
King, Andy (1994) A Synergistic Analysis for Sharing and Groundness
which traces Linearity. In: Sannella, Don, ed. Programming Languages
and Systems — ESOP '94 5th European Symposium on Programming.
Lecture Notes in Computer Science . Springer, Berlin, Germany, pp. 363-378.
ISBN 978-3-540-57880-2.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21205/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/3-540-57880-3_24

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21205/
https://doi.org/10.1007/3-540-57880-3_24
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A Synergistic Analysis for
Sharing and Groundness which traces Linearity

Andy King

Department of Electronics and Computer Science���

The University of Southampton� Southampton� S�� �NH� UK�

Abstract� Accurate variable sharing information is crucial both in the
automatic parallelisation and in the optimisation of sequential logic pro�
grams� Analysis for possible variable sharing is thus an important topic in
logic programming and many analyses have been proposed for inferring
dependencies between the variables of a program� for instance� by com�
bining domains and analyses� This paper develops the combined domain
theme by explaining how term structure� and in particular linearity� can
be represented in a sharing group format� This enables aliasing behaviour
to be more precisely captured� groundness information to be more accu�
rately propagated� and in addition� re	nes the tracking and application
of linearity� In practical terms� this permits aliasing and groundness to
be inferred to a higher degree of accuracy than in previous proposals and
also can speed up the analysis itself� Correctness is formally proven�

� Introduction

Abstract interpretation for possible sharing is an important topic of logic pro�
gramming� Sharing �or aliasing� analysis conventionally infers which program
variables are de�nitely grounded and which variables can never be bound to
terms containing a common variable� Applications of sharing analysis are nu�
merous and include� the sound removal of the occur�check �		
� optimisation of
backtracking ��
� the specialisation of uni�cation �	

� and the elimination of
costly checks in independent and�parallelism �	�� �
� 	�
� Early proposals for
sharing analysis include �	�� ��� ��
�

This paper is concerned with a semantic basis for sharing analysis� and in
particular� the justi�cation of a high precision abstract uni�cation algorithm�
Following the approach of abstract interpretation ��
� the abstract uni�cation
algorithm �the abstract operation� essentially mimics uni�cation �the concrete
operation� by �nitely representing substitutions �the concrete data� with sharing
abstractions �the abstract data�� The accuracy of the analysis depends� in part�
on the substitution properties that the sharing abstractions capture� Sharing
abstractions usually capture groundness and aliasing information� and indeed�
accurate analyses are often good at groundness propagation ��
� 	�
� A knowl�
edge of groundness can improve sharing and vice versa� A synergistic relationship

�� New address
 The Computing Laboratory� The University of Kent� Canterbury�
CT� �LX� UK�

also exists between sharing and type analysis� Type analysis deduces structural
properties of aggregate data� By keeping track of type information� that is infer�
ring structural properties of substitutions� it is possible to infer more accurate
sharing information� Conversely� more accurate type information can be deduced
if sharing is traced�

Type information is often applied by combining sharing and freeness analy�
sis �	�� �� 	�
 or by tracing linearity �		� �
� Freeness information di�erentiates
between a free variable� a variable which is de�nitely not bound to non�variable
term� and a non�free variable� a variable which is possibly bound to a non�variable
term� Freeness information is useful in its own right� in fact it is essential in the
detection of non�strict and�parallelism ���
� A more general notion than freeness
is linearity �		� �
� Linearity relates to the number of times a variable occurs in
a term� A term is linear if it de�nitely does not contain multiple occurrences
of a variable� otherwise it is non�linear� Without exploiting linearity �or free�
ness�� analyses have to assume that aliasing is transitive ��
� The signi�cance
of linearity is that the uni�cation of linear terms only yields restricted forms of
aliasing� Thus� if terms can be inferred to be linear� worst case aliasing need not
be assumed in an analysis�

Sharing analyses can be used in isolation� but an increasing trend is to com�
bine domains and analyses to improve accuracy ��
� For example� the pair�sharing
domain of S�ndergaard �		� �
� tracks linearity but is not so precise at propagat�
ing groundness information� Conversely� sharing group domains ��
� 	�
 accu�
rately characterise groundness but do not exploit linearity� The rationale behind
��
� therefore� is to run multiple analyses in lock step� At each step� the shar�
ing information from di�erent analyses is compared and used to improve the
precision� For instance� the linearity of the S�ndergaard domain �		� �
 can be
used to prune out spurious aliasing in the sharing group analysis ��
� 	�
� and
the groundness information of the Jacobs and Langen domain can be used to
remove redundant aliasing in the S�ndergaard analysis�

This paper develops the combined domain theme by explaining how the lin�
earity of the the S�ndergaard domain �		� �
 can be represented in the sharing
group format of the Jacobs and Langen domain ��
� 	�
� This enables both
aliasing behaviour to be precisely captured� and groundness information to be
accurately propagated� in a single coherent domain and analysis� This is not an
exercise in aesthetics but has a number of important and practical implications�

�� By embedding linearity into sharing groups� the classic notion of linearity
�		� �
 can be re�ned� Speci�cally� if a variable is bound to a non�linear term�
it is still possible to di�erentiate between which variables of the term occur
multiply in the term and which variables occur singly in the term� Put an�
other way� the abstraction proposed in this paper records why a variable
binding is potentially non�linear� rather than merely indicating that it is
possibly non�linear� Previously� the variable would simply be categorised as
non�linear� and worst�case aliasing assumed� The re�ned notion of linearity
permits more accurate aliasing information to be squeezed out of the analy�
sis� This can� in turn� potentially identify more opportunities for parallelism

and optimisation�
	� Tracking aliasing more accurately can also improve the e�ciency of the anal�

ysis ��
� Possible aliases are recorded and manipulated in a data structure
formed from sharing groups� As the set of possible aliases is inferred more ac�
curately� so the set becomes smaller� and thus the number of sharing groups
is reduced� The size of the data structures used in the analysis are therefore
pruned� and consequently� analysis can proceed more quickly�
Moreover� the sharing abstractions de�ned in this paper are described in
terms of a single domain and manipulated by a single analysis� This is sig�
ni�cant because� unlike the multiple analyses approach ��
� it avoids the
duplication of abstract interpretation machinery and therefore simpli�es the
analysis� In practical terms� this is likely to further speedup the analysis ��	
�
Furthermore� the closure under union operation implicit in the analyses of
��
� 	�
 has exponential time� and space�complexity in the number of sharing
groups� It is therefore important to limit its use� In this paper� an analog of
closure under union operation is employed� but is only applied very conser�
vatively to a restricted subset of the set of sharing groups� This is also likely
to contribute to faster analysis�

�� Errors and omissions have been reported �
� �
 in some of the more recent
proposals for improving sharing analysis with type information �	�� �� 	�
�
Although the problems relate to unusual or rare cases� and typically the
analyses can be corrected� these highlight that analyses are often sophisti�
cated� subtle and di�cult to get right� Thus� formal proof of correctness is
useful� indeed necessary� to instill con�dence� For the analysis described in
this paper� safety has been formally proved� In more pragmatic terms this
means that the implementor can trust the results given by the analysis�

The exposition is structured as follows� Section 	 describes the notation and
preliminary de�nitions which will be used throughout� Also� linearity is for�
mally introduced and its signi�cance for aliasing is explained� In section �� the
focus is on abstracting data� A novel abstraction for substitutions is proposed
which elegantly and expressively captures both linear and sharing properties of
substitutions� In section
� the emphasis changes to abstracting operations� Ab�
stract analogs for renaming� uni�cation� composition and restriction are de�ned
in terms of an abstract unify operator ��

� An abstract uni�cation algorithm
is precisely and succinctly de�ned which� in turn� describes an abstract ana�
log of unify� �Once an abstract unify operator is speci�ed and proved safe�
a complete and correct abstract interpreter is practically de�ned by virtue of
existing abstract interpretation frameworks ��� ��� 	�
�� Finally� sections � and
� present the related work and the concluding discussion� For reasons of brevity
and continuity� proofs are not included in the paper� but can be found in ���
�

� Notation and preliminaries

To introduce the analysis some notation and preliminary de�nitions are required�
The reader is assumed to be familiar with the standard constructs used in logic

programming ���
 such as a universe of all variables �u� v ��Uvar� the set of
terms �t ��Term formed from the set of functors �f� g� h ��Func �of the �rst�
order language underlying the program�� and the set of program atoms Atom�
It is convenient to denote f�t�� � � � � tn� by �n and f ��t��� � � � � t

�
n� by � �n� Also let

�� � f and � �� � f �� Let Pvar denote a �nite set of program variables � the
variables that are in the text of the program� and let var�o� denote the set of
variables in a syntactic object o�

��� Substitutions

A substitution � is a total mapping � � Uvar � Term such that its domain
dom��� � fu � Uvar j��u� �� ug is �nite� The application of a substitution
� to a variable u is denoted by ��u�� Thus the codomain is give by cod��� �
�u�dom���var���u��� A substitution � is sometimes represented as a �nite set
of variable and term pairs fu �� ��u� ju � dom���g� The identity mapping on
Uvar is called the empty substitution and is denoted by �� Substitutions� sets
of substitutions� and the set of substitutions are denoted by lower�case Greek
letters� upper�case Greek letters� and Subst�

Substitutions are extended in the usual way from variables to functions� from
functions to terms� and from terms to atoms� The restriction of a substitution �
to a set of variables U � Uvar and the composition of two substitutions � and
�� are denoted by � � U and � �� respectively� and de�ned so that �� ����u� �
����u��� The preorder Subst �v�� � is more general than �� is de�ned by� � v �
if and only if there exists a substitution � � Subst such that � � � � �� The
preorder induces an equivalence relation � on Subst� that is� � � � if and only
if � v � and � v �� The equivalence relation � identi�es substitutions with
consistently renamed codomain variables which� in turn� factors Subst to give
the poset Subst	� �v� de�ned by� ��
� v ��
� if and only if � v ��

��� Equations and most general uni�ers

An equation is an equality constraint of the form a � b where a and b are terms
or atoms� Let �e ��Eqn denote the set of �nite sets of equations� The equation
set feg�E� following ��
� is abbreviated by e �E� The set of most general uni�ers
of E� mgu�E�� is de�ned operationally ��

 in terms of a predicate mgu� The
predicate mgu�E� �� which is true if � is a most general uni�er of E�

De�nition� mgu� The set of most general uni�ers mgu�E� �
�Subst� is de�
�ned by� mgu�E� � f� jmgu�E� ��g where

mgu�	� ��
mgu�v � v� �E� �� if mgu�E� ��
 v � v�

mgu�v � v� �E� � � �� if mgu���E�� ��
 v �� v�
 � � fv �� v�g
mgu�v � v� �E� � � �� if mgu���E�� ��
 v �� v�
 � � fv� �� vg
mgu�v � �n �E� � � �� if mgu���E�� ��
 v �� var��n�
 � � fv �� �ng
mgu��n � v �E� � � �� if mgu���E�� ��
 v �� var��n�
 � � fv �� �ng
mgu��n � � �n �E� �� if mgu�t� � t�� � � � �� tn � t�n �E� ��
 f � f �

By induction it follows that dom���� cod��� � 	 if � � mgu�E�� or put another
way� that the most general uni�ers are idempotent ���
�

Following ��

� the semantics of a logic program is formulated in terms of
a single unify operator� To construct unify� and speci�cally to rename apart
program variables� an invertible substitution ���
�
 � is introduced� It is conve�
nient to let Rvar � Uvar denote a set of renaming variables that cannot occur
in programs� that is Pvar �Rvar � 	� and suppose that
 � Pvar� Rvar�

De�nition� unify� The partial mapping unify � Atom
 Subst	�
 Atom

Subst	� � Subst	� is de�ned by�

unify�a� ��
�� b� ��
�� � ��� � �� � Pvar
� where � � mgu�f��a� �
 ���b��g�

To approximate the unify operation it is convenient to introduce a collect�
ing semantics� concerned with sets of substitutions� to record the substitutions
that occur at various program points� In the collecting semantics interpreta�
tion� unify is extended to unifyc � which manipulates �possibly in�nite� sets of
substitutions�

De�nition� unifyc � The mapping unifyc � Atom

�Subst	��
 Atom

�Subst	�� �
�Subst	�� is de�ned by�

unifyc�a� �� b� � � � f��
� j ��
� � �
 ��
� � �
 ��
� � unify�a� ��
�� b� ��
��g

��� Linearity and substitutions

To be more precise about linearity� it is necessary to introduce the variable
multiplicity of a term t� denoted ��t��

De�nition� variable multiplicity� � �	
� The variable multiplicity operator
� � Term � f�� �� 	g is de�ned by�

��t� � max�f�u�t� ju � Uvarg� where �u�t� �

��
�
� if u does not occur in t
� if u occurs only once in t
	 if u occurs many times in t

If ��t� � �� t is ground� if ��t� � �� t is linear� and if ��t� � 	� t is non�linear�
The signi�cance of linearity is that the uni�cation of linear terms only yields
restricted forms of aliasing� Lemma � states some of the restrictions on a most
general uni�er which follow from uni�cation with a linear term�

Lemma	� ��b� �� 	
 var�a� � var�b� � 	
 � � mgu�fa � bg� �

�� �u � Uvar � ����u�� � 	 � u � var�b�
�� �u� u� � Uvar � u �� u�
 var���u�� � var���u��� �� 	 � u �� var�a� � u� ��

var�a��
�� �u�� u�� � var�b� � u� �� u��
w � var���u����var���u���� � �u � var�a�� �u�a�

� 	
w � var���u��

Application of lemma � is illustrated in example ��

Example �� Note that � � mgu�ff�u� v� v� � f�x� y� z�g� where � � fv �� y�
x �� u� z �� yg� ��f�x� y� z�� �� 	 and that f�u� v� v� and f�x� y� z� do not share
variables� Observe that

�� The variables u and v of f�u� v� v� remain linear after uni�cation� that is�
����u�� � � and ����v�� � �� as predicted by case � of lemma ��

	� The variables of f�u� v� v�� speci�cally u and v� remain unaliased after uni�
�cation� Indeed� case 	 of lemma � asserts that since u� v � var�f�u� v� v���
var���u�� � var���v�� � 	�

�� Informally� case � of lemma � states that the aliasing which occurs between
the variables of f�x� y� z�� is induced by a variable of f�u� v� v� which has a
multiplicity of 	� For instance� y � var���y�� � var���z�� with �v�f�u� v� v��
� 	 and y � var���v���

Lemma � di�ers from the corresponding lemma in ��
 �lemma 	�	� in two ways�
First� lemma � requires that a and b do not share variables� This is essentially a
work�around for a subtle mistake in lemma 	�	 ��
� Second� lemma � additionally
states that a variable which only occurs once in a can only be aliased to one
variable in b� This observation permits linearity to be exploited further than in
the original proposals for tracking sharing with linearity �		� �
 by putting a
tighter constraint of the form of aliasing that occurs on uni�cation with a linear
term� The proof for lemma � follows by induction on the steps of the uni�cation
algorithm�

� Abstracting substitutions

Sharing analysis is primarily concerned with characterising the sharing e�ects
that can arise among program variables� Correspondingly� abstract substitutions
are formulated in terms of sharing groups ��

 which represent which program
variables share variables� Formally� an abstract substitution is structured as a
set of sharing groups where a sharing group is a �possibly empty� set of program
variable and linearity pairs�

De�nition� Occ
Svar

� The set of sharing groups� �o ��Occ
Svar

is de�ned by�

Occ
Svar

� fo �
�Svar
 f�� 	g� j �u � Svar � hu� �i �� o � hu� 	i �� og

Svar is a �nite set of program variables� The intuition is that a sharing group
records which program variables are bound to terms that share a variable� Ad�
ditionally� a sharing group expresses how many times the shared variable occurs
in the terms to which the program variables are bound� Speci�cally� a program
variable is paired with � if it is bound to a term in which the shared variable
only occurs once� The variable is paired with 	 if it can be bound to a term in
which the shared variable occurs possibly many times� The �niteness of Occ

Svar

follows from the �niteness of Svar� �Svar usually corresponds to Pvar� the set of

program variables� It is necessary to parameterise Occ� however� so that abstract
substitutions are well�de�ned under renaming by
 � Then Svar � Rvar��

The precise notion of abstraction is �rst de�ned for a single substitution via
lin and then� by lifting lin� generalised to sets of substitutions�

De�nition� occ and lin� The abstraction mappings occ � Uvar
 Subst �
Occ

Svar
and lin � Subst	� �
�Occ

Svar
� are de�ned by�

occ�u� �� � fhv� �u���v��i ju � var���v��
 v � Svarg

lin���
�� � focc�u� �� ju � Uvarg

The mapping lin is well�de�ned since lin���
�� � lin���
�� if � � �� The map�
ping occ is de�ned in terms of Svar because� for the purposes of analysis� the
only signi�cant bindings are those which relate to the program variables �and
renamed program variables�� Note that 	 � lin���
�� since the codomain of a
substitution is always �nite�

The abstraction lin is analogous to the abstraction A used in �	�
 and im�
plicit in ��

� Both abstractions are formulated in terms of sharing groups� The
crucial di�erence is that lin� as well as expressing sharing� additionally represents
linearity information�

Example �� Suppose Svar � fu� v� w� x� y� zg and � � fu �� u�� w �� v� x �� f �
y �� g�u�� u�� u��� z �� h�u�� u�� u��g then

lin���
�� � f	� occ�u�� ��� occ�u�� ��� occ�u�� ��� occ�v� ��g �

f	� fhu� �i� hy� �ig� fhy� 	i� hz� �ig�fhz� 	ig� fhv� �i� hw��igg

since occ�w� �� � occ�x� �� � occ�y� �� � occ�z� �� � 	� The salient properties of
�� namely sharing� groundness and linearity� are all captured by lin���
��� The
variables of Svar which � ground� do not appear in lin���
��� and the variables of
Svar which are independent �unaliased�� never occur in the same sharing group
of lin���
��� Thus lin���
�� indicates that x is ground and that� for example� v
and y are independent� Additionally� lin���
�� captures the fact that grounding
either v or w grounds the other� Or� put another