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What Can Spider Diagrams Say?
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Abstract. Spider diagrams are a visual notation for expressing logical
statements. In this paper we identify a well known fragment of first order
predicate logic, that we call ESD, equivalent in expressive power to the
spider diagram language. The language ESD is monadic and includes
equality but has no constants or function symbols. To show this equiva-
lence, in one direction, for each diagram we construct a sentence in ESD
that expresses the same information. For the more challenging converse
we show there exists a finite set of models for a sentence S that can be
used to classify all the models for S. Using these classifying models we
show that there is a diagram expressing the same information as S.

1 Introduction

Euler diagrams [2] exploit topological properties of enclosure, exclusion and in-
tersection to represent subset, disjoint sets and set intersection respectively. Di-
agram d1 in figure 1 is an Euler diagram and expresses that nothing is both
a car and a van. Venn diagrams [13] are similar to Euler diagrams. In Venn
diagrams, all possible intersections between contours must occur and shading is
used to represent the empty set. Diagram d2 in figure 1 is a Venn diagram and
also expresses that no element is both a car and a van.

Many visual languages have emerged that extend Euler and Venn diagrams.
One such language is Venn-II introduced by Shin [9]. Diagram d3 in figure 1
is a Venn-II diagram. In addition to what is expressed by the underlying Venn
diagram, it also expresses, using an x-sequence, the set Cars∪V ans is not empty.
Venn-II diagrams can express whether a set is empty or not empty. Shin [9] shows
that Venn-II is equivalent in expressive power to a first order language that she
calls L0. The language L0 is a pure monadic language (i.e. all the predicate
symbols are ‘one place’) that does not include constants or function symbols.

Another visual language, called Euler/Venn, based on Euler diagrams is dis-
cussed in [12].

These diagrams are similar to Venn-II diagrams but, instead of x-sequences,
constant sequences are used. Diagram d4 in figure 2 is an Euler/Venn diagram
and expresses that no element is both a car and a van and that there is something
called ‘ford’ that is either a car or a van. In [12] Swoboda and Allwein give
an algorithm that determines whether a given monadic first order formula is
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Fig. 1. An Euler diagram, Venn diagram and a Venn-II diagram
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Fig. 2. An Euler/Venn diagram and two spider diagrams

observable from a given diagram. If the formula is observable from the diagram
then it may contain weaker information than the diagram (i.e. the formula is
a consequence of the information contained in the diagram).

Like Euler/Venn diagrams, spider diagrams are based on Euler diagrams.
Rather than allowing the use of constant sequences1 as in Euler/Venn diagrams,
spiders denote the existence of elements. The spider diagram d5 in figure 2
expresses that no element is both a car and a van and there are at least two
elements, one is a car and the other is a car or a van. The spider diagram d6

expresses that there are exactly three vans that are not cars. By allowing lower
and upper bounds (by the use of shading and spiders) to be placed on the
cardinality of sets, spider diagrams increase expressiveness over Venn-II.

We show, but do not include any proofs, that the spider diagram language is
equivalent in expressive power to a fragment of first order logic that we call ESD
(for the Expressiveness of Spider Diagrams). The language ESD extends L0 by
adding equality, so ESD is monadic predicate logic with equality.

In section 5, we address the task of mapping each diagram to a sentence
expressing the same information, showing that spider diagrams are at most as
expressive as ESD. In section 6 we show that ESD is at most as expressive as
spider diagrams. We will outline Shin’s algorithmic approach to show L0 (in
which there is no equality) is not more expressive than Venn-II. It is simple to
adapt this algorithm to find a spider diagram that expresses the same informa-
1 In some spider diagram languages, given spiders [5] represent constants but for

our purposes spiders represent existential quantification.
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tion as a sentence in ESD that does not involve equality. However, for sentences
in ESD that do involve equality, the algorithm does not readily generalize.

Thus, the task of showing that there exists a diagram expressing the same
information as a sentence involving equality is challenging and we take a different
approach. To motivate our approach we consider relationships between models
for diagrams. We consider the models for a sentence and show that there is
a finite set of models that can be used to classify all the models for the sentence.
These classifying models can then be used to construct a diagram that expresses
the same information as the sentence.

