University of

"1l Kent Academic Repository

King, Andy and Soper, Paul (1994) Depth-k Sharing and Freeness. In: Van
Hentenryck, Pascal, ed. Proceedings of the Eleventh International Conference

on Logic Programming. Logic Programming . MIT Press, Cambridge, Massachusetts
USA, pp. 553-568. ISBN 0-262-72022-1.

Downloaded from
https://kar.kent.ac.uk/21207/ The University of Kent's Academic Repository KAR

The version of record is available from
https://dl.acm.org/citation.cfm?id=189935

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21207/
https://dl.acm.org/citation.cfm?id=189935
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Depth-k Sharing and Freeness

Andy King
Computing Laboratory,
University of Kent, Canterbury, CT2 7NF, UK.

Paul Soper
Department of Electronics and Computer Science,
University of Southampton, Southampton, SO17 1BJ, UK.

Abstract

Analyses for variable sharing and freeness are important both in the auto-
matic parallelisation and in the optimisation of sequential logic programs. In
this paper, a new analysis is described which can infer sharing and freeness
information to an unusually high degree of accuracy. By encoding structural
properties of substitutions in a sharing group fashion, a powerful depth-k
sharing and freeness analysis is synthesised which exploits the synergy be-
tween tracing sharing information and tracking term structure. The analysis
propagates groundness with the accuracy of sharing groups and yet can pre-
cisely infer sharing and freeness. Correctness is formally proven.

1 Introduction

Abstract interpretation for possible sharing is an important topic of logic
programming. Sharing (or aliasing) analysis conventionally infers which
program variables are definitely grounded and which variables can never
be bound to terms containing a common variable. Applications of sharing
analysis are numerous: the sound removal of the occur-check [15]; special-
isation of unification [17]; and the detection [12] and efficient exploitation
[9, 13] of independent and-parallelism [8].

This paper is concerned with a semantic basis for sharing and freeness
analysis, and in particular, the justification of a precise abstract unification
algorithm. The abstract unification algorithm finitely traces unification by
representing substitutions with sharing and freeness abstractions. The ac-
curacy of the analysis depends, in part, on the substitution properties that
the sharing abstractions capture. For instance, a knowledge of freeness can
improve sharing (and vice versa) [12]. Freeness [3, 12, 16] relates to the
structure of a term or binding. Freeness information distinguishes between
a free variable, a variable which is definitely not bound to a non-variable
term; and a non-free variable, a variable which is possibly bound to a non-
variable term. Without exploiting freeness (or linearity [5, 15]), analyses
have to assume that aliasing is transitive. Freeness information, in addition,
is essential in the detection of non-strict and-parallelism [8].

Conventional sharing and freeness analyses [2, 3, 6, 7, 12, 16] typically
adopt a coarse-grained approach to analysis and do not always adequately
reason about the fine-grained sharing and freeness interactions between sub-
terms. In some circumstances, however, accuracy can pivot on the ability
of an analysis to reason about the sharing and freeness of sub-terms. Put
another way, for the required precision, it may be necessary to trace sharing
and freeness to depth-k [14].

This paper presents a new approach to sharing and freeness analysis that
is capable of reasoning about sharing and freeness to depth-k. The analysis
explains how structural properties of substitutions can be represented in a
sharing group format [9, 13]. In effect, this is a two-fold win: first, groundness
and sharing is improved; second, freeness can be refined. The analysis has
also been proven correct. This is important because subtle errors and omis-
sions have been reported [6] in some of the more recent proposals for freeness
analysis [3, 12, 16]. Thus formal proof is useful, indeed necessary, to instill
confidence. The exposition is structured as follows. Section 2 describes the
notation and preliminary definitions which will be used throughout. The
depth-k analysis is constructed in two parts to ease its development and
justification. Section 3 develops a depth-oco framework for sharing and (pos-
sible) freeness analysis. The framework explains how to abstract structural
properties of substitutions with sharing groups. The framework, alas, can
lead to unterminating computations. Section 4 is thus concerned with finite-
ness, detailing how to collapse the depth-oco framework into a tractable and
practical depth-k analysis. To trace definite freeness, possible groundness
must additionally be traced. Section 5 briefly comments on this refinement.
Finally, sections 6 and 7 discuss related work, future work and present the
conclusions. For reasons of brevity and continuity, the formal proofs are not
included in the paper, but can be found in [10].

2 Notation and preliminaries

To introduce the analysis some notation and preliminary definitions are
required. The reader is assumed to be familiar with the standard con-
structs used in logic programming [11] such as a universe of all variables
(u,v €)Uvar; the set of terms (¢ €)Term formed from the set of functors
(f,9,h €) Func (of the first-order language underlying the program); and
the set of program atoms Atom. Let Pvar denote a finite set of program
variables — the variables that are in the text of the program; and let var(o)
denote the set of variables in a syntactic object o.

