
Singh, Ranjeet and King, Andy (2015) Partial Evaluation for Java Malware 
Detection.  In: Proietti, Maurizio and Seki, Hirohisa, eds. Twenty fourth 
International Symposium on Logic-Based Program Synthesis and Transformation. 
Lecture Notes in Computer Science, 8991 . Springer, pp. 133-147. ISBN 
978-3-319-17821-9. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/42104/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1007/978-3-319-17822-6_8

This document version
Pre-print

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/42104/
https://doi.org/10.1007/978-3-319-17822-6_8
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


Partial Evaluation for Java Malware Detection

Ranjeet Singh and Andy King

School of Computing, University of Kent, UK, CT2 7NF

Abstract. The fact that Java is platform independent gives hackers
the opportunity to write exploits that can target users on any platform,
which has a JVM implementation. To circumvent detection by anti virus
(AV) software, obfuscation techniques are routinely applied to make an
exploit more difficult to recognise. Popular obfuscation techniques for
Java include string obfuscation and applying reflection to hide method
calls; two techniques that can either be used together or independently.
This paper shows how to apply partial evaluation to remove these obfus-
cations and thereby improve AV matching. The paper presents a partial
evaluator for Jimple, which is a typed three-address code suitable for op-
timisation and program analysis, and also demonstrates how the residual
Jimple code, when transformed back into Java, improves the detection
rates of a number of commercial AV products.

1 Introduction

Java is both portable and architecture-neutral. It is portable because Java code is
compiled to JVM byte code for which interpreters exist, not only for the popular
desktop operating systems, but for phones and tablets, and as browser plug-ins.
It is architecture-neutral because the JVM code runs the same regardless of
environment. This presents a huge advantage over languages, such as C/C++,
but also poses a major security threat. If an exploit levers a vulnerability in a
JVM implementation, it will affect all versions of a JVM that have not closed
off that loophole, and well as those users who have not updated their JVM.

JVM vulnerabilities have been used increasingly by criminals in so-called
client side attacks, often in conjunction with social engineering tactics. For ex-
ample, a client-side attack might involve sending a pdf document [14] that is
designed to trigger a vulnerability when it is opened by the user in a pdf reader.
Alternatively a user might be sent a link to a website which contains a Java applet
which exploits a JVM vulnerability [1] to access the user’s machine. Client-side
attacks provide a way of bypassing a firewall that block ports to users’ machines
and, are proving to be increasingly popular: last year many JVM exploits were
added to the Metasploit package, which is a well-known and widely-used pene-
tration testing platform. This, itself, exacerbates the problem. As well as serving
penetration testers and security engineers, a script kiddie and or a skilled black-
hat can reuse a JVM vulnerability reported in Metasploit, applying obfuscation
so that it is not recognised by even up-to-date AV detection software.

Experimental evidence suggests that commercial AV software use Metas-
ploit as source of popular attack vectors, since exploits from Metasploit are



typically detected if they come in an unadulterated form. One can only specu-
late what techniques an AV vendor actually uses, but detection methods range
from entirely static techniques, such as signature matching, to entirely dynamic
techniques, in which the execution of the program or script is monitored for sus-
picious activity. In signature matching, a signature (a hash) is derived, often by
decompiling a sample, which is compared against a database of signatures con-
structed from known malware. Signatures are manually designed to not trigger
a false positive which would otherwise quarantine an innocuous file. Dynamic
techniques might analyse for common viral activities such as file overwrites and
attempts to hide the existence of suspicious files, though it must be said, there
are very few academic works that address the classification of Java applets [17].