2 Spider Diagrams

In diagrammatic systems, there are two levels of syntax: concrete (or token)
syntax and abstract (or type) syntax [4]. Concrete syntax captures the physical
representation of a diagram. Abstract syntax ‘forgets’ semantically unimportant
spatial relations between syntactic elements in a concrete diagram. We include
the concrete syntax to aid intuition but we work at the abstract level.

2.1 Informal Concrete Syntax

A contour is a simple closed plane curve. Each contour is labelled. A bound-
ary rectangle properly contains all contours. The boundary rectangle is not
a contour and is not labelled. A basic region is the bounded area of the plane
enclosed by a contour or the boundary rectangle. A region is defined recursively
as follows: any basic region is a region; if r1 and r2 are regions then the union, in-
tersection and difference of r1 and r2 are regions provided these are non-empty. A
zone is a region having no other region contained within it. A region is shaded
if each of its component zones is shaded. A spider is a tree with nodes (called
feet) placed in different zones. The connecting edges (called legs) are straight
lines. A spider touches a zone if one of its feet appears in that region. A spider
is said to inhabit the region which is the union of the zones it touches. This
union is called the habitat of the spider.

A concrete unitary (spider) diagram is a single boundary rectangle to-
gether with a finite collection of contours, shading and spiders. No two contours
in the same unitary diagram can have the same label.

Example 1. Spider diagram d6 in figure 2 has two contours and four zones. The
shaded zone contains three spiders, each with one foot.

2.2 Formal Abstract Syntax

We can think of the contour labels used in our diagrams as being chosen from
a countably infinite set, L.

Definition 1. An abstract unitary (spider) diagram, d, (with labels in L)
is a tuple 〈L, Z, Z∗, SI〉 whose components are defined as follows.
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Fig. 3.

1. L = L(d) ⊂ L is a finite set of contour labels.
2. Z = Z(d) ⊆ {(a, L − a) : a ⊆ L} is a set of zones such that

(i) for each label l ∈ L there is a zone (a, L− a) ∈ Z(d) such that l ∈ a and
(ii) the zone (∅, L) is in Z(d).

3. Z∗ = Z∗(d) ⊆ Z is a set of shaded zones.
4. SI = SI(d) ⊂ Z

+ × (PZ − {∅}) is a finite set of spider identifiers such
that

∀(n1, r1), (n2, r2) ∈ SI • r1 = r2 ⇒ n1 = n2

If (n, r) ∈ SI we say there are n spiders with habitat r.

When we reason with a spider diagram, the contour set may change, which is
why we define an abstract zone to be a pair. Zone (a, b) is included in a but
not included in b. Every contour in a concrete diagram contains at least one
zone, captured by condition 2 (i). In any concrete diagram, the zone inside
the boundary rectangle but outside all the contours is present, captured by
condition 2 (ii). In order to give a unique abstraction from a concrete diagram
we use spider identifiers (essentially a bag of spiders) rather than an arbitrary
set of spiders.

Example 2. Diagram d1 in figure 3 has abstract description

1. contour labels {A, B},
2. zones {(∅, {A, B}), ({A}, {B}), ({B}, {A})({A, B}, ∅)},
3. shaded zones {({B}, {A})} and
4. spider identifiers {(1, {({B}, {A})}), (1, {({A}, {B}), ({B}, {A})})}.

We define, for unitary diagram d, the Venn zone set to be V Z(d) = {(a, b) :
a ⊆ L(d) ∧ b = L(d) − a}. If Z(d) = V Z(d) then d is said to be in Venn form.
If z ∈ MZ(d) = V Z(d) − Z(d) then z is missing from d. Spiders represent the
existence of elements and regions (an abstract region is a set of zones) represent
sets – thus we need to know how many elements we have represented in each
region. The number of spiders inhabiting region r1 in d is denoted by S(r1, d).
The number of spiders touching r1 in d is denoted by T (r1, d), for more details
see [6]. In d1, figure 3, ({B}, {A}) is inhabited by one spider and touched by two
spiders.

