
Incremental Clone Detection and Elimination for
Erlang Programs

Huiqing Li and Simon Thompson

School of Computing, University of Kent, UK
{H.Li, S.J.Thompson}@kent.ac.uk

Abstract. A well-known bad code smell in refactoring and software
maintenance is the existence of code clones, which are code fragments
that are identical or similar to one another. This paper describes an
approach to incrementally detecting ‘similar’ code based on the no-
tion of least-general common abstraction, or anti-unification, as well as
a framework for user-controlled incremental elimination of code clones
within the context of Erlang programs. The clone detection algorithm
proposed in this paper achieves 100% precision, high recall rate, and is
user-customisable regarding the granularity of the clone classes reported.
By detecting and eliminating clones in an incremental way, we make it
possible for the tool to be used in an interactive way even with large
codebases. Both the clone detection and elimination functionalities are
integrated with Wrangler, a tool for interactive refactoring of Erlang
programs. We evaluate the approach with various case studies.

Key words: Software maintenance, Refactoring, Code clone detection,
Erlang, Program analysis, Program transformation, Erlang, Wrangler.

1 Introduction

Duplicated code, or the existence of code clones, is one of the well-known bad
‘code smells’ when refactoring and software maintenance is concerned. The term
‘duplicated code’, in general, refers to program fragments that are identical or
similar to one another; the exact meaning of ‘similar code’ might be substantially
different between different application contexts.

The most obvious reason for code duplication is the reuse of existing code,
typically by a sequence of copy, paste and modify actions. Duplicated code in-
troduced in this way often indicates program design problems such as a lack of
encapsulation or abstraction. This kind of design problem can be corrected by
refactoring out the existing clones at a later stage, but could also be avoided
by first refactoring then reuse the existing code. In the last decade, substan-
tial research effort has been put into the detection and removal of clones from
software systems; however, few such practical tools are available for functional
programming languages. The work reported here is of particular value both
to the working programmer and the project manager of a larger programming

2 Huiqing Li and Simon Thompson

project, in that it allows clone detection to contribute to the ’dashboard’ reports
from incremental nightly builds, for instance.

This paper describes an approach to incrementally detecting ‘similar code’
in Erlang programs based on the notion of least-general common abstraction, or
anti-unification [1,2], as well as a mechanism for incremental automatic clone
elimination under the user’s control. We take Erlang as the target language due
to our research context. While the implementation discussed in this paper is
specific to Erlang’s syntax and static semantics rules; the methodology used by
the approach is applicable to other functional programming languages as well.

In general, we say two expressions or expression sequences, A and B, are simi-
lar if there exists a non-trivial least-general common abstraction, or anti-unifier,
C, and two substitutions σA and σB which take C to A and B respectively. By ‘non-
trivial’ we mainly mean that the size of the least-general common abstraction
should be above some threshold, but other conditions, such as the complexity of
the substitution, can also be specified.

The approach presented in this paper is able, for example, to spot that the
two expressions (X+3)+4 and 4+(5-(3*X)) are similar as they are both instances
of the expression Y+Z, and so both instances of the function

add(Y,Z) -> Y+Z.

When support for clone elimination is one of the major purposes served by a
clone detection tool, accuracy and efficiency of the tool are essential for it to be
usable in practice.

To achieve a 100% precision rate, i.e., only genuine clones are reported, our
approach uses as the representation of an Erlang program the Abstract Syntax
Tree (AST) for the parsed program annotated with static semantic information.
Syntactic and static semantic information together make it possible that only
those genuine, and syntactically well-formed, clones are reported to the user.

Scalability and efficiency, the major challenges faced by AST and/or seman-
tics based clone detection approaches, are achieved by an incremental two-phase
clone detection technique. The first phase uses a more efficient, but less accu-
rate, syntactic technique to identify candidates which might be clones; the initial
result is then assessed by means of an AST and static semantics based analysis
during the second phase to give only genuine clones. When part of the codebase
has been changed, the original clone detection result is no longer up-to-date,
due to either the change of locations or the textual change of code. To keep the
clone report up-to-date, instead of re-running the clone detection from scratch,
the incremental clone detection algorithm reuses and updates the data collected
from the previous run of the clone detection, and only processes clones related
to the code that has been modified, added or deleted.