The essential difference between running a program in an interpreter and
partially evaluating it within a partial evaluator is that the latter operates over
a partial store in which not all variables have known values; the store deter-
mines which parts of the program are executed and which parts are retained
in the so-called residual. Partial evaluation warrants consideration in malware
detection because it offers a continuum between the entirely static and the en-
tirely dynamic approaches. In particular, one can selectatively execute parts of
the program, namely those parts that mask suspicious activity, and then use
the residual in AV scanning. This avoids the overhead of full execution while fi-
nessing the problem of incomplete data that arises when a program is evaluated
without complete knowledge of its environment. On the theoretical side, partial
evaluation provides nomenclature (eg. polyvariance) and techniques (eg. gen-
eralisation) for controlling evaluation and specialisation. On the practical side,
partial evaluation seems to be partially appropriate for AV matching because
Java exploits are often obfuscated by string obfuscation and by using advanced
language features such as reflection. Although reflection is designed for such ap-
plications as development environments, debuggers and test harnesses, it can
also be applied to hide a method call that is characteristic of the exploit. This
paper will investigates how partial evaluation can be used to deobfuscate mali-
cious Java software; it argues that AV scanning can be improved by matching
on the residual JVM code, rather than original JVM code itself.

1.1 Contributions

This paper describes how partial evaluation can deobfuscate malicious Java ex-
ploits; it revisits partial evaluation from the perspective of Java malware detec-
tion which, to our knowledge, is novel. The main contributions are as follows:

– The paper describes the semantics of a partial evaluator for Jimple [20].
Jimple is a typed three-address intermediate representation that is designed
to support program analysis and, conveniently, can be decompiled back into
Java for AV matching.

– The paper shows how partial evaluation can be used to remove reflection
from Jimple code, as well as superfluous string operations, that can be used
to obfuscate malicious Java code.
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java . s e c u r i t y . Permiss ions o = new java . s e c u r i t y . Permiss ions ( ) ;
o . add (new Al lPermis s ion ( ) ) ;

Class<?> c = Class . forName ( ” java . s e c u r i t y . Permiss ions ” ) ;
Object o = c . newInstance ( ) ;
Method m = c . getMethod ( ”add” , Permiss ion . c l a s s ) ;
m. invoke ( o , new Al lPermis s ion ( ) ) ;

Listing 1.1. Method call and its obfuscation taken from CVE-2012-4681

– The paper describes how partial evaluation can be used in tandem with
an abstract domain so as to avoid raising an error when a branch condition
cannot be statically resolved [18, section 3.3]. In such a situation, one branch
might lead to an environment whose bindings are inconsistent with that
generated along another. Rather than abort when inconsistent environments
are detected at a point of confluence, we merge the environments into an
abstract environment that preserves information from both, so that partial
evaluation can continue.

2 Primer on Java Obfuscation

This section will describe techniques that are commonly used to obfuscate Java
code to avoid AV detection. The obfuscations detailed below are typically used
in combination; it is not as if one obfuscation is more important than another.

2.1 Reflection Obfuscation

An AV filter might check for the invocation of a known vulnerable library func-
tion, and to thwart this, malicious applets frequently use reflection to invoke
vulnerable methods. This is illustrated by the code in listing 1.1 which uses
the Class.forName static method to generate an object c of type Class. The
c object allows the programmer to access information pertaining to the Java
class java.security.Permissions, and in particular create an object o of type
java.security.Permissions. Furthermore, c can be used to create an object
m that encapsulates the details of a method call on object o. The invocation is
finally realised by applying the invoke on m using o as a parameter. This se-
quence of reflective operation serves to disguise what would otherwise be a direct
call to the method add on an object of type Permissions.

2.2 String Obfuscation

Malicious applets will often assemble a string at run-time from a series of compo-
nent strings. Alternatively a string can be encoded and then decoded at run-time.
Either tactic will conceal a string, making it more difficult to recognise class and
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pub l i c s t a t i c S t r ing ge tS t r ( S t r ing input ) {
St r i ngBu i l d e r sb = new St r i ngBu i l d e r ( ) ;

f o r ( i n t i = 0 ; i < input . l ength ( ) ; i++) {
i f ( ! ( input . charAt ( i ) >= ’ 0 ’ && input . charAt ( i ) <= ’ 9 ’ ) ) {

sb . append ( input . charAt ( i ) ) ;
}

}
re turn sb . t oS t r i ng ( ) ;

}

St r ing s t r = ”1 j2a34v234a .324 l324an324g23 . 4
S234e3c24u324r3i4t324y23M4a23n4ag234er ” ;