Unitary diagrams form the building blocks of compound diagrams. If D1

and D2 are spider diagrams then so are (D1 �D2) (“D1 or D2”) and (D1 �D2)
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(“D1 and D2”). Some diagrams are not satisfiable and we introduce the symbol
⊥, defined to be a unitary diagram interpreted as false. Our convention will be
to denote unitary diagrams by d and arbitrary diagrams by D.

2.3 Semantics

Regions in spider diagrams represent sets. We can express lower and, in the
case of shaded regions, upper bounds on the cardinalities of the sets we are
representing as follows. If region r is inhabited by n spiders in diagram d then d
expresses that the set represented by r contains at least n elements. If r is shaded
and touched by m spiders in d then d expresses that the set represented by r
contains at most m elements. Thus, if d has a shaded, untouched region, r,
then d expresses that r represents the empty set. Missing zones also represent
the empty set. To formalize the semantics we shall map contour labels, zones
and regions to subsets of some universal set. We assume that no contour label
is a zone or region and that no zone is a region (regions are sets of zones). We
define Z and R to be the sets of all abstract zones and regions respectively.

Definition 2. An interpretation of contour labels, zones and regions, or
simply an interpretation, is a pair (U, Ψ) where U is a set and Ψ : L∪Z∪R →
PU is a function mapping contour labels, zones and regions to subsets of U such
that the images of the zones and regions are completely determined by the images
of the contour labels as follows:

1. for each zone (a, b), Ψ(a, b) =
⋂
l∈a

Ψ(l) ∩
⋂
l∈b

Ψ(l) where Ψ(l) = U − Ψ(l) and

we define
⋂
l∈∅

Ψ(l) = U =
⋂
l∈∅

Ψ(l) and

2. for each region r, Ψ(r) =
⋃

z∈r
Ψ(z) and we define Ψ(∅) =

⋃
z∈∅

Ψ(z) = ∅.

We introduce a semantics predicate which identifies whether a diagram expresses
a true statement, with respect to an interpretation.

Definition 3. Let D be a diagram and let m = (U, Ψ) be an interpretation. If
D =⊥ then the semantics predicate, PD(m) is ⊥. If D (�=⊥) is a unitary
diagram then the semantics predicate, PD(m), of D is the conjunction of the
following three conditions.

(i) Distinct Spiders Condition. For each region r in PZ(d)−{∅}, |Ψ(r)| ≥
S(r, d).

(ii) Shading Condition. For each shaded region r in PZ∗(d)− {∅}, |Ψ(r)| ≤
T (r, d)

(iii) Missing Zones Condition Any zone, z, in MZ(d) satisfies Ψ(z) = ∅.
If D = D1 � D2 then the semantics predicate, PD(m), of D is PD(m) =

PD1(m) ∨ PD2 (m). If D = D1 � D2 then the semantics predicate, PD(m),
of D is PD(m) = PD1(m) ∧ PD2(m). We say m satisfies D, denoted m |= D,
if and only if PD(m) is true. If m |= D we say m is a model for D.

Example 3. Interpretation m = ({1, 2}, Ψ) partially defined by Ψ(A) = {1} and
Ψ(B) = {2} is a model for d1 in figure 3 but not for d2.
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3 The Language ESD
Spider diagrams can express statements of the form ‘there are at least n elements
in A’ and ‘there are at most m elements in A’. A first order language equivalent
in expressive power to the spider diagram language will involve equality, to allow
us to express the distinctness of elements, and monadic predicates, to allow us to
express x ∈ A. In order to define such a language we require a countably infinite
set of monadic predicate symbols, P , from which all monadic predicate symbols
will be drawn.

Definition 4. The first order language ESD (for Expressiveness of Spider Di-
agrams) consists of the following.

1. Variables, x1, x2, ... of which there are countably many.
2. Atomic formulae,

(a) if xi and xj are variables then (xi = xj) is an atomic formula,
(b) if Pi ∈ P and xj is a variable then Pi(xj) is an atomic formula.

3. Formulae, which are defined inductively.
(a) Atomic formulae are formulae.
(b) ⊥ and � are formulae.
(c) If p and q are formulae so are (p ∧ q), (p ∨ q) and ¬p.
(d) If p is a formula and x is a variable then (∀x p) and (∃x p) are formulae.

