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Abstract

Traversal strategies provide an established means of describing automated queries, analyses, trans-
formations, and other non-trivial computations on deeply structured data (including, most notably,
data representations of software artifacts such as programs). The resulting traversal programs are
prone to programming errors. We are specifically concerned with errors that go beyond classic
type errors, in particular: (i) divergence of traversal, (ii) unintentional extent of traversal into
data, (iii) trivial traversal results, (iv) inapplicability of the constituents of a traversal program
along traversal. We deliver a taxonomy of programming errors, and start attacking some of them
by refinements of traversal programming.

Keywords: Traversal strategies, Traversal programming, Term rewriting, Stratego, Strafunski,
Generic programming, Scrap Your Boilerplate, Type systems, Static program analysis.

1 Introduction

Consider the general problem domain of extracting data from program or
data representations (such as ASTs) as well as transforming such representa-
tions in a systematic fashion. Over the last 10 years, this problem domain
has triggered advances in term rewriting and general-purpose programming

1571-0661/$ — see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.entcs.2009.09.045
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with rewriting-like capabilities [22,23,13,24,21] so that traversals (perhaps even
highly reusable traversal strategies) are programmable.

Despite these advances, the use and the definition of programmable traver-
sal strategies has remained the domain of the expert, rather than gaining wider
usage. This could in part be due to necessary language, library, and tool sup-
port, but we contend that the principal obstacle to wider adoption is the
severity of some possible pitfalls, which make it difficult to use strategies in
practice. Some of the programming errors that arise are familiar, e.g., type
errors, but other errors are of a novel nature. Their appearance can be off-
putting to the newcomer to the field, and it can limit the productivity even
of experienced strategists.

This paper is a first step in a programme which aims to make strategic
programming more accessible and approachable through providing an intro-
duction to — and indeed a taxonomy of — some of the common pitfalls of
strategic programming. We also begin refining strategic programming so that
the next generation of strategic programming may be considerably easier to
use.

A running example. To use a purposely simple example, consider the
transformation problem of “incrementing all numbers in a term”. (Clearly,
programming errors become more severe with increasing the problem size.)
Suppose / is the rewrite rule that maps any given number n to n+1. It remains
to compose a strategy that can essentially iterate ¢ over any term. Here is an
indication of some of the things that may go wrong with the application of
the composed strategy:

e [t fails to terminate.
e It fails to find numbers in the input term.
o It fails, i.e., it returns a trivial failure term.

e It increments some numbers in the input term more than once.

Structure of the paper. §2 quickly introduces a suitable model of
(Haskell-based) traversal strategies.! §3 takes an inventory of programming
errors in traversal programming. §4 attacks the errors by proposing some
refinements of traversal programming. §5 briefly applies the notion of static
analysis to the problem of determining properties of traversal programs as

I Haskell in all its glory has infinite and partial data structures, such as trees with undefined
leaves, or indeed undefined subtrees. In the presence of infinite and partial structures, the
discussion of strategy semantics and properties (most notably, termination) becomes more
subtle. We are currently limiting our discussion to finite, fully defined data. (The subject of
coinductive strategies over coinductive types may be an interesting topic for future work.)
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well as detecting errors therein. §6 discusses related work. §7 concludes the
paper.

2 Strategic programming

We assume basic strategy combinators as they were pioneered by the Strat-
ego language [22]: “id” — the always succeeding strategy returning the input
term as is; “fail” — the always failing strategy; “sequ s s’” — sequential com-
position of s and s’; “choice s 8’7 — try s first, and try s’ second, if s failed;
“all s — apply s to all immediate subterms of a given term, and fail if there
is any subterm for which s fails; “one s” — apply s to the leftmost imme-
diate subterm of a given term such that the application does not fail, and
fail if there is no such immediate subterm. The combinators al/l and one, when
used recursively, enable the key capability of strategic programming: traversal
arbitrarily deeply into terms.