Class<?> c = Class . forName ( ge tS t r ( s t r ) ) ;

Listing 1.2. String Obfuscation with numeric characters

method names, and thereby improving the chances of outwitting a signature-
based AV system. Listing 1.2 gives an example of a string reconstruction method
that we found in the wild, in which the string java.lang.SecurityManager is
packed with numeric characters which are subsequently removed at runtime.
Listing 1.3 illustrates an encoder which replaces a letter with the letter 13 let-
ters after it in the alphabet. The encoded strings are then decoded at run-time
before they are used to create a handle of type Class that can, in turn, be used
to instantiate java.lang.SecurityManager objects.

2.3 Other Obfuscations

There is also no reason why other obfuscations [6] cannot be used in combination
with reflection and string obfuscation. Of these, one of the most prevalent is name
obfuscation in which the names of the user-defined class and method names
are substituted with fresh names. For example, the name getStr in Listing 1.2
might be replaced with a fresh identifier, so as to mask the invocation of a known
decipher method.

3 Partial Evaluation

In this section we outline a partial evaluator for removing string obfuscation and
reflection from Jimple code, which is a three address intermediate representation
(IR) for the Java programming language and byte code. Jimple is supported by
the Soot static analysis framework and, quite apart from its simplicity, Soot
provides support for translating between Jimple and Java.

There are two approaches to partial evaluation: online and offline. In the on-
line approach specialisation decisions are made on-the-fly, based on the values of

4



pub l i c s t a t i c S t r ing rot13 ( St r ing s ) {
S t r i n g B u f f e r sb = new S t r i n g B u f f e r ( ) ;

f o r ( i n t i = 0 ; i < s . l ength ( ) ; i++) {
char c = s . charAt ( i ) ;
i f ( c >= ’ a ’ && c <= ’m’ ) c += 13 ;
e l s e i f ( c >= ’A ’ && c <= ’M’ ) c += 13 ;
e l s e i f ( c >= ’n ’ && c <= ’ z ’ ) c −= 13 ;
e l s e i f ( c >= ’N ’ && c <= ’Z ’ ) c −= 13 ;
sb . append ( c ) ;

}
re turn sb . t oS t r i ng ( ) ;

}

St r ing s t r = ”wnin . ynat . FrphevglZnantre ” ;

Class<?> c = Class . forName ( rot13 ( s t r ) ) ;

Listing 1.3. String obfuscation using the rot13 substitution cipher

expressions that can be determined at that point in the specialisation process. In
the offline approach, the partial evaluator performs binding time analysis, prior
to specialisation, so as to classify expressions as static or dynamic, according to
whether their values will be fully determined at specialisation time. This clas-
sification is then used to control unfolding, so that the specialisation phase is
conceptually simple. The online approach, however, mirrors the structure of the
interpreter in the partial evaluator, and hence is easier to present (and ultimately
justify by abstract interpretation). We therefore follow the online school.

Figures 1 and 2 present some highlights of the partial evaluator, which spe-
cialises sequences of Jimple instructions, that are tagged with labels for con-
ditional jumping. The sequel provides a commentary on some representative
instructions. In what follows, l denotes a location in memory, x a variable, and
v a value. A value is either a primitive value, such as an integer or a boolean, or
an object, or > which is used to indicate the absence of information. An object
is considered to be a class name, C, paired with an environment ρ, together
denoted C : ρ; C is the name of the class from which the object is instantiated
and ρ specifies the memory locations where the fields (internal variables) of the
object are stored.