We define VAR, F and S to be the sets of variables, formulae and sentences
(formulae with no free variables) of the language ESD respectively.

We shall assume the standard first order predicate logic semantic interpretation
of formulae in this language, with the exception of allowing a structure to have
an empty domain.

4 Structures and Interpretations

We wish to identify when a diagram and a sentence express the same information.
To aid us formalize this notion, we map interpretations to structures in such
a way that information is preserved. Throughout we shall assume, without loss
of generality, that L = {L1, L2, ...} and P = {P1, P2, ...}. Define U to be the
class of all sets. The sets in U form the domains of structures in the language
ESD.

Definition 5. Define INT to be the class of all interpretations for spider dia-
grams, that is

INT = {(U, Ψ) : U ∈ U ∧ Ψ : L ∪ Z ∪R → PU}.

Define also ST R to be the class of structures for the language ESD, that is

ST R = {m : U ∈ U ∧ m = 〈U, =m, Pm
1 , Pm

2 , ...〉},

where Pm
i is the interpretation of Pi in the structure m (that is, Pm

i ⊆ U) and
we always interpret = as the diagonal subset of U × U , denoted diag(U × U).
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Fig. 4. Two α-diagrams: from diagrams to sentences

We define a bijection, h : INT → ST R by

h(U, Ψ) = 〈U, diag(U × U), Ψ(L1), Ψ(L2), ...〉.

Definition 6. Let D be a diagram and S be a sentence. We say D and S are
expressively equivalent if and only if h provides a bijective correspondence
between their models, that is

{h(I) : I ∈ INT ∧ I |= D} = {m ∈ ST R : m |= S}.

5 Mapping from Diagrams to Sentences

To show that the spider diagram language is not more expressive than ESD,
we will map diagrams to expressively equivalent sentences. An α-diagram is
a spider diagram in which all spiders inhabit exactly one zone [8]. Such diagrams
have nice properties, for example, unitary α-diagrams only contain conjunctive
information (spider legs represent disjunctive information).

Theorem 1. Let D1 be a spider diagram. There exists a spider diagram, D2,
that is a disjunction of unitary α-diagrams and semantically equivalent to D1

(i.e. D1 and D2 have the same models).

We will map each unitary α-diagram to an expressively equivalent sentence in
ESD. This enables us to map each disjunction of unitary α-diagrams to an
expressively equivalent sentence and, by theorem 1, this is sufficient to show that
the spider diagram language is not more expressive than the language ESD.

Example 4. In diagram d1, figure 4, there are three spiders, one outside both L1

and L2, the other two inside L2 and outside L1. Diagram d1 is expressively
equivalent to the sentence

(∃x1 ¬P1(x1)∧¬P2(x1))∧(∃x1∃x2 P2(x1)∧P2(x2)∧¬P1(x1)∧¬P1(x2)∧x1 �= x2).

In diagram d2, no elements can be in L3 and not in L1, so d2 is expressively
equivalent to sentence
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∀x1 ¬(P3(x1) ∧ ¬P1(x1)).

The disjunction of these sentences is expressively equivalent to d1 � d2. For
general d1 and d2, the disjunction of their expressively equivalent sentences is
expressively equivalent to d1 � d2.

To construct sentences for diagrams, it is useful to map zones to formulae.

Definition 7. Define function ZOF : Z×VAR → F (ZOF for ‘zone formula’)
by, for each (a, b) ∈ Z − {(∅, ∅)} and variable xj,

ZOF((a, b), xj) =
∧

Lk∈a

Pk(xj) ∧
∧

Lk∈b

¬Pk(xj)

and ZOF((∅, ∅), xj) = �.

We use the function ZOF to construct a sentence of ESD for each zone in
a unitary α-diagram. We shall take these zone sentences in conjunction to give
a sentence for the diagram. We define Dα

0 to be the class of all unitary α-diagrams
and Dα to be the class of all disjunctions of unitary α-diagrams.