Our clone detection tool reports clone classes. As shown in the lower window
of Fig. 1, each clone class is a set of code fragments in which any two of the code
fragments are identical or similar to each other. Each clone class is associated
with the least-general abstraction in the format of a function abstraction named
new fun. Variable names of the form NewVar i are generated by the clone de-
tector. For each member of a clone class, the clone detector also generates an

Incremental Clone Detection and Elimination for Erlang Programs 3

Fig. 1. A snapshot showing similar code detection with Wrangler

application instance of new fun, which is the function call that arises from uni-
fying the class member with the function definition represented by new fun.

One aim of clone detection is to identify them so that they can be eliminated.
The general approach to removing a cloned code fragment in the functional
programming paradigm is to replace it with a function call to the least-general
common abstraction of the clone class to which the code fragment belongs. In
theory, it is possible to eliminate all clones found fully automatically without
control from the user, however in practice, this is not a desirable way for various
reasons. Instead of eliminating clones fully automatically, our framework allows
the user to eliminate clones in an incremental way. We automate things that
should be automated, while allowing the user to have control over the clone
elimination process when it is necessary.

A non-incremental similar code detection and elimination framework was
first added to Wrangler in 2009 [3]. The contribution of this paper is to provide:

– an incremental algorithm which works substantially more efficiently than the
original standalone algorithm for larger projects in analyses;

– a framework that gives the user fine control of the granularity of the clones
reported and a clear vision of the code after eliminating a specific clone;

– a method for tracking the evolution of clones during software lifetime, and

4 Huiqing Li and Simon Thompson

– a mechanism for clone detection to be included in the standard workflow and
reporting of projects subject to continuous integration or regular builds.

The remainder of the paper is organised as follows. Section 2 gives an overview
of Erlang and the refactoring tool Wrangler. Section 3 introduces some terminol-
ogy to be used in this paper; Section 4 describes the incremental clone detection
algorithm. The elimination of code clones is discussed in Section 5, and an eval-
uation of the tool is given in Section 6. Section 7 gives an overview of related
work, and Section 8 concludes the paper and briefly discusses future work.

2 Erlang and Wrangler

Erlang [4] is a strict, impure, dynamically typed functional programming lan-
guage with support for higher-order functions, pattern matching, concurrency,
communication, distribution, fault-tolerance, and dynamic code loading. Erlang
allows static scoping of variables, in other words, matching a variable to its bind-
ing only requires analysis of the program text, however some variable scoping
rules in Erlang are rather different from other functional programming languages.

An Erlang program typically consists of a number of modules, each of which
defines a collection of functions. Only functions exported explicitly through the
export directive may be called from other modules. In Erlang, a function name
can be defined with different arities, and the same function name with different
arities can represent entirely different functions computationally.

Wrangler [5] is a tool that supports interactive refactoring of Erlang pro-
grams. It is integrated with (X)Emacs, as shown in Fig. 1, and as well as with
Eclipse through ErlIDE. Wrangler is implemented in Erlang, and downloadable
from http://www.cs.kent.ac.uk/projects/wrangler/Home.html.

3 Terminology

Anti-unification and Unification Anti-unification, first proposed in 1970 by
Plotkin [1] and Reynolds [2], applies the process of generalisation to pairs, or
sets, of terms. The resulting term captures all the commonalities of the input
terms. Given terms E1, ..., En, we say that E is a generalisation of E1, ..., En if
there exist substitutions σi for each Ei, 1 ≤ i ≤ n, such that Ei = Eσi. E is
a least-general common generalisation of E1, ..., En if for each E′ which is also
a common generalisation of E1, ..., En, there exists a substitution θ such that
E = E′θ; it is not difficult to see that these are unique (up to renaming of
variables) and so we call any of them the least-general common generalisation.
The least-general common generalisation of E1, ..., En is called the anti-unifier
of E1, ..., En, and the process of finding the anti-unifier is called anti-unification.

To apply anti-unification techniques to ASTs of Erlang programs, restrictions
as to which kinds of subtrees can be replaced by a variable, and which cannot,
need to be taken into account. For instance, objects of certain syntactic cate-
gories, such as operators, guard expressions, record names, cannot be abstracted

http://www.cs.kent.ac.uk/projects/wrangler/Home.html

Incremental Clone Detection and Elimination for Erlang Programs 5

and passed in as the values of function parameters, and therefore should not be
replaced by a variable. Furthermore, an AST subtree which exports some of its
locally declared variables should not be replaced by a variable either; whereas it
is fine to substitute the function name in a function application with a variable
because higher order functions are supported by Erlang.