Let us define some recursive strategy combinators that model traversal
schemes as they appear in the literature [22,8,19]. The following folklore
schemes are actually written in Haskell syntax, subject to an embedding of
the aforementioned strategy combinators into Haskell. 2
—— Rewrite root first, then recurse into all immediate subterms of intermediate result
full-td s = sequ s (all (full_td s))

—— Rewrite all subterms in bottom—up manner
full_bu s = sequ (all (full_bu s)) s
—— Try to rewrite root; upon success: cease; upon failure: recurse into all immediate subterms
stop_td s = choice s (all (stop_td s))
—— Find a subterm to be rewritten in bottom—up manner; rewriting ceases upon SUccess
once_bu s = choice (one (once_bu s)) s
—— Repeat once—bottom—up traversal until it fails
innermost s = repeat (once_bu s)
where
repeat s = try (sequ s (repeat s))
try s = choice s id

Without loss of generality, we use a Haskell model based on the SYB approach
to generic programming [11]. Hence, first-order strategies are revealed as
polymorphic functions on “term types”:

type Strategy = forall x. Data x => x —> Maybe x

The use of Maybe enables failing strategies:

data Maybe x = Nothing | Just x

2 The paper’s website (http://www.uni-koblenz.de/~laemmel/syb42) provides access to
a source distribution from which the source portions in the paper have been extracted.
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That is, a strategy returns Nothing to signal failure, while a successful compu-
tation returns a value of the form Just x. The Data constraint in the definition
of Strategy enables the non-parametrically polymorphic traversal capability of
all and one. For our discussion, the further details of the SYB approach are
not important. The above traversal schemes are all of the following type:

full_td, ..., innermost :: Strategy —> Strategy

There is yet another combinator, adhoc, which models update of a polymorphic
strategy in a point (i.e., a type). In “adhoc g s”, the argument g is the poly-
morphic default strategy to be applied whenever the monomorphic function s
cannot be applied, as far as its specific type is concerned. (In the non-strongly
typed setting of Stratego, a rewrite rule is immediately a “polymorphic” strat-
egy, as if it were combined with fail as default.)

For instance, assume that increment is a function on numbers that simply
increments them. Using adhoc, we can make the increment function generic so
that it can be passed to a traversal scheme, which can be finally applied to a
term. Thus:

full_td (adhoc id increment) myTerm

3 Inventory of programming errors

Let us consider again the simple scenario proposed in the introduction: incre-
ment all numbers in a term. For concreteness’ sake, we choose the terms to be
“trees” and the numbers to be “naturals”. Further, we assume a Peano-like
definition of the data type for naturals; the Peano-induced recursion will be
useful in showcasing a number of programming errors. Here are the data types
for naturals and trees:

data Nat = Zero | Succ Nat
data Tree a = Node {rootLabel :: a, subForest :: [Tree a]}

Here are simple tree samples (that we will use throughout the paper):

treel = Node { rootLabel = Zero, subForest = [[ } —— A tree of numbers
tree2 = Node { rootLabel = True, subForest = [ } —— A tree of Booleans
tree3 = Node { rootLabel = Succ Zero, subForest = [treel treel] } —— Two subtrees

The rewrite rule for incrementing naturals is represented as follows:

increment n = Just (Succ n)

3 The use of the constructor Just implies that increment denotes a successful computation.
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It remains to complete the rewrite rule into a traversal strategy that incre-
ments all naturals in an arbitrary term (such as in treel and tree3 — trees
labeled with naturals). Given the options full_td, full_bu, stop-td, once_bu, and
innermost, which traversal scheme is the correct one for the problem at hand?
An experienced strategist may quickly exclude one or two options. For in-
stance, it may be obvious that the scheme once_bu is not appropriate because
we want to increment all naturals, while once bu would only affect one natural.
The following paragraphs attempt different schemes and vary other details,
thereby showcasing various programming errors.

3.1  Unbounded recursion
Let us attempt a full top-down traversal. Alas, the following strategy diverges:

Haskell-prompt>  full_td (adhoc id increment) treel
. an infinite tree is printed ...

The intuitive reason for non-termination is that full_td applies the argument
strategy prior to descent, which may be problematic in case the argument
strategy increases the depth of the given term, which is exactly what increment
does. If full_td is not appropriate for the problem at hand, let us try another
scheme, be it innermost. Again, we witness non-termination:

Haskell-prompt> innermost (adhoc fail increment) treel
. no output ever is printed ...