Definition 8. The partial function ZS : Z ×Dα
0 → S (ZS for ‘zone sentence’)

is specified for unitary α-diagram d and zone z in V Z(d) as follows.
1. If z is not shaded and not inhabited by any spiders then ZS(z, d) = �.
2. If z is not shaded and inhabited by n > 0 spiders then

ZS(z, d) = ∃x1...∃xn(
∧

1≤j<k≤n

¬(xk = xj) ∧
∧

1≤k≤n

ZOF(z, xk)).

3. If z is shaded or missing and not inhabited by any spiders then

ZS(z, d) = ∀x1 ¬ZOF(z, x1).

4. If z is shaded and inhabited by n > 0 spiders then

ZS(z, d) = ∃x1...∃xn(
∧

1≤j<k≤n

¬(xk = xj) ∧
∧

1≤k≤n

ZOF(z, xk) ∧

∀xn+1 (
∨

1≤j≤n

xn+1 = xj ∨ ¬ZOF(z, xn+1))).

Definition 9. Define DS : Dα → S (DS for ‘diagram sentence’) as follows.
Let D be a disjunction of unitary α-diagrams.

1. If D =⊥ then DS(D) =⊥.
2. If D (�=⊥) is a unitary α-diagram then DS(D) =

∧
z∈V Z(D)

(ZS(z, D)).

3. If D = D1 � D2 then DS(D) = (DS(D1) ∨ DS(D2)).

Theorem 2. Let D be a disjunction of unitary α-diagrams. Then D is expres-
sively equivalent to DS(D).

Hence the language of spider diagrams is at most as expressive as ESD.
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Fig. 5. Extending models for a diagram

6 Mapping from Sentences to Diagrams

We now consider the more challenging task of constructing a diagram for a sen-
tence. Since every formula is semantically equivalent to a sentence obtained by
prefixing the formula with ∀xi for each free variable xi (i.e. constructing its uni-
versal closure) we only need to identify a diagram expressively equivalent to each
sentence.

Shin’s approach for Venn-II and her language L0 (ESD without equality)
is algorithmic [9], which we now outline. To find a diagram expressively equiv-
alent to a sentence she first converts the sentence into prenex normal form,
say Q1x1...QnxnG where G is quantifier free. If Qn is universal then G is trans-
formed into conjunctive normal form. If Qn is existential then G is transformed
into disjunctive normal form. Quantifier Qn is then distributed through G and
as many formulae are removed from its scope as possible. All n quantifiers are
distributed through in this way. A diagram can then be drawn for each of the
simple parts of the resulting formula. To adapt this algorithm to sentences in
ESD that do not involve equality is straightforward.

This algorithm does not readily generalize to arbitrary sentences in ESD
because = is a dyadic predicate symbol which means nesting of quantifiers cannot
necessarily be removed. Thus we take a different approach, modelled on what
appears in [1], pages 209-210. To establish the existence of a diagram expressively
equivalent to a sentence we consider models for that sentence. To illustrate the
approach we consider relationships between models for α-diagrams. We begin be
considering a particular example.

Example 5. The diagram in figure 5 has a minimal model (in the sense that
the cardinality of the universal set is minimal) U = {1, 2, 3}, Ψ(L1) = {1},
Ψ(L2) = {2, 3} and, for i �= 1, 2, Ψ(Li) = ∅. This model can be used to generate
all the models for the diagram. To generate further models, we can add elements
to U and we may add these elements to images of contour labels if we so choose.
We can also rename the elements in U . As an example, the element 4 can be
added to U and we redefine Ψ(L2) = {2, 3, 4} to give another model for d.
No matter what changes we make to the model, we must ensure that the zone
({L1}, {L2}) always represents a set containing exactly one element or we will
create an interpretation that does not satisfy the diagram.
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If a sentence, S, is expressively equivalent to a unitary α-diagram, d, then we
will be able to take a minimal model for S and use this model to generate all
other models for S in the same manner as above. Given a structure, we will
define a predicate intersection set. This set is analogous to the image of a zone
in an interpretation.