The partial evaluator uses an environment ρ and a store σ to record what is
known concerning the values of variables. The environment ρ is a mapping from
the set of variables to the memory locations, and the store σ is a mapping from
locations to values. The partial evaluator is presented as a function PJSK〈ρ, σ, o〉,
which executes the sequence of instructions S in the context of an environment
ρ, store σ and current object o.
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PJvar t x;SK〈ρ, σ, o〉 =
v = default(t)
l = allocate(v)
ρ′ = {x 7→ l}
σ′ = {l 7→ v}
emitJvar t xK
PJSK〈ρ ◦ ρ′, σ ◦ σ′, o〉

PJx := y ⊕ z;SK〈ρ, σ, o〉 =
if σ(ρ(y)) = > ∨ σ(ρ(z)) = > then

emitJx := y ⊕ zK
σ′ = σ ◦ {ρ(x) 7→ >}
PJSK〈ρ, σ′, o〉

else
v = σ(ρ(y))⊕ σ(ρ(z))
emitJx := vK
σ′ = σ ◦ {ρ(x) 7→ v}
PJSK〈ρ, σ′, o〉

endif

PJx := @this;SK〈ρ, σ, o〉 =
emitJx := @thisK
σ′ = {ρ(x) 7→ o}
PJSK〈ρ, σ ◦ σ′, o〉

PJx := @parameteri;SK〈ρ, σ, o〉 =
emitJx := @parameteriK
σ′ = {ρ(x) 7→ σ(ρ(parameteri))}
PJSK〈ρ, σ ◦ σ′, o〉

PJx := new C;SK〈ρ, σ, o〉 =
〈t̄, f̄〉 = getF ields(C)
l̄ = allocates(f̄)
v̄ = defaults(t̄)
ρ′ = {f0 7→ l0, . . . , fn 7→ ln}
σ′ = {l0 7→ v0, . . . , ln 7→ vn, ρ(x) 7→ C : ρ′}
emitJx := new CK
PJSK〈ρ, σ ◦ σ′, o〉

Fig. 1. Outline of partial evaluator: declarations and assignments
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PJreturn x; K〈ρ, σ, o〉 =
σ′ = {ρ(return) 7→ σ(ρ(x))}
emitJreturn xK
〈ρ, σ ◦ σ′, o〉

PJx := virtualinvoke(obj,m(t̄), ȳ);SK〈ρ, σ, o〉 =
if σ(ρ(obj)) = > then

emitJx := virtualinvoke(obj,m(t̄), ȳ)K
σ′ = {ρ(x) 7→ >}
PJSK〈ρ, σ ◦ σ′, o〉

else if σ(ρ(obj)) = C : ρ′

if C = Method ∧m = invoke
if σ(ρ′(method)) = null then error
ȳ′ = 〈y1, . . . , yn〉
emitJx := virtualinvoke(y0, σ(ρ′(method)), ȳ′)K
σ′ = {ρ(x) 7→ >}
PJSK〈ρ, σ ◦ σ′, o〉

else
v̄ = σ(ρ(ȳ))
B = findMethod(C.m(t̄))
l̄ = allocates(v̄)
k = allocate(result)
ρ′′ = {parameter0 7→ l0, . . . , parametern 7→ ln, result 7→ k}
σ′ = σ ◦ {l0 7→ v0, . . . , ln 7→ vn}
〈 , σ′′, 〉 = PJBK〈ρ′′ ◦ ρ′, σ′, C : ρ′〉
σ′′′ = {ρ(x) 7→ σ′′(ρ′′(result))}
PJSK〈ρ, σ ◦ σ′′′, o〉

PJif x goto l;SK〈ρ, σ, o〉 =
if σ(ρ(x)) = 0 then

PJSK〈ρ, σ, o〉
else if σ(ρ(y)) = 1 then

S = lookup(l)
PJSK〈ρ, σ, o〉

else if σ(ρ(x)) = > then
n = lookup(S, P )
c = confluence(l, n)
emitJif n goto lK
Tt = branch(l, c)
Tf = branch(n, c)
〈ρ, σt, o〉 = PJTtK〈ρ, σ, o〉
〈ρ, σf , o〉 = PJTf K〈ρ, σ, o〉
σ′ = {l 7→ v | l ∈ codomain(ρ) ∧ v = if σt(l) = σf (l) then σt(l) else >}
PJP drop cK〈ρ, σ′, o〉

endif

Fig. 2. Outline of partial evaluator: control-flow
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3.1 type declarations

A statement var t x declares that x is a of type t, where t is either primitive
or a user-defined class. Such a declaration is handled by allocating a memory
location l using the auxiliary allocate and then updating the environment ρ′ to
reflect this change. The store is also mutated to map location l to the default
value for the type t, which is given by the auxiliary function default. The default
values for the primitives types are 0 for int and 0 for boolean. The default types
for object types is null.