The combinator innermost repeats the traversal trategy once_bu (adhoc fail increment)
until it fails, but it never does because the subtree position with the natural
always fits. Hence, treel is rewritten indefinitely.

3.2 Incorrect quantification
Let us try yet another scheme, full_bu:

Haskell-prompt>  full_bu (adhoc id increment) treel
Just (Node {rootLabel = Succ Zero, subForest = [[})

(That is, the root label was indeed incremented.) This particular test case
looks fine, but if we were testing the same strategy with trees that contain
non-zero naturals, then we would learn that the composed strategy replaces
each natural n by 2n+1 as opposed to n+1. To see this, one should notice that
a natural n is represented as a term of depth n, and the choice of the scheme
full_bu implies that increment applies to each “sub-natural”. The scheme full_bu
performs a full sweep over the input, which is not appropriate here because
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we do not want to descend into naturals.
More generally, strategies need to “quantify” terms of interest:

The type of the terms of interest.

The number of redexes to be affected (e.g., one or any number found).

The traversal order in which terms of interest are to be found.

The degree of recursive descent into subterms.

The programmer is supposed to express quantification (say, “to control traver-
sal”) by choosing the appropriate traversal scheme. The choice may go wrong,
when the variation points of the schemes are not understood, or accidentally
considered irrelevant for the problem at hand.

3.8 Incorrect polymorphic default
Finally, let us try stop_td. Alas, no incrementing seems to happen:

Haskell-prompt>  stop_td (adhoc id increment) treel
Just (Node {rootLabel = Zero, subForest = [[})

(That is, the result equals Just treel.) The problem is that the strategy should
continue to descend as long as no natural was hit, but the polymorphic default
id makes the strategy stop for any subterm that is not a natural. If we replace
id by fail, then we finally arrive at a proper solution for the original problem
statement:

Haskell-prompt> stop_td (adhoc fail increment) treel
Just (Node {rootLabel = Succ Zero, subForest = [[})

fail is the archetypal polymorphic default for certain schemes, while it is
patently inappropriate for others. To see this, suppose, we indeed want to
replace each natural n by 2n + 1, as we accidentally ended up doing in §3.2.
Back then, the use of full_bu with id as polymorphic default worked fine, and
indeed fail would not:

Haskell-prompt> full_bu (adhoc fail increment) treel
Nothing

3.4 Incorrect monomorphic default

To illustrate another programming error, let us consider a refined problem
statement. That is, let us increment even numbers only. In the terminology
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of rewriting, this statement seems to call for a conditional rewrite rule: *

—— Pseudo code for a conditional rewrite rule
increment_even : n —> Succ(n) where even(n)

In Haskell notation:

increment_even n = do guard (even n); increment n
Other than that, we keep using the traversal scheme that we found earlier:

Haskell-prompt> stop_td (adhoc fail increment_even) treel
Just (Node {rootLabel = Succ Zero, subForest = [[})

This particular test case looks fine, but if we were testing the same strategy
with trees that contain odd naturals, then we would learn that the composed
strategy in fact also increments those. The problem is that the failure of the
precondition for increment propagates to the traversal scheme which takes fail-
ure to mean “continue descent”. However, once we descend into odd naturals,
we will hit an even sub-natural in the next step, which is hence incremented.
So we need to make sure that recursion ceases for all naturals. Thus:
increment_even n

| even n = Just (Succ n)
| otherwise = Just n

8.5 Unreachable constituents

Consider the following patterns of strategy expressions:

* adhoc (adhoc q 81) So

* choice f1 fo

* sequ fi fo

In the first pattern, if the constituents s; and sq are of the same type (or more
generally, the type of sy can be specialized to the type of s1), then s; has no
chance of being applied. Likewise, in the second pattern, if f; never possibly
fails, then f> has no chance of being applied. Finally, in the third pattern, if f;
never possibly succeeds, which is likely to be the symptom of a programming
error by itself, then, additionally, f, has no chance of being applied.