Definition 10. Let m be a structure and X and Y be finite subsets of P (the
countably infinite set of predicate symbols). Define the predicate intersection
set in m with respect to X and Y , denoted PI(m, X, Y ), to be

PI(m, X, Y ) =
⋂

Pi∈X

Pm
i ∩

⋂

Pi∈Y

Pm
i .

We define
⋂

Pi∈∅
Pm

i =
⋂

Pi∈∅
Pm

i = U where U is the domain of m.

In the context of ESD, we will identify all the structures that can be generated
from a given structure, m, by adding or renaming elements subject to cardinality
restrictions. We will call this class of structures generated by m the cone of m.
For each sentence, S, we will show that there is a finite set of models, the union
of whose cones give rise to only and all the models for S. Central to our approach
is the notion of similar structures with respect to S. To define similar structures
we use the maximum number of nested quantifiers in S.

Example 6. Let S be the sentence ∀x1 P1(x1) ∧ ∀x1 ∃x2 x1 �= x2. The formula
∀x1 P1(x1) has one nested quantifier and ∀x1 ∃x2 x1 �= x2 has two nested quan-
tifiers. Therefore the maximum number of nested quantifiers in S is two. Now, n
nested quantifiers introduce n names, and so it is only possible to talk about (at
most) n distinct individuals within the body of the formula. This has the effect
of limiting the complexity of what can be said by such a formula. In the par-
ticular case here, this observation has the effect that if a model for S has more
than two elements in certain predicate intersection sets then S cannot place an
upper bound on the cardinalities of these predicate intersection sets.

The interpretation of P1 has to have all the elements, of which there must be
at least two. Also S constrains the predicate intersection set PI(m, ∅, {P1}) to
have cardinality zero. As an example, we consider two models, m1 and m2 with
domains U1 = {1, 2, 3, 4} and U2 = {1, 2, 5, 6, 7} respectively that are partially
defined by Pm1

1 = {1, 2, 3, 4} and Pm2
1 = {1, 2, 5, 6, 7}. Now

|PI(m1, ∅, {P1})| = |∅| = 0 < 2 and |PI(m2, ∅, {P1})| = |∅| = 0 < 2.

Also

|PI(m1, {P1}, ∅)| = |U1| ≥ 2 and |PI(m2, {P1}, ∅)| = |U2| ≥ 2,

so S cannot place an upper bound on |PI(m, {P1}, ∅)|. We can think of m1

and m2 extending m3 with domain U3 = {1, 2} where Pm3
1 = {1, 2} and Pj = ∅,

for all j �= 1.
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Fig. 6. Visualizing cones

Definition 11. Let S be a sentence and define q(S) to be the maximum number
of nested quantifiers in S and P (S) to be the set of monadic predicate symbols
in S. Structures m1 and m2 are called similar with respect to S if and only
if for each subset X of P (S), either

1. PI(m1, X, P (S) − X) = PI(m2, X, P (S) − X) or
2. |PI(m1, X, P (S) − X) ∩ PI(m2, X, P (S) − X)| ≥ q(S)

and for all subsets Y of P (S) such that X �= Y , PI(m1, X, P (S) − X) ∩
PI(m2, Y, P (S) − Y ) = ∅. Adapted from [1].

In the previous example, m1, m2 and m3 are all similar with respect to S.

Lemma 1. Let m1 and m2 be similar structures with respect to sentence S.
Then m1 is a model for S if and only if m2 is a model for S, [1].

Lemma 1 essentially tells us that any model for a sentence, S, with cardinality
greater than 2|P (S)|q(s) can be restricted to give another model for S with car-
dinality at most 2|P (S)|q(s). If the cardinality of model m for sentence S is at
most 2|P (S)|q(s) then we say m is a small model for S. Otherwise we say m is
a large model for S.

Definition 12. Let S be a sentence and m1 be a small model for S. The cone
of m1 given S, denoted cone(m1, S), is a class of structures such that m2 ∈
cone(m1, S) if and only if for each subset X of P (S), there exists an injective
map, fX : PI(m1, X, P (S)−X) → PI(m2, X, P (S)−X) which is bijective when
|PI(m1, X, P (S) − X)| < q(s).