Unification, on the other hand, is the process of finding substitutions of terms
for variables to make expressions identical [6]. The unification technique forms
the basis of the clone elimination process.

Similarity Score. Anti-unification provides a concrete way of measuring the
structural similarity between terms by showing how both terms can be made
equal. In order to measure the similarity between terms in a quantitative way,
we defined the similarity score between terms.

Let E be the anti-unifier of sub-trees E1, ..., En, the similarity score of E1, ...,
En is computed by the following formula: min{SE/SE1 , ..., SE/SEn

}, where SE ,
SE1 ... SEn

represent the number of nodes in E, E1... En respectively. The sim-
ilarity score allows the user to specify how similar two sub-trees should be to be
considered as clones. Given a similarity score as the threshold, we say that a set
of sub-trees are similar if their similarity score is above the threshold.

Clone Classes. A clone class is a set of code fragments in which any two
of the code fragments are identical or similar to each other. In the context of
this paper, each member of a clone class is a sequence of Erlang expressions. We
say a clone class C is maximal if there does not exist a clone class C ′ such that
|C| ≤ |C ′|, and for each class member, Ei say, of C, there exists a clone member,
Ej say, of C ′, such that Ei is a proper sub-sequence of Ej . Only those maximal
clone classes are reported by our clone detection tool.

4 The Clone Detection Algorithm

The similar code detector takes a project (that is, a set of Erlang modules), and
a set of parameters as input, performs clone detection, and reports the clone
classes found. The tool is integrated with an IDE (Emacs or Eclipse), but it can
also be run from the command line. Five parameters need to be specified; if no
value is supplied a suitable default value is used. The parameters are:

– the minimum number of expressions included in a clone which is a sequence
of expressions, denoted by Emin;

– the minimum number of lexical tokens included in a clone, denoted by Tmin;
– the maximum number of new parameters of the least-general common ab-

straction function, denoted by Pmax;
– the minimum number of class members of a clone class, denoted by Fmin;
– the similarity score threshold, denoted by SimiScore.

With these parameters, the user can have a fine control of the granularity of the
clone classes reported. For example, to make the tool only report identical code
fragments, the user just need to set the value of Pmax to 0.

6 Huiqing Li and Simon Thompson

Fig. 2. An Overview of the Incremental Clone Detection Process

As shown in Fig. 1, each clone class is reported by giving the number of
instances of the cloned code, the least-general common generalisation in the
format of a function abstraction named new fun, each clone instance’s start
and end locations, as well as the application instance of new fun, which is the
function call that arises from unifying the class member with function definition
represented by new fun. Scalability is tackled from two aspects:

– A two-phase clone detection technique is used. The first phase carries out
a quick, semantics-unaware clone detection over a generalised version of the
program, and reports initial clone candidates; the second phase examines
the initial clone candidates in the context of the original program by means
of anti-unification, getting rid of false positives;

– Incremental update of information collected from the various stages of the
previous run of the clone detection tool when program code has been changed.

An overview of the algorithm is shown in Fig. 2. Next, we first describe the
initial clone detection algorithm, then the incremental part.

4.1 The Initial Detection Algorithm

The initial clone detection algorithm is an extended and adapted version of
the standalone algorithm presented in [3]. While both follow the same steps,

Incremental Clone Detection and Elimination for Erlang Programs 7

the algorithm presented here is designed to make incremental clone detection
possible, and provides better usability. We explain it in more detail now.

Parse Program, annotate and serialise AST. Erlang files are lexed
and parsed into ASTs. In order to reflect the original program text, the Erlang
pre-processor is bypassed to avoid macro expansion, file inclusion, conditional
compilation, etc. Both line and column numbers of identifiers are kept in the
ASTs generated, since location information is used to map between different
representations of the same piece of code in the source. Binding information
of variables and function names, which is needed during the anti unification
process, is annotated to the AST in terms of defining and use locations.

Location information is needed by the clone detector, but absolute locations
are sensitive to changes, i.e. a change made to a particular place of a file could
possibly affect all the locations following it. With incremental clone detection
in mind, we choose to use relative locations to identify program entities, while
recording each function’s actual starting line in the file. With relative locations,
every function starts from line 1 at column 1. The benefit of this is that we can
ensure pure location change does not affect the initial clone candidate result,
and all new clone candidates introduced are due to structural change.