Let us illustrate the first kind of programming error: multiple branches of
the same type in a given adhoc-composed type case. Let us consider a refined

4 Both the original increment function and the new “conditional” increment_even function
go arguably beyond the basic notion of a rewrite rule that requires a non-variable pattern
on the left-hand side. We could easily recover classic style by using two rewrite rules — one
for each form of a natural.
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problem statement such that incrementing of naturals is to be replaced by
(1) increment by one for all odd numbers, (ii) increment by two for all even
numbers. Here are the constituents that we need:

increase_odd n

| odd n = Just (Succ n)
| otherwise = Nothing

increase_even n
| even n = Just (Succ (Succ n))
| otherwise = Nothing

(We leave it as an exercise to the reader to argue whether or not the monomor-
phic default Nothing is appropriate for the given problem; cf. §3.4.) Intuitively,
we wish to chain together these type-specific cases so that they both are tried.
It is not uncommon that strategic programmers (say, in Strafunski) attempt
a composition like the following; alas no incrementing seems to happen:

Haskell-prompt> stop_td (adhoc (adhoc fail increase_even) increase_odd) treel
Just (Node {rootLabel = Zero, subForest = [[})

In the sample tree, the natural number, Zero, is even but the dominating type-
specific case applies to odd numbers; hence no incrementing happens. The
two rewrite rules must be composed differently:

Haskell-prompt> stop_td (adhoc fail (mchoice increase_even increase_odd)) treel
Just (Node {rootLabel = Succ (Succ Zero), subForest = [[})

Here, we rely on a rank-1 choice combinator:®

mchoice :: MonadPlus m => (x —> m x) —> (x => m x) —> x —> m x
mchoice f g x = mplus (f x) (g x)

3.6 Unreachable types

We face a more conditional, more subtle form of an unreachable (monomor-
phic) constituent when the constituent’s applicability depends on the fact
whether its type can be encountered at all — along the execution of the en-
compassing traversal strategy. Consider the following strategy application
that traverses the sample tree tree2 — a tree labeled with Boolean literals (as
opposed to naturals):

Haskell-prompt> stop_td (adhoc fail increment) tree2

5 mplus is addition on values of type m x for any MonadPlus m. In the case of the Maybe

monad, mplus is the operation that returns its left operands, if it is not Nothing, and it
returns its right operand, otherwise.
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Just (Node {rootLabel = True, subForest = [[})

(That is, the result equals Just tree2.) In fact, one can see that the strategy will
preserve any term of type Tree Boolean. Terms of interest, i.e., naturals, cannot
possibly be found below any root of type Tree Boolean. It seems plausible
that the function shown manifests a programming error: we either meant
to traverse a different term (i.e., one that contains naturals), or we meant to
invoke a different strategy (i.e., one that affects Boolean literals or polymorphic
trees).

3.7 Incorrect success/failure handling

The earlier problems with (polymorphic and monomorphic) defaults feed into
a more general kind of problem: misunderstood success/failure behavior of
traversal schemes and their strategy parameters. (We should generally note
that the various kinds of programming errors discussed are not fully orthogo-
nal.) Here is a simple example of misunderstanding.
main = do
(tree:: Tree Nat) <— readlLn

tree’ <— stop_td (adhoc fail increment) tree
putStrLn 71 or more naturals incremented successfully”

The program invokes a traversal strategy for incrementing naturals in a tree
that is constructed from input. The output statement, which follows the
traversal, documents the programmer’s (incorrect) thinking that the success-
ful completion of the stop_td scheme implies at least one application of the
argument strategy, and hence, tree # tree’.

In the above (contrived) example, misunderstood success/failure only leads
to incorrect text output. In general, programmers may compose traversal
programs in ways that their control pattern depends on assumptions as wrong
as the one above. Even when misunderstood success/failure behavior does not
affect correctness, it may instead lead to defensive and convoluted code. For
instance, in the following strategy expression, the application of try (defined in

§2) is superfluous because the traversal to which it is applied cannot possibly
fail.

try (full_td (adhoc id increment))

We should mention that part of the confusion regarding success/failure be-
havior stems from the overloaded interpretation of success/failure — to relate
to either strategy control or pre-/post-condition checking. A new language
design may favor to separate these aspects — possibly inspired by forms of
exception handling known from the general programming field [20].
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3.8 Incorrect plan

A strategic programming (sub-) problem is normally centered around some
problem-specific constituents (“rewrite rules”) that have to be organized in a
more or less complex strategy. Organizing this strategy involves the following
decisions:

(i) Which traversal scheme is to be used?
(i) What polymorphic and monomorphic defaults are to be used?