The cone of m given S contains models for S that can be restricted to (models
isomorphic to) m. We can think of elements of cone(m, S) as enlarging m in
certain ‘directions’ (adding elements to predicate intersection sets) and ‘fixing’
(keeping predicate intersection sets the same) m in others.
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Fig. 7. A diagram expressively equivalent to ∀x∀y x = y

Example 7. Let S be the sentence ∃x1∃x2P1(x1) ∨ P2(x2) and consider m =
〈{1, 2, 3, 4}, =m, {1, 2}, ∅, ∅, ...〉. A visual analogy of cone(m, S) can be seen in
figure 6. Structure m1 = 〈{1, 2, 3, 4, 5, 6}, =m1, {1, 2, 5}, ∅, ∅, ...〉 can be obtained
from m by enlarging PI(m, ∅, {P1, P2}) and PI(m, {P1}, {P2}) by adding el-
ements to these sets (and the domain), but keeping PI(m, {P2}, {P1}) and
PI(m, {P1, P2}, ∅) fixed. Another element of cone(m, S) is the structure m2 =
〈{7, 8, 9, 10}, =m2, {7, 8}, ∅, ∅, ...〉. Here, m2 renames the elements in m. The
structure m3 = 〈{1, 2, 3, 4}, =m3, {1}, ∅, ∅, ...〉 is not in cone(m, S), since there is
not an injective map from PI(m, {P1}, {P2}) → PI(m3, {P1}, {P2}).

Example 8. Let S be the sentence ∀x∀y x = y and consider the structure m1 =
〈{1}, =m1, ∅, ∅, ∅, ...〉 which satisfies S. We have the following cone for m1:

cone(m1, S) = {m2 ∈ ST R : |PI(m1, ∅, ∅)| = |{1}| = |PI(m2, ∅, ∅)|}.

The class cone(m1, S) contains only structures that are models for S but does
not contain them all, for example m3 = 〈∅, ∅, ...〉 satisfies S but m3 is not in
cone(m1, S). All models for S are in the class cone(m1, S) ∪ cone(m3, S). In
this sense, m1 and m3 classify all the models for S. We can draw a diagram
expressively equivalent to S using information given by m1 and m3. This diagram
is a disjunction of two unitary diagrams, shown in figure 7. The unitary diagram
arising from m1 has one spider, no contours and is entirely shaded. That arising
from m3 has no spiders, no contours and is entirely shaded.

We will show that, given a sentence, S, there is a finite set of small models, the
union of whose cones give rise to only and all the models for S. We are able to
use these models to identify a diagram expressively equivalent to S. In order to
identify such a finite set we require the notion of partial isomorphism between
structures.

Definition 13. Let m1 and m2 be structures with domains U1 and U2 respec-
tively. Let Q be a set of monadic predicate symbols. If there exists a bijection
γ : U1 → U2 such that

∀Pi ∈ Q ∀x ∈ U1 • x ∈ Pm1
i ⇔ γ(x) ∈ Pm2

i

then m1 and m2 are isomorphic restricted to Q and γ is a partial isomor-
phism.
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If m1 and m2 are isomorphic restricted to P (S) then m1 is a model for S if
and only if m2 is a model for S. Also, there are finitely many small models for
sentence S, up to isomorphism restricted to P (S).

Definition 14. Let S be a sentence. A set of small models, class(S), for S is
called a classifying set of models for S if for each small model, m1, for S
there is a unique m2 in class(S) such that m1 and m2 are isomorphic, restricted
to P (S).

Theorem 3. Let class(S) be a classifying set of models for sentence S. Then
class(S) is finite and

⋃
m∈class(S)

cone(m, S) contains all and only models for S.

Definition 15. Let m be a small model for sentence S. The unitary α-
diagram, d, representing m, is defined as follows 2.

1. The contour labels arise from the predicate symbols in P (S):

{Li ∈ L : ∃Pi ∈ P • Pi ∈ P (S)}.

2. The diagram is in Venn form:

Z(d) = {(a, b) : a ⊆ L(d) ∧ b = L(d) − a}.
3. The shaded zones in d are given as follows. Let X be a subset of P (S) such

that |PI(m, X, P (S) − X)| < q(S). The zone (a, b) in Z(d) where a = {Li :
Pi ∈ X} is shaded.