2.1 Substitutions

A substitution ¢ is a total mapping ¢ : Uvar — Term such that its
domain dom(¢) = {u € Uvar|¢(u) # u} is finite. The application of a
substitution ¢ to a variable u is denoted by ¢(u). Thus the codomain is given

by cod(¢) = Uycdom(g)var(¢(u)). A substitution ¢ is sometimes represented
as a finite set of variable and term pairs {u — ¢(u)|u € dom(¢)}. The
identity mapping on Uwvar is called the empty substitution and is denoted
by €. Substitutions, sets of substitutions, and the set of all substitutions are
denoted by lower-case Greek letters, upper-case Greek letters, and Subst.
Substitutions are extended in the usual way from variables to func-
tions, from functions to terms, and from terms to atoms. The restric-
tion of a substitution ¢ to a set of variables U C Uwar and the compo-
sition of two substitutions ¢ and ¢ are respectively defined by: ¢ ~ U =
{u— ¢(u)|u € dom(¢p)NU} and (¢ o ¢)(u) = ¢(¢(u)). The preorder Subst
(), ¢ is more general than ¢, is defined by: ¢ C ¢ if and only if there
exists a substitution ¥ € Subst such that ¢ = 1) o ¢. The preorder induces
an equivalence relation ~ on Subst, that is: ¢ ~ ¢ if and only if ¢ C ¢ and
@ C ¢. The equivalence relation ~ identifies substitutions with consistently
renamed codomain variables which, in turn, factors Subst to give the poset

Subst/~ (C) defined by: [¢]~ C [¢]~ if and only if ¢ C .

2.2 Equations and most general unifiers

An equation is an equality constraint of the form a = b where a and b are
terms or atoms. Let (E €) Eqn denote the set of finite sets of equations.
The equation set {e} U E, following [5], is abbreviated by e: E. The set of
most general unifiers of E, mgu(FE), is defined operationally in terms of a
predicate mgu. The predicate mgu(E, ¢) is true if ¢ is a most general unifier
of E.

Definition 1 (mgu) The set of most general unifiers mgu(E) € p(Subst)
is defined by: mgu(E) = {¢|mgu(E,)} where

mgu(), €)
mgu(v=v:E, ()1
mgu(t=v:E, () ifmgu
mgu(v=t:E, on)ifmgu(n(E),()Avvar(t)An={v — t}
mgu(f(ty...ta)=f(t1...1,): B, () ti=ti}ie: B, Q)

By induction it follows that dom(¢$) N cod(¢) = 0 if ¢ € mgu(E), or put
another way, that the most general unifiers are idempotent [4].

The semantics of a logic program is formulated in terms of a single uni fy
operator. To construct unify, and specifically to rename apart program
variables, an invertible substitution [4], T, is introduced. It is convenient to
let Rvar C Uwvar denote a set of renaming variables that cannot occur in
programs, that is Pvar N Rvar = (), and suppose that Y : Pvar — Rvar.

ifmgu

Definition 2 (unify) The partial mapping unify : Atom x Subst/~ X
Atomx Subst/~ — Subst/ = is defined by: unify(a,[d]~, b, [¢¥]~) = [(god) ~
Puvar]x where p € mgu({¢(a) = T ((b))})-

2.3 Sub-terms and paths

To reason about sharing and freeness to depth-k it is necessary to introduce
some notation to identify the sub-terms of a term. Finite sequences of inte-
gers, paths, are used to distinguish the different occurrences of a sub-term
within a term. Formally, the set of paths, (p,q,r € P C) Path, is defined to
be the least set such that: A € Path and n-p € Path if p € Path and n € N
= {1,2,...} (for n less or equal to the maximum arity of Func). Each sub-
term, and therefore each variable occurrence, can be identified by a path,
which navigates the way from the root of the term, to the sub-term. For
instance, the paths 2-1-A, 1-A, A respectively identify the v, u and f(u, g(v))
sub-terms of f(u,g(v)).

The set of valid paths for a term ¢ is denoted by path(t) where path(v) =
{A} if v € Uvar; otherwise path(f(t1...tn)) = {A\} U{i-pi|pi € path(t;) A
1 <4 < n}. It is convenient to regard - as concatenation and thus (1-
2-A) - (3-A) = 1-2-3-\. Formally the sub-term of ¢ at p is denoted
by termy(t), that is, termy(t) = t and term;,(f(ti...tn)) = termy(t;).
Hence, terma.q.a(f(u,g(v))) = v, whereas termy.\(f(u,g(v))) = u, and
termy(f(u,g(v))) = f(u,g(v)). The mapping termy(t) is partial since it
is only defined for p € path(t).

3 Depth-oco framework for sharing

Abstract interpretation can provide focus for developing an analysis by
emphasising the importance of abstracting data and illuminating the re-
lationship between data, operations, and their abstract counterparts. In
section 3.1, an abstraction for substitutions, the data, is proposed which rep-
resents structural properties of substitutions to arbitrary depth. Section 3.2,
on the other hand, is devoted to defining a procedure for abstracting unify
to arbitrary depth, denoted depth-oco.

3.1 Abstracting substitutions to depth-oco

An abstract substitution is structured as a set of sharing groups where a
sharing group is a (possibly empty) set of program variable and path pairs.

Definition 3 (Occg,,,) The set of sharing groups, Occg,,, is defined by:
Occg,,. = p(Svar x Path).

Swvar is a finite set of program variables. The intuition is that a sharing group
records which program variables are bound to terms that share a variable.
Additionally, a sharing group expresses the positions of the shared variable,
that is, where the shared variable occurs in the terms to which the program
variables are bound. Swvar usually corresponds to Pvar. It is necessary to
parameterise Occ, however, so that abstract substitutions are well-defined

under renaming by Y. The precise notion of abstraction is first defined for
a substitution via type and then lifted to sets of substitutions.

Definition 4 (occ and type) The mappings occ : Uvar x Subst — Occ, .
and type : Subst/~ — p(Occy,,,) are defined by: occ(u,) = {(v,p) |u =
termp(p(v)) Av € Svar} and type([p]~) = {occ(u,) |u € Uvar}.

