

 �Inter �If	Then	Else e �Sequence �c�While	Do e c
� Skip� st�

step �Inter �Assignment i e� st�

 Final �update st i �expr	value e st��

Fig� �� Basic operational semantics

from the store� which models the e�ect of commands on the machine state�
The types of the main semantic functions are illustrated in Figure 
�

Abstraction� procedures and functions� There is considerable room for exper�
imentation here�
� We treat di�erent forms of parameter passing� value and reference as in

Pascal� but with the possibility of adding others�
� We illustrate the di�erence between static and dynamic binding�
� We model recursive and non�recursive procedures�

Jumps We show the di�culty of interpreting languages with goto by extending
the basic language with labels and jumps� the example illustrates the fact
that modularity breaks down� with the interpretation function becoming a
mutual�recursion involving the meanings of all the labels in the program�

In each of these cases there is room for students to experiment with the material�
modifying or extending it and gaining feedback about the syntactic correctness
of their work before executing it�

Operational semantics

An alternative semantic view is operational� we see the e�ect of a command as a
series of execution steps for an abstract machine� Part of an operational model



for our basic language is illustrated in Figure �� The configuration of a machine
is either

Final st � the machine has terminated in state st� or�
Inter c st � the command c is to be executed� starting at state st�

One step of execution takes one config to the next� and various cases of step
are given in the �gure�

On teaching this material� the rules were presented in functional form as
well as more traditional �deduction rule
� it became apparent that although the
latter form was more abstract �and to us easier to read	 the students preferred
the Miranda version because the syntax was familiar� and so they were able to
concentrate on the ideas� rather than on the surface syntax�

Conclusion

This section shows how a functional language is adequate for the functional
description of many aspects of modern programming languages� Further details
of this work are to be found in ����

The advantages of this approach are threefold

� The semantics are presented in a language which is executable� In doing
assessment work� students are able to check the syntax and typing of their
work� before executing their solutions�

� The semantics are presented in a familiar language� Even if de�nitions are
somewhat less elegant� readers can concentrate on the ideas rather than the
syntax�

� The two phases of the semantics � going to a functional language� inter�
preting that language � are explicit here� and we have found this avoids
some of the confusions of other expositions�

� Machine Architectures

The work in this area arose from the need to provide a platform for the sim�
ulation of microprocessor architectures suitable for undergraduate students of
the core computer science course� The problem was this� in the second year of
our undergraduate programme� two groups of students study a digital systems
course� The �rst group study Computer Systems Engineering which is oriented
more towards electronics than the second group who are reading a Computer
Science degree� Originally� the digital systems course contained a laboratory ex�
periment which involved a fair amount of practical electronics� We decided that
it was an unreasonable requirement that the mainstream computer scientists�
especially those from largely mathematical or computing backgrounds� should
have to perform this experiment� It was proposed� therefore� that these students
be o�ered a software�based project as an alternative�

This provided an ideal opportunity for an experiment in using a functional
platform� which we wanted to do for reasons discussed in the Introduction� in



particular we wanted a concise yet precise description of machines� as well as a
platform upon which to build project work�

We chose to provide simulations for two architectural styles � a register ma�
chine and a stack machine� Both machines share a common core which is ex�
tended to provide their peculiar instruction sets� The simulations are constructed
in three levels�

� The core machine provides the basic architecture described by means of
primitive transitions of machine state�

� The micro�code provides a specialisation of the core machine by implement�
ing an instruction set in terms of the basic transitions�

� The assembly language interface is implemented by an assembler and loader
which together construct an initial machine state� This is then run until the
machine halts�

ALUMAR MDR R0 R1

A−Bus

B−Bus

C−Bus

D−Bus

Memory

Fig� �� Architecture of the Core Machine

Implementation

The core machine� depicted in Figure �� provides a characterisation of a generic
machine architecture� It comprises a type of �machine state� along with a set
of permitted state transitions� These transitions are the only ones allowed� The
style is similar to that adopted by Peyton Jones and Lester �
� for the description
of abstract machines for the implementation of functional languages�

Ideally� the type of machine state would have been made abstract� but it
is not possible to cover abstract datatypes in su�cient detail in the �rst�year
functional programming course to allow this�

The machine was decomposed into the following parts�

� Memory � the memory is modelled as an association list between address
and contents�



� Memory Interface � the memory interface comprises two special purpose
registers � the memory address register �MAR	 and the memory data register
�MDR	�

� Register File � the registers are modelled as an association list between reg�
ister number and register contents� The core machine thus makes no com�
mitments as to the number of registers available�

� Buses � the machine has four internal buses or data highways�
� Statistics � the statistics �eld is used to accumulate measures of the machine
s
performance�

� Halt Flag � this indicates if the machine has halted�

These components are conveniently represented in Miranda as a tuple�

address 

 num

word 

 num

memory 

 alist address word

interface 

 �word� word�

registers 

 alist num word

buses 

 �word� word� word� word�

machine 

 �memory� interface� registers� buses� stats� bool�

The core machine is augmented by a set of transitions which de�ne the valid
actions a machine may make� Most transitions involve the movement of data
from one place to another� Thus they also de�ne the data paths that exist within
the machine� Some example transitions are given�

transition 

 machine �� machine

regToAbus �� num �� transition

regToAbus n �m� i� r� �a� b� c� d�� s� h�


 �m� i� r� �a�� b� c� d�� s� h�

where a� 
 aLookup n r

mdrToAbus �� transition

mdrToAbus �m� �mar� mdr�� r� �a� b� c� d�� s� h�


 �m� �mar� mdr�� r� �mdr� b� c� d�� s� h�

The primitive transitions are combined via a small set of combinators� The most
important comma is a version of function composition�

comma �� transition �� transition �� transition



�t� �comma t�� m 
 t� �t� m�

and is used to construct the derived combinator�

do �� �transition
 �� transition

do �
 
 id

do �t�ts� 
 t �comma do ts

The switch transition is more specialised� It allows a transition to be selected
from a table according to the contents of a register� Its role mimics the operation
of the mapping PROM in a micro�code engine� Similarly� it is often the case
that a section of micro�code is parametrised on a register value and the function
passReg is provided for this purpose�

switch �� num �� alist num transition �� transition

passReg �� num �� �num �� transition� �� transition

We are now in a position to be able to de�ne transitions which correspond more
closely to the register transfer style� The �rst allows the contents of one register
to be copied to another and might be written as�

Rs� Rd

regToReg �� num �� num �� transition

regToReg rs rd


 do � regToAbus rs�

aluCycle AluA�

cbusToReg rd 


Finally� some compound transitions for combining registers via the ALU are
provided� These might be written in the register transfer style thus�

�Rn � Rd

Rn �Rm � Rd

The second of these transitions is presented�

op� �� num �� aluOp �� num �� num �� transition

op� rn op rm rd


 do � regToAbus rn�

regToBbus rm�

aluCycle�

cbusToReg rd 




Combinations of transitions are used to implement a fetch�execute cycle where
each instruction is coded as a compound of basic or derived transitions�

The �nal stage of the simulation was to provide an assembly language� loader
and functions to run programs to completion �ie� until the halt �ag is set	 and
to print out statistics� Using a functional programming environment here was
of great bene�t� Programs were represented simply as lists of instructions which
were themselves elements of an algebraic datatype� There was no need to have
a concrete syntax for assembly language programs� nor parsing�unparsing func�
tions� Instead� the syntax of lists and constructors is used directly� and the
compiler provides adequate checking and error messages�

For simplicity� labels were not implemented� although in retrospect this was
probably a mistake� Many of the errors that students encountered in their test
data were due to incorrect jumps�

Assessment

Students perform a single sixteen�hour assessment based on the simulation�Their
tasks include the following�

� Read the core machine de�nition and produce a schematic diagram similar
to Figure ��

� Implement the instruction sets of two similar machines and perform some
optimisations on these machines�

� Write test programs for the machines� and collate performance statistics�

The �rst task provides a useful revision of Miranda syntax� this being the �rst
functional programming that the students encounter after their �rst year course�
It provides a useful revision exercise� as well as getting them to think about the
machine architecture� The transitions are named such that a detailed under�
standing of their operation is not required�

Conclusion

The core de�nitions can be regarded as de�ning a meta�language or micro�code
for the core machine� For the purposes of the simulation exercise� the students
need only be pro�cient in a small subset of the Miranda language� namely the
syntax of lists� function application and de�nition� Experience would suggest
that the approach is successful� When students have problems with the work� it
is most often to do with the implementation of their machine� rather than the
details of functional programming�

However� we must be somewhat cautious� The groups that attempt this as�
sessment are self�selecting� Any student who struggled with functional program�
ming in the �rst year is unlikely to want to attempt this work� Between a half
and a third of the CS cohort opt for the alternative hardware�based experiment
each year�

From the point of view of the implementer� the simulator has been a great
success� During the three years of its use� we have identi�ed only a few minor



bugs which were �xed in a matter of minutes� One was due to a typographical
error and a couple of others were introduced when the simulation was modi�ed
to emulate a new architecture� Performance was not a problem for us since the
students
 test programs were quite small� Further details of this implementation
can be found in ����

� Computer Graphics

In their text� Salmon and Slater ��� use a notation based on Standard ML to
describe many features of higher�level graphics libraries� The reason for using a
functional notation which they cite is conciseness� In particular the expression
of values of simple datatypes is uncluttered and requires no explicit memory
allocation�

Similar motivations lead to our use of Miranda in a �nal year course on com�
puter graphics� We have found it to be a convenient language for the description
of geometric transformations and building upon this hierarchical geometric mod�
els�

The �rst stage of this part of the course introduces the following notions�

� the abstract concept of a geometric transformation
� an implementation based on homogeneous transformation matrices where

composition is achieved via matrix product
� an implementation based on functions where composition is achieved via

functional composition

In the Miranda implementation� the homogeneous matrices are treated as an
abstract data type with given implementations of the common transformations
and matrix product� The function�based implementation is typi�ed by de�nitions
such as�

translate �� point� �� point� �� point�

translate �tx� ty� �x� y�


 �x � tx� y � ty�

rotate �� num �� point� �� point�

rotate t �x� y�


 �x � cos t � y � sin t�

x � sin t � y � cos t�

Such transformations can be combined naturally with function composition� but
for consistency with the matrix notation �which uses row vectors for points	�
we chose a variant with the arguments reversed giving a natural left�to�right
reading�

�t� �o t�� p 
 t� �t� p�



The next stage in the course introduces the notion of a symbol �sometimes called
a structure	� Symbols are essentially parametrised �over transformation and pos�
sibly a graphics environment	 graphical objects� We describe two approaches for
representing symbols�

� a symbol is a function taking a transformation to a sequence of graphical
commands� or

� a symbol is a list of graphical commands� An instance of the symbol is
obtained by applying a transformation to each of the commands to obtain a
sequence of graphical commands�

The �nal step is to construct hierarchical geometric models from the symbols�
Again� we present two techniques�

� A hierarchy is constructed using functions parametrised on a �global	 trans�
formation� The transformation is applied to all graphical operations at this
level� All children are invoked with augmented transformations which are
the composition of the global transformation and any local transformations
required to position them correctly within the model� For example�

robot t p m 


base m ��

arm� �a� �o m� ��

arm� �a� �o m�

where

a� 
 rotate t �o

translate � l�

a� 
 rotate p �o

translate � l� �o

a�

where arm�� leg� and base are the symbols which constitute the relevant
parts of the robot�

� A hierarchy is constructed as a tree� Each node contains a symbol� a local
transformation and a list �possibly empty	 of children� A function is provided
to instance a tree� It visits each node maintaining a current transformation
which is the composition of any global transformation and all the local trans�
formations on the path from the root to the current position in the tree�

tree ��
 Node symbol trans �tree


figure m 


Node body m �

Node arm arm� �
�

Node arm arm� �
�

Node leg leg� �
�

Node leg leg� �
�

Node head head� �





matches �� reg �� string �� bool

matches �Or r� r�� st
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matches �Then r� r�� st
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where
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Fig� �� Regular expression matching

draw	tree m� �Node sym m� l� 


sym m� ��

concat �map �draw	tree m�� l�

where

m� 
 m� �o m�

Here arm� leg and head are symbols� and arm� etc� are the local transfor�
mations which position these symbols within the model�

Conclusion

As with Salmon and Slater� we found the major advantage of the use of Miranda
to be conciseness� The ease with which new datatypes can be de�ned and values
of these types can be expressed makes the presentation of material of this nature
much easier� Many imperative languages have a baroque syntax for literal values
of anything but the prede�ned datatypes and this is both distracting and waste�
ful of space� When lists or trees are involved the notation becomes unwieldy and
often impractical to present on� say� a single OHP slide� Miranda has a concise
notation for the values of all algebraic datatypes� with a particularly concise
notation for lists�

In their text� Salmon and Slater also use Pascal� They state that one should
regard the Pascal as an implementation of the higher�level ML presentation�
This is precisely one of the messages we try to give in our �rst year courses�

� Formal Languages

In a short module on the processing of formal languages we cover regular expres�
sions� and the di�erent sorts of automaton used to recognise them� as described
in ���� Chapter 
� We use Miranda as a description and implementation language
for various of the ideas here� This material is also available through the URL

http���www�ukc�ac�uk�computer	science�Miranda	craft�



Matching

After describing regular expressions as a Miranda type� we are able to give a
Miranda de�nition of when a string matches an expression� the function matches
of Figure �� The description is short� and more importantly unambiguous� In this
context we are using Miranda as a formal speci�cation language�

The system

In our system we give implementations of

� A type of NFAs� and a simulation of NFAs�
� a function transforming a regular expression into an NFA�
� a function making an NFA into a deterministic machine� a DFA�
� a function optimising a DFA by minimising its state set�

Much of the code can be re�used� we discuss a particular case in the next section�

Sets

The automata used to recognise matches are built from sets� we exploit the
Miranda abstype mechanism to hide the particular implementation of the sets�
Moreover� in di�erent parts of the implementation we need to consider sets of
di�erent type� in the simple non�deterministic automaton we consider sets of
numbers� in building a deterministic version we use sets of sets of numbers�
polymorphism supports this sort of re�use�

Programming the system

Using a programming language forces us to consider both the details of the
system and how it is built from its constituent parts� A functional language
is su�ciently high�level that the details do not engulf the wider picture� for
example� we need do no explicit memorymanagement in a functional description�
The Miranda language also has a module system� and this is most helpful in
putting together the complete implementation�

As in earlier sections� the twin advantages of type�syntax checking and ex�
ecutability give us assurance that what we have written is sensible� as well as
allowing students to experiment with the systems and their assessment work�

� Conclusions

In the introduction to this paper we argued that there were considerable advan�
tages to using a functional language as a teaching vehicle in a computer science
degree� We illustrated our arguments with examples from four areas� semantics�
architecture� graphics and formal languages� We believe that there are other
parts of the degree in which a functional approach will be equally useful� speci��
cation animation and program veri�cation being two obvious examples� and we
hope to explore these and other topics in the years to come�
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