3.2 new

A statement x = new C instantiates the class C to create an object that is
represented by a pair C : ρ where the environment ρ maps the fields of C to
memory locations that store their values. Different objects C : ρ1 and C : ρ2
from the same class C map the same field variables to different locations. The
auxiliary method getFields retrieves the types and the names of the fields of the
class C. The function defaults takes a vector of types t and returns a vector of
default values that is used to populate the fields, following the conventions of
default.

3.3 arithmetical operations

An assignment statement x := y⊕ z can only be statically evaluated if both the
variables y and z are bound to known values. In this circumstance the assignment
x := y⊕z is specialised to x := v where v is the value of the expression y⊕z. The
store σ′ is updated to reflect the new value of x, as the value of x is statically
known. Note that the residual includes x := v, even though information on x is
duplicated in the store σ′, so as to permit subsequent statements, with reference
x, to be placed in the residual without substituting x with its value v. If there
are no statements that reference x then the assignment x := v will be removed
by dead variable elimination, which is applied as a post-processing step.

3.4 this and parameters

In Jimple there is a distinguished variable this which stores the current object
reference which, in the partial evaluator, is modelled with the current object o,
that is passed with the environment and the store. An assignment statement
x := @this thus merely updates the location ρ(x) with o.

Also in Jimple, a special variable parameteri is used to store the location
of the ith formal argument of a method call, where the first argument has an
index of 0. This is modelled more directly in the partial evaluator, so that an
assignment statement x := @parameteri updates the location ρ(x) with the
value of this parameter.
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3.5 return and virtualinvoke

The statement return x writes the value of x to a special variable return, which
is subsequently read by virtualinvoke.

The handling of virtualinvoke(obj,m(t),y) is worthy of special note, both in
the way reflective and non-reflective calls are handled. A reflective call arises
when the method m coincides with invoke and the object obj is of type Method.
The reflective method call is a proxy for the so-called reflected method call.
The reflected method call is not applied to the object obj but an object that is
prescribed by the first parameter of y. Moreover, the method that is applied to
this object is given by obj in a distinguished field that, for our purposes, is called
method. This field either contains null, indicating that it has been initialised but
not been reset, or a string that represents the name of a method that is to be
invoked. If the method field is null then an error is issued, otherwise the string
stored in the field method is used to generate the residual. Note that the reflected
method call is not invoked; merely placed in the residual. Note too that the first
argument of virtualinvoke in the residual is y0 whereas the last is the vector
y′ which coincides with y with the exception that the first element has been
removed. The first argument is the variable name (rather than the object itself)
to which the residuated method will ultimately be applied; the third argument is
the list of actual arguments that will be passed to the method on its invocation.

In the case of a non-reflected call, the values of the parameters are looked
up, and then an auxiliary function findMethod is applied to find a block B
which is the entry point into the method of the class C whose signature matches
m(t). The function allocates is then called to generate fresh memory locations,
one for each actual argument y0, . . . , yn. The environment is then extended to
map the distinguished variables parameter0, . . . , parametern to fresh memory
locations, so as to store the actual arguments. The partial evaluator is then
recursively involved on the block B using C : ρ′ as the object. The net effect
of the method call is to update the store σ′ which is used when evaluating the
remaining statements S.

Note that this formulation assumes that method calls are side-effect free.
Although this is true for string obfuscation methods that we have seen, for full
generality the partial evaluator should be augmented with an alias analysis,
in the spirit of side-effect analysis [9], that identifies those variables that are
possibly modified by a method call, hence must be reset to >.