(iii) What is the level of composition?
e The polymorphic level of strategy arguments.
* The top-level at which possibly multiple traversals can be combined.
e The monomorphic level, i.e., before becoming polymorphic by means of
adhoc.

(iv) What is the composition operator? Is it adhoc, choice, or sequ?

We return to the example from § 3.5, which incremented odd and even numbers
differently. Let us assume that we have resolved decisions (i) and (ii) by
choosing the scheme stop_td and the default fail; we still have to consider a
number of options due to (iii) and (iv). The following list is not even complete
because it omits order variations for composition operators.

Note: mchoice and msequ are rank-1 variations on choice and sequ.®

. stop-td (adhoc (adhoc fail increase_even) increase_odd)
. stop-td (adhoc fail (mchoice increase_even increase_odd))

. stop-td (adhoc fail (msequ increase_even increase_odd))

. stop-td (sequ (adhoc fail increase_even) (adhoc fail increase_odd))

1

2

3

4. stop_td (choice (adhoc fail increase_even) (adhoc fail increase_odd))

)

6. choice (stop_td (adhoc fail increase_even)) (stop_td (adhoc fail increase_odd))
7

. sequ (stop_td (adhoc fail increase_even)) (stop-td (adhoc fail increase_odd))

Option (1.) had been dismissed already because the two branches involved are
of the same type. Option (2.) had been approved as a correct solution. Option
(4.) turns out to be equivalent to option (2.). (This equivalence is implied by
basic properties of defaults and composition operators.) The strategies of the
other options do not implement the intended operation, even though it may
be difficult to understand exactly how they differ.

6 We had defined mchoice earlier; msequ is function composition lifted to Maybe values.
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4 Refinements of traversal programming

It seems plausible to ask whether we can attack some or all of the identified
kinds of programming errors by devising refinements of traversal program-
ming. For brevity, we do not discuss some of the more pragmatic approaches
such as debugging. Instead we want to focus on techniques that give (more)
“correctness by design or by static checks”. The following discussion comes
without any claim of completeness. Also, the reported experiments are ren-
dered (mostly) in a Haskell-biased manner. However, we do tend to summarize
each experiment by clarifying the language-independent refinement idea be-
hind the experiment.

4.1 Less generic strategies

The prevention of some of the aforementioned programming errors may ben-
efit from variations on the strategy library that are “less problematic”. One
method is to reduce the genericity of the traversal schemes to rank 1, i.e., the
problem-specific arguments become monomorphic. The following definitions
take a monomorphic argument s, which is then generalized within the scheme
by means of the appropriate polymorphic default, id or fail:

full_td s = sequ (adhoc id s) (all (full_td s))

full_bu s = sequ (all (full_bu s)) (adhoc id s)

stop_td s = choice (adhoc fail s) (all (stop-td s))

once_bu s = choice (one (once_bu s)) (adhoc fail s)
innermost s = repeat (once_bu s)

The rank-1 schemes reduce programming errors as follows. Most obviously,
polymorphic defaults are correct by design because they are hard-wired into
the schemes. Also, the adhoc idiom has no purpose anymore, and hence, no
problem with overlapping type-specific cases occurs. No other programming
errors are directly addressed, but one can say that “incorrect plans” are less
likely simply because there are fewer feasible options for plans.

However, there are scenarios that call for polymorphic, problem-specific
constituents of traversals; cf. [22,13,14] for some concrete samples. Hence,
the original (generic) schemes must be retained. Some cases of strategies with
multiple type cases can be decomposed into multiple traversals, but even when
it is possible, it may still be burdensome and negatively affect performance.

