
Stapleton, Gem, Howse, John, Thompson, Simon, Taylor, John and Chapman,
Peter (2013) On the Completeness of Spider Diagrams Augmented with
Constants. In: Moktefi, Amirouche and Shin, Sun-Joo, eds. Visual Reasoning
with Diagrams. Studies in Universal Logic . Birkhauser, pp. 101-133. ISBN
978-3-0348-0599-5.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/42317/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/978-3-0348-0600-8_7

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/42317/
https://doi.org/10.1007/978-3-0348-0600-8_7
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Stapleton, Gem and Howse, John and Thompson, Simon and Taylor, John and Chapman, Peter
 (2013) On the Completeness of Spider Diagrams Augmented with Constants. In: Moktefi, Amirouche
and Shin, Sun-Joo, eds. Visual Reasoning with Diagrams. Studies in Universal Logic . Birkhauser,
pp. 101-133. ISBN 978-3-0348-0599-5.

DOI

https://doi.org/10.1007/978-3-0348-0600-8_7

Link to record in KAR

http://kar.kent.ac.uk/42317/

Document Version

UNSPECIFIED

On the Completeness of Spider Diagrams
Augmented with Constants

Gem Stapleton, John Howse, Simon Thompson, John Taylor, and Peter Chapman

Abstract Diagrammatic reasoning can be described formally by a number of diagram-

matic logics; spider diagrams are one of these, and are used for expressing logical state-

ments about set membership and containment. Here, existing work on spider diagrams is

extended to include constant spiders that represent specific individuals. We give a formal

syntax and semantics for the extended diagram language before introducing a collection

of reasoning rules encapsulating logical equivalence and logical consequence. We prove

that the resulting logic is sound, complete and decidable.

Keywords Spider diagrams · Constants · Soundness · Completeness · Monadic

first-order logic · Diagrammatic reasoning

Mathematics Subject Classification (2010) Primary 68R02; Secondary 03B02

1 Introduction

Diagrams have been used for centuries in the visualization of mathematical concepts and

to aid the exploration and formalization of ideas. This is not the place to survey that

history; however, we give a brief overview of the background to the development of spider

diagrams now.

One of the most successful visual notations is the Venn diagram for sets and their re-

lationships; indeed, it is taught in the elementary school curriculum in many countries.

While Venn diagrams contain all possible intersection regions between the sets, Euler

diagrams [4] allow set intersection, disjointness and containment to be represented visu-

ally. The Euler diagram d1 in Fig. 1 asserts that A and B are disjoint and C is a subset

of A. The relative placement of the curves gives, for free, that C is disjoint from B . This

‘free ride’ is one of the areas where diagrams are thought to be superior to symbolic lan-

guages [20]. This example also illustrates the concept of ‘well-matchedness’ [8] since the

visual representation of assertions mirrors those at the semantic level: for example, the

containment of one curve by another mirrors the interpretation that the enclosed curve, C,

represents a subset of the set represented by the enclosing curve, A. Moreover, this has

the added benefit that the subset relation is mirrored by the transitive property of syntactic

containment.

Various extensions to Euler diagrams have been proposed, such as including syntax

to represent named individuals [27], or assert the existence of arbitrary finite numbers of

elements [12]. The Euler diagram d2 in Fig. 1 is augmented with shading, which asserts

A. Moktefi, S.-J. Shin (eds.), Visual Reasoning with Diagrams, Studies in Universal Logic,

DOI 10.1007/978-3-0348-0600-8_7, © Springer Basel 2013

101

http://dx.doi.org/10.1007/978-3-0348-0600-8_7

102 G. Stapleton et al.

Fig. 1 Extended Euler diagrams

Fig. 2 Non-hierarchical file

systems

the emptiness of the set A − C and the Euler/Venn diagram d3 tells us, in addition, that

fred is in the set C and bob is not in the set A.

Spider diagrams [12] are also based on Euler diagrams. The spider diagram d4 in Fig. 1

asserts the existence of two elements in the set C and at least one element outside of the

set A; this is accomplished through the use of existential spiders. A spider is a tree which

denotes a single element that can occupy one of the positions given by the nodes of the

tree. The shading in d4 is used to place an upper bound on the cardinality of A, limiting it

to two: in a set represented by a shaded region, all elements must be denoted by spiders.

Using a model-theoretic argument, it has been shown that spider diagrams are equivalent

to Monadic First-Order Logic with equality [23].

Constant spiders [21, 25], corresponding to given spiders in [11], were introduced to

provide users of spider diagrams with an explicit way to write constraints involving named

individuals. There are a number of examples of spider diagrams being used in practice,

such as assisting with the task of identifying component failures in safety critical hard-

ware designs [2]. Equivalent notations have been used for representing non-hierarchical

computer file systems [3], in a visual semantic web editing environment [16, 28] and

for viewing clusters which contain concepts from multiple ontologies [9]. Each of these

applications uses constants to represent specific objects, thus motivating the utility of

augmenting spider diagrams with constants. To take a particular example, the VennFS

system [3], is used to represent visually non-hierarchical files systems. The example in

Fig. 2 provides information about the folder location of certain files stored on a computer:

the labeled dots are files—or constant spiders—and the curves represent folders.

In [25], it was established that constants in spider diagrams could be simulated by a

shaded contour containing a single (non-constant) spider. This translation gave a diagram

that was expressively equivalent to the original, in the sense that it had the same model

set as the spider diagram with a constant. As with many notations—both symbolic and

diagrammatic—it is worthwhile adding a notation even though it might be dismissed as

mere ‘syntactic sugar’. The additional notation makes clear the intention of the user, and

On the Completeness of Spider Diagrams Augmented with Constants 103

allows that intention to be preserved in reasoning, for instance. In a visual notation it

makes it much easier to preserve the ‘free ride’ and ‘well matchedness’ properties; in the

particular case of constants there is a direct naming of a constant, rather than an indirect

naming through the name of the representing contour, for instance. Further discussion and

motivation can be found in [21, 25].

Earlier work formalized the syntax and semantics of spider diagrams and specified a

logic for the diagrams which was proved to be sound, complete and decidable; in this

paper we do the same for spider diagrams with constants. Specifically, in Sect. 2, we

give the syntax of spider diagrams extended to include constant spiders and, in Sect. 3,

present formal semantics. In Sect. 4, we provide a collection of reasoning rules for spider

diagrams with constants and, in Sect. 5, we present sketches of soundness, completeness

and decidability results.

2 Syntax

In diagrammatic systems, we can distinguish two levels of syntax: concrete (or token)

syntax and abstract (or type) syntax [10]. Concrete syntax captures the physical repre-

sentation of a diagram. Abstract syntax is independent of the semantically unimportant

spatial relations between syntactic elements in a concrete diagram. We do not include the

concrete syntax in this discussion since we work at the abstract level here.

The closed curves in a spider diagram are called contours and each contour is identified

by a label chosen from a countably infinite set, CL. A zone1 is defined to be a pair (in,out)

of disjoint finite subsets of CL. The set in contains the labels of the contours that include

the zone (in,out) whereas out is the set of labels of the contours that do not include

(in,out). So, in a unitary diagram, in and out form a partition of the contour label set. In

diagram d1 in Fig. 3 the zone that is inside contour A but outside B and C has abstract

representation ({A}, {B,C}). A region is a set of zones. We define Z and R = PZ to

be the sets of all zones and regions respectively. As noted earlier, in a Venn diagram, d ,

every possible zone—that is every element of PL for the set L of contour labels in d—is

represented in d . This is not the case for spider diagram, and a zone is said to be missing

if it is not a member of the possible zone set for the diagram.

A spider without a label is called an existential spider. A spider with a label is called

a constant spider. A spider touches a zone if that zone is in its habitat, and a spider is

said to inhabit the region in which it is placed, which is termed its habitat. To describe

the existential spiders in a particular diagram, it is sufficient to say how many existential

spiders there are in each region. We will use a bag of regions, called existential spider

descriptors, with the number of occurrences of each region in the bag giving the number

of existential spiders in the region. For example, the region

{(

{A,C}, {B}
)

,
(

∅, {A,B,C}
)

,
(

{B}, {A,C}
)

,
(

{B,C}, {A}
)}

in diagram d2 in Fig. 3 contains two existential spiders. We must also specify which

constant spider labels appear and, for each spider label, the habitat of the spider with that

1Since all constructs discussed here are abstract, we will use the terminology ‘zone’ rather than ‘abstract

zone’ throughout.

104 G. Stapleton et al.

Fig. 3 Examples of unitary spider diagrams

label. At the abstract level, a unitary diagram will contain a finite set of constant spider

labels together with a habitat function, mapping each constant spider label to a region

in the diagram. The habitat of the constant spider labeled s in diagram d2 in Fig. 3 is

{({A}, {B,C}), ({C}, {A,B})}.

We will assume that all of the constant spider labels come from a finite set CS . An

alternative choice would be to have a countably infinite set of constant spider labels. With

this alternative choice, the work below on reasoning rules, soundness and completeness

remains identical. However, the approach taken in [23] to prove that augmenting the spi-

der diagram language with constants does not increase expressiveness would need to be

modified.

Given two distinct constant spiders, each with a habitat sharing some zone z, a tie,

represented by an ‘equals’ sign, can be placed between them in z. The web of a pair

of constant spiders is the set of zones that contain a tie between those two spiders. The

diagram d3 in Fig. 3 contains two constant spiders, labeled s and t , connected by two ties.

The web of s and t is the region made up of the zone inside contour A but outside B and

C and the zone inside C but outside A and B .

General spider diagrams are a logical combination of diagrams; a single diagram is

called unitary. The formal definition of an abstract unitary spider diagram with constants

extends that given in [12] for unitary spider diagrams without constants. We assume that

the sets CS , CL, Z and R are all pairwise disjoint.

Definition 2.1 An abstract unitary spider diagram with constants, d (with contour

labels in CL and constant spider labels in CS), is a 7-tuple

〈

L,Z,Z∗,ESD,CS, θ,ω
〉

whose components are defined as follows.

1. L = L(d) ⊂ CL is a finite set of contour labels.

2. Z = Z(d) ⊆ {(in,L − in) : in ⊆ L} is a set of zones such that

(i) for each label l ∈ L there is a zone (in,L − in) ∈ Z(d) such that l ∈ in and

(ii) the zone (∅,L) is in Z(d).

We define R(d) = PZ − {∅} to be the set of regions in d . We further define MZ(d) =

{(in,L − in) : in ⊆ L} − Z(d) to be the missing zones of d .

3. Z∗ = Z∗(d) ⊆ Z is a set of shaded zones and we define R∗(d) = PZ∗(d) to be the set

of shaded regions in d . A region, r ∈ R(d) − R∗(d), is completely non-shaded if and

only if r ∩ Z∗(d) = ∅.

4. ESD = ESD(d) ⊂ Z
+ ×R(d) is a finite set of existential spider descriptors such that

∀(n1, r1), (n2, r2) ∈ ESD (r1 = r2 ⇒ n1 = n2).

On the Completeness of Spider Diagrams Augmented with Constants 105

If (n, r) ∈ ESD we say there are n existential spiders with habitat r .

5. CS = CS(d) ⊆ CS is a finite set of constant spider labels.

6. θ = θd : CS → R(d), is a function which maps each constant spider label to a region

in d . If θd(si) = r we say si has habitat r in d .

7. ω = ω : CS(d) × CS(d) → PZ is a function which returns the web of each pair of

constant spiders where z ∈ ω(si, sj) means that there is a tie between si and sj in the

zone z. Further, ω must ensure that the following hold for all si , sj , sk in CS(d):

(a) given two constant spiders there can only be ties in zones common to their habitat:

ω(si, sj) ⊆ θd(si) ∩ θd(sj),

(b) each constant spider is joined by ties to itself (this simplifies the formalization of

the semantics below): ω(si, si) = θd(si),

(c) if there is a tie between constant spiders si and sj in zone z, then there is a tie

between sj and si in z: ω(si, sj) = ω(sj , si), and

(d) given any zone z, if si and sj are joined by a tie in z and so are sj and sk , then si
and sk are joined by a tie in z: z ∈ ω(si, sj) ∩ ω(sj , sk) ⇒ z ∈ ω(si, sk).

Some remarks about the above definition are in order, before we illustrate it with an

example.

• Every contour in a concrete diagram contains at least one zone as captured by condi-

tion 2 (i).

• In any concrete diagram, the zone inside the boundary rectangle but outside all the

contours is present and this is captured by condition 2 (ii).

• Being joined by a tie is interpreted transitively. In fact, ties give rise to an equivalence

relation on the spiders in each zone, as specified by conditions 7 (b), (c) and (d).

• Therefore, in a zone z, taking the constant spiders in z as a set of vertices and the ties in

that zone as a set of edges, we would have a graph whose components formed complete

graphs with loops at each vertex. However, in our concrete syntax we will only draw a

spanning forest in each zone so as to avoid unnecessary clutter in diagrams.

• We note that ties could also be used to connect existential spiders. Indeed, they could

also be used to connect an existential spiders to constant spiders.2

Example The diagram d1 in Fig. 4 has the following abstract description.

1. Contour label set L(d1) = {A,B}.

2. Zone set

Z(d1) =
{(

∅, {A,B}
)

,
(

{A}, {B}
)

,
(

{B}, {A}
)

,
(

{A,B},∅
)}

.

3. Shaded zone set Z∗(d1) = {({B}, {A})}.

4. The set of existential spider descriptors

ESD(d1) =
{(

1,
{(

{B}, {A}
)})

,
(

1,
{(

{A}, {B}
)

,
(

{B}, {A}
)})}

.

5. Constant spider label set CS(d1) = {s, t}.

2However, for any diagram that incorporated such ties it is possible to define a semantically equivalent

diagram that does not contain such ties. This is not the case for ties between constant spiders. It is straight-

forward to extend the work in this paper to the case where these additional types of tie are permitted.

106 G. Stapleton et al.

Fig. 4 Two spider diagrams with constants

6. The function θd1
: {s, t} → R(d1) where θd1

(s) = {({A}, {B})} and θd1
(t) =

{({A,B},∅)}.

7. The function ωd1
: CS(d1) × CS(d1) → PZ(d1) where ωd1

(s, s) = θd1
(s), ωd1

(t, t) =

θd1
(t) and ωd1

(s, t) = ωd1
(t, s) = ∅.

Now we introduce some terminology and notation on top of the concepts formalized

in the definition. An existential spider descriptor (n, r) is intended to mean that there

are precisely n existential spiders placed in the zones in the region r , and we can think of

these being numbered from 1 to n. A typical such spider will be spider i, which we denote

by ei(r), to avoid confusion with the notation (i, r) used for existential spider descriptors.

The set of existential spiders in a unitary diagram d is given by

ES(d) =
{

ei(r) : ∃(n, r) ∈ ESD(d) ∧ 1 ≤ i ≤ n
}

.

We also define S(d) = ES(d) ∪ CS(d) to be the set of spiders in d . We assume that the

sets ES(d) and CS ∪ CL∪Z ∪R are disjoint. We also define a function

η : ES(d) → R(d)

which returns the habitat of each existential spider, so that η(ei(r)) = r .

Spiders represent the existence of elements and regions represent sets—thus we need

to know how many elements are represented in each region. Note here that, in a unitary

diagram, a constant spider and an existential spider represent the existence of distinct

elements. For example, in Fig. 4, the diagram d2 asserts that the set represented by the

zone ({A}, {B}) contains at least three elements, including the individual represented by s.

The set of existential spiders contained by region r in d is denoted by ES(r, d). More

formally,

ES(r, d) =
{

e ∈ ES(d) : η(e) ⊆ r
}

.

Similarly, the set of constant spiders contained by region r in d is

CS(r, d) =
{

s ∈ CS(d) : θd(s) ⊆ r
}

and we also define

S(r, d) = ES(r, d) ∪ CS(r, d).

So, any spider in d whose habitat is a subset of r is in the set S(r, d). The set of existential

spiders touching r in d is denoted by ET (r, d). More formally,

ET (r, d) =
{

s ∈ ES(d) : η(s) ∩ r �= ∅
}

.

On the Completeness of Spider Diagrams Augmented with Constants 107

Moreover, in a shaded region there is an upper bound on the cardinality of the represented

set. For example, d1 in Fig. 4 tells us that there are at most two elements in B −A, because

exactly two spiders touch B −A. The set of constant spiders touching a region, CT (r, d),

and the set of spiders touching a region, T (r, d), are defined similarly. In d1, Fig. 4,

∣

∣S
({(

{B}, {A}
)}

, d1

)∣

∣ = 1

and
∣

∣T
({(

{B}, {A}
)}

, d1

)∣

∣ = 2.

In d2,
∣

∣S
({(

{A}, {B}
)}

, d2

)∣

∣ =
∣

∣T
({(

{A}, {B}
)}

, d2

)∣

∣ = 3.

Unitary diagrams form the building blocks of compound diagrams, formed by using log-

ical connectives.

Definition 2.2 An abstract spider diagram with constants is defined as follows.

1. Any unitary diagram with constants is a spider diagram with constants.

2. If D1 and D2 are spider diagrams with constants then (D1 ∨ D2) and (D1 ∧ D2) are

spider diagrams with constants.

Our convention will be to denote unitary diagrams by d and arbitrary diagrams by D.

Some compound diagrams are not satisfiable (defined later). For convenience later, we

introduce the symbol ⊥, defined to be a unitary diagram that is not satisfiable.

3 Semantics

We now sketch, informally, the semantics of unitary spider diagrams. Regions represent

sets. Missing zones represent the empty set. For example, in diagram d1 in Fig. 3, the

zones ({A,C}, {B}) and ({A}, {B,C}) are missing and so represent the empty set; from

this we can deduce that sets represented by A and B are disjoint.

Now, for simplicity, suppose a unitary diagram d does not contain any ties. If region

r is inhabited by n spiders in d then d expresses that the set represented by r contains at

least n elements. If r is shaded and touched by m spiders in d then d expresses that the set

represented by r contains at most m elements. Thus, if d has a shaded, untouched region,

r , then d expresses that r represents the empty set. For example, in diagram d1 in Fig. 3,

the shaded region {({A}, {B,C}), ({A,C}, {B})} is untouched by any spider and therefore

represents the empty set. In diagram d2 in Fig. 3, the same region is shaded and touched

by two spiders and so the set it represents contains at most two elements.

Each constant spider asserts that the individual it represents is in the set represented

by its habitat. Moreover, the individuals represented by constant spiders are distinct from

those represented by existential spiders. Therefore, if a region contains an existential spi-

der and a constant spider, s, we can deduce that there are at least two elements in that

region, including that represented by s. Within a unitary diagram, no two constant spiders

represent the same individual unless they are joined by a tie. Constant spiders joined by

108 G. Stapleton et al.

ties represent the same individual if and only if there exists a zone, z, in their web and they

both represent individuals in the set represented by z. So, the presence of a tie between

two constant spiders has the effect of potentially reducing the upper and lower cardinality

constraints placed on the set represented by the union of their habitats. In diagram d3 in

Fig. 3, the constant spiders s and t represent different individuals unless both the individ-

uals they represent are in the set represented by the zone ({A}, {B,C}) or both are in the

set represented by ({C}, {A,B}), in which case they must represent the same individual.

To formalize the semantics of spider diagrams with constants we shall map constant

spider labels, contour labels, zones and regions to subsets of some universal set. We wish

constant spider labels to act like constants in first-order predicate logic, so they will map

to single element subsets of the universal set, unless the universal set is the empty set.

We could, equivalently, choose to map constant spiders to elements of the universal set.

However, the semantics predicate (defined below) is more elegant when we map constant

spiders to sets, as are the details of some of the proofs below. Our formalization of the

semantics extends that given for spider diagrams without constants in [12].

Definition 3.1 An interpretation of constant spider labels, contour labels, zones and

regions, or simply an interpretation, is a pair (U,Ψ) where U is a set and Ψ : CL ∪

Z ∪ R ∪ CS → PU is a function mapping constant spider labels, contour labels, zones

and regions to subsets of U such that the images of the zones and regions are completely

determined by the images of the contour labels as follows:

1. for each zone (a, b), Ψ (a, b) =
⋂

l∈a Ψ (l) ∩
⋂

l∈b Ψ (l) where Ψ (l) = U − Ψ (l) and

we define
⋂

l∈∅ Ψ (l) = U =
⋂

l∈∅ Ψ (l) and

2. for each region r , Ψ (r) =
⋃

z∈r Ψ (z) and we define Ψ (∅) =
⋃

z∈∅ Ψ (z) = ∅

and either the universal set is the empty set or the constant spiders map to singleton subsets

of U . More formally

U = ∅ ∨ ∀si ∈ CS
∣

∣Ψ (si)
∣

∣ = 1.

We will write Ψ :R∪CS → PU when strictly speaking we mean Ψ : CL∪Z∪R∪CS →

PU .

We introduce a semantics predicate which identifies whether a diagram expresses a

true statement, with respect to an interpretation.

Definition 3.2 Let D be a spider diagram with constants and let m = (U,Ψ) be an in-

terpretation. We define the semantics predicate of D, denoted PD(m). If D =⊥ then

PD(m) is ⊥. If D (�=⊥) is a unitary diagram then PD(m) is the conjunction of the fol-

lowing conditions.

1. Plane Tiling Condition. The union of the sets represented by the zones in D is the

universal set:
⋃

z∈Z(D) Ψ (z) = U .

2. There exists an extension of Ψ : R ∪ CS → PU to Ψ : R ∪ CS ∪ ES(D) → PU such

that the following conditions are satisfied.

(a) Spiders Condition. Each spider represents the existence of an element (strictly,

a single element set) in the set represented by its habitat and existential spiders do

not represent the same elements as any constant spiders:

∀s ∈ ES(D)
(∣

∣Ψ (s)
∣

∣ = 1 ∧ Ψ (s) ⊆ Ψ
(

η(s)
))

On the Completeness of Spider Diagrams Augmented with Constants 109

and

∀s ∈ CS(D)
(∣

∣Ψ (s)
∣

∣ = 1 ∧ Ψ (s) ⊆ Ψ
(

θD(s)
))

and

∀e ∈ ES(D) ∀si ∈ CS(D) Ψ (e) �= Ψ (si).

(b) Existential Spiders Condition. No two existential spiders represent the existence

of the same element:

∀e1, e2 ∈ ES(D)
(

Ψ (e1) = Ψ (e2) ⇒ e1 = e2

)

.

That is, the function Ψ is injective when the domain is restricted to ES(d).

(c) Constant Spiders Condition. Two constant spiders represent the same individual

if and only if they both represent an individual in the set denoted by some zone in

their web:

∀si, sj ∈ CS(D)
(

Ψ (si) = Ψ (sj)

⇔ ∃z ∈ ωD(si, sj) Ψ (si) ∪ Ψ (sj) ⊆ Ψ (z)
)

.

(d) Shading Condition. Each shaded zone, z, represents a subset of the set of ele-

ments represented by the spiders touching z:

∀z ∈ Z∗(D) Ψ (z) ⊆
⋃

s∈T ({z},D)

Ψ (s).

If Ψ : R∪ES(D) → PU ensures PD(m) is true then Ψ is a valid extension to existential

spiders for D. If D = D1 ∨ D2 then PD(m) = PD1
(m) ∨ PD2

(m). If D = D1 ∧ D2 then

PD(m) = PD1
(m) ∧ PD2

(m). We say m satisfies D, or m is a model for D, denoted

m |= D, if and only if PD(m) is true. If all the models for D1 are models for D2, then D1

semantically entails D2, denoted D1 � D2. If D1 � D2 and D2 � D1, then D1 and D2

are semantically equivalent, denoted D1 ≡� D2.

As an example, the interpretation m = ({1,2,3,4},Ψ) partially defined by Ψ (s1) =

{1}, Ψ (s2) = {2}, Ψ (L1) = {1,2} and Ψ (L2) = {2,3,4} is a model for d1 in Fig. 4 but not

for d2.

Theorem 3.3 Let d (�=⊥) be a unitary spider diagram with constants. Then d is satisfi-

able.

The proof strategy is to construct an interpretation that we call a standard model for d ,

following a similar approach to that for spider diagrams without constants in [12]. Essen-

tially, this contains only the elements that are forced to exist by the presence of spiders

in the diagram: for each spider in the diagram we choose one the zones in its habitat and

place an element there; in extending this construction to constants we just have to make

sure that these elements are identified when ties require that to be so. It is straightforward

to show that any standard model for d satisfies d . This standard model is also used in the

proof of completeness. More formally, a standard model is defined as follows:

110 G. Stapleton et al.

Definition 3.4 Let d be a unitary spider diagram with constants. Let f : S(d) → Z(d) be

a function such that for each spider s, f (s) is in the habitat of s. For each constant spider,

si , we define

[si] =
{

sj ∈ CS(d) : f (sj) = f (si) ∧ f (si) ⊆ ωd(si, sj)
}

(these sets [si] give rise to an equivalence relation and, hence, form a partition of CS(d)).

Define

U = ES(d) ∪
{

[si] : si ∈ CS(d)
}

.

For each contour label, L, in d define

Ψ (L) =
{

e ∈ ES(d) : f (e) = (in,out) ∧ L ∈ in
}

∪
{

[si] : si ∈ CS(d) ∧ f (si) = (in,out) ∧ L ∈ in
}

and each constant spider, sk , in d , maps to the set

Ψ (sk) =
{

[sk]
}

.

Then (U,Ψ) is a standard model for d .

4 Reasoning Rules

We will now develop a set of sound and complete reasoning rules for spider diagrams with

constants. All of the reasoning rules given for spider diagrams without constants in [12]

can be extended—sometimes in a non-trivial way—to spider diagrams with constants; we

omit most of the formal definitions of the extended rules.

4.1 Unitary to Unitary Reasoning Rules

In this section we introduce a collection of reasoning rules that apply to, and result in,

a unitary diagram.

Rule 1 (Introduction of a shaded zone) Let d1 be a unitary diagram that has a missing

zone. If d2 is the same as d1 except that d2 contains a new, shaded and ‘untouched’ zone

then d1 is logically equivalent to d2.

In Fig. 5, Rule 1 (introduction of a shaded zone) is applied to d1 to give d2. Applying

the introduction of a shaded zone rule results in a semantically equivalent diagram. The

next two rules are not information preserving.

Rule 2 (Erasure of shading) Let d1 be a unitary diagram with a shaded region r . Let d2 be

identical to d1 except that r is completely non-shaded in d2. Then d1 logically entails d2.

On the Completeness of Spider Diagrams Augmented with Constants 111

Fig. 5 An application of Rule 1 (introduction of a shaded zone)

Fig. 6 Applications of Rule 2 (erasure of shading) and Rule 3 (erasure of a spider)

In Fig. 6, Rule 2 (erasure of shading) is applied to d1 to give d2.

Rule 3 (Erasure of a spider) Let d1 be a unitary diagram containing a spider s with a

completely non-shaded habitat. Let d2 the same as d1 except that d2 does not contain s or

any ties that were connected to s. Then d1 logically entails d2.

In Fig. 6, Rule 3 (erasure of a spider) is applied to d2 to give d3.

4.2 Unitary to Compound Reasoning Rules

We now specify five further rules, each of which is reversible, that allow a unitary diagram

to be replaced by a compound diagram. The first of these rules allows us to introduce a

contour. In the logic for spider diagrams without constants, the introduction of a contour

rule applies to, and results in, a unitary diagram [12].

Before we formulate the introduction of a contour rule, we look at an example. In

Fig. 7, we examine how to introduce the contour with label C to d1, which contains

constant spiders. When we do so, each zone must split into two new zones, thus ensuring

that information is preserved. The habitats of the existential spiders are similarly altered.

More care must be taken with the constant spiders, however, due to the presence of ties.

Consider, for example, the constant spiders s and t . The individual represented by both

s and t must be either in C − (A ∪ B) or in U − (A ∪ B ∪ C). The constant spider u

represents an individual that is either in A − (B ∪ C) or (A ∩ C) − B . This gives rise to

four possibilities, shown in d2, d3, d4 and d5. We call these four diagrams the C-extensions

of d1. The diagram d1 is semantically equivalent to d2 ∨d3 ∨d4 ∨d5. We could replace d1

with the disjunction of just two unitary diagrams, each with u having a two zone habitat:

({A}, {B,C}) and ({A,C}, {B}). However, it is not the case that the single unitary diagram

d6 in Fig. 8 is semantically equivalent to d1. The constant spiders s and t must represent

112 G. Stapleton et al.

Fig. 7 A diagram with its C-extensions

Fig. 8 Introducing a contour:

an incorrect application

the same individual in d1 but this is not the case in d6, since the semantics of ties are zone

based.

To define this rule formally, we first define the component parts of the resulting dis-

junction. We call these component parts Li -extensions, where Li is the contour label

introduced.

Definition 4.1 Let d1 be a unitary diagram such that each constant spider in d1 has a

single zone habitat. Let Li be a contour label that is not in d1, that is Li ∈ CL − L(d1).

Let d2 be a unitary diagram such that each constant spider in d2 has a single zone habitat.

If the following conditions hold then d2 is an Li -extension of d1.

1. The contour labels of d2 are those of d1, together with Li : L(d2) = L(d1) ∪ {Li}.

2. The constant spider labels match: CS(d1) = CS(d2).

3. There exists a surjection, h : Z(d2) → Z(d1) defined by h(a, b) = (a −{Li}, b−{Li})

such that

(a) each zone in d1 is mapped to by two distinct zones in d2,

(b) each zone is shaded in d2 if and only if it maps to a shaded zone,

(c) the existential spiders match and their habitats are preserved under h: there exists

a bijection, σ : ES(d1) → ES(d2) that satisfies

∀e ∈ ES(d1) η
(

σ(e)
)

=
{

z ∈ Z(d2) : h(z) ∈ η(e)
}

,

and

On the Completeness of Spider Diagrams Augmented with Constants 113

Fig. 9 An application of Rule 5, splitting spiders

(d) the habitat of each constant spider, c, in d2 satisfies h(θd2
(c)) = θd1

(c).

4. Spider webs are preserved. Since the constant spiders have a single zone habitat we

may formalize this as follows:

∀c1, c2 ∈ CS(d2)
(

ωd1
(c1, c2) �= ∅ ⇔ ωd2

(c1, c2) �= ∅
)

.

We define EXT (Li, d1) to be the set of all Li -extensions of d1.

Rule 4 (Introduction of a contour label) Let d1 (�= ⊥) be a unitary diagram such that

each constant spider has a single zone habitat. Let Li ∈ CL− L(d1). Then d1 is logically

equivalent to the diagram
∨

d2∈EXT (Li ,d1)

d2.

Rule 5 (Splitting spiders) Let d be a unitary diagram with a spider s touching every zone

of two disjoint regions r1 and r2. Let d1 and d2 be unitary diagrams that are identical

to d except that neither contains s, but instead each contains an extra spider, s1 and s2

respectively, whose habitats are regions r1 in d1 and r2 in d2. If s is a constant spider,

then

1. s1 and s2 have the same label as s and

2. any ties joined to s in d are joined to the appropriate instance of s in d1 and d2.

Then d is logically equivalent to the diagram d1 ∨ d2.

Figure 9 illustrates an application of the splitting spiders rule. The spider s in d splits

into two spiders, one in d1, the other in d2. Intuitively, the individual represented by s is

either in the set U − (A ∪ B) or the set A ∪ B .

Rule 6 (Excluded middle) Let d be a unitary diagram with a completely non-shaded

region r . Let d1 and d2 be unitary diagrams that are the same as d except that d1 contains

an extra existential spider whose habitat is r and in d2 the region r is shaded. Then d is

logically equivalent to the diagram d1 ∨ d2.

For example, the diagram d in Fig. 10 can be replaced by d1 ∨ d2 by applying the

excluded middle rule.

Before we introduce the next rule, we look at an example, and then make a definition

that is key to formulating the rule itself. Given a unitary diagram, d , that has only non-

empty models (in which case d contains at least one spider), we can deduce that the

114 G. Stapleton et al.

Fig. 10 An application of Rule 6, excluded middle

Fig. 11 A unitary diagram with its t -extensions

individual represented by a constant spider label, t , belongs to one of the sets denoted by

the zones in d . Moreover, this individual must either be the same as, or different from, the

elements already represented in d .

As an example, consider d in Fig. 11 which has only non-empty models. Thus, in

any model for d the constant spider (label) t maps to some individual (technically, single

element set). Then t is in A−B , B −A or U − (A∪B). If t is in A−B then it must equal

s, since the region inside A is entirely shaded, shown in d1. If t is in the set B − A then it

may be either equal to or different from the element represented by the existential spider

in B in the diagram d ; these cases are represented by d2 and d3 respectively. Finally, if t

is not in A − B or B − A then, since A ∩ B = ∅, t must be in U − (A ∪ B), represented

by d4. The diagrams d1, d2, d3 and d4 are called t-extensions of d . A diagram in which

all spiders have a single zone habitat is called an α-diagram.

Definition 4.2 Let d1 be a unitary α-diagram such that S(d1) �= ∅ and there exists si ∈

CS −CS(d1). Let d2 be a unitary α-diagram. If the following conditions are satisfied then

d2 is an si -extension of d1.

1. The zones match: Z(d1) = Z(d2).

2. The shaded zones match: Z∗(d1) = Z∗(d2).

3. The constant spiders match except that si is in d2: CS(d1) ∪ {si} = CS(d2).

4. The habitats of the existing constant spiders are preserved: θd1
= θd2

|CS(d1).

5. The existing webs are preserved: ωd1
= ωd2

|CS(d1)×CS(d1).

On the Completeness of Spider Diagrams Augmented with Constants 115

Fig. 12 Combining diagrams

6. If si has a shaded habitat, z, in d2 then either the number of existential spiders inhab-

iting z is one less than the number in d1 or si is joined to another (constant) spider by

a tie: if θd2
(si) ⊆ Z∗(d2) then

(a) ∀sj ∈ CS(d1) ωd2
(si, sj) = ∅ ∧ ∃e ∈ ES(θd2

(si), d1) ES(d2) = ES(d1) − {e} or

(b) ∃sj ∈ CS(d1) ωd2
(si, sj) �= ∅ ∧ ES(d1) = ES(d2).

7. If si has a non-shaded habitat in d2 then either the number of existential spiders in-

habiting z is the same as, or one less than the number in d1 or si is joined to an-

other (constant) spider by a tie and the number of existential spiders is the same: if

θd2
(si) ∩ Z∗(d2) = ∅ then

(a) ∀sj ∈ CS(d1) ωd2
(si, sj) = ∅ ∧ (ES(d1) = ES(d2) ∨ ∃e ∈ ES(θd2

(si), d1)

ES(d2) = ES(d1) − {e}) or

(b) ∃sj ∈ CS(d1) ωd2
(si, sj) �= ∅ ∧ ES(d1) = ES(d3).

We define EXT (si, d1) to be the set of all si -extensions of d1.

Rule 7 (Introduction of a constant spider) Let d1 be a unitary α-diagram such that

S(d1) �= ∅ and there exists si ∈ CS − CS(d1). Then d1 is logically equivalent to the dia-

gram
∨

d2∈EXT (si ,d1)

d2.

Introducing the constant spider t to d in Fig. 11, results in d1 ∨ d2 ∨ d3 ∨ d4.

The final rule in this section, called combining, replaces two unitary α-diagrams, with

the same zone sets and constant spider label sets, taken in conjunction by a single unitary

diagram, illustrated in Fig. 12. We combine d1 ∧ d2 to give d∗. Any shading in either d1

or d2 occurs in d∗. Moreover, the number of spiders in any zone in d∗ is the same as the

maximum number that occur in that zone in d1 or d2. The diagram d1 ∧d2 is semantically

equivalent to d∗.

We now give a further example in a build-up to the definition of the combining rule.

In Fig. 13, d1 and d2 contain contradictory information. We observe the following.

1. The zone z1 = ({A}, {B,C}) is shaded in d1 and contains more spiders in d2. More-

over, z1 represents the empty set in any model for d1. In any model for d2, z1 does not

represent the empty set.

2. The constant spider u has different habitats in the two diagrams. In any model for d1,

u represents an individual that is not in the set A∪C. In any model for d2, u represents

an individual in the set C.

116 G. Stapleton et al.

Fig. 13 An unsatisfiable diagram

3. The constant spiders s and t are joined by a tie in d1 but not in d2. In any model for d1,

s and t represent the same individual, but in any model for d2 they represent distinct

individuals.

From any one of these three observations we can deduce that d1 ∧ d2 is unsatisfiable.

Definition 4.3 Let d0 and d1 be unitary α-diagrams. Then d0 and d1 are comparable if

one of the following three conditions holds.

1. Z(d0) = Z(d1) and CS(d0) = CS(d1).

2. Z(d0) = Z(d1).

3. for one of the dis where i ∈ {0,1}, Z∗(di) = Z(di) and S(di) = ∅.

4. d0 =⊥ or d1 =⊥.

Recall that S({z}, d) = {s ∈ S(d) : η(s) = {z}}.

Definition 4.4 Let d0 and d1 be comparable unitary α-diagrams. Then d0 and d1 are in

contradiction if one of the following four conditions holds.

(i) Either d0 =⊥ or d1 =⊥.

(ii) There is a zone that is shaded in one diagram and contains more spiders in the other.

More formally, there exists z ∈ Z(di) for some i = 0,1 such that z ∈ Z∗(dj) and

|S({z}, di)| > |S({z}, dj)| where j = 1 − i.

(iii) There is a constant spider with different habitats in d0 and d1. More formally,

θd0
�= θd1

.

(iv) There are two constant spiders that are joined by a tie in one diagram but not the

other. More formally, ωd0
�= ωd1

.

It may be helpful to note that if d0 and d1 are comparable and not in contradiction then

ω(d0) = ω(d1).

Lemma 4.5 Let d0 and d1 be comparable unitary α-diagrams. Then d0 and d1 are in

contradiction if and only if d0 ∧ d1 is unsatisfiable.

Definition 4.6 Let d0 and d1 be comparable unitary α-diagrams. Then their combination,

denoted d∗ = d0 ∗ d1, is a unitary α-diagram defined as follows.

1. If d0 and d1 are in contradiction then d0 ∗ d1 =⊥.

On the Completeness of Spider Diagrams Augmented with Constants 117

2. Otherwise d∗ = d0 ∗ d1 is a unitary α-diagram such that the following hold.

(a) The set of zones in the combined diagram is the same as the set of zones in the

original diagrams: Z(d∗) = Z(d0).

(b) The shaded zones in d∗ = d0 ∗ d1 are those that are shaded in at least one of the

original diagrams: Z∗(d∗) = Z∗(d0) ∪ Z∗(d1).

(c) The number of existential spiders in any zone in the combined diagram is the max-

imum number of existential spiders inhabiting that zone in the original diagrams:

∀z ∈ Z
(

d∗
)

ES
(

{z}, d∗
)

= ES
(

{z}, d0

)

∪ ES
(

{z}, d1

)

.

Equivalently, ES(d∗) = ES(d0) ∪ ES(d1).

(d) The constant spiders in the combined diagram are the same as those in the original

diagrams: CS(d∗) = CS(d0).

(e) The habitats of the constant spiders in the combined diagram are the same as those

in the original diagrams: θd∗ = θd0
.

(f) The webs of the constant spiders in the combined diagram are the same as those in

the original diagrams: ω(d∗) = ω(d0).

Rule 8 (Combining) Let d0 and d1 be comparable unitary α-diagrams. Then d0 ∧ d1 is

logically equivalent to d0 ∗ d1.

4.3 Logic Reasoning Rules

We now introduce a collection of rules, all of which have (obvious) analogies in symbolic

logic. The next rule is analogous to P ⊢ P ∨ Q, for any propositions P,Q.

Rule 9 (Connecting a diagram) Let D1 and D2 be spider diagrams. Then D1 logically

entails D1 ∨ D2.

Rule 10 (Inconsistency) The diagram ⊥ logically entails any diagram.

Rule 11 (∨-Idempotency) Any spider diagram D is logically equivalent to D ∨ D.

Rule 12 (∧-Idempotency) Any spider diagram D is logically equivalent to D ∧ D.

Rule 13 (∨-Commutativity) Let D1 and D2 be spider diagrams. Then D1 ∨D2 is logically

equivalent to D2 ∨ D1.

Rule 14 (∧-Commutativity) Let D1 and D2 be spider diagrams. Then D1 ∧D2 is logically

equivalent to D2 ∧ D1.

Rule 15 (∨-Associativity) Let D1, D2 and D3 be spider diagrams. Then D1 ∨ (D2 ∨D3)

is logically equivalent to (D1 ∨ D2) ∨ D3.

Rule 16 (∧-Associativity) Let D1, D2 and D3 be spider diagrams. Then D1 ∧ (D2 ∧D3)

is logically equivalent to (D1 ∧ D2) ∧ D3.

118 G. Stapleton et al.

Rule 17 (∨-Distributivity) Let D1, D2 and D3 be spider diagrams. Then D1 ∨ (D2 ∧D3)

is logically equivalent to (D1 ∨ D2) ∧ (D1 ∨ D3).

Rule 18 (∧-Distributivity) Let D1, D2 and D3 be spider diagrams. Then D1 ∧ (D2 ∨D3)

is logically equivalent to (D1 ∧ D2) ∨ (D1 ∧ D3).

Rule 19 (∨-Simplification) Let D1, D2 and D3 be spider diagrams. If diagram D2 can

be transformed into diagram D3 by one of reasoning rules then D1 ∨ D2 logically entails

D1 ∨ D3.

Rule 20 (∧-Simplification) Let D1, D2 and D3 be spider diagrams. If diagram D2 can be

transformed into diagram D3 by one of the reasoning rules then D1 ∧D2 logically entails

D1 ∧ D3.

4.4 Obtainability

To conclude this section on reasoning rules we define obtainability.

Definition 4.7 Let D1 and D2 be two spider diagrams with constants. Diagram D2 is

obtainable from D1, denoted D1 ⊢ D2, if and only if there is a sequence of diagrams

〈D1,D2, . . . ,Dm〉 such that D1 = D1, Dm = D2 and Dk+1 can be obtained from Dk

(where 1 ≤ k < m) by applying a reasoning rule. If D1 ⊢ D2 and D2 ⊢ D2, we write

D1 ≡⊢ D2.

5 Soundness

In this section we show the soundness of the logic of spider diagrams with constants

introduced in Sect. 4.

To prove that the system is sound, the strategy is to start by showing that each of the

reasoning rules is sound. We show that the introduction of a constant spider rule is sound

as an illustration but omit the remaining proofs. The soundness theorem then follows by

a simple induction argument.

Lemma 5.1 Rule 7 (introduction of a constant spider) is sound. Let d1 be unitary α-

diagram such that S(d1) �= ∅ and there exists si ∈ CS − CS(d1). Then

d1 ≡�

∨

d2∈EXT (si ,d1)

d2.

Proof Let m = (U,Ψ) be an interpretation. Assume that m |= d1. We will show that m |=

d2, for some d2 ∈ EXT (si, d1). Let Ψ1 : R∪ CS ∪ ES(d1) → PU be a valid extension to

existential spiders for d1. Using d1 and Ψ1, we define a diagram, d2, as follows.

1. The zones match: Z(d1) = Z(d2).

On the Completeness of Spider Diagrams Augmented with Constants 119

2. The shaded zones match: Z∗(d1) = Z∗(d2).

3. The constant spiders in d1 are in d2 and, additionally, d2 contains si : CS(d1) ∪ {si} =

CS(d2).

4. The habitats of the constant spiders match and the habitat of si in d2 is determined

by Ψ1:

θd1
= θd2

|CS(d1)

and

θd2
(si) = {z}

where z is the unique zone in Z(d1) such that Ψ (si) ⊆ Ψ (z). Such a zone exists be-

cause the plane tiling condition holds for d1.

5. The existing webs in d1 are preserved in d2: ωd1
= ωd2

|CS(d1)×CS(d1).

6. We now consider three cases in order to define the existential spiders (and their habi-

tats) and the remaining webs of d2.

(a) There is an existential spider, s, in d1 such that Ψ1(s) = Ψ (si). In this case, we

choose en({η(s)}), where (n, η(s)) ∈ ESD(d1), and we define ES(d2) = ES(d1)−

{en(η(s))}. For the remaining webs, we define, for all sj ∈ CS(d1), ωd2
(si, sj) =

∅. We note, by the spiders condition for d1, θd2
(si) = η(s).

(b) There is a constant spider, c, in d1 such that Ψ (c) = Ψ (si). In this case, ES(d1) =

ES(d2), and, for the remaining webs, we start by defining ωd2
(si, c) = θd1

(c);

since d1 is an α-diagram, θd1
(c) is a single zone. It follows that si is also joined

by a tie to all the constant spiders that are joined to c in d1 and, by (5) above and

the transitivity of ties, not joined by a tie to any other constant spiders. We note,

by the spiders condition for d1, θd2
(si) = θd1

(c).

(c) No spider, s, in S(d1) satisfies Ψ1(s) = Ψ (si). In this case, we have ES(d1) =

ES(d2) and for all c ∈ CS(d1), ωd2
(si, c) = ∅.

It is straightforward to verify that d2 is an si -extension of d1.

We now show that m |= d2. Clearly, the plane tiling condition holds for d2, since

Z(d1) = Z(d2). If case 6(a) holds then we suppose, without loss of generality, that

s = en(η(s)). If either case 6(b) or 6(c) holds then no supposition is necessary. We define

an extension of Ψ to the existential spiders in d2 by Ψ2 = Ψ1|R∪CS∪ES(d2). The function

Ψ2 is a valid extension of Ψ to existential spiders for d2. Hence m |= d2, and it follows

that

d1 �

∨

d2∈EXT (si ,d1)

d2.

For the converse, it can be shown that each d2 ∈ EXT (si, d1) satisfies d2 � d1. Assum-

ing that m |= d2, the proof strategy is to take a valid extension of Ψ to existential spiders

for d2 and use this to construct a valid extension of Ψ to existential spiders for d1. Thus,

∨

d2∈EXT (si ,d1)

d2 � d1.

Hence

120 G. Stapleton et al.

d1 ≡�

∨

d2∈EXT (si ,d1)

d2,

that is, Rule 7 (introduction of a constant spider) is sound. �

Theorem 5.2 (Soundness) Let D1 and D2 be spider diagrams. If D1 ⊢ D2 then D1 �D2.

Proof The proof is by induction on the length, n, of a sequence establishing D1 ⊢ D2,

since each individual step can be shown to be sound along the lines of the proof of

Lemma 5.1 above. �

6 Completeness and Decidability

In this section we show the completeness and decidability of the logic of spider diagrams

with constants introduced in Sect. 4. We begin with an informal overview, before giving

details of the various stages of the proof.

6.1 Overview

The completeness proof strategy for spider diagrams without constants given in [12] ex-

tends to the more general case here. The extended strategy, outlined in Fig. 14, is as

follows. Suppose that D1 � D2. The aim is to transform D1 and D2 into disjunctions

of unitary α-diagrams using reversible rules (i.e. those which are logical equivalences)

where, roughly speaking, each unitary part has some specified contour label set and con-

stant spider label set.

Firstly, we split the constant spiders in D1 and D2 until, in each unitary part, all the

constant spiders have a single zone habitat, giving DS
1 and DS

2 respectively. This al-

lows us to add contours to the unitary parts in both DS
1 and DS

2 using the reversible

Rule 4 (introduction of a contour label), until each (non-false) unitary part has the same

contour label set, L. This gives DL
1 and DL

2 respectively. For the next step, zones are

introduced to each unitary part until all (non-false) unitary parts have the same zone

set, Z. This is done using the reversible Rule 1 (introduction of a shaded zone) and

yields DZ
1 and DZ

2 respectively. Now we obtain α-diagrams using the reversible Rule 5

(splitting spiders), yielding Dα
1 and Dα

2 respectively. The formalization of the diagrams

DL
i , DZ

i and Dα
i readily generalize those given in [12] for spider diagrams without con-

stants.

We wish to introduce constant spiders to each side until each unitary part has the same

constant spider label set. However, we can only introduce constant spiders when our di-

agrams contain at least one spider (ensuring non-empty models). Thus the next step we

take is to apply the excluded middle rule to both sides until all the (non-false) unitary

parts are either entirely shaded or contain at least one spider. The reversible Rule 7 (in-

troduction of a constant spider) is then applied, introducing constant spiders to all unitary

parts that contain a spider, until all such unitary parts have some specified constant spider

label set, C. This gives DC
1 and DC

2 respectively.

On the Completeness of Spider Diagrams Augmented with Constants 121

Fig. 14 The completeness

proof strategy

We now apply Rule 8 (combining) to remove all the conjuncts, giving two disjunc-

tions of unitary α-diagrams, D∗
1 and D∗

2 . We call D∗
1 (D∗

2) the disjunctified diagram

associated with D1 (D2) given D2 (D1). All of the unitary parts of D∗
1 and D∗

2 are

either

1. ⊥,

2. have zone set Z and are entirely shaded and contain no spiders, or

3. have zone set Z and constant spider label set C.

Note that D1 ≡⊢ D∗
1 and D2 ≡⊢ D∗

2 , since all the rules applied so far are reversible. The

diagram D∗
i is a normal form that reflects the semantics of Di clearly. We now apply

the excluded middle rule to D∗
1 until there are sufficiently many existential spiders and

there is enough shading to ensure that each unitary part on the left hand side syntactically

entails a unitary part of D∗
2 .

The details of the proof are given in the following sections. The major differences be-

tween the completeness proof strategy here and that for spider diagrams without constants

are the addition of the first step (splitting the constant spiders), with knock on changes to

details of the other steps, and the insertion of an extra stage between splitting existential

spiders and combining diagrams. In addition, we note that the details of the proofs are

more complex.

122 G. Stapleton et al.

Fig. 15 Completeness for

unitary α-diagrams

Fig. 16 Completeness for

unitary α-diagrams

6.2 Completeness for Unitary α-Diagrams

We show that if d1 � d2, where d1 and d2 are unitary α-diagrams with some fixed zone

set and constant spider label set, then we can erase existential spiders and shading from

d1 to give d2.

Example The diagrams d1 and d2 in Fig. 15 satisfy the following.

(a) Every shaded zone in d2 is shaded in d1 and contains the same number of existential

spiders in both diagrams.

(b) Every zone in d2 contains the same number or fewer existential spiders than in d1.

(c) The constant spiders habitats match, as do their webs.

Under these conditions, the diagram d2 can be obtained from d1 by applying Rule 2

(erasure of shading), and Rule 3 (erasure of an existential spider) can then be used to

give d3. The properties (a), (b) and (c) above relate to properties 3(a), 3(b) and 3(c) in

Theorem 6.1.

Example The diagram d2 in Fig. 16 cannot be obtained from d1 for three reasons.

(a) The zone ({A}, {B,C}) is shaded in d2 but not shaded in d1. There is a model for d1

that will cause the shading condition for d2 to fail whenever the spiders condition for

d2 holds.

(b) The zone ({C}, {A,B}) contains a two existential spiders in d2 but only a single ex-

istential spider in d1. Again we can deduce that there is a model for d1 that does

not satisfy d2. For example, at least one model, m = (U,Ψ) for d1 ensures that

|Ψ ({C}, {A,B})| = 1. In the interpretation m, it cannot be that case that both the

spiders condition and the existential spiders condition hold for d2.

On the Completeness of Spider Diagrams Augmented with Constants 123

(c) The constant spiders t and u have the same habitat in both diagrams, but different

webs. In any model for d1, t and u represent the same individual, but in any model

for d2 they represent distinct individuals.

From any one of the above observations we can deduce that d1 �� d2.

The following theorem gives syntactic conditions on unitary α-diagrams equivalent to

semantic and syntactic entailment. The theorem forms the heart of the proof of complete-

ness and is modified from the corresponding result in [12] to take account of the fact the

our spider diagrams now include constant spiders.

Theorem 6.1 Let d1 (�=⊥) and d2 (�=⊥) be two unitary α-diagrams. If Z(d1) = Z(d2)

and CS(d1) = CS(d2) then the following three statements are equivalent:

1. d1 ⊢ d2.

2. d1 � d2.

3. (a) every zone that is shaded in d2 is shaded in d1 and contains the same number of

existential spiders in both diagrams:

Z∗(d2) ⊆ Z∗(d1) ∧ ∀z ∈ Z∗(d2) ES
(

{z}, d2

)

= ES
(

{z}, d1

)

,

(b) every zone in d2 contains at most the same number of existential spiders as in d1:

∀z ∈ Z(d2) ES
(

{z}, d2

)

⊆ ES
(

{z}, d1

)

,

and

(c) the constant spiders have the same habitats and the same webs in both diagrams:

θd1
= θd2

and ωd1
= ωd2

.

Proof By soundness, d1 ⊢ d2 ⇒ d1 � d2.

We now show that 2 (i.e., d1 � d2) implies 3. Suppose that d1 � d2 and let m = (U,Ψ)

be a standard model for d1. We define, for each existential spider, e1, in d1, Ψ1(e) = {e}

and the mapping Ψ1 yields a valid extension to existential spiders for d1. Since d1 � d2,

m is a model for d2. Let Ψ2 : R∪ CS ∪ ES(d2) → PU be a valid extension to existential

spiders for d2. We will show that Ψ2 induces an injective, habitat preserving map σ :

ES(d2) → ES(d1). Now, Ψ2 ensures that the spiders condition holds for d2. Therefore,

for each existential spider, e2, in d2, there exists an existential spider, e1, in d1 such that

Ψ2(e2) = {e1} (each constant spider, si , in d2 maps to [si]). Define σ by

σ(e2) ∈ Ψ2(e2).

By the spiders condition for d1,

{

σ(e2)
}

= Ψ1

(

σ(e2)
)

⊆ Ψ
(

η
(

σ(e2)
))

and, by the spiders condition for d2,

{

σ(e2)
}

= Ψ2(e2) ⊆ Ψ
(

η(e2)
)

.

124 G. Stapleton et al.

We deduce that, since distinct zones in d1 represent disjoint sets,

η
(

σ(e2)
)

= η(e2).

Therefore σ is habitat preserving. We now show that σ is injective. Suppose that σ(e2) =

σ(e3) for some e3 ∈ ES(d2). Then Ψ2(e2) = Ψ2(e3), which implies, by the existential

spiders condition for d2, e2 = e3. Hence σ is injective. We deduce that 3(b) holds. It can

also be shown that, for all z ∈ Z∗(d2),

ES
(

{z}, d2

)

= ES
(

{z}, d1

)

.

Moreover, it is obvious that d1 � d2 implies Z∗(d2) ⊆ Z∗(d1). Thus 3(a) holds.

We now consider 3(c). The spiders condition for d1 states, in part,

∀si ∈ CS(d1) Ψ (si) ⊆ Ψ
(

θd1
(si)

)

.

Since CS(d1) = CS(d2), we deduce that

∀si ∈ CS(d2) Ψ (si) ⊆ Ψ
(

θd1
(si)

)

. (1)

The spiders condition for d2 states, in part,

∀si ∈ CS(d2) Ψ (si) ⊆ Ψ
(

θd2
(si)

)

. (2)

Since distinct zones in d1 represent disjoint sets, it follows from (1) and (2) that

∀si ∈ CS(d2) θd1
(si) = θd2

(si).

Hence θd1
= θd2

. Suppose that constant spiders si and sj are joined by a tie in d1. That is,

ωd1
(si, sj) = θd1

(si).

Then Ψ (si) = Ψ (sj), by the constant spiders condition for d1. By the constant spiders

condition for d2,

∃z ∈ ωd2
(si, sj) Ψ (si) = Ψ (sj).

Therefore, si and sj are joined by a tie in d2. That is,

ωd2
(si, sj) = θd2

(si) = θd1
(si).

Alternatively, suppose that spiders si and sj are not joined by a tie in d1. That is,

ωd1
(si, sj) = ∅.

Then Ψ (si) �= Ψ (sj) so it cannot be that si and sj are joined by a tie in d2. That is,

ωd2
(si, sj) = ∅.

Hence ωd1
= ωd2

. Thus 3(c) holds.

On the Completeness of Spider Diagrams Augmented with Constants 125

Fig. 17 An α-diagram and

an extended diagram

Finally to show that 3 implies 1, it can be shown that shading and existential spiders

can be deleted from d1, using Rules 2 and 3 respectively, to give d2. Hence all three

statements are equivalent. �

6.3 Extended Diagrams

Example In Fig. 17, the diagram D is a semantic consequence of d but no unitary com-

ponent of D is semantically entailed by d ; that is d �� d1, d �� d2 and d �� d3. The dia-

gram ext(d,D) can be obtained from d (and vice versa) by applying Rules 6 (excluded

middle) and 19 (∨-simplification). The spiders and shading introduced to d to obtain

ext(d,D) are determined by D. For example, consider the outside zone (∅, {A}). In

d3, this zone is shaded and contains two existential spiders and no other unitary com-

ponent of D contains more than two existential spiders in this zone. In ext(d,D), this

zone contains either one, two or three existential spiders in any unitary component.

The process of constructing ext(d,D) will be described in Definitions 6.2 and 6.3 be-

low.

Note that we have

d ′
1 � d1, d ′

2 � d2, d ′
3 � d1, d ′

4 � d1, d ′
5 � d2, and d ′

6 � d2

126 G. Stapleton et al.

so, for each unitary component d ′
i of ext(d,D), there exists a unitary component dj of D

such that d ′
i � dj . In fact,

d ′
1 ∨ d ′

3 ∨ d ′
4 ⊢ d1 and d ′

2 ∨ d ′
5 ∨ d ′

6 ⊢ d2.

Therefore

ext(d,D) = d ′
1 ∨ d ′

3 ∨ d ′
4 ∨ d ′

2 ∨ d ′
5 ∨ d ′

6 ⊢ d1 ∨ d2.

By Rule 9 (connecting a diagram) d1 ∨ d2 ⊢ D and by transitivity ext(d,D) ⊢ D. There-

fore d ⊢ D, since d ≡⊢ ext(d,D).

In general, the diagram ext(d,D) will be constructed by taking copies of d and adding

shading and existential spiders, as specified below. The unitary components of ext(d,D)

are called extended unitary components associated with d , which we now define. Firstly,

we define comp(D) to be the set of all the unitary parts of D.

Definition 6.2 Let d (�=⊥) be a unitary α-diagram and D be an α-diagram. Then, given

D, a unitary α-diagram ed is an extended unitary component associated with d , de-

noted d ⊑D
e

ed , if and only if the following seven conditions are satisfied.

1. The diagrams d and ed have the same zones: Z(d) = Z(ed).

2. All shading in d occurs in ed : Z∗(d) ⊆ Z∗(ed).

3. All existential spiders in d occur in ed : ES(d) ⊆ ES(ed).

4. If zone z is shaded in d then the existential spiders match in d and ed : ∀z ∈ Z∗(d)

ES({z}, d) = ES({z}, ed).

5. If zone z is not shaded in d but is shaded in some unitary component of D and the

number, m say, of existential spiders that z contains in d is at most the number that z

contains in any unitary component of D in which z is shaded then

(a) if z is shaded in ed then z contains at most m spiders in ed ; and

(b) if z is not shaded in ed then z contains m + 1 spiders in ed .

More formally:

∀z ∈ Z(d) − Z∗(d)
(

(

z ∈
⋃

di∈comp(D)

Z∗(di) ∧ ES
(

{z}, d
)

⊆
⋃

di∈comp(D)
z∈Z∗(di)

ES
(

{z}, di

)

)

⇒

((

z ∈ Z∗
(

ed
)

∧ ES
(

{z}, ed
)

⊆
⋃

di∈comp(D)
z∈Z∗(di)

ES
(

{z}, di

)

)

∨

(

z ∈ Z
(

ed
)

− Z∗
(

ed
)

∧
∣

∣ES
(

{z}, ed
)∣

∣ =

∣

∣

∣

∣

⋃

di∈comp(D)
z∈Z∗(di)

ES
(

{z}, di

)

∣

∣

∣

∣

+ 1

))

)

.

6. If a non-shaded zone z in d is not shaded in any unitary component of D or z contains

more spiders in d than any shaded occurrence of z in D then z is not shaded in ed and

On the Completeness of Spider Diagrams Augmented with Constants 127

z contains the same number of spiders in ed as in d . More formally:

∀z ∈ Z(d) − Z∗(d)
(

z /∈
⋃

di∈comp(D)

Z∗(di) ∨ ES
(

{z}, d
)

⊃
⋃

di∈comp(D)
z∈Z∗(di)

ES
(

{z}, di

)

)

⇒
(

z ∈ Z
(

ed
)

− Z∗
(

ed
)

∧ ES
(

{z}, ed
)

= S
(

{z}, d
))

.

7. The constant spiders and their webs match: CS(d1) = CS(d2), θd1
= θd2

and

ωd1
= ωd2

.

If d =⊥ then the extended unitary component associated with d is ⊥.

Definition 6.3 Let d be a unitary α-diagram and let D be a disjunction of unitary α-

diagrams such that d is comparable to each di ∈ comp(D). Given D, let Dd
e be the set of

all extended unitary components associated with d

D
d
e =

{

d ′ ∈ D0 : d ⊑D
e d ′

}

.

Then the diagram

ext(d,D) =
∨

d ′∈Dd
e

d ′

is the extended diagram associated with d in the context of D.

Example In Fig. 17, each d ′
i (i = 1, . . . ,6) is an extended unitary component associated

with d , given D. Indeed, all such extended components ed are present, so ext(d,D) is the

extended diagram associated with d in the context of D.

Theorem 6.4 Let d be a unitary α-diagram and let D be a disjunction of unitary α-

diagrams such that d is comparable to each di ∈ comp(D). Then d is syntactically equiv-

alent to ext(d,D), the extended diagram associated with d in the context of D:

d ≡⊢ ext(d,D).

Sketch of proof Follows by repeated application of Rules 6 (excluded middle) and 19

(∨-simplification) to d in the case where d �=⊥. When d =⊥ the result follows immedi-

ately. �

6.4 The Completeness Theorem

The next result is the final prerequisite to our proof of completeness.

Theorem 6.5 Let d (�=⊥) be a unitary α-diagram such that S(d) �= ∅. Let D be a dis-

junction of unitary α-diagrams such that d is comparable to each di ∈ comp(D). Given D,

128 G. Stapleton et al.

let ed ∈ Dd
e . If ed � D then there exists a unitary component of D, say di , such that

ed � di :

ed � D ⇒ ∃di ∈ comp(D) ed � di .

Proof The proof is by contradiction. Assume ed � D but there is no di ∈ comp(D) for

which ed � di . We will show that a standard model, m = (U,Ψ), for ed does not satisfy

D, giving the contradiction we seek. The interpretation m does not satisfy D if and only

if m does not satisfy any unitary part, di , of D. There are three types of di to consider.

1. di =⊥. Clearly m does not satisfy ⊥.

2. Z(d) = Z(di) and Z∗(di) = Z(di) and S(di) = ∅. Since d contains at least one spider,

so too does ed . Therefore U �= ∅. But di has only one model: the empty model (that is,

U = ∅). Therefore m does not satisfy di .

3. Z(d) = Z(di) and CS(di) = CS(d) and S(di) �= ∅. Firstly, suppose that m satisfies di

and we will reach a contradiction, thus completing the proof that m does not satisfy

any unitary part of D. Since m satisfies di , it must be that m |= ed ∧ di , so ed and di

are not in contradiction. We immediately deduce, by Lemma 4.5, that the following

conditions do not hold.

(a1) There is a zone that is shaded in one diagram and contains more spiders in the

other diagram. More formally, either

∃z ∈ Z∗
(

ed
) ∣

∣S
(

{z}, di

)∣

∣ >
∣

∣S
(

{z}, ed
)∣

∣

or

∃z ∈ Z∗(di)
∣

∣S
(

{z}, ed
)∣

∣ >
∣

∣S
(

{z}, di

)∣

∣.

(b1) There are two constant spiders that are joined by a tie in one diagram but not the

other. More formally, ωdi
�= ωed .

Since (b1) does not hold, we deduce that

ωdi
= ωed . (3)

Since (a1) does not hold, we deduce that

∀z ∈ Z∗(di)
∣

∣S
(

{z}, ed
)∣

∣ ≤
∣

∣S
(

{z}, di

)∣

∣.

Since m |= di , and the fact that di is an α-diagram, for all z ∈ Z∗(di),

∣

∣Ψ (z)
∣

∣ =
∣

∣ES
(

{z}, di

)∣

∣ +
∣

∣ConS(z, di)
∣

∣. (4)

Moreover, if z is not shaded in ed , then, by the construction of ext(d,D), z contains

more existential spiders in ed than in di :

∣

∣ES
(

{z}, ed
)∣

∣ >
∣

∣ES
(

{z}, di

)∣

∣.

So,
∣

∣Ψ (z)
∣

∣ ≥
∣

∣ES
(

{z}, ed
)∣

∣ +
∣

∣ConS
(

z, ed
)∣

∣

=
∣

∣ES
(

{z}, ed
)∣

∣ +
∣

∣ConS(z, di)
∣

∣ since ωd1
= ωed

On the Completeness of Spider Diagrams Augmented with Constants 129

>
∣

∣ES
(

{z}, di

)∣

∣ +
∣

∣ConS(z, di)
∣

∣.

This contradicts (4). Therefore, it must be that z is shaded in ed . Furthermore, it can

be shown that |ES({z}, ed)| = |ES({z}, di)|. Hence

∀z ∈ Z∗(di) z ∈ Z∗
(

ed
)

∧ ES
(

{z}, di

)

= ES
(

{z}, ed
)

. (5)

Since ed �� di , by Theorem 6.1 one of the following three conditions holds.

(a2) ∃z ∈ Z∗(di) z /∈ Z∗(ed) ∨ ES({z}, di) �= ES({z}, ed).

(b2) ∃z ∈ Z(di) ES({z}, ed) ⊂ ES({z}, di).

(c2) ∃si, sj ∈ CS(d1) ωd1
(si, sj) �= ωd2

(si, sj).

We now consider each of these three possibilities (a2), (b2) and (c2) in turn. Firstly,

(a2) contradicts (5) above, so does not hold. Secondly, (c2) contradicts (3) above, so

does not hold. Finally we consider (b2). In the model m for ed we have,

∣

∣Ψ (z)
∣

∣ =
∣

∣ES
(

{z}, ed
)∣

∣ +
∣

∣ConS
(

z, ed
)∣

∣.

Now, because m is a model for di we have

∣

∣Ψ (z)
∣

∣ ≥
∣

∣ES
(

{z}, di

)∣

∣ +
∣

∣ConS(z, di)
∣

∣

from which we deduce that

∣

∣ES
(

{z}, ed
)∣

∣ +
∣

∣ConS
(

z, ed
)∣

∣ ≥
∣

∣ES
(

{z}, di

)∣

∣ +
∣

∣ConS(z, di)
∣

∣.

Therefore, since ωdi
= ωed ,

∣

∣ES
(

{z}, ed
)∣

∣ ≥
∣

∣ES
(

{z}, di

)∣

∣.

Thus

∀z ∈ Z(di) ES
(

{z}, di

)

⊆ ES
(

{z}, ed
)

,

which contradicts (b2). Thus in any of the three cases, m does not satisfy di .

It follows that the interpretation, m, does not satisfy any unitary part of D. Therefore m

does not satisfy D giving a contradiction. Hence if ed � D then there exists a unitary

component of D, say di , such that ed � di :

ed �D ⇒ ∃di ∈ comp(D) ed � di . �

Theorem 6.6 (Completeness) Let D1 and D2 be spider diagrams with constants. Then

D1 �D2 implies D1 ⊢ D2.

Proof Suppose that D1 � D2. Let D∗
1 be the disjunctified diagram associated with D1

given D2. Let D∗
2 be the disjunctified diagram associated with D2 given D1. To recap, the

diagrams D∗
1 and D∗

2 both have the following properties:

1. they are disjunctions of unitary α-diagrams, and

2. there exists a set of zones Z and a set of constant spider labels C such that each unitary

part, di satisfies

130 G. Stapleton et al.

(a) di =⊥,

(b) Z(di) = Z and Z∗(di) = Z(di) and S(di) = ∅, or

(c) Z(di) = Z and C(di) = C and S(di) �= ∅.

For each unitary part, d1 of D∗
1 obtain the diagram ext(d1,D

∗
2). Since D1 ≡� D∗

1 ,

D2 ≡� D∗
2 and D1 � D2 it follows that d1 �D2. Therefore, ext(d1,D

∗
2) � D∗

2 . Thus, each

unitary part, ed1 of ext(d1,D
∗
2) satisfies ed1 � D∗

2 . By Theorem 6.5, ed1 � d2, for some

d2 ∈ comp(D∗
2). We now consider three possibilities for d1.

1. d1 =⊥. In this case, d1 = ed and it is trivial that d1 ⊢ d2.

2. Z(d1) = Z and Z∗(d1) = Z(d1) and S(d1) = ∅. In this case, d1 = ed . Since ed � D∗
2 ,

it must be the case that some unitary part, d2 say, of D∗
2 has an empty model. In which

case, d2 does not contain any spiders and so, by the construction of D∗
2 , is entirely

shaded. Thus d2 = ed and it is trivial that ed ⊢ d2.

3. Z(d1) = Z and C(d1) = C and S(d1) �= ∅. In this case, ed ⊢ d2 by Theorem 6.1.

In each case, we have shown that ed ⊢ d2 and we deduce that ed ⊢ D∗
2 , by Rule 9 (connect-

ing a diagram). It follows that ext(d1,D
∗
2) ⊢ D∗

2 . By transitivity, d1 ⊢ D2. Using Rule 19

(∨-simplification), D∗
1 ⊢ D∗

2 . Thus D∗
1 ⊢ D2. By transitivity, D1 ⊢ D2. Hence the system

is complete. �

6.5 Decidability

The proof of completeness provides an algorithmic method for constructing a proof that

D1 ⊢ D2 whenever D1 � D2. It is simple to adapt this algorithm to determine, for any D1

and D2, whether D1 ⊢ D2.

Theorem 6.7 (Decidability) There exists an algorithm that determines whether, for any

spider diagrams D1 and D2, D1 ⊢ D2.

7 Implementation

We have seen that equality between spider diagrams including constants is decidable, and

so it is possible to build computer-based tools that will be able to check decidability, but

also which can construct equality proofs when they exist, whether automatically or with

user guidance. In this short section we discuss the state of the art in implementing tools

for this and other purposes.

The development of tools to support diagrammatic reasoning is well underway, and

recent advances provide a basis for automated support for spider diagrams with constants.

Such tools require varied functionality and the research challenges can be viewed as more

broad than for symbolic logics. There are at least two major differences: first, it is more

difficult to parse a 2D diagram than a 1D symbolic sentence; more significantly, when

automatically generating proofs, the diagrams must be laid out in order for the user to

read the proof. In respect of the second difference, possibly the hardest aspect of spider

diagram layout is in the initial generation of the underlying Euler diagram. There have

On the Completeness of Spider Diagrams Augmented with Constants 131

been many recent efforts in this regard, including [1, 5, 15, 19, 26]. Spiders can be auto-

matically added later, as demonstrated in [17].

In terms of automated reasoning, this has been investigated for unitary Euler dia-

grams [24] and, to some extent, for spider diagrams, for example [7]. The approaches

used rely on a heuristic search, guided by a function that provides a lower bound on

proof length. Roughly speaking, the better this lower bound, the more efficiently the

theorem prover finds proofs. It has been possible to produce better proof search tech-

niques for reasoning with unitary spider diagrams [7] than for compound diagrams [6].

As was demonstrated in [25], the translation of a unitary spider diagram with constants

results in (except in trivial cases), a compound diagram. So, it is highly likely to be ben-

eficial, from an automated reasoning perspective, to develop theorem provers for spider

diagrams with constants using the rules presented in this paper rather than use trans-

lations and subsequently employ theorem provers for spider diagrams. An Euler dia-

gram theorem prover, called EDITH, is freely available for download from http://www.

cmis.brighton.ac.uk/research/vmg/autoreas.htm. We note that the main goals of auto-

mated reasoning in diagrammatic systems need not include outperforming symbolic the-

orem provers in terms of speed; of paramount importance is the production of proofs that

are accessible to the reader and it may be that this readability constraint has a big impact

on the time taken to find a proof.

8 Conclusion

We have provided formal syntax and semantics for the language of spider diagrams with

constants and presented a set of reasoning rules for this language. We have shown that the

resulting system is sound, complete and decidable. Although the inclusion of constant spi-

ders does not increase expressive power, we believe that if one wishes to make statements

about specific individuals then it is natural to do so using constants explicitly. Thus aug-

menting with constants, although it brings no expressiveness benefits, is likely to increase

the usability of the notation. With the reasoning rules developed in this paper, users can

reason with the language when constants are included. Such reasoning systems provide

an essential basis for permitting diagrams to be used for mathematical formalization and

reasoning.

In the future, we plan to investigate the use of constants in notations that extend spider

diagrams. These include constraint diagrams [14] and their generalizations [22]. Recent

research has begun to develop a variation of constraint diagrams that is suitable for spec-

ifying and reasoning about ontologies [13, 18].

Acknowledgement This work is supported by the UK EPSRC grant “Defining Regular Languages

with Diagrams” [EP/H012311/1].

References

1. Chow, S., Ruskey, F.: Drawing area-proportional Venn and Euler diagrams. In: Proceedings of Graph

Drawing 2003, Perugia, Italy. LNCS, vol. 2912, pp. 466–477. Springer, Berlin (2003)

http://www.cmis.brighton.ac.uk/research/vmg/autoreas.htm
http://www.cmis.brighton.ac.uk/research/vmg/autoreas.htm

132 G. Stapleton et al.

2. Clark, R.: Failure mode modular de-composition using spider diagrams. In: Proceedings of Euler

Diagrams 2004. Electronic Notes in Theor. Comput. Sci., vol. 134, pp. 19–31 (2005)

3. De Chiara, R., Erra, U., Scarano, V.: VennFS: a Venn diagram file manager. In: Proceedings of

Information Visualisation, pp. 120–126. IEEE Comput. Soc., Los Alamitos (2003)

4. Euler, L.: Lettres a une princesse d’Allemagne sur divers sujets de physique et de philosophie. Opera

Omnia 2, 102–108 (1775)

5. Flower, J., Howse, J.: Generating Euler diagrams. In: Proceedings of 2nd International Conference

on the Theory and Application of Diagrams, Georgia, USA, pp. 61–75. Springer, Callaway Gardens

(2002)

6. Flower, J., Masthoff, J., Stapleton, G.: Generating proofs with spider diagrams using heuristics. In:

Proceedings of Distributed Multimedia Systems, International Workshop on Visual Languages and

Computing, pp. 279–285. Knowledge Systems Institute, San Francisco (2004)

7. Flower, J., Masthoff, J., Stapleton, G.: Generating readable proofs: a heuristic approach to theorem

proving with spider diagrams. In: Proceedings of 3rd International Conference on the Theory and

Application of Diagrams, Cambridge, UK. LNAI, vol. 2980, pp. 166–181. Springer, Berlin (2004)

8. Gurr, C.: Aligning syntax and semantics in formalisations of visual languages. In: Proceedings of

IEEE Symposia on Human-Centric Computing Languages and Environments, pp. 60–61. IEEE Com-

put. Soc., Los Alamitos (2001)

9. Hayes, P., Eskridge, T., Saavedra, R., Reichherzer, T., Mehrotra, M., Bobrovnikoff, D.: Collaborative

knowledge capture in ontologies. In: Proceedings of the 3rd International Conference on Knowledge

Capture, pp. 99–106 (2005)

10. Howse, J., Molina, F., Shin, S.-J., Taylor, J.: Type-syntax and token-syntax in diagrammatic sys-

tems. In: Proceedings FOIS-2001: 2nd International Conference on Formal Ontology in Information

Systems, Maine, USA, pp. 174–185. ACM, New York (2001)

11. Howse, J., Molina, F., Taylor, J., Kent, S., Gil, J.: Spider diagrams: a diagrammatic reasoning system.

J. Vis. Lang. Comput. 12(3), 299–324 (2001)

12. Howse, J., Stapleton, G., Taylor, J.: Spider diagrams. LMS J. Comput. Math. 8, 145–194 (2005)

13. Howse, J., Stapleton, G., Taylor, K., Chapman, P.: Visualizing ontologies: a case study. In: Interna-

tional Semantic Web Conference 2011. Springer, Bonn (2011)

14. Kent, S.: Constraint diagrams: visualizing invariants in object oriented modelling. In: Proceedings of

OOPSLA97, pp. 327–341. ACM, New York (1997)

15. Kestler, H., Muller, A., Kraus, J., Buchholz, M., Gress, T., Kane, D., Zeeberg, B., Weinstein, J.: Venn-

Master: area-proportional Euler diagrams for functional go analysis of microarrays. BMC Bioinfor-

matics 9(67) (2008)

16. Lovdahl, J.: Towards a visual editing environment for the languages of the semantic web. PhD thesis,

Linkoping University (2002)

17. Mutton, P., Rodgers, P., Flower, J.: Drawing graphs in Euler diagrams. In: Proceedings of 3rd Inter-

national Conference on the Theory and Application of Diagrams, Cambridge, UK. LNAI, vol. 2980,

pp. 66–81. Springer, Berlin (2004)

18. Oliver, I., Howse, J., Stapleton, G., Nuutila, E., Törmä, S.: Visualising and specifying ontologies us-

ing diagrammatic logics. In: 5th Australasian Ontologies Workshop. Conf. Res. Pract. Inf. Technol.,

vol. 112. CRPIT, Melbourne (2009)

19. Rodgers, P., Zhang, L., Fish, A.: General Euler diagram generation. In: International Conference on

Theory and Applications of Diagrams, pp. 13–27. Springer, Herrsching (2008)

20. Shimojima, A.: Inferential and expressive capacities of graphical representations: survey and some

generalizations. In: Proceedings of 3rd International Conference on the Theory and Application of

Diagrams, Cambridge, UK. LNAI, vol. 2980, pp. 18–21. Springer, Berlin (2004)

21. Stapleton, G.: Spider diagrams augmented with constants: a complete system. In: Visual Languages

and Computing, pp. 292–299 (2008)

22. Stapleton, G., Delaney, A.: Evaluating and generalizing constraint diagrams. J. Vis. Lang. Comput.

19(4), 499–521 (2008)

23. Stapleton, G., Thompson, S., Howse, J., Taylor, J.: The expressiveness of spider diagrams. J. Log.

Comput. 14(6), 857–880 (2004)

24. Stapleton, G., Masthoff, J., Flower, J., Fish, A., Southern, J.: Automated theorem proving in Euler

diagrams systems. J. Autom. Reason. 39, 431–470 (2007)

On the Completeness of Spider Diagrams Augmented with Constants 133

25. Stapleton, G., Taylor, J., Howse, J., Thompson, S.: The expressiveness of spider diagrams augmented

with constants. J. Vis. Lang. Comput. 20(1), 30–49 (2009)

26. Stapleton, G., Rodgers, P., Howse, J., Zhang, L.: Inductively generating Euler diagrams. IEEE Trans.

Vis. Comput. Graph. 17(1), 88–100 (2011)

27. Swoboda, N., Allwein, G.: Using DAG transformations to verify Euler/Venn homogeneous and Eu-

ler/Venn FOL heterogeneous rules of inference. J. Softw. Syst. Model. 3(2), 136–149 (2004)

28. Zhao, Y., Lövdahl, J.: A reuse based method of developing the ontology for e-procurement. In: Pro-

ceedings of the Nordic Conference on Web Services, pp. 101–112 (2003)

G. Stapleton (B) · J. Howse · J. Taylor · P. Chapman

Visual Modelling Group, University of Brighton, Brighton, UK

e-mail: g.e.stapleton@brighton.ac.uk

J. Howse

e-mail: john.howse@brighton.ac.uk

J. Taylor

e-mail: john.taylor@brighton.ac.uk

P. Chapman

e-mail: p.b.chapman@brighton.ac.uk

S. Thompson

School of Computing, University of Kent, Canterbury, UK

e-mail: s.j.thompson@kent.ac.uk

mailto:g.e.stapleton@brighton.ac.uk
mailto:john.howse@brighton.ac.uk
mailto:john.taylor@brighton.ac.uk
mailto:p.b.chapman@brighton.ac.uk
mailto:s.j.thompson@kent.ac.uk

	On the Completeness of Spider Diagrams Augmented with Constants
	1 Introduction
	2 Syntax
	3 Semantics
	4 Reasoning Rules
	4.1 Unitary to Unitary Reasoning Rules
	4.2 Unitary to Compound Reasoning Rules
	4.3 Logic Reasoning Rules
	4.4 Obtainability

	5 Soundness
	6 Completeness and Decidability
	6.1 Overview
	6.2 Completeness for Unitary alpha-Diagrams
	6.3 Extended Diagrams
	6.4 The Completeness Theorem
	6.5 Decidability

	7 Implementation
	8 Conclusion
	References