3.6 goto

Specialising a conditional jump in Jimple is not conceptually difficult, but is
complicated by the way if x goto l;S will drop through to execute the first
instruction of the sequence S if the boolean variable x is false. This makes the
control-flow more difficult to recover when the value of x is unknown. When x is
known to be true, however, the partial evaluator is merely redirected at a block
B that is obtained by looking up the sequence whose first instruction is labelled
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by l. Conversely, if x is known to be false, then partial evaluation immediately
proceeds with S.

In the case when x has an undetermined value, the partial evaluator explores
both branches until the point of confluence when both branches merge. Then
the partial evaluator continues at the merge point, relaxing the store to σ′ so
that it is consistent with the stores that are derived on both branches. Note that
partial evaluation does not halt if the stores are inconsistent; instead it will unify
the two stores by replacing any inconsistent assignment for any location with an
assignment to >. Note that it is only necessary to unify those locations that are
reachable from the variables that are currently in scope.

To realise this approach, an auxiliary function lookup is used to find the po-
sition n of the first statement of S in the list P which constitutes the statements
for the currently executing method. This is the position of the first statement
immediately after the conditional branch. Then a function confluence examines
the control-flow graph of the method so as to locate the confluence point, of
the true and false branches, identified by the index c of S. Both branches are
evaluated separately with two copies of the environment, until the confluence
point where the two environments are merged. Partial evaluation then resumes
at the confluence point, which corresponds to the instruction sequence P drop c,
namely, execution is continued at the cth instruction of the sequence P .

3.7 Example

Listing 1.4 gives the before and after for a method call that is obfuscated by
reflection and string obfuscation, using the ROT13 simple letter substitution
cipher given in Listing 1.3. The residual Jimple code is presented as Java for
readability. Completely unfolding the rot13 method call decrypts the string
qbFbzrguvat as the string doSomething. This string statically defines the value
of the object method, allowing method.invoke(m, null) to be specialised to
m.doSomething(), thereby removing the reflective call. Note that the variables
encrypted and method cannot be removed without dead variable elimination.

4 Experiments

To assess how partial evaluation can aid in AV matching, a number of known
applet malware samples from the Metasploit exploit package [2] were obfuscated
using the techniques outlined in section 2. Details of the samples are given in
Fig. 3; the samples were chosen entirely at random. So as to assess the effect of
partial evaluation against a representative AV tool, we compared the detection
rates, with and without partial evaluation, on eight commercial AV products.
Together these products cover the majority of the global market, as reported in
2013 [15] and is illustrated in the chart given in Figure 3. Conveniently, Virus-
Total [19] provides a prepackaged interface for submitting malware samples to
all of these products, with the exception of Avira, which is why this tool does
not appear in our experiments.
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//BEFORE
pub l i c s t a t i c void main ( St r ing [ ] a rgs ) {

Main m = new Main ( ) ;
S t r ing encrypted = ”qbFbzrguvat” ;
Method method = m. c l a s s . getMethod ( rot13 ( encrypted ) ) ;
method . invoke (m, n u l l ) ;

}

//AFTER
pub l i c s t a t i c void main ( St r ing [ ] a rgs ) {

Main m = new Main ( ) ;
S t r ing encrypted = ”qbFbzrguvat” ;
Method method = m. c l a s s . getMethod ( rot13 ( encrypted ) ) ;
m. doSomething ( ) ;

}

//AFTER DEAD VARIABLE ELIMINATION
pub l i c s t a t i c void main ( St r ing [ ] a rgs ) {

Main m = new Main ( ) ;
m. doSomething ( ) ;

}

Listing 1.4. Before and after partial evaluation

Unfortunately, developing a complete partial evaluator for Jimple is a major
undertaking, since it is necessary to support the entire Java API and runtime
environment, which itself is huge. To side-step this engineering effort, we im-
plemented a partial evaluator in Scala, following the description in section 3,
only providing functionality for String, StringBuffer and StringBuilder classes.
This was achievable since Java String objects are accessible to Scala. (Scala’s
parser combinator library also make it is straightforward to engineer a parser
for Jimple.) Although other objects could be handled in the same way, we simply
took each of these obfuscated CVEs and extracted the Jimple code and meth-
ods that manipulated strings. This code was then partially evaluated so as to
deobfuscate the string handling. The CVEs were then hand-edited to reflect the
residual, and then ran through VirusTotal to check that the effects of obfusca-
tion had been truly annulled. Future implementation work will be to automate
the entire process, namely translate the Jimple residual into Java using Soot [8]
and then invoke VirusTotal automatically through its public web API.