The mapping type is well-defined since type([¢]~) = type([plx) if ¢ ~ .
The mapping occ is defined in terms of Svar because, for the purposes of
analysis, the only significant bindings are those which relate to the program
variables (and renamed program variables).

Example 1 Suppose Svar ={v,w,z,y,z} and ¢ ={v— f, w+— u, z +— u,
y—u, z— g(u,u,u)}. The variables that occur through Svar are u and
u'. The variable u occurs in w, T and z: in w at position \; in x at position
A; and in z at position 1-\. Thus u defines the sharing group occ(u,p) =
{{w,), (z, A}, (z,1-\)}. Similarly, the variable v’ yields the sharing group
oce(u', @) = {{y, \), (2,2-A),(2,3-\)}. Note that occ(v,¢) = ... = occ(z,)
=0, and more generally, | € type([p|~) for arbitrary ¢ since the codomain
of a substitution is always finite. Thus the abstraction for ¢ is given by

type([¢l~) = {occ(u, @), occ(u', p), 0}.

The abstraction type is analogous to the abstraction 4 used in [13] and
implicit in [9]. Both abstractions are formulated in terms of sharing groups.
The crucial difference is that type, as well as expressing the presence of a
shared variable, additionally represents the position of the shared variable
in the terms to which the program variables are bound.

The abstract domain, the set of abstract substitutions, is defined below
using the convention that the abstraction of a concrete object or operation is
distinguished with a * from the corresponding concrete object or operation.

Definition 5 (Substy,) The set of abstract substitutions, Subst:, , is de-
fined by: Subst:, = p(Occg,,,)-

As before [9, 13], Subst, (C) is a complete lattice with set union as the lub.
Unlike before, however, the finiteness of Svar is not enough to ensure the
finiteness of Substy . The type abstraction extends to sets of substitutions
as follows.

Definition 6 (aiype and 7yype) The — abstraction and concretisation
mappings Qiype : ©(Subst/=) — Substy = and Yiype : Substy =~ —
©(Subst/~) are defined by: apype(P) = Uiy catype([dla) and Viype(¢*) =
{[¢]~ € Subst/~ | type([¢]~) C ¢*}.

The abstraction of a set of substitutions ® merely combines all the sharing
information from all the substitutions in ®. The mappings aype and Yiype

are monotonic. Note that ayype() = 0 whereas ayype(®) = {0} if @ is a set
of substitutions which all ground Svar. The bottom element of Substy
(C) is meaningful and, in fact, represents failure.

Abstract substitutions inherit their simple lub and their ability to propa-
gate groundness because, like in [9, 13], the domain is formulated in terms of
sharing groups. Examples 2 and 3 illustrate the lub and the expressiveness
which comes from encoding structural properties of substitutions.

Example 2 Suppose p = {u — f(z,9(z))}, v = {u — f(z,9(z)), v —
f(w,y)} and Svar = {u, v, w, z, y}. Thentype([pu]~) = p* and type([v]x) =
v* where p* = {{<07A>}7 {<w7)‘>}7 {<U’71')‘>7 <u72'1')‘>} (:E,)\>}, {<y7)‘>}} (D}
and v+ = {{<U>1')‘>’ <wv)‘>}7 {<u71')‘>7 <u72'1')‘>7 <wv)‘>}’ {<Ua2'>‘>7 <ya)‘>};
0}. Observe that [pl~, [V]x € Yeype(p* Urr).

Example 3 Returning to ¢ of example 1, let ¢* = type([p]~) = {{{w, \),
(x,A), (z,1-A)}, {(y,), (2,2-N), (2,3-A\)}, 0}. ¢* can be interpreted as
follows. The variables of Svar which ¢ grounds, do not appear in ¢*; and
the variables of Svar which are independent (unaliased), never occur in the
same sharing group of ¢*. Thus ¢* represents that v is ground and that
x and y are independent. Additionally, ¢* captures the fact that grounding
either x or w grounds the other. Also ¢* indicates that w, x and y are
possibly free whereas z is non-free [12]. It also shows that grounding w, x or
the variable at the first argument of the term ¢(z), grounds the others.

3.2 Abstracting unification to depth-oco

The abstract uni fy operator, uni fy*, is defined by mimicking the unification
algorithm, and just as uni fy is defined in terms of mgu, uni fy* is formulated
in terms of an abstraction of mgu, mge. The unification algorithm takes as
input, F, a set of unification equations. F is recursively transformed to a
set of simplified equations which assume the form v = ¢. These simplified
equations are then solved. The abstract equation solver mge adopts a similar
strategy, but relegates the solution of the simplified equations to solve. (To
be precise, mge abstracts a slight generalisation of mgu. Specifically, if
¢ € mgu(¢(E)) and mge(E, type([¢]x), 1) then [p o ¢|x € Yiype(¥*). The
generalisation is convenient because it spares the need to define an extra
(composition) operator for abstract substitutions.)

Definition 7 (mge) The relation mge : Eqn x Substy x Subst: s
defined by:

mge(v=v:E,$*,¢*) if mge(E, ¢*,*)
mge(v=t:E, ¢*,¢*) if mge(E, solve(v,t, p*),1h*) A
v var(t)
mge(t=v:E, ¢*,¢*) if mge(v=t: E, ¢*,1*)
mge(f(ti...ta)=f(t1 ... t5) B, ¢ ¢*) if mge({ti=t;}7y : E, ¢, 9*)

To define solve, and thereby mge, two auxiliary operators are required. The
first, denoted rel(t, ¢*), calculates the sharing groups of ¢* which are relevant
to the term ¢, that is, those sharing groups of ¢* which share variables with ¢.
This is analogous to the rel operator of [9]. The second operator, scale(o, P),
denotes the sharing group formed by binding a variable to a non-ground
term. The intuition behind scale is that if o (€ Occ,,,,) is the sharing
group for a certain shared variable, and the variable is subsequently bound
to a non-ground term containing a variable at p, then the sharing group
for the new variable includes the sharing group scale(o,{p}). Definition 8
formally defines rel and scale and examples 4 and 5 demonstrate their use.

Definition 8 (rel and scale) The mappings rel : Term x Substy = —
Substz and scale : Occg,,, X p(Path) — Occg,,. are defined by: rel(t, ¢*)
= {o € ¢* |var(o) Nwvar(t) # 0} and scale(o, P) = {(u,pu-pp)|{u,pu) €
o A pp € P}.

Example 4 Adopting p* and v* from example 2 and denoting ¢* = p*Uv*,
rel(u, ¢*) = {{<u7 1)‘>7 <U,2'1')\>, <£B,/\>}} and TGZ(U,QS*) = {{<U7)‘>}7 { v,
1>‘>7 <w7 >‘>}7 {<U7 2A>7 <y7 A>}}

Example 5 Using ¢ of example 1, if ¢ = {u — h(u')} then pop = {v — f,
w = h(u'), z = h(u), y—u, 2z g(h(uw),u,u')} and therefore type([p o
¢]N) = {Occ(ulv g00¢),®} = {{<wv 1 ')‘>7 <w7 1 'A>7 <y7)‘>7 <Z7 1-1 'A>7 (Z, 2')‘>;
(2,3-\)}, 0}. Note that scale(occ(u, d),{1-A}) = {{w,1-), (z,1-]N),
(z,1-1-X)} which corresponds to the subset of occ(u', o ¢) induced by ¢
binding u to h(u').

The nub of the equation solver is solve. In essence, solve(v,t,$*) solves
the syntactic equation v = t in the presence of the abstract substitution
¢*, returning the composition of the unifier with ¢*. solve is formulated in
terms of the fixed-point of close. The recursive definition of close generalises
to the closure under union operation of [9, 13] and models the propagation
of the aliases which arise during the solution of v = ¢. The full definition
of solve is given below in definition 9. In definition 9, the notation S A S’
denotes (S'\ S")U(S"\ S), the symmetric set difference of two sets S and S'.

Definition 9 (solve, close and extend) The mappings solve : Svar X
Term x Substy, —— Subst: close: SvarxTermxSubsty —— Substr |,
extend : Svar X Term x Occ x Occ — Substy, are defined by:

Svar Swvar

solve(v,t,¢*) = Lfp(close(v,t,¢")) \ (rel(v, ¢*) Arel(t, ¢*))
close® (v, t,) = ¢~

; bst t ~ *
closet (v, t, ¢) = U o | ¥ € SUbSE N 0,00 € type([gl<) N pmA }

oyt € extend(v,t, 0y, 0)
where p* = close' (v, t, ¢*)

extend(v,t,0,,01) =

{scale(ov, S)U o,

<Uapv>€0v ASGS@(Ut,pQEOt/\ U
ve =term,(t) A py-s=r-p

{Ov U scale(oy, S) (e, pr) € 00 N e = term, () A }

s€S & (v,py) €0y APy =T"-p18

Example 6 Consider again ¢* = p* Uv* of example 4 and specifically the
abstract substitution produced by solving the equation v = u in the context of
¢*. For brevity let ¢* = {o1, ..., 0, 0} where o1 = {{v,\)}; 02 = {{w, \)};
o3 = {(u,1-A), (u,2-1-A), (z,\)}; oa = {{y; \)}; 05 = {(v,1-A), (w,\)};
and og = {(v,2-\), (y,\)}. The close operator tracks the substitutions that
can arise during the computation of a unifier in the unification algorithm.
Sharing groups are iteratively combined until no more sharing groups can be
generated and the fized-point is reached.

close(v,u,¢*) = ¢* U{or,08,09} where
o7 = scale(o1,{1-A\,2-1-A}) Uos
={(u, 1-\), (u,2-1-A), (v, 1-A), (v,2-1-A), (x, A) }
og =03 U 05
={(u,1-N\), (u,2-1-X), (v, 1-X), (w, A), (x, \)}
09 = scale(og, {1-A}) U 03
={(u,1-\), (u,2-1-\), (v,2-1-X), (y, 1-A\), (z, \) }

close(v,u, ¢* U{o7,08,09}) = ¢* U{o7,0s, 09,010} where

010 = scale(og,{1-A}) Uog = o5 U og
={(u,1-\), (u,2-1-X), (v, 1-A), (v,2-1-\), (w, A), (z, A), (y, 1-A) }

close(v,u,¢* U{or,08,09,010}) = ¢* U{or, 08,009,010}

Each iteration of close combines a sharing group for a variable through v with
a sharing group for a variable through u. In the case of o7, for instance, the
sharing groups o1 and o3 dictate the inclusion of the sharing group o7 =
{{u, 1-A\), (u,2-1-A), (v, 1-A), (v,2-1-\), (x,\)}. This is because on unification
of v and u, x will occur through v at positions 1- X and 2-1- A.

Note that sharing group o19 can be formed from either o5 and o9 or og
and og; and og and og, in turn, are respectively derived from oz and os,
and o3 and og. The fact that 019 can be derived in two ways from o3, o5
and og is a consequence of the non-determinism implicit in the unification
algorithm. Note also that o1 (and o3) are barred from being combined with
o7 by virtue of the type check incorporated in close. In general, this check
improves both the precision and analysis time by reducing the number of
sharing groups that have to be combined. The underlying observation is that
only consistent sharing groups need to be considered, that is, sharing groups
that can share a common substitution. In the case of 01 and o7, for instance,
no substitution can leave v free and bind v to a non-variable term. Thus o1

and o7 must characterise different substitutions. In fact, in this case, 01 and
o7 correspond to substitutions which arise at different stages of the unification
algorithm. Hence o1 and o7 never need to be combined.

From example 4, rel(v, ¢*) Arel(u,¢*) = {o1, 03, 05, 0}, and therefore
it finally follows that solve(v,u,$*) = {02, 04, 07, 08, 09, 010, 0}. The intu-
ition behind rel(v, ¢*) Arel(u, ¢*) is that it represents those sharing groups
for shared variables which pass through either v or w, but not both. After
unification, any variable which passes through v must also pass through u and
vice versa. Sharing groups which do not possess this property are redundant,
and in fact represent grounded variables, and hence can be removed.

Theorem 3.1

[(]5]% € 7type(¢*) A % € mgu(¢(E)) A
var(E) C Svar A mge(E, ¢*,¢*) = [p o Pl € Viype(V*)

It is convenient a shorthand to regard mge as a mapping, that is, mge(E, ¢*)
= ¢~ if mge(E, ¢*,1*). Strictly, it is necessary to show that mge(E, ¢*, 1)
is deterministic for mge(E, ¢*) to be well-defined. Like in [5], the conjecture
is that mge yields a unique abstract substitution i* for ¢* regardless of the
order in which FE is solved (though, in practice, any * is safe).

To approximate the unify operation it is convenient to introduce a col-
lecting semantics, concerned with sets of substitutions - the collecting do-
main, to record the substitutions that occur at various program points. In
the collecting semantics interpretation, unify is extended to unify¢, which
manipulates (possibly infinite) sets of substitutions.

Definition 10 (unify®) The mapping unify® : Atom x p(Subst/~) x
Atom x p(Subst/~) — p(Subst/~) is defined by: unify®(a,®,b,¥) =
{0l 9]~ € @ A [¥]x € ¥ A [0]x = unify(a, [¢]~, b, [¢]x)}-

The usefulness of the collecting semantics as a form of program analysis
is negated by the fact that it can lead to non-terminating computations.
The collecting semantics, however, is a useful tool for reasoning about the
correctness of unify*. To define unify* and prove safety it is necessary
to introduce an abstract restriction operator, - 7 -, defined by: pu* ™* U =
{o *Uloep}and o * U = {(u,p) € o|u € U}. The definition of unify*
is given below and theorem 3.2 assumes var(a) Uwvar(b) C Pvar.

Definition 11 (unify*) The mapping unify* : Atomx Subst*, x Atom x

Subst:, —— Subst:, is defined by: unify*(a,¢*,b,9*) = mgeE{Ta =7T()},

¢* U (¢p*)) ~* Poar.
Theorem 3.2 (local safety of unify*)

® g 7type(¢*) AT g Vtype(w*) =
unifyc(a’a ©7 b’ \II) g 'Ytype (umfy* (aa ¢* 9 b7 ¢*))

i fu#
unify Subst:

—Substi Puar
A
Qtypex Ytypex
Y
unify* <
Qyype# Subst— Substy, [Viype#
A
Atype Ytype
Y

e C
~—gp(Subst/ Q)Llfy»p(b‘ubst/zgz <
Figure 1: The relationship between depth-oo and depth-k abstractions.

4 Depth-k analysis for sharing

The usefulness of the depth-oo framework is compromised by its infiniteness.
Since Path is not finite, Substy, ~(C) is not a finite lattice, and therefore a
fixed-point computation, of the sort employed in [1, 13| does not automat-
ically terminate. Section 4.1 explains how convergence of the iterates can
be enforced by replacing Subst:, (C) with SubstZ,.. (C) and throttling
paths to length k. The mappings aiype« and 7ygype« formalise this depth-k
abstraction. Section 4.1 describes an abstract analog of unify*, unify#,
which safely operates on truncated paths. Figure 1 illustrates that by cas-
cading the depth-co and depth-k approximations end-to-end, unify# can
be regarded an abstraction of uni fy® via the abstraction and concretisation
mappings ype# and Yi,.#. These two mappings are respectively defined
by composing ouypes With ouype and yiype with Yype. (The # notation is
used to distinguish depth-k objects from their depth-oo counterparts.)

4.1 Abstracting depth-oco abstract substitutions to depth-k

Depth-k abstractions [14, 17] normally represent the principal functor of
a term complete with descriptors for its sub-terms. Sub-term descriptions
are given to the depth of a predetermined constant bound k. (Depth-k
analyses are conventionally good at representing structure but are often weak
at tracing groundness and aliasing information.) In the spirit of the depth-
k approach, the arbitrary length paths of the depth-oo framework can be
truncated to length k. (By discarding paths all together, the sharing analysis
of [9] is obtained [10]!) Truncating at k£ induces an approximation and the
notion of an abstract path Path%. PathZ, thus includes a symbol nf to
denote approximation and is formally defined to be the least set such that:
A€ Pathfo, nf € Path%, and n - p#* € PathZ, if p# € Path%, and n e N
(for n less or equal to the maximum arity of Func). The nf terminator can
be interpreted as representing a set of paths. For example, 1-2-nf, finitely
represents the infinite set {(1-2-\)-p|p € Path}. Note that Path C Path%.