An improved, strategic programming language could assume an implicit co-
ercion scheme such that the appropriate polymorphic default is applied when-
ever a single monomorphic case is passed to the scheme. In this manner, the
API surface is not increased, and the omission of (potentially ill-specified)
polymorphic defaults is encouraged.
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4.2 Fallible and infallible strategies

Let us investigate another variation on (part of) the strategy library that is
“less problematic”. The proposed method is to provide more guidance regard-
ing the success/failure behavior of traversal schemes and their arguments. Let
us recall the types of the sample schemes:

full_td, ..., innermost :: Strategy —> Strategy
where type Strategy = forall x. Data x => x —> Maybe x

In fact, this is a specialized type that we had chosen for simplicity of the initial
presentation. In general, the type is parametrized by a monad:

full_td, ..., innermost :: GenericM m —> GenericM

where type GenericM = forall x. Data x => x —> m x, and m is a monad.

The monad parameter may be used for different purposes, in particular for
modeling success and failure based on the Maybe monad or any other monad
with a “zero” (i.e., failure). The general types of the schemes hide some
intentions regarding the common success/failure behavior of arguments and
composed strategies. In particular, it would be valuable for the programmer
to know when success is guaranteed.

We say that a strategy is infallible if it does not possibly fail, i.e., if it will
succeed (or diverge). It is relatively easy to confirm the following claims about
infallibility. Given is a strategy s. If s is infallible, then full.td s and full bu s
are infallible. No matter the argument s, the strategies stop_td s and innermost
s are infallible. No infallibility claim about once_bu can be stated; this scheme
is intrinsically fallible.

We can easily provide a (non-classic) proof of the above claims, where we
use these claims as new types of the traversal schemes. That is, a type is made
infallible by stripping off the monad wrapper from the type. The definitions
of the infallible schemes remain unchanged, except that some of the basic
strategy combinators also need to be trivially complemented by variations
with infallible types.

—— Generic transformations
type GenericT = forall a . Dataa => a —> a

—— Generic monadic transformations
type GenericM m = forall a . Dataa =>a —> m a

full_td :: GenericT —> GenericT

full_bu :: GenericT —> GenericT

stop_td :: GenericM Maybe —> GenericT
innermost :: GenericM Maybe —> GenericT

The idea is now that a programmer favors the infallible schemes, whenever
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possible, and falls back to the original (fallible) ones, whenever necessary.
Also, if the type of an infallible strategy combinator points out a potentially
failing argument, then this status signals to the programmer that failure of
the argument strategy is indeed usefully anticipated by the combinator.

An improved, strategic programming language may leverage (in)fallibility
rules systematically: (i) it may infer precise types for strategies (as far as
(in)fallibility is concerned); (ii) it may allow for programmer annotations that
capture expectations with regard to (in)fallibility and verify those; (iii) it may
emit warnings when supposedly fallible arguments are infallible.

4.8  Checked adhoc chains

The problem of unreachable cases in an adhoc chain can be avoided by a
type check that specifically establishes that all cases are distinct in terms of
the covered types. In addition, such a regime allows us to factor out the
polymorphic default to reside in the traversal scheme, thereby eliminating
another source of error.

In the following, we use an advanced Haskell library, HList [7], to describe
the constituents of a traversal scheme as a family of monomorphic cases, in
fact, as an appropriately constrained heterogeneous list of functions. Consider
the pattern that we used so far: adhoc (adhoc g $1) so. Two type-specific cases,
s1 and s9, are involved, which are used to point-wisely override the generic
default g. The type-specific cases can be represented as the heterogeneous list
HCons sy (HCons sy HNil).” Such a list may be converted to a plain adhoc chain
by a function, familyM, which takes a polymorphic default as an additional
argument. This function also checks that type-specific cases do not overlap.
Here are the schemes that are parametrized in families of cases; the new
schemes leverage the original schemes. ®

full_td s = StrategyLib.Schemes.full_td (familyM id s)
full_bu s = StrategyLib.Schemes.full_bu (familyM id s)
stop_td s = StrategyLib.Schemes.stop_td (familyM fail s)

once_bu s = StrategylLib.Schemes.once_bu (familyM fail s)
innermost s = StrategyLib.Schemes.innermost (familyM fail s)