Table 1 details the detection rates for the AVs given in Figure 3, without
obfuscation, with just string obfuscate, with just reflection obfuscation, and with
both obfuscations applied. This gives four experiments in all. It is important to
appreciate that the obfuscations used in the fourth experiment include all those
obfuscations introduced in the second and third experiments and no more.

The results show that in most cases the AVs detect most of the exploits
in their unadulterated form. Exploits CVE-2012-5088 and CVE-2013-2460 go
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Fig. 3. CVEs and AVs

CVE Java Applet Exploit

2012-4681 Remote Code Execution
2012-5076 JAX WS Remote Code Execution
2013-0422 JMX Remote Code Execution
2012-5088 Method Handle Remote Code Execution
2013-2460 Provider Skeleton Insecure Invoke Method

the most undetected, which is possibly because both exploits make extensive
use of reflection. It is interesting to see that the product with the highest mar-
ket share (Microsoft) was unable to detect any of the exploits after string ob-
fuscation, which suggests the removing this obfuscation alone is truly worth-
while. Moreover, after introducing reflection the AV detection count for each
exploit drops significantly. Furthermore, applying reflection with string obfus-
cation is strictly stronger than applying string obfuscation and reflection alone.
CVE-2012-4681 represents an anomaly under McAfee since reflection obfusca-
tion impedes detection whereas, bizarrely, using reflection with string obfus-
cation does not. Interestingly, McAfee classifies this CVE with the message
Heuristic.BehavesLike.Java.Suspicious-Dldr.C which suggests that it is
using a heuristic behavioural approach which might explain its unpredictability.

Most importantly, applying partial evaluation to the CVEs used in the fourth
experiment restores the detection rates to those of the first experiment. Thus
detection is improved, without having to redistribute the signature database.

5 Related Work

Although there has been much work in Java security, partial evaluation and
reflection, there are few works that concern all three topics. This section provides
pointers to the reader for the main works in each of these three separate areas.

One of the very few techniques that has addressed the problem of detecting
malicious Java Applets is Jarhead [17]. This recent work uses machine learning
to detect malicious Applets based on 42 features which include such things as
the number of instructions, the number of functions per class and cyclomatic
complexity [13]. Jarhead also uses special features that relate to string obfus-
cation, such as the number and average length of the strings, and the fraction
of strings that contain non-ASCII printable characters. Other features that it
applies determine the degree of active code obfuscation, such as the number of
times that reflection is used within the code to instantiate objects and invoke
methods. Out of a range of classifiers, decision trees are shown to be the most
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Table 1. Experimental Results

Exploit Name Microsoft Avast AVG Symantec ESET Kaspersky McAfee Bitdefender

CVE No Obfuscation

2012-4681 X X X 7 X X X X
2012-5076 X 7 X X X X X 7

2013-0422 X X 7 X X X X 7

2012-5088 7 7 7 7 X 7 X 7

2013-2460 7 X X 7 X 7 X 7

CVE String Obfuscation

2012-4681 7 X X 7 X X X X
2012-5076 7 7 X X 7 7 X 7

2013-0422 7 7 7 X 7 7 X 7

2012-5088 7 7 7 7 X 7 X 7

2013-2460 7 7 X 7 7 7 X 7

CVE Reflection Obfuscation

2012-4681 X X X 7 X 7 7 7

2012-5076 7 7 7 X 7 X X 7

2013-0422 X X X X X X X 7

2012-5088 7 7 7 7 X 7 X 7

2013-2460 7 7 X 7 X 7 X 7

CVE String and Reflection Obfuscation

2012-4681 7 X X 7 7 7 X 7

2012-5076 7 7 7 X 7 7 X 7

2013-0422 7 7 7 X 7 7 X 7

2012-5088 7 7 7 7 X 7 X 7

2013-2460 7 7 X 7 7 7 X 7

reliable. Our work likewise aspires to be static, though partial evaluation takes
this notion to the limit, so as to improve detection rates. Moreover, machine
learning introduces the possibility of false negatives and, possibly worse, false
positives. Our approach is to scaffold off existing AV products that have been
carefully crafted to not trigger false positives, and improve their matching rates
by applying program specialisation as a preprocessing step.