The AAST representation of each function is then traversed, and expression
sequences are collected. In this way, each function is mapped into a list of ex-
pression sequences. The AAST representation of each expression statement is
stored in an ETS (Erlang Term Storage) table for use by the later stages of the
algorithm and the incremental clone detection. To reduce the time spending on
AAST traversal while trying to locate a specific syntax phrase in the AAST,
and also to reduce the time on AAST updating when incremental clone detec-
tion is concerned, each object in the ETS table represents the AAST of a single
expression statement, instead of the AAST of a whole Erlang file.

Generalise and Hash Expressions. This step takes an expression sequence
generated from the previous step a time, each expression statement in the se-
quence is first structurally generalised, then pretty-printed and hashed into an
integer value. Only expression statements that share the same generalised form
get the same hash value. Therefore, we map each expression sequence into a
sequence of integers.

The aim of structural generalisation is to capture as much structural sim-
ilarity between expressions as possible while keeping each expression’s original
structural skeleton. This process traverses each expression statement subtree in
a top-down order, and replaces certain kinds of subtrees with a single node repre-
senting a placeholder. A subtree is replaced by a placeholder only if syntactically
it is legal to replace that subtree with a node representing a variable, and the
subtree does not represent a pattern, a match expression or a compound expres-
sion such as a receive expression, a try...catch expression, etc.

Initial Clone Detection using a Generalised Suffix Tree This step turns
each integer sequence generated from the previous step into a string, and builds a

8 Huiqing Li and Simon Thompson

generalised suffix tree on the strings generated. Cloned strings are then collected
from the suffix tree, and each group of cloned strings is then mapped back to a
group of expression sequences which share the same generalised representation.

Suffix tree analysis [7] is the technique used by most text or token-based clone
detection approaches because of its speed [8,9]. A suffix tree is a representation of
a single string as a tree where every suffix is represented by a path from the root
to a leaf. The edges are labelled with the substrings, and paths with common
prefixes share an edge. A generalised suffix tree is a suffix tree that represents
the suffix of a set of strings. Fig. 3 shows an example of the generalised suffix tree
representation of two strings ABAB$ and BAB$. The numbers in the leaf nodes are
string number and starting position of the suffix in the string. We use generalised

Fig. 3. A generalised suffix tree for two strings ABAB$ and BAB$

suffix tree instead of the standard suffix tree as in [3] for two reasons:

– The standard suffix tree algorithm accepts only a single string as input. To
build a suffix tree over a collection of strings, we will have to concatenate all
the strings into a single one, and then build a suffix tree over the concatenated
string. As a result, clone strings might actually come from two or more
separated strings, and therefore need to be further processed;

– With generalised suffix tree, a string can be removed from, or inserted into,
the tree easily, which is exactly what we need for incremental clone detection.

Examine Clone Candidates using Anti-unification. The previous step re-
turns a collection of clone classes whose class members are structurally similar,
but do not necessarily share a non-trivial anti-unifier; even so it helps to re-
duce the amount of comparisons needed significantly. This step examines the
initial clone class candidates one by one using anti-unification and returns those
genuine clone classes. More details follow.
Generation of clone classes from clone candidates. For each clone class candi-
date, C say, the clone detector takes a class member, A say, and tries pairwise
anti-unification with each of the other class members. The anti-unification result
is then analysed and processed to derived clone classes that satisfy all the pa-
rameters specified by the user. In order to achieve a high recall rate, when two

Incremental Clone Detection and Elimination for Erlang Programs 9

expression sequences do not anti-unify as a whole, their sub-sequences are also
examined. If the whole clone class candidate does not form a real clone class,
another class member is selected from the remaining members of C, and the
process is repeated until no more new clone classes can be found. As a result, it
is possible to derive none, one, or more clone classes from a single clone candi-
date. For example, from a clone class candidate with three expression sequences
like {E11E12E13, E21E22E23, E31E32E33}, it is entirely possible to derive three
clone classes like: {E11E12, E21E22, E31E32}, {E11E12E13, E21E22E23} and
{E21E22E23, E31E32E33}.
Generation of anti-unifier. The anti unifier generator takes a clone class and the
substitutions inferred during the anti-unification process as input, generalises
the expression sequence represented by the first clone class instance over those
sub-expressions which are not common to all of the clone instances by replac-
ing those sub-expressions with new variables automatically generated by the
clone detector. To ensure that only the minimum number of new parameters are
generated, the anti-unifier generator needs to check the static semantics of the
sub-expressions to be generalised over, and their corresponding sub-expressions
in remaining class instances, so that sub-expressions with the same static seman-
tics and same substitutions are represented by the same new variable. Variables
declared by a cloned code fragment in a clone class might be used by the code
following it, and the union of these variables should be returned by the anti-
unifier so that those variables are still visible to the code following it when the
cloned fragment is replaced by an application instance of the anti-unifier.