The function familyM is defined by induction on the heterogeneous list struc-
ture:
class (Monad m, HTypelndexed f) => FamilyM f m

where
familyM :: GenericM m —> f —> GenericM m

7 The empty heterogeneous list is represented as HNil, whereas the non-empty heteroge-
neous list with head h and tail ¢ is represented as HCons h t.
8 We refer to the original schemes of § 2 by using the prefix Strategylib.Schemes.....
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instance Monad m => FamilyM HNil m
where
familyM g _ =g

instance (Monad m, FamilyM t m, Typeable x, HOccursNot (x —> m x) t)
=> FamilyM (HCons (x —> m x) t) m
where
familyM g (HCons h t) = adhoc (familyM g t) h

Most notably, the constraint HTypelndexed (provided by the HList library) es-
tablishes that the cases are distinct in terms of the covered type. As a proof
obligation, the instance for non-empty lists (cf. HCons ...) must establish that
the head’s type does not occur again in the tail of the family; cf. the constraint
HOccursNot ... (provided by the HList library).

An improved, strategic programming language may indeed assume a suit-
able notion of “type case”, subject to the kind of checking and mapping to
regular strategies, as described above. Essentially, the presented idea gener-
alizes the simple idea of rank-1 schemes; cf. §4.1.

4.4 Reachable type constraints

Let us consider again the particularly subtle form of unreachable (monomor-
phic) cases, where they turn out to be unreachable just because their types
cannot be expected “below” the possible root types. A basic remedy is to
constrain (at a type level) the applicability of a given traversal strategy such
that the type of the argument cases must be in a “reachability” relationship
with the type of the root. Inspired by [10], we can illustrate this idea (with-
out loss of generality) for rank-1 schemes. Consider the following constrained
variation on the full_td scheme:

full_td :: (Monad m, Typeable x, Data y, HBelowEq y x) => (x —=> mx) —>y —> my
full_td s = StrategyLib.Schemes.full_td (adhoc id s)

All the constraints in the type are readily implied by the original version
(modulo skolemization and simplification), except HBelowEq, which models the
relationship between types such that HBelowEq x y holds whenever x is the type
y, or the type of an immediate or non-immediate subterm.

class HBelowEq x y

instance HBelowEq x x —— reflexivity
—— Other instances are derived from data types of interest.

For instance, the data type for polymorphic trees and the leveraged data
type for polymorphic lists imply the following contributions to the relation
HBelowEg:
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instance HBelowEq a [a]
instance HBelowEq a (Tree a)
instance HBelowEq [Tree a] (Tree a)

Again, the Haskell experiment shown merely serves for illustration. In an im-
proved, strategic programming language, all traversal schemes may be anno-
tated by constraints for reachability, or these constraints may even be inferred
automatically. All reachability constraints would be statically checked.

5 Static strategy analysis

All refinements of the previous section required variations of familiar strategy
combinators and traversal schemes. In particular, we used less parametric and
more type-constrained variations. In contrast, we will now demonstrate the
potential utility of strategy analysis in performing static checks on otherwise
classic traversal programs. (There could be additional programmer annota-
tions, say “contracts”, to be observed by a static analysis. We do not further
discuss this elaboration here.)

It should be clear that an analysis is likely to be useful in determining the
status of a strategy (i) to involve constituents that have no chance of being
applied; (ii) to always fail (or diverge); (iii) to always succeed without any
rewriting done (or diverge); (iv) to definitely terminate.

In the following, we develop a simple analysis for the basic property of an
infallible strategy. We denote this analysis as “cf — can fail”. We model the
analysis in Haskell. The following data type models strategy expressions for
transformations, i.e., type-preserving strategies; cf. “TP”:

data TP x = Id | Fail | Seq (TP x) (TP x) | Choice (TP x) (TP x)

| All (TP x) | One (TP x)
| Rec (x —> TP x) | Const x

Clearly, the data type covers the known strategy combinators; cf. Id, Fail, etc.
The type parameter of the data type caters for analysis defined by fixpoint
computation. The constructors Rec and Const model fixpoint combinator and
recursive reference, respectively. We can model familiar traversal schemes as
“TP” terms:

full_td s = Rec (\x —> Seq s (All (Const x)))

once_bu s = Rec (\x —> Choice (One (Const x)) s)
stop_td s = Rec (\x —> Choice s (All (Const x)))

The analysis “can fail” is described as follows:
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cf Id = False cf (All s) = cf's

cf Fail = True cf (One s) = True

cf (Seqss’) =cfs]|| cfs’ cf (Const x) = x

cf (Choice s s’) = cf s && cf s’ cf (Rec f) = cf (f False)

The equation for Rec models a degenerated fixpoint calculation. That is, cal-
culation starts from False (denoting “will succeed or diverge”), and just one
iteration suffices because the complete partial order only contains two ele-
ments.