The objective of partial evaluation is to remove interpretive overheads from
programs. Reflection can be considered to be one such overhead and therefore
it is perhaps not surprising that it has attracted interest in the static analysis
community; indeed the performance benefit from removing reflection can be sig-
nificant [16] . Civet [18] represents state-of-the-art in removing Java reflection; it
does not apply binding-time analysis (BTA) [3] but relies on programmer inter-
vention, using annotation to delineate static from dynamic data, the correctness
of which is checked at specialisation time. Advanced BTAs have been defined
for specialising Java reflection [4], though to our knowledge, none have been im-
plemented. We know of no partial evaluator for Jimple, though Soot represents
the ideal environment for developing one [8]. Quite apart from its role in deob-
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fuscation, partial evaluation can also be applied in obfuscation [10]: a modified
interpreter, that encapsulates an obfuscation technique, is partially evaluated
with respect to the source program to automatically obfuscate the source. Pro-
gram transformation has been proposed for deobfuscating binary programs [5],
by unpacking and removing superfluous jumps and junk, again with the aim of
improving AV scanning. This suggest that partial evaluation also has a role in
binary analysis, where the aim is to make malware detection more semantic [7].

Reflection presents a challenge for program analysis: quite apart from writes
to object fields, reflection can hide calls, and hence mask parts of the call-graph
so that an analysis is unsound. Points-to analysis has been suggested [12] as a
way of determining the targets of reflective calls which, in effect, traces the flow
of strings through the program. This is sufficient for resolving many, but not all
calls, hence points-to information is augmented with user-specified annotation
so as to statically determine the complete call graph. The use of points-to in-
formation represents an advance over using dynamic instrumentation to harvest
reflective calls [11] since instrumentation cannot guarantee complete coverage.
Partial evaluation likewise traces the flow of strings through the program, though
without refining points-to analysis, it is not clear that it has the precision to re-
cover the targets of reflective calls that have been willfully obfuscated with such
techniques as a substitution cipher (rot13).

6 Future Work

Termination analysis is a subfield of static analysis within itself and thus far
we have not explored how termination can improve unfolding. We simply unfold
loops where the loop bound is known at specialisation time. We also deliberately
do not unfold recursive methods, though this is a somewhat draconian limitation.
Future work will aim to quantify how termination analysis can be applied in an
online setting to improve the quality of malware detection.

Although we have not observed this in the wild, there is no reason why
reflection cannot be applied to a method that obfuscates a string, such as a
decryptor. This would thwart our approach to deobfuscation since the reflected
call would be deobfuscated in the residual, but would not actually be evaluated
on a given string. Thus we will explore how partial evaluation can be repeatedly
applied to handle these multi-layered forms of obfuscation.

We will also examine how partial evaluation can remove less common forms
of Java obfuscation such as control flow obfuscation and serialization and deseri-
alization obfusation, the latter appearing to be as amenable to partial evaluation
as string obfuscation. In the long term we will combine partial evaluationi with
code similarity matching, drawing on techniques from information retrieval.

7 Conclusion

We have presented a partial evaluator for removing string and reflection obfusca-
tion from Java programs, with the aim of improving the detection of malicious
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Java code. Our work puts partial evaluation in a new light: previous studies
have majored on optimisation whereas we argue that partial evaluation has a
role in anti-virus matching. To this end, a partial evaluator has been designed for
Jimple, which was strength tested on five malware samples from the Metasploit
exploit framework, obfuscated using string and reflection obfuscation.
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