Generation of application instances. Given the anti-unifier of a clone class and
a particular instance of the clone class, the application instance is generated
through the unification of the anti-unifier, represented as a function definition
named new fun, and the class instance. The application instance gives the user a
clear vision of what a cloned code fragment will be replaced with by clone elim-
ination, and therefore helps the user decide whether this clone instance should
be eliminated or not. For example, if some of the parameters of the application
instance are too complex, the user might want to refactor the code first, then
eliminate the clone.

Formatting. Final clone classes are sorted and displayed in three different or-
ders: by the number of duplications, by the size of clone class instances, and by
the ranking score of each clone class. The ranking score of a clone class is calcu-
lated based on three parameters: the number of parameters of the anti-unifier, the
number of terms returned by anti unifier, and size of the anti-unifier body. Given
a clone class anti unifier, suppose the above three parameters are represented by
P , V and L respectively, the ranking score is calculated as: L/(L+ P + V).

4.2 The Incremental Detection Algorithm

A change made to a file could affect the existing clone results in two differ-
ent ways. A structural change could introduce new clone classes, or invalidate

10 Huiqing Li and Simon Thompson

some existing clone classes; a location change on the other hand could make
the location information of some clone class members out-of-date. Obviously, a
structural change to one part of the file is generally accompanied by location
changes to the code following it in the file.

To incrementally update the clone result after changes have been made to
the program source, our algorithm reuses and updates the intermediate results
returned from the previous run of the clone detection as shown on right-hand
side of the diagram in Fig. 2.

The algorithm takes a function as a unit to track the changes made to the
program source. For a function that is removed, added, or structurally changed,
we have no other choices but to remove/add/update the entities associated with
it; whereas for a function with only a location change, only its absolute starting
location is updated. Taking a function, instead of a file as the unit for tracking
changes, we are able to reuse existing results as much as possible. Next we explain
in more detail the various intermediate results that are reused and updated
during the incremental clone detection phase.
The AAST Table.The AAST table stores the AAST representation of each
expression statement. Each entry of the table is a tuple. The first element of the
tuple, which serves as the key, is of the format: {ModuleName, FunctionName,
Arity, ExprIndex}, where ModuleName, FunctionName, and Arity together
identify a function, and ExprIndex is used to identify an expression statement
of this function; the second element of the tuple is the AAST representation of
the expression statement, together with the absolute starting line number of the
function to which the expression belongs. The AAST updater checks which part
of the program has been changed since the last run of the clone detection, and
updates the AAST table accordingly. For a function that is deleted, added or
modified structurally, the entries associated with that function in the AAST ta-
ble are also deleted, added, or updated. Only the starting line number is updated
if a function only has its location changed.
The Binding Information Table. This table stores the binding structure
information for variables of each function. Each entry of the table is a tuple with
the first element identifying a function, and the second element representing the
binding structure in terms of defining and use locations. This table is updated
only if a function has been deleted, added or structurally modified.
The Expression Hash Table. This table stores the mapping from an expres-
sion statement to its hash value, therefore from an expression sequence to a
sequence of hash values, as well some meta-information about the expression,
including the number of lexical tokens, location information, and a boolean flag
indicating whether the expression is new. Each expression statement in this table
is also identified by a tuple, whose first element is an integer uniquely identify-
ing the expression sequence to which the expression statement belongs, and the
second element is a four-element tuple {ModuleName, FunctionName, Arity,
ExprIndex} identifying the particular expression.
The Generalised Suffix Tree. The reuse of the generalised suffix tree allows
us to avoid re-building the suffix tree for the whole program from scratch. The

Incremental Clone Detection and Elimination for Erlang Programs 11

generalised suffix tree is updated by removing those strings deleted/changed from
it, and by adding the new strings into it. To avoid the re-calculation of clones
from the suffix tree, we annotate each internal node with the clone information
represented by that node, which is also updated accordingly.

The Clone Table. This table stores the mapping between each initial clone
candidate and the clone classes derived from it. Each entry is a tuple whose first
element is the clone candidate, and second element is the clone classes derived
from it. A clone candidate is only processed if it does not belong to this table,
and the result is then added to the table. By tracking changes of the clone table,
we are able to track the evolution of clones during software development.

