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Abstract—Genetic programming has proven capable of evolv-
ing solutions to a wide variety of problems. However, the successes
have largely been with programs without iteration or recursion;
evolving recursive programs has turned out to be particularly
challenging. The main obstacle to evolving recursive programs
seems to be that they are particularly fragile to the application of
search operators: a small change in a correct recursive program
generally produces a completely wrong program. In this paper,
we present a simple and general method that allows us to pass
back and forth from a recursive program to an associated non-
recursive program. Finding a recursive program can be reduced
to evolving non-recursive programs followed by converting the
optimum non-recursive program found to the associated optimum
recursive program. This avoids the fragility problem above, as
evolution does not search the space of recursive programs. We
present promising experimental results on a test-bed of recursive
problems.

I. INTRODUCTION

Recursion is a key technique in the design of programs.

However, genetic programming (GP) and related techniques

have struggled with the evolution of recursive programs. One

difficulty is that GP operators, are rarely successful when

applied to recursive programs. There are a number of reasons

for this: two important ones are that small changes to the

text of a recursive program cascade through the recursion,

amplifying the difference between a correct program and a

near-mutant; and, evolution needs to construct two separate

structures—the call itself and the base-case—to produce a

valid recursive program.

In this paper we introduce a novel approach to this problem.

During evolution, recursive calls are replaced with calls to

what we term a scaffolding function, which provides the

correct answer for all entries in the training set. This allows

evolution to work on parts of the recursive structure without

needing to evolve a whole recursive structure at once. Once

the program has correctly evolved, the non-recursive call is

replaced by a recursive call to the evolved program, so the

final program is a fully-recursive program with none of the

scaffolding remaining.

The remainder of the paper is structured as follows. Sec-

tion II reviews prior efforts to evolve recursive programs.

Section III introduces the new ideas through an extended

illustrative example, and Section IV gives details of a spe-

cific implementation of this approach and provides results

for experiments on two problems. This is followed by brief

conclusions and suggestions for future work.

II. RELATED WORK

A first attempt to evolve recursive programs was presented

by Koza [1, chapter 18.3], where a function to calculate the

Fibonacci sequence was evolved. It used a special function

SRF (sequence referencing function) that takes two arguments

(K and D) and returns the K-th Fibonacci number if it was

already calculated, otherwise a default value D. In order to

evolve a solution, the input values for the Fibonacci sequence

are given in ascending order and each result is stored in a table

that can be referenced by the SFR function. Koza successfully

evolved a program to generate the Fibonacci sequence using

the first twenty values as input examples, although the evolved

program is not actually a recursive program—instead, the SRF

function allows the program to reference previously computed

values (with the requirement that input values are given in

ascending order) without the need for recursive calls.

Brave [2] investigated a restricted form of recursion using

Automatically Defined Functions (ADFs) to evolve a recursive

tree search program. The proposed recursive ADFs method

uses two ADFs that are allowed to call themselves, i.e.,

the function set of ADF1 contains the symbol ADF1 and

the function set of ADF2 contains the symbol ADF2. The

recursive ADFs were compared against a basic GP (without

ADFs) and a GP using (non-recursive) ADFs, and the results

show that the recursive ADFs variant has the best performance,

both in terms of probability of success and computational

effort.

Brave has highlighted two of the main problems that

make recursion difficult in GP. Firstly, small variations of the

structure of a recursive program can have a big impact in

its functionality, and consequently, its fitness. The fitness of

a candidate program on such problems does not necessarily

reflect its proximity to the optimal solution. Secondly, there is

a need to deal with the potential problem of non-terminating

recursion. Brave argues that the tree search problem can

avoid this difficulty, since small changes in the structure

of a candidate program do not have a big impact on its

functionality—i.e., a small variation on the sub-portion of a

program that searches a specific section of the tree will not
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affect how the program searches other sections of the tree—

and the tree depth can be used as the maximum number of

recursive calls to avoid endless recursion; but, other classes of

problems may have to deal with them.

Whigham and McKay [3] investigated the learning of re-

cursive member functions—these take a list and an element,

and return true if the element is found in the list or false

otherwise—using a tree-based GP, by adding the function

to be evolved to the non-terminal set (functions) available,

enabling a candidate solution to recursively call itself. They

discovered that the GP could not successfully find a recursive

definition of the member function. They observed that partial

solutions—i.e., solutions that satisfy some of the test cases

(e.g., solutions that can find the first-element member)—

cannot lead the GP towards finding the recursive solution.

Moreover, they argue that as GP does not have a mechanism to

identify the usefulness of the components (internal structure)

of a candidate solution—e.g., a candidate program that fails

because of an infinite recursive call will not help to propagate

the use of the recursive call, although it only requires the

addition of a termination condition.

A similar argument was presented by Wong [4], [5]. A re-

cursive program is described as consisting of one or more base

(control) statements and a number of recursive statements.

The difficulty of evolving recursive programs arises from the

fact that appropriate base and recursive statements, and their

correct ordering have to be evolved simultaneously by the

GP. Moreover, the fitness function does not reward incorrect

programs that contain correct components of the optimal

solution—e.g., a candidate program with the correct base

statement, but missing or incorrect the recursive statement;

or, vice versa.

In order to overcome this, Wong proposed an adaptive

grammar-based GP (GBGP) which dynamically adjusts the

production rule weights to increase/decrease the probability

of producing good/bad candidate programs, and to reduce the

chance of producing non-terminating programs. Recursion is

allowed by placing a production rule that calls the program

being evolved into the grammar and a maximim execution

time limit was used to penalise non-terminating candidate

programs. This was found to increase the probability of

success when compared to a non-adaptive GBGP and also

reduced (but did not avoided) the number of non-terminating

candidate programs generated.

Koza et al. [6] introduced a mechanism similar to ADFs

to evolve recursion, called Automatically Defined Recursion

(ADR). ADRs involve a recursion condition branch (RCB), a

recursion body branch (RBB), a recursion update branch (RUB)

and a recursion ground branch (RGB). In order to evaluate

an ADR, its RCB branch is executed first. The RCB controls

the recursion and while it returns certain values (in general

a positive numeric value), the recursion is continued and the

RBB is executed. The RBB may contain references to the ADR

of which it is a part, triggering a recursive call. After the

execution of the RBB branch, the RUB is executed. When the

recursion is terminated by the RCB branch—i.e., the RCB does

not return a value that indicates to continue the recursion—

the RGB branch is executed. Therefore, the value returned

by an ADR is the value returned by the RBB branch, if the

RCB returns a value that indicates to continue the recursion;

otherwise, it is the value returned by the RGB branch. Since the

bodies of the four branches are subject to modification during

the run of the GP, the use of an ADR separates the evolution of

the control statement and the recursive statement in a program,

and also enforces their correct ordering. On the other hand, it

imposes a structure on the evolved programs and also requires

special operators to create/modify/delete ADRs. A similar

approach was proposed in [7], where Automatically Defined

Nodes (ADN) were used to generate recursive programs using

graph structured program evolution (GRAPE).

Yu and Clack [8] proposed the use of implicit recursion

through a higher-order function foldr. The foldr function

takes a binary operator (a function that takes two arguments) as

the first argument and a list of values as the second argument;

then, it places the operator between each item of the list and

evaluates the resulting expression from right to left. The use of

implicit recursion avoids the problem of non-terminating pro-

grams, although the evolved program is not actually a recursive

program. Such methods can only work on a limited number of

problems. Spector et al. [9] evolved recursive programs using

the PushGP system. The Push language provides an execution

stack that can be manipulated by the GP in order to achieve

recursion and loops. Agapitos and Lucas [10], [11] explored

the idea of evolving Object Oriented recursive programs,

which represent method implementations conforming to a

specified interface. Recursion is achieved by allowing calls

to the evolved method within the evolved method’s body. The

evolved method is placed together with the built-in methods

(function set) available for creating new solutions. To mitigate

the potential problem of non-terminating recursive programs,

a limit on the number of permitted recursive calls is used

in their experiments. They draw attention to the fact that

using a higher probability of mutation was better than using

a higher probability of crossover on most of the problems.

They observed that the candidate programs using the recursive

call are usually non-terminating ones and consequently have

a lower fitness, causing the premature elimination of recursive

structures when a lower mutation probability is used.

III. PROPOSED APPROACH

In this paper we introduce a novel approach to this prob-

lem. During evolution, it is assumed that recursive calls

from programs in the evolving population return the correct

answer—this is clearly a circular assumption, as it entails

the knowledge of the sought function. However, at the end

of fitness calculation, the circularity can be resolved: instead

of carrying out the recursion as such, the correct answer

is provided using the information about the sought function

stored in the fitness cases.

We now present the proposed approach using a worked

example. We will touch on, but not describe systematically,
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program representation, genetic operators and fitness function.

The details will be presented in the next section.

Let us suppose that our task is to evolve a recursive function

reverse that given a list of items (of any size) returns the

reversed list. An example of an optimal candidate solution is:

function reverse(list) {

if (empty(list)) {

return list;

}

else {

return snoc(

reverse(tail(list)),

head(list));

}

}

The above definition returns the empty list when the input

list is empty, otherwise it returns the list obtained by appending

(snoc) the first element of the input list (head) to the reversed

tail of the input list. This is clearly a recursive definition as it

comprises a call to itself.

Let us now consider the following non-optimal candidate

solution obtained by mutating the program above and remov-

ing the test of the base case of the recursion (i.e., checking

whether or not the input list is empty):

function reverse(list) {

return snoc(

reverse(tail(list)),

head(list));

}

This fails as the functions head(list) and tail(list)

produce an error when applied to the empty list. The main

motivation was to penalise programs that have the correct

recursive call without the base statement (because we wanted

to be able to evolve programs with explicit base case and

recursive call). Notice that this happens for any input list as the

recursion consumes the input list and reduces it to the empty

list which then produces the error. This program has the worst

fitness possible, as it returns an error for any fitness case. This

exemplifies the fragility of recursive programs under mutation:

a single mutation is sufficient to transform a program with the

best fitness into a program with the worst fitness. Furthermore,

this is not a particularly unfortunate case, it is a typical case.

Let us now assume that instead of the call to itself we have

a function correct-reverse that, given a list, returns the

reversed list. At first, this seems to make no sense as we are

assuming we know the very function we are trying to find. We

will show later how to resolve this apparent circularity.

An example of an optimal candidate solution with the new

functional set is:

function reverse(list) {

if (empty(list)) {

return list;

}

else {

return snoc(

correct-reverse(tail(list)),

head(list));

}

}

There are three important observations about this solution.

Firstly, it is not a recursive definition as reverse does not call

itself in the definition but instead calls correct-reverse.

Secondly, there is a natural one-to-one correspondence be-

tween recursive functions (which call reverse) and functions

whose definition uses the call to correct-reverse obtained

by replacing correct-reverse with reverse, and vice

versa. Thirdly, exchanging correct-reverse with reverse

or vice versa in an optimal solution, we obtain an optimal

solution.

Let us now consider the corresponding non-recursive func-

tion to the sub-optimal recursive function presented earlier.

function reverse(list) {

return snoc(

correct-reverse(tail(list)),

head(list));

}

It is interesting to compute the fitness of this solution.1

This program fails when the input list is an empty list,

as the functions head and tail fail when applied to an

empty list. However, when the input list is not an empty

list the program produces always the correct solution as

the function correct-reverse can handle appropriately

the base case of the recursion on the tail of the input list

(as correct-reverse is correct on any list by definition).

Therefore, the fitness of this program is almost optimal as it

fails only on the fitness case corresponding to the empty input

list, but it returns the exact output on any other input list.

There are two important observations that can be made

on this example. Firstly, the non-recursive optimal program

is more robust to mutation than the corresponding recursive

program, as in the recursive case the fitness of the mutated pro-

gram drops dramatically, whereas in the non-recursive case the

fitness drops only one fitness case. In general, the reason why

recursive programs are more fragile than the corresponding

non-recursive programs seems to be that when there are one

or more errors in the program (i.e., when the program is one

or more mutations away from the optimum) the recursive calls

re-use the erroneous definition of the program multiple times

and propagate and amplify the effect of the errors. One the

other hand, in non-recursive programs errors do not percolate

down the recursive call, so the fitness reflects more closely

the actual number of errors. Secondly, the fitness landscape of

non-recursive programs has a gradient that can make it easier

to search than the corresponding fitness landscape of recursive

programs, while both fitness landscapes have exactly the same

global optima.

There is a constraint that needs to be imposed. We do not

allow the program to call the reverse function on a list of

the same size of the input list or larger. When this happens

the program fails (for all inputs for which the program fails

to meet this condition). This constraint is important for two

reasons. In recursive programs, it helps to prevent infinite

recursion. In the corresponding non-recursive programs, it

1Here we assume that better solutions have higher fitness, so an optimal
solution has the highest fitness.
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allows us to resolve the circularity deriving from allowing

correct-reverse calls within the definition of candidate

solutions.

It is clear from the discussion above that to find the optimal

recursive program it would be desirable to proceed as follows:

(i) evolve non-recursive programs which are associated with

an easier fitness landscape and find an optimum non-recursive

program; (ii) convert the optimum non-recursive program

found into the corresponding optimum recursive program by

replacing in it all occurrences of correct-reverse with

reverse.

However, this seems problematic: in order to evolve

non-recursive programs one needs to know the function

correct-reverse, which is what is being searched for!

But, consider how programs are evolved using GP. During

evolution, the program is tested on a number of fitness cases

for which the desired output is known. For example, for

reverse we would have a set of fitness cases such as:

Size Function

0 {}-->{}

1 {X1}-->{X1}

2 {X1,X2}-->{X2,X1}

3 {X1,X2,X3}-->{X3,X2,X1}

There are two observations that need to be made. Firstly,

the fitness cases are an explicit enumeration of a set of cases

for which we know the function correct-reverse. In the

specific example the fitness cases tell us the following:

correct-reverse({})={}

correct-reverse({X1})={X1}

correct-reverse({X1,X2})={X2,X1}

correct-reverse({X1,X2,X3})={X3,X2,X1}

Secondly, the set of fitness cases chosen covers all cases

of the target function for lists from size 0 to size 3.

Therefore these fitness cases define completely the function

correct-reverse for lists up to size 3. In general, to be able

to apply our approach, analogously to the example above, we

require the fitness cases to be a complete sequence of input-

output pairs defining the target function starting with the first

case (i.e., base case of the recursion) up to a fixed later term

in the recursion.

Now putting together the requirement that: (i) the

correct-reverse function can be called by a program

only on lists shorter that the input list; and (ii) the fitness

cases define completely the correct-reverse function up

to input lists of size 3; it then becomes possible to com-

pute the fitness of any program making use of the function

correct-reverse in its definition. This is because to com-

pute the fitness of a program we need to compute its output

on all the input lists of the fitness cases. As these input lists

range in size from 0 to 3, in all cases the program will need

to call the function correct-reverse on lists of size 2 or

less. The output values of the correct-reverse function

on these lists is always known (from the fitness cases), hence

the fitness of the program can be computed. This resolves the

apparent circularity of evolving programs that make use of the

correct-reverse function in their definition.

It is important to notice here that the programs making

use of the call to the correct-reverse function are well-

defined, in our example, only on input lists up to size 4 (as

they can then make calls to correct-reverse input lists up

to size 3, whose cases are covered by the fitness cases). In

general, the output of the programs for lists of size 5 or larger

cannot be computed, as the correct-reverse for input lists

of size 4 is not in the set of fitness cases. So, in this respect, an

optimal program that uses correct-reverse in its definition

does not differ much from the correct-reverse defined

by enumeration on the fitness cases, as the optimal program

can be only used to generalise to the case of lists of size 4.

The apparently merely formal act of replacing the function

correct-reverse with the function reverse in the defini-

tion of the program to obtain the associated recursive program

is the true source of the generalisation. This is because the

recursive program is well-defined and can be queried on input

lists of arbitrary length.

The approach presented in this section is very general and

can be applied to find recursive programs defined on virtually

any domain. Also, it is not bound to a specific type of GP,

and can be used with different flavours of GP using different

representations and different search operators.

IV. EXPERIMENTS

This section shows how the above approach was imple-

mented in the context of a grammar-based GP system. Exper-

iments have been carried out on two problems concerned with

the manipulation of lists of integer numbers, viz. reversing a

list and inserting an element into a sorted list. The same basic

algorithmic approach was used in both a traditional recursive

approach where the name of the function being used is

available within the grammar, and the new approach, referred

to below as scaffolding-based approach, where the correct

function is available within the grammar to substitute the

recursive call during evolution. We present experiments with

crossover alone, mutation alone, and combined crossover and

mutation, as we found that the performance of the scaffolding-

based approach is quite different in the three scenarios.

A. General Approach

In order to evaluate the effectiveness of the proposed ap-

proach in evolving recursive functions, we have used a context

free grammar-based genetic programming (CFG-GP) [12]. The

basic grammar productions used to define the structure of the

programs (individuals) were:

S ::= T

T ::= if(B) { T } else { T } | return L

L ::= append(L, L) | snoc(L, N) | cons(N, L) |

tail(L)

B ::= empty(L) | N = N | N <= N | N >= N

N ::= head(L)

where the start symbol is S; nonterminals symbols are T (a

statement that returns a list), L (a statement that evaluates to a

list), B (a statement that evaluates to a boolean value) and N

(a statement that evaluates to a numeric value); and terminals

symbols are:
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• list operations: append (join two lists), snoc (appends an

element to the end of the list), cons (appends an element

to the start of the list), tail (elements of the list excluding

the first one), empty (tests if the list has no elements),

head (first element of the list);

• binary operators: = (equality), <= (less than or equal to)

and >= (greater than or equal to);

• conditional statement: if-else (if the test B evaluates to

true, executes the first block; otherwise executes the

second block).

For each of the problems, the grammar productions were

extended to include specific parameters and the recursive

call—details of these are given in Sections IV-B and IV-C

below. Using the grammar presented above, individuals are

represented by derivation trees, where the internal nodes

of the tree correspond to non-terminal symbols, leaf nodes

correspond to terminal symbols and the root node correspond

to the start symbol. A derivation tree is created in a top-

down fashion by randomly selecting and applying grammar

productions from a non-terminal symbol, starting from the start

symbol S (root node of the tree), until a leaf node (terminal

symbol) is reached for each tree path.

The fitness of a program consists of the sum of the edit dis-

tances between the list returned by a program and the correct

list solution, over all test cases. The edit distance measures the

minimum number of insert, delete and substitute operations

needed to transform one list into the other. Therefore, the aim

of a program is to minimise the edit distance—i.e., the more

similar the lists, the better the program. When a program uses a

recursive call or the correct function (in the scaffolding-based

approach) on a list of the same size of the input list or larger,

or perform an invalid operation (e.g., invoke tail or head on

an empty list) for a specific test case, a penalty is imposed by

setting the edit distance equal to the length of the longest test

case list +1. The motivation of using the length of the longest

list as a penalty is that we guarantee that this value will be

greater than the distance obtained by a working program on

any of the test cases, even if the list returned by the working

program does not contain any element in the correct position.

Also, it does not impose an arbitary high penalty.

In the runs that produced the results reported in this section

we have used population size of 500, tournament size 5, num-

ber of generations 200, the initial population was created using

a ramped-half-and-half method (from tree depth 4 to 8) and

the maximum tree depth for crossover and mutation operators

was 16. These parameters values have been determined based

on preliminary experiments and they were used in all the

experiments presented in this section, for both the recursive

and scaffolding-based approaches.

The most critical parameters were found to be the crossover

and mutation rates, which are therefore varied in the ex-

periments. We have used standard CFG-GP crossover and

mutation operators [12]. The crossover is performed selecting

two individuals p1 and p2 from the population; then a non-

terminal node from p1 is randomly selected and a matching

non-terminal is selected from p2; if no matching node is found,

the crossover restarts by selecting other individuals; finally, the

subtrees below these non-terminals are swapped. The mutation

is performed on a single individual by randomly selecting

a non-terminal node and generating a new subtree from the

grammar using this non-terminal as the starting symbol.

B. Reverse List Problem

Given a list of elements as input, the reverse list problem

consists of returning a list with the elements in the reverse

order—e.g., for the input list {1, 2, 3, 4}, the correct output

is the list {4, 3, 2, 1}. We have used training cases involving

lists of variable lengths from 0 to 5 elements (6 fitness cases in

total) and the aim for the GP is to evolve a recursive program

that can generalise to reverse any input list of any length.

An evolved program is considered a solution if it correctly

reverses all test cases consisting of lists from 0 to 20 elements.

An example of the correct solution is:

function reverse(list) {

if (empty(list)) {

return list;

}

else {

return snoc(

reverse(tail(list)),

head(list));

}

}

We can identify two main structures (‘building blocks’) that

compose an optimal solution: (1) the operation that adds the

head of the input list to the list returned by the recursive call

used to reverse the tail of the input list (2) the conditional test

that stops the recursion when the input list is empty. If either

of these structures is missing, the optimal solution cannot be

created.

To evolve a recursive program for the reverse problem, the

grammar symbol L was extended to include two productions:

list (the input list) and reverse(L) (the recursive call

to the evolved function). To evolve a non-recursive program

(using the proposed scaffolding-based approach), the grammar

symbol L was extended to include two productions: list

(the input list) and correct-reverse(L) (the call to the

function that returns the correct reversed list). Three sets of

experiments were carried out: crossover-only, mutation-only,

and mutation-and-crossover. The results of these are presented

in the remainder of this section.

In the first set of experiments, we have set the mutation rate

to 0% and crossover rate to 100% (crossover-only setting).

The recursive approach did not find any solution over 100

runs, while the scaffolding-based approach found a solution

in 5 out of 100 runs, reaching the minimum computational

effort I(M,i,z) [1]—i.e., the total number of individuals that

must be processed in order to yield a solution to the problem

with 99% probability, where the lower the value the better

the computational effort—value of 228,456 at generation 1.

These results illustrate the difficulty of evolving recursive pro-

grams: the operation involving the recursive call, the recursive

structure (conditional test) and their correct ordering should be
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TABLE I
SUMMARY OF THE RESULTS FOR THE REVERSE PROBLEM. THE BEST

I(M,i,z) (LOWER COMPUTATION EFFORT VALUE) IS SHOWN IN BOLD.

(i) recursive approach P(M,i) min I(M,i,z)

crossover-only 0% –

mutation-only 89% 201,000

crossover-and-mutation 71% 362,500

(i) scaffolding-based approach P(M,i) min I(M,i,z)

crossover-only 5% 228,456

mutation-only 65% 169,500

crossover-and-mutation 100% 49,000

evolved simultaneously. It is unlikely that individuals created

in earlier generations will have the required structures and/or

correct ordering, therefore their fitness will be generally low.

This may cause the premature elimination of ‘building blocks’

required to create an optimal solution. Since the crossover does

not introduce new structures to the population, it is limited to

recombine individuals in the current population and it will

not have the chance to combine individuals with the required

structures to create an optimal solution.

In the second set of experiments, we have set the mutation

rate to 100% and crossover rate to 0% (mutation-only setting).

The recursive approach found a solution in 89 out of 100 runs,

reaching the minimum computational effort value of 201,000

at generation 133. The scaffolding-based approach found a

solution in 65 out of 100 runs, and although the number of

successful runs was smaller than the recursive approach, it has

reached the minimum computational effort value of 169,500

at generation 2. This is substantially better than the crossover-

only setting. Since the mutation operator can introduce new

structures in the population, it is not limited by diversity of

the individuals in the population. The performance curves for

the recursive and scaffolding-based approach are illustrated in

Fig. 1(a) and Fig. 1(b), respectively—the P(M, i) curves shown

in Fig. 1 correspond to the cumulative probability of success

that a run with a population size M = 500 yields a solution

by generation i.

Although the results of the scaffolding-based approach are

better than the recursive approach, they do not highlight

the main advantage of the proposed approach—i.e., in the

scaffolding-based approach, both the operation involving the

recursive call (represented by the call to the correct reverse

function) and conditional test can be evolved separately, since

the evolved programs are not actual recursive programs. For

example, consider the program with the correct conditional

test:

function reverse(list) {

if (empty(list)) {

return list;

}

else {

return snoc(tail(list), head(list));

}

}

which can reverse lists of 0 to 2 elements—i.e., 3 out of

6 fitness cases—and the program with the correct operation

involving the recursive call:

function reverse(list) {

return snoc(correct-reverse(tail(list)),

head(list));

}

which can reverse 5 out of 6 fitness cases (it fails in the empty

input list case). Both programs represent fit individuals and

have a greater chance of being selected for future generations

and the use of crossover has the chance of combining them

to construct the optimal solution. On the other hand, in the

recursive approach, the equivalent program with the correct

operation involving the recursive call:

function reverse(list) {

return snoc(reverse(tail(list)),

head(list));

}

fails in all fitness cases, since there is no structure to stop

the recursion when the input list is empty. Therefore, the

individual will have a very low fitness, and consequently,

smaller chance of being selected for future generations.

To make this advantage more apparent, we run a third

set of experiments setting the mutation rate to 80% and

crossover rate to 20% (crossover-and-mutation setting).2 The

performance of the recursive approach decreased slightly,

finding a solution in 71 out of 100 runs and reaching the

minimum computational effort value of 362,500 at generation

24. On the other hand, the performance of the scaffolding-

based approach increased, finding a solution in 100 out of 100

runs and reaching the minimum computational effort value

of 49,000 at generation 97. The performance curves for the

recursive and scaffolding-based approach are illustrated in Fig.

1(c) and Fig. 1(d), respectively. The positive effect of the

crossover operator in the scaffolding-based approach is a result

of the fact that the population contains working individuals

with the required ‘building blocks’, i.e., there are fit individuals

with the correct conditional test and fit individuals with the

correct operation involving the recursive call. Table I presents

a summary of the results for the reverse problem.

C. Insert Problem

Given an ordered list of elements and a new element as

inputs, the insert problem consists of inserting the new element

into the list maintaining the natural order of the elements

and returning that list—e.g., for the input list {1, 3} and the

element 2, the correct output is the list {1, 2, 3}. We have

used training cases involving lists of variable lengths from 0

to 3 elements (10 fitness cases in total)—representing cases

where an element should be inserted at the beginning, middle

or end of the list—and the aim for the GP is to evolve a

recursive program that can generalise to insert an element to

2The 80% mutation and 20% crossover rates have been empirically deter-
mined by a systematic (but coarse) parameter tuning. They are inline with the
findings of Agapitos and Lucas [10], [11], which suggest the use of a higher
mutation rate in relation to crossover rate.
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(a) recursive (mutation-only)
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(c) recursive (crossover-and-mutation)

1 50 100 150 200
0

25

50

75

100

Generation

P
ro

b
ab

il
it

y
 o

f 
S

u
cc

es
s 

(%
)

2 : 169500

0

350000

700000

In
d

iv
id

u
al

s 
to

 b
e 

P
ro

ce
ss

edP(M,i)

I(M,i,z)

(b) scaffolding (mutation-only)
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(d) scaffolding (crossover-and-mutation)

Fig. 1. Performance curves—cumulative probability of success P(M,i) and computational effort I(M,i,z)—for the recursive and scaffolding-based approaches
in the reverse problem for the mutation-only and crossover-and-mutation settings. The value in the box corresponds to the generation followed by the lowest
I(M,i,z) achieved; the best I(M,i,z) value is achieved by the scaffolding-based approach using the crossover-and-mutation setting.

any ordered input list of any length. An evolved program is

considered a solution if it correctly inserts an element in all test

cases consisting of lists from 0 to 10 elements. An example

of the correct recursive solution is as follows:

function insert(list, x) {

if (empty(list)) {

return cons(x, list);

}

else {

if (x <= head(list)) {

return cons(x, list);

}

else {

return cons(head(list),

insert(tail(list), x));

}

}

}

The insert problem represents a more complex problem than

the reverse, and we can identify three main structures: (1)

the operation that adds the head of the input list to the list

returned by the recursive call used to insert the input value

in the correct position; (2) the conditional test that stops the

recursion when the input list is empty; and (3) the conditional

test that stops the recursion when the correct position of the

input value is found. If any of these structures is missing, the

optimal solution cannot be created.

The experiments for the insert problem followed the same

experimental setup and the same parameter settings as for

reverse problem. To evolve a recursive program for the insert

problem, the grammar symbol L was extended to include

two productions: list (the input list) and insert(L, x)

(the recursive call to the evolved function); and the gram-

mar symbol N was extended to include a new production

x (the input value for the evolved function). To evolve a

non-recursive program (using the proposed scaffolding-based

approach) for the insert problem, the grammar symbol L was

extended to include two productions: list (the input list) and

correct-insert(L, x) (the call to the function that returns

the correct list containing the new element x); and the grammar

symbol N was extended to include a new production x (the

input value for the evolved function).

In the first set of experiments, we have set the mutation

rate to 0% and crossover rate to 100% (crossover-only setting).

The recursive approach did not find any solution over 100 runs,

while the scaffolding-based approach found a solution in 1 out

of 100 runs, reaching the minimum computational effort value

of 2,299,590 at generation 9. In the second set of experiments,

we have set the mutation rate to 100% and crossover rate

to 0% (mutation-only setting). The recursive approach found

a solution in 7 out of 100 runs, reaching the minimum

computational effort value of 5,984,000 at generation 186.

The scaffolding-based approach found a solution in 32 out of

100 runs, reaching the minimum computational effort value

of 792,000 at generation 87. The performance curves for the

recursive and scaffolding-based approach are illustrated in Fig.

2(a) and Fig. 2(b), respectively. The mutation-only setting is

substantially better than the crossover-only setting, achieving

a lower computational effort value.

The best results are obtained setting setting the mutation

rate to 80% and crossover rate to 20% (crossover-and-mutation

setting), used in our third set of experiments. Differently than

the reverse problem, the performance of the recursive approach

using mutation combined with crossover increased, finding a

solution in 25 out of 100 runs and reaching the minimum

computational effort value of 1,623,500 at generation 190. The

performance of the scaffolding-based approach also increased,

finding a solution in 69 out of 100 runs and reaching the

minimum computational effort value of 252,000 at generation

55. The performance curves for the recursive and scaffolding-

based approach are illustrated in Fig. 2(c) and Fig. 2(d),
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(a) recursive (mutation-only)
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(c) recursive (crossover-and-mutation)
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(b) scaffolding (mutation-only)
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(d) scaffolding (crossover-and-mutation)

Fig. 2. Performance curves—cumulative probability of success P(M,i) and computational effort I(M,i,z)—for the insert and scaffolding-based approaches
in the insert problem for the mutation-only and crossover-and-mutation settings. The value in the box corresponds to the generation followed by the lowest
I(M,i,z) achieved; the best I(M,i,z) value is achieved by the scaffolding-based approach using the crossover-and-mutation setting.

TABLE II
SUMMARY OF THE RESULTS FOR THE INSERT PROBLEM. THE BEST I(M,i,z)

(LOWER COMPUTATION EFFORT VALUE) IS SHOWN IN BOLD.

(i) recursive approach P(M,i) min I(M,i,z)

crossover-only 0% –

mutation-only 7% 5,984,000

crossover-and-mutation 25% 1,623,500

(i) scaffolding-based approach P(M,i) min I(M,i,z)

crossover-only 1% 2,299,590

mutation-only 32% 792,000

crossover-and-mutation 69% 252,000

respectively. These results (summary presented in Table II)

show that the insert problem is more complex than the reverse

problem, which is expected since it requires more structures to

create the optimal solution. They also show that the proposed

approach successfully reduces the complexity of the search by

avoiding the need to evolve these structures simultaneously.

V. CONCLUSIONS

We have introduced an indirect approach to evolving pro-

grams with recursion, based on the idea of using a scaffolding

function that replaces the recursive call and that provides

the correct answer for all entries in the training set, and

which can be removed once the correct program has been

evolved. The programs using the scaffolding functions are not

recursive, hence much less fragile to the application of search

operators than the corresponding recursive programs. This has

been shown to have a considerably better performance than a

traditional approach. Future work will extend this approach

to a broader class of problems, in particular investigating

problems where multiple calls to the recursive function are

needed; relax the requirement of having all fitness cases up to

a certain input size; and a more detailed investigation of the

structure of fitness landscapes in recursive problems and how

these approaches transform those landscapes.
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