Like before, - is interpreted as concatenation so that (1-21)-(3nf) = 12:3nf.
It is also convenient (to simplify ocpen and dif foo) to let (1-nf) - (2:3-X) =
1-2-3-X and (1-2-nf) - (3-nf) = 1-2-3-nf. Finiteness is introduced by the
mapping depthy,.

Definition 12 The mapping depthy, : Pathl, — Pathl, is defined by:

ni-....ngn if 1<k

depthi(ny-... nm) = {

The codomain of depthy defines a finite set of truncated paths: Pathf =
{depthi(p#) | p#* € Path%}. Path} is finite because, for a given program,
Func is finite. The notion of approximation implicit in the set of abstract
paths is encapsulated by the poset Path¥ (ocpen) defined as the least re-
flexive relation such that: p-nf o, p - p# if p € Path and p# € Path%,.
Thus, for example, 1-nf Xpatn 1:2-A, 1-nf Xpatn 1-2-nf, X Xpgen, A and
TLf Xpath 7’Lf

It is convenient to use abstract paths from both Pathf and PathZ, in the
analysis. For precision, the intermediate calculations of the abstract unifica-
tion algorithm use PathZ,. For termination, the abstract unifiers are approx-
imated (widened) by collapsing paths into Path} . Path] and Path% induce
two notions of abstract sharing group: Occg,,, . and Occ Occg,or i 18
finite whereas Occg,,, ., is infinite. The abstract domain Substf,,, is formu-
lated in terms of Occ

Svar,oo *

Svar,oo *

Definition 13 (Occ?,.., and Occk,....) The sets of (abstracted) sharing
groups are defined by: Occk,,, , = p(SvarxPath}) and Occt,,, .. = p(Svarx
Path).

Definition 14 (Subst?,,.) The set of (abstracted) abstract substitutions,

Svar

Substy,,, , is defined by: Substy,.. = (Occt o o0)-

Subst?,,, has U as its lub. The poset Xpath induces the preorders Occﬁvm, &
(Xshare) and Occl,.. o (Xshare) Which formalise approximation among ab-
stract sharing groups. The preorders are defined by: o# ocspare 0'# if and
only if var(o#) = var(o'#) and for all (u,p'#) € o'# there exists (u,p#) € o#
such that p# xpgin, p'#. Note that Xgpere formalises approximation but does
not specify how to threshold a sharing group. The operator sharey is thus

introduced to perform thresholding.

Definition 15 (share;y) The mappings sharey : Occlhar e = OCChyars 18
defined by: shareg(o) = {(u,depthi(p)) | (u,p) € o}.

Since Occg,, C Occﬁvm,w, sharey, can threshold sharing groups as well as
abstract sharing groups. Thus ayype« can be defined in terms of shares
whereas the concretisation 7iype« can be formulated in terms of ogpgre.

Definition 16 (auype- and vyype-) The mappings aiypes : p(Substy,) —
Substt,.. and Yiypes : Substh,., — p(Substy,) are defined by: aypes (P
= Ugrea«{shareg(o) | o € ¢} and yiype- (¢9#) = {¢* € Subst;, | Vo €
¢*. Jo# € Pp#.0#* Xgpare O}

Finally, the link between the collecting domain p(Subst/~) and Substf,,,

can be made explicit by cascading aypes With ayype and yiype With yiypes .

Definition 17 (ayype# and vype#) The mappings ayypes @ p(Subst/~) —
Subst?,,, and Vigpe#t Substt,., — p(Subst/~) are defined by: Qpypett (P)
= auyper ({ttype(2)}) and Yyyper (2#) = Uy EVtyper (@#)'Ytype((/ﬁ*)-

To strike an analogy with conventional sharing groups [9], it is insightful to
introduce depth-k versions of occ and type, namely occf and typef.

Definition 18 (occf and typef) The mappings occf : Uvar x Subst —
Occl,arr and type} : Subst/~ — p(Occt,,.,) are defined by: occf (u,$) =

{(v, depthy(p)) | u = termp(p(v))Av € Svar} and typej ([¢]~) = {occ) (u, P)
| u € Uvar}.

If depths is regarded as the identity mapping on Path%, then occk =

occ and typek = type, and lemma 4.1 immediately follows. Lemma 4.1
succinctly expresses qype# and Yy pe# in a familiar format.

Lemma 4.1 Ctype# ((I)) = U[¢]z€<1> typet([(ﬁ]%) and Viype# (¢#) = {[(ﬁ]% €
Subst/~ | Yo# € typeho([p)~) . T0'# € ¢#.0'# Xgpare 0% }.

4.2 Abstracting depth-oo abstract unification to depth-k

A truncated path version of unify*, unify#, is constructed by defining a
depth-k analog of mge. The analog, denoted mgeZ C Eqn x Subst%,,, x
Subst?, ., simplifies and solves syntactic equations in the style of mge in
the obvious way with the exception that solve is replaced with solveZ. The
operator solveX, solves a syntactic equation of the form v = ¢ in the presence
of the abstract substitution ¢#, returning the abstract unifier composed with
¢#. Thus solvel, abstracts solve and, like before, is the key element of
mges.

Concatenation implicitly defines a notion of difference and to flesh out
solvek,, it is necessary to introduce an abstract difference operator, dif foo.

Definition 19 (dif fs) The partial mapping dif foo : Pathl x Pathi, —
Path%, is defined by:

q if p#€Path A r#€Path A p#-q= r#
nf if p#¢Path A r#€Path N p#-s= r#

dif foo(p*,1#) = { nf if pt€Path A r#¢Path A pt= r#-s
g# if p*€Path N r#¢Path A p# - q# = r#
nf if p#¢Path N r#¢Path

Lemma 4.2 states precisely how dif fo, relates to -.
Lemma 4.2 p# oGaeh PN 7# Xpgih, T A p-q =1 = dif foo (p#,7#) Xpath ¢
Additionally, an auxiliary operator scalek, is required to abstract scale.

Definition 20 (scale%) The mapping scale : Occ
Occ is defined by:

Swvar,c0

x p(Path%) —

Svar,c0

scalel, (o#,S#) =

{(u,p#- S#>

(u, p#) € 0% A }U{<u7p#> (u, p#) € 0# A }

p# € Path A\ s# € S# p#* & Path

With rel#, the analog of rel for Subst?, ., , solvek, and closek, can be con-
structed by plugging the appropriate depth-k operators into solve and close.

Definition 21 (solvefo, close®, and ea:tend?fo) The mappings solvel
Svar x Term x Subst?,,. — Subst?,,., closek, : Svar x Term x SubstZ,,,

— Substf,,,, extend?, : Svar x Term x Occg,,, . % Occg,,. . — Substf,,,
are defined by:

solved, (v,t,¢*) = I fp(closels (v, t, ¢#)) \ (rel# (v, ¢#) Arel#(t, ¢#))

closefoo(v, t,) = p#

closefoi+1(v,t, ¢*)=p#* U {0# i

0,07 € p# Aok, € extendi(v,t,0% , 07) }

where * = closeZ,' (v,t, p#)

vt

extends (v, t, 0} 07) =

U

(o GO#
{Scaleoo(ov 7S) U Ot Vv = te’)"mr(t) VAN d/[/ffoo(pfar pf) = s#

(v,p5) € 0f N s# € S# & (v, pf) €0f A }

{02‘2E U scaled (of , S#)

(v, pf) € 0f N vy = term,(t) A s# € S# &
(v,pf) € of A dif foo(r - pf,pl) = s*

Note that solveZ, and each of its constituent parts are independent of
k. Thus solveZ, is an abstract equation solver for depth-k abstractions of
arbitrary k. Precision is throttled (without touching the core components of
the analysis) at the level of mge%,. Specifically, an intermediate construction,
mgef, is employed to threshold the abstract unifier to depth-k.

Definition 22 (mge}) The relation mge} : Eqn x Subst%,,, x SubstZ,,, is

defined by: mgef(E, o#, o#) if mgelo(E, ¢p#,#) where o# = {sharey(o#)
| o# € Y#}.

Like before, it is convenient to regard mgef as a mapping. Then, with the
addition of some renaming machinery, mgej defines a depth-k version of
unify*, unifyj . Safety is stated as theorem 4.3 and is couched in terms
of unify¢. Like theorem 3.2, theorem 4.3 assumes var(a) U var(b) C Puvar.
Also “# is the obvious depth-k analog of restriction.

Definition 23 (unify#) The mapping unify# : Atomx Substf,,, x Atomx
SU/bSthar — SUbStPUaT /Ls deﬁned by unlfy#(a,, (ﬁ#,b,’[ﬁ#) — mget({a —
T(b)}, ¢# U X (y#)) ~# Puar.

Theorem 4.3 (local safety of unify#)

Q C Ytype# (¢#) AN C Viype# (1/}#) =
unifyc(aa 2,0, \II) - Ytype# (unlfy# (aa *,b, ¢#))

5 Depth-co and depth-k freeness

The applications domain of the analysis can be enriched by augmenting
the domains Substy — and Subst?,,, with a definite freeness component.
Although Substy =~ and Subst?, ., succinctly express possible freeness and
definite groundness, they cannot adequately record definite freeness. For
instance, if ® = {{u — f},{u — v}} and Svar = {u,v} then ayp.(P) =
{{(u, \), (v,\)}, 0}, and information about the non-freeness of u is lost. By
additionally recording possible groundness, however, definite freeness can
be inferred. For example, by adopting a domain Substy X Grndy — in
which Grnd:, = p(Svar x Path), then ® could be represented as <{{(u A),
(v, A\)}, 0}, {(u A)}) indicating that a sub-term termy(¢p(u)) is ground for
some ¢ € ®. Conversely, without a pair (u,p), termy(¢(u)) must definitely
be free. Extending the depth-oco and depth-k analyses in this way is straight-
forward (though technical) and reuses a lot of the (possible) freeness abstract
interpretation machinery. For brevity, example 7 illustrates the basic idea
behind the tracking of (possible and definite) freeness in sub-terms with an
example adapted from a benchmark program.

Example 7 Consider the head unification unifyj (a, ¢#, b, #) where a
= dfri(tree(L, R), —(LFriHead, RFriTail)), b = dfri(Tree, DFri), ¢#
={{(L, M}, {{LFriHead, \)}, {(R, \)}, {(RFriHead, \)}, {(RFriTail,
N}, 0} and # = {{(DFri, 1-\)}, 0}. Supposing Y(Tree) = Tree' and
Y(DFri) = DFri, then unifyy (a, ¢#, b, v#) = mgel (E, ¢# U (y#)) ~

Pvar where E = {Tree’ =tree(L, R), DFri’ = —(LFriHead, RFriTail)}
and ¢p# U Y (yp#) = {{(L, N}, {(LFriHead, \)}, {(R, A\)}, {(RFriHead,
MY {(RFriTail, \)}, {(DFri’, 1-\)}, 0}. But mgei(E, ¢# U Y (y#)) =
{{{DFri', 1.\), (LFriHead, \)}, {(RFriHead, \)}, 0} and thus unifyf (a,
¢#, b, v#) = {{{(LFriHead, \)}, {(RFriHead, \)}, 0}. Hence, L and R
are grounded by head unification whereas LFriHead and RFriHead remain

(possibly) free and unaliased. If, in addition, the possible grounding analy-
sis does not include any pairs (LFriHead,p) and (RFriHead,p), then the
definite freeness of LFriHead and RFriHead immediately follows. Here,

depth-1 analysis is vital for the required precision.

6 Related and future work

Recently, three relevant proposals for computing sharing have been put for-
ward in the literature. In the first proposal [7], multiple analyses are run in
lock step. This paper likewise follows the trend for simultaneously tracing
different properties (namely groundness, sharing and freeness), but instead
explains how the restructuring of domains can yield a depth-k analysis which
cannot be synthesised in terms of the combined domain approach.

In the second proposal [6], the correctness of sharing and definite freeness
analyses are considered. An abstract unification algorithm is proposed as a
basis for constructing accurate freeness analyses with a domain formulated in
terms of a system of abstract equations. Safety follows because the abstract
algorithm mimics the unification algorithm in an intuitive way. Correctness
is argued likewise here. One essential distinction between the two works is
that the approach proposed in this paper uses paths to encode more accurate
sharing information than the abstract equations of [6].

Very recently, in the third proposal [2], an analysis for sharing, ground-
ness, linearity and definite freeness is formalised as a transition system which
reduces a set of abstract equations to an abstract solved form. Sharing is
represented in a sharing group fashion with variables enriched with linearity
and freeness information by an annotation mapping. The domain, however,
essentially glues the Jacobs and Langen [9] structure with a conventional no-
tion of freeness. Freeness is not generalised to depth-k and is not embedded
into sharing groups in the way that is described in this paper.

Future work will focus on incorporating linearity into sharing groups
embellished with depth-k freeness. Benchmarking will quantitatively assess
the usefulness and efficiency of this refinement, and suggest also suitable k.

7 Conclusions

A powerful and formally justified analysis has been presented for inferring
groundness, freeness, and sharing between the variables of a logic program.
The analysis elegantly represents freeness information in a sharing group for-
mat. By revising sharing groups to capture freeness, aliasing behaviour can
be precisely captured; groundness information can be accurately propagated;
and in addition, the freeness of sub-terms can be tracked.

References

[1]

2]

[10]

[11]

[12]

M. Bruynooghe. A practical framework for the abstract interpretation
of logic programs. J. of Logic Programming, 10:91-124, 1991.

M. Bruynooghe and M. Codish. Freeness, sharing, linearity and cor-
rectness — all at once. In WSA’93, pages 153—-164, September 1993.

A. Cortesi and G. Filé. Abstract interpretation of logic programs: an
abstract domain for groundness, sharing, freeness and compoundness
analysis. In PEPM’91, pages 52-61, 1991.

J. Lassez et al. Foundations of Deductive Databases and Logic Program-
ming, chapter Unification Revisited. Morgan Kaufmann, 1987.

M. Codish et al. Derivation and safety of an abstract unification algo-
rithm for groundness and aliasing analysis. In ICLP’91, pages 79-93,
Paris, 1991. MIT Press.

M. Codish et al. Freeness analysis for logic programs - and correctness?
In ICLP’93, pages 116-131. MIT Press, June 1993.

M. Codish et al. Improving abstract interpretation by combining do-
mains. In PEPM’93. ACM Press, 1993.

M. Hermenegildo and F. Rossi. Non-strict independent and-parallelism.
In ICLP’90, pages 237-252, Jerusalem, 1990. MIT Press.

D. Jacobs and A. Langen. Static Analysis of Logic Programs. J. of
Logic Programming, pages 154-314, 1992.

A. King. Depth-k sharing and freeness. Technical Report CSTR 93-14,
Southampton University, S09 5NH, UK, 1993.

J. W. Lloyd. Foundations of Logic Programming. Springer Verlag, 1987.

K. Muthukumar and M. Hermenegildo. Combined determination of
sharing and freeness of program variables through abstract interpreta-
tion. In ICLP’91, pages 49-63, Paris, 1991. The MIT Press.

K. Muthukumar and M. Hermenegildo. Compile-time derivation of vari-
able dependency through abstract interpretation. J. of Logic Program-
ming, pages 315—437, 1992.

T. Sato and H. Tamaki. Enumeration of success patterns in logic pro-
grams. Theoretical Computer Science, 34:227-240, 1984.

H. Sgndergaard. An application of the abstract interpretation of logic
programs: occur-check reduction. In ESOP’86, pages 327-338, 1986.

[16] R. Sundararajan and J. Conery. An abstract interpretation scheme for
groundness, freeness, and sharing analysis of logic programs. In 12*
FST and TCS Conference, New Delhi, December 1992.

[17] A. Taylor. High Performance Prolog Implementation. PhD thesis,
Basser Department of Computer Science, July 1991.