5 Support for Clone Elimination

Working within the functional programming paradigm, the general approach
to removing a cloned code fragment is to replace it with an application of a
function whose definition represents an abstraction of the cloned code fragment.
In theory, it is possible to eliminate all clones found fully automatically, however,
our experience [10] shows that this is undesirable for the following reasons:

– Some cloned code fragments logically do not represent a clearly defined func-
tionality; or a cloned code fragment might contain code that logically belongs
to the code before, or after, it in the program source.

– The least-general common abstraction generated by the clone detector has to
be given a proper name to reflect its functionality; and the parameters of the
least-general common abstraction might need to be renamed or re-ordered.

– In the case that a clone class contains code fragments from multiple modules,
a proper module has to be selected as the host module of the least-general
common abstraction to avoid introducing bad modularity smells.

– Fully automatic clone detection could introduce too many changes to the
code base in one go, and makes it harder for the user to follow.

Our clone elimination framework tries to automate things that should be auto-
mated, while allowing the user to have control over the clone elimination process
when it is necessary. With this framework, the following steps can be followed
to eliminate some, or all, cloned code fragments from a given clone class.

1. Copy and paste the anti-unifier of the clone class into an Erlang module;
2. rename variable names if necessary;
3. re-order the function parameters if necessary;
4. rename the function to some suitable name;
5. apply ‘fold expressions against a function definition’ to the new function.

Renaming, reordering of function parameters and folding expressions against a
function definition are all refactorings supported by Wrangler. Folding is the
refactoring which actually removes code clones. It searches for, and highlights,
clone instances of the function clause selected, and replaces those clone instances

12 Huiqing Li and Simon Thompson

which the user chooses to eliminate with application instances of the function
selected. This refactoring carries out its own clone instance search, and can
therefore be applied independently of the clone detection process.

Given a clone report containing a list of clone classes, the user has a number
of decisions to make as to which clone classes, or even which instances of a
specific clone class, to eliminate. We believe that by showing the least-general
common abstraction of each clone class and the application instance associated
with each clone class instance, we make this process much easier.

6 Experimental Evaluation

The tool has been applied to various Erlang application code and testing code.
In this paper, we take three codebases to evaluate the efficiency and accuracy
of the approach. The first codebase is Wrangler itself; the second codebase is
an Erlang test suite written with Erlang’s Common Test framework from a
mobile industry; and the third codebase includes the application and testing
code of both the Erlang compiler and the Erlang stdlib. The experiments were
conducted on a laptop with Intel(R) 2.27 GHz processor, 4.00 GB RAM, and
running Windows 7. The tool is evaluated in two criteria: runtime efficiency and
the number of clones detected. To contrast the performance, we run both the
incremental and the standalone clone detection for each codebase and version.

The default parameter setting for the tool, i.e. 5 for Emin, 40 for Tmin, 4 for
Pmax, 2 for Fmin and 0.8 for SimiScore, was used throughout the experiments.
The experimental results are shown in Table 1. The first column of the table

Wrangler KLOC
Files Incremental Standalone

Changed Time Clones Time Clones

0.8.7 42.5 70/70 15 18 15 18

0.8.8 44.2 59/80 10 21 15 21

0.8.9 47.4 44/83 8 26 16 26

0.9.0 48.0 9/84 2 26 16 26

0.9.1 48.1 3/84 3 26 17 26

Test Suite

V0 24.0 26/26 560 371 560 371

V1 23.9 3/26 90 361 550 361

V2 23.9 1/26 54 357 550 357

V3 23.8 2/26 90 346 550 346

V4 23.7 2/26 80 338 540 338

Erlang

R13B-03 244.3 306/306 94 78 94 78

R13B-04 245.5 71/311 36 79 97 79

R14A 250.8 108/327 40 82 95 82

R14B 251.9 39/321 28 81 94 81

Table 1. Incremental vs. Standalone Clone Detection

Incremental Clone Detection and Elimination for Erlang Programs 13

shows the codebases and their versions we used. For both Wrangler and the
Erlang compiler/stdlib, the version numbers are the release numbers, therefore
the amount of changes made between two consecutive versions could be large;
for the test suite, we use the original test suite as version V0, and each version
following represents the codebase after some clones have been eliminated. The
second column shows the size of each version of codebase in terms of the number
of lines of code. The third column shows the number of files that are changed
since the previous version out of the total number of files. The time is measured
in seconds, and the clones are measured by the number of clone classes reported.