4. The number of spiders in each zone is the cardinality of the set |PI(m1, X,
P (S)−X)| where X gives rise to the containing set of contour labels for that
zone. The set of spider identifiers is then given by:

SI(d) = {(n, r) : ∃X • X ⊆ P (S) ∧ |PI(m, X, P (S) − X)| > 0∧
n = |PI(m, X, P (S)− X)| ∧ r = {(a, b) ∈ Z(d) : a = {Li : Pi ∈ X}}}.

We write REP(m1, S) = d. Let class(S) be a set of classifying models for S.
Define D(S) to be a disjunction of unitary diagrams, given by

D(S) =
m∈class(S)

REP(m, S),

unless class(S) = ∅, in which case D(S) =⊥.

Example 9. Let S be the sentence ∃x1P1(x1) ∨ ∀x1P1(x1). To find a classifying
set of models we must consider structures of all cardinalities up to 2|{P1}|×q(S) =
21 × 1 = 2. There are six distinct structures (up to isomorphism restricted to
P (S)) with cardinality at most 2. Four of these structures are models for S and
are listed below.
2 In fact, d is a β-diagram [8] (every zone is shaded or inhabited by at least one spider).



What Can Spider Diagrams Say? 125

� �

� �

� �

� �

� �

� �

� �

� �

Fig. 8. Constructing diagrams from models

1. m1 = 〈∅, ∅, ...〉,
2. m2 = 〈{1}, =m2, {1}, ∅, ∅, ...〉,
3. m3 = 〈{1, 2}, =m3, {1}, ∅, ∅, ...〉,
4. m4 = 〈{1, 2}, =m4, {1, 2}, ∅, ∅, ...〉.

Therefore, the class cone(m1, S)∪ cone(m2, S)∪ cone(m3, S)∪ cone(m4, S) con-
tains only and all the models for S. We use each of these models to construct
a diagram. Models m1, m2, m3 and m4 give rise to d1, d2, d3 and d4 in figure 8
respectively. Diagram d1 � d2 � d3 � d4 is expressively equivalent to S. This is
not the ‘natural’ diagram one would associate with S.

Theorem 4. Let S be a sentence and class(S) be a set of classifying models
for S. Then S is expressively equivalent to D(S).

Hence the language of spider diagrams and ESD are equally expressive.

7 Conclusion

In this paper we have identified a well known fragment of first order predicate
logic equivalent in expressive power to the spider diagram language. To show
that the spider diagram language is at most as expressive as ESD, we identified
a sentence in ESD that expressed the same information as a given diagram. To
show that ESD is at most as expressive as the language of spider diagrams we
considered relationships between models for sentences. We have shown that it is
possible to classify all the models for a sentence by a finite set of models. These
models can be used to define a spider diagram expressively equivalent to S.

The spider diagram language extends to the far more expressive constraint
diagram language [7]. Constraint diagrams allow relational navigation (expres-
sions involving two place predicates). The diagram in figure 9 is a constraint
diagram. In addition to the information provided by the underlying spider di-
agram, it expresses that ‘for all x in B − A, the relational image of x under g
is A and there is a y in A − B whose relational image under f is an element
of C’. It is currently unknown what fragment of first order predicate logic can
be expressed using constraint diagrams. Various constraint diagram languages
exist. The simplest of these restricts the syntactic components and the semantic
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Fig. 9. A constraint diagram

interpretation of the diagrams [10]. In [3] the authors give a reading algorithm
for interpreting more expressive constraint diagrams.

Some logical assertions are more naturally expressed in one language than
another. This may lead to the development of heterogeneous reasoning systems.
An example of such a system based on first order predicate logic and Euler/Venn
diagrams can be found in [11]. We plan to develop a heterogeneous reasoning
system incorporating constraint diagrams. The other languages included may
be influenced by the expressiveness of the languages involved. Thus it will be
useful to know how expressive constraint diagrams are. This work on the expres-
siveness of spider diagrams will lay the foundations for an investigation into the
expressiveness of constraint diagrams.
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