The following table presents some analysis results such that the “can fail”
property of the traversal scheme is computed from the “can fail” property of
the argument strategy. (We reconfirm the infallibility claims from §4.2.) For
instance, consider the last row of the table: no matter whether the argument
of stop_td can fail or not, the traversal will succeed (or diverge).

Scheme s | ¢f(s (Const False)) | ¢f(s (Const True))
full_td False True
once_bu False True
stop_td False False

Clearly, more advanced analyses (such as a termination analysis) require more
interesting abstract domains than Bool. Also, some analyses (such as a reacha-
bility analysis) need to relate to meta-data (signatures) of the traversed data.

6 Related work

Mentions of simple “laws” for strategies as well as strategy properties can be
found scattered over the strategic programming literature [22,6,24,21,9,3]. The
present paper provides the first substantial attempt of a systematic discussion
of programming errors and their relationship to strategy properties.

The technique of §4.1 to use less generic traversal schemes has also been
explored in [16] in the context of devising simpler types for traversal pro-
grams and more efficient implementations. The technique of § 4.4 to statically
check for reachable types is inspired by adaptive programming [18,15,12] that
subjects its traversal specifications to a similar check.

Constrained forms of traversal programming may be less prone to the er-
rors that we discussed. For instance, one can limit the programmability of
traversal (e.g., in ASF+SDF with traversal functions [21]), or impose more
structure on traversal programs (e.g., in adaptive programming, where traver-
sal specifications and computations or actions are separated). It is our goal
to admit full programmability, but ban programming errors by static analysis
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or type checking.

Automated program calculations based on algebraic laws were devised
for specializing (optimizing) strategic programs [3|. For instance, there are
laws whose systematic application reveals the “uselessness” of certain sub-
term traversals in a complete traversal. (Here, it is assumed that the types
of type-specific cases are known as well as meta-data (data-type declarations)
for the traversed data.) It should be possible to use similar calculations to set
up strategy analyses.

Some of the discussed strategy properties and the corresponding analyses
naturally call for a more general treatment. For instance, dead-code elimina-
tion, strictness analysis [17] or termination checking [1,2] are known procedures
for functional programs, perhaps even generic functional programs. We hope
to exploit this body of knowledge in the future. We assume that there is endur-
ing value in studying properties right at the level of strategies because domain-
specific languages are generally meant to provide domain-specific checks and
optimizations, while feedback should relate to domain concepts, too.

7 Concluding remarks

The ultimate motivation for the presented work is to provide input for the next
generation of strategic programming. Here we assume that domain-specific
support (as in the case of ASF+SDF and Stratego) is mandatory. However, we
also feel constrained by the relatively small market for strategic programming
languages. Hence, we hope to operate on the grounds of a general purpose
programming-language framework — one that must be sufficiently extensible
to provide designated support for the traversal domain.

We seek a form of traversal programming such that programs are subject
to well-defined properties that support a discipline of traversal programming.
Some properties may be implicitly assumed (e.g., termination); others may
need to be explicitly stated by the programmer (e.g., expectations regarding
the success/failure behavior). The validity of desirable properties and the
absence of undesirable properties have to be checked statically. A facility
for explicitly stating properties may be viewed as a means to adopt “design
by contract” to traversal programming. Here, we are inspired, for example,
by functional programming contracts [4,5]. The provision of strategy-biased
and statically checked contracts would require a form of dependent types, an
extensible type system, or, in fact, an extensible language framework that
admits pluggable static analysis.

A related challenge for the next generation of strategic programming is
performance. (In fact, disappointing performance may count as another kind
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of programming error.) We hope to eventually gather enough analytical power
and strategy properties so that the declarative style of strategic programming
can be mapped to highly optimized code. Here, we are inspired by previous
work on fusion-like techniques for traversal strategies [6], and calculational
techniques for the transformation of traversal strategies [3].
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