It is obvious from this table that the processing time can be reduced signif-
icantly especially when the amount of changes made between two consecutive
versions is small. The tool performance is affected by both the size of the code
and the number/size of the initial clone candidates detected. Table 1 shows that
the processing time for the test suite is considerably long compared to the other
two codebases. This is due to the large amount of clones, and clone candidates,
detected. For example, the clone report for the test suite V0 says that the longest
clone consists of 86 lines of code, and is duplicated twice; and the most frequently
cloned code consists of 5 lines of code, and is duplicated 83 times.

The precision of the tool should be 100% due to the use of static semantics
aware analysis during the clone candidate examination phase, and this has been
verified through various case studies during the development of the tool. Any
false positives reported simply imply a bug in the tool implementation. As to the
recall rate, given a set of parameter settings, our tool in theory should be able
find all those classes whose members do not textually overlap; but because it is
practically impossible to examine this manually with large codebases, and there
are no other clone detection tools for Erlang which we can use for comparison,
at this stage we cannot give a concrete recall rate for the results reported here.

Compared to other clone detection tools, our tool takes precision and us-
ability of the tool as the top priority. A recent study [11] has shown that up to
75% of clones detected by state-of-the-art tools are false positives, and this has
hindered the adoption of clone detection techniques by software developers, no
matter how fast the tool is and how large of a code base the tool can work with,
as inspection of false positives is a waste of developer time.

7 Related Work

A survey by Roy et. al. provides a qualitative comparison and evaluation of the
current state-of-the-art in clone detection techniques and tools [12]. Overall there
are text-based approaches [13,14], token-based approaches [8,15], AST-based ap-
proaches [16,17,18,19] and program dependency graph based approaches [20].
AST-based approaches in general are more accurate, and could report more
clones than text-based and/or token-based approaches, but various techniques
are needed to make them scalable. A comparison and evaluation of these tech-
niques in terms of recall and precision as well as space and time requirements
has been conducted by Bellon et. al., and the results are reported in [21].

14 Huiqing Li and Simon Thompson

Closely related work to ours is by Bulychev et al. [19] who also use the notion
of anti-unification to perform clone detection in ASTs. Our approach is differ-
ent from Bulychev et al.’s in several aspects. First, we use a different approach,
which is faster but reports more false positives, to get the initial clone candi-
dates; second, their approach reports only clone pairs, while our approach reports
clone classes as well as their anti-unifiers; third, Bulychev et al.’s approach is
programming language independent, and the quality of the algorithm depends
on whether the occurrence of the same variable (in the same scope) refers to
one leaf in the AST; whereas our tool is for Erlang programs, though the idea
also applies to other languages, and static semantics information is taken into
account to disallow inconsistent substitutions.

In [22], Brown and Thompson describe an AST-based clone detection and
elimination tool for Haskell programs. While their approach works on small
Haskell programs, scalability is still the problem for the authors to address.

ClemanX [23] is an incremental tree-based clone detection tool developed by
Nguyen et al. Their approach measures the similarity between code fragments
based on the characteristic vectors of structural features, and solves the task of
incrementally detecting similar code as an incremental distance-based clustering
problem. In [24], Göde and Koschke describe a token-based incremental clone
detection technique, which makes use of the technique of generalised suffix trees.

8 Conclusions and Future Work

We have presented an incremental clone detection and elimination technique
which can be used interactively during a clone inspection and elimination pro-
cess, but also of particular value both to the working programmer and the project
manager of a larger programming project, in that it allows clone detection to
contribute to the ’dashboard’ reports from nightly builds, for instance.

For a tool to be used in an interactive way, performance and efficiency are es-
pecially important. This goal is achieved by our tool to incrementally update the
clone report after changes have been made to the program. Being able to specify
various parameter settings to the clone detector, the user has more control of the
granularity of the clones reported. Using the AST as the internal representation
of Erlang programs, and being static semantics aware, the clone detection tool
achieves 100% accuracy, which is essential when clone elimination is concerned.
To support clone elimination, our tool reports not only the common abstraction
of a clone class, but also the application instance of each clone class member.
The tool has been used in various industry case studies [10], during which its
usability has been improved, and usefulness has been demonstrated.

As future work, we plan to extend the tool to detect expression sequences
which are similar up to a single insertion or detection of an expression, or sim-
ilar up to a number of expression-level edits. Our overall approach is language-
independent, and we also plan to apply our techniques to clone detection and
elimination to test languages such as TTCN-3.

Incremental Clone Detection and Elimination for Erlang Programs 15

This research is supported by EU FP7 collaborative project ProTest (http:
//www.protest-project.eu/), grant number 215868.

References

1. Plotkin, G.D.: A Note on Inductive Generalization. Machine Intelligence 5 (1970)
2. Reynolds, J.C.: Transformational systems and the algebraic structure of atomic

formulas. Machine Intelligence 5 (1970) 135–151
3. Li, H., Thompson, S.: Similar Code Detection and Elimination for Erlang Pro-

grams. In: Practical Aspects of Declarative languages 2010. 104–118
4. Cesarini, F., Thompson, S.: Erlang Programming. O’Reilly Media, Inc. (2009)
5. Li, H., et al.: Refactoring with Wrangler, updated. In: ACM SIGPLAN Erlang

Workshop 2008, Victoria, British Columbia, Canada
6. Baader, F., Siekmann, J.H.: Unification Theory. Handbook of logic in artificial

intelligence and logic programming (1994) 41–125
7. Ukkonen, E.: On-Line Construction of Suffix Trees. Algorithmica 14(3) (1995)
8. Baker, B.S.: On Finding Duplication and Near-Duplication in Large Software

Systems. In Wills, L., et al., eds.: WCRE, Los Alamitos, California (1995)
9. Kamiya, T., Kusumoto, S., Inoue, K.: CCFinder: A Multi-Linguistic Token-based

Code Clone Detection System for Large Scale Source Code. IEEE Computer So-
ciety Trans. Software Engineering 28(7) (2002) 654–670

10. H. Li, A. Lindberg, A. Schumacher and S. Thompson: Improving your Test Code
with Wrangler. Technical Report 4-09, School of Computing, University of Kent

11. Tiarks, R., Koschke, R., Falke, R.: An Assessment of Type-3 Clones as Detected
by State-of-the-art Tools. In: SCAM’09, Los Alamitos, CA, USA (2009)

12. Roy, C.K., et al.: Comparison and Evaluation of Code Clone Detection Techniques
and Tools: A Qualitative Approach. Sci. Comput. Program. 74(7) (2009)

13. Baker, B.S.: A Program for Identifying Duplicated Code. Computing Science and
Statistics 24 (1992) 49–57

14. S. Ducasse, M.R., Demeyer, S.: A Language Independent Approach for Detecting
Duplicated Code. In: Proceedings ICSM99, IEEE (1999) 109–118

15. Li, Z., Lu, S., Myagmar, S.: CP-Miner: Finding Copy-Paste and Related Bugs in
Large-Scale Software Code. IEEE Trans. Softw. Eng. 32(3) (2006) 176–192

16. Baxter, I.D., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone Detection Using
Abstract Syntax Trees. In: ICSM ’98, Washington, DC, USA (1998)

17. W. Evans, C.F., Ma, F.: Clone Detection via Structural Abastraction. In: the 14th
Working Conference on Reserse Engineering. (2008) 150–159

18. Jiang, L., Misherghi, G., Su, Z., Glondu, S.: DECKARD: Scalable and Accurate
Tree-Based Detection of Code Clones. In: ICSE ’07. (2007) 96–105

19. Bulychev, P., Minea, M.: Duplicate Code Detection using Anti-unification. In:
Spring Young Researchers Colloquium on Software Engineering. (2008) 51–54

20. R. Komondoor and S. Horwitz: Tool Demonstration: Finding Duplicated Code
Using Program Dependences. Lecture Notes in Computer Science 2028 (2001)

21. Bellon, S., Koschke, R., Society, I.C., Antoniol, G., Krinke, J., Society, I.C., Merlo,
E.: Comparison and Evaluation of Clone Detection Tools. IEEE TSE 33 (2007)

22. Brown, C., Thompson, S.: Clone Detection and Elimination for Haskell. In:
PEPM’10: Partial Evaluation and Program Manipulation. 111–120

23. Nguyen, T.T., Nguyen, H.A., Al-Kofahi, J.M., Pham, N.H., Nguyen, T.N.: Scalable
and Incremental Clone Detection for Evolving Software. ICSM’09 (2009)

24. Göde, N., Koschke, R.: Incremental Clone Detection. In: Proceedings of the 2009
European Conference on Software Maintenance and Reengineering. (2009)

http://www.protest-project.eu/
http://www.protest-project.eu/

	Incremental Clone Detection and Elimination for Erlang Programs
	Huiqing Li and Simon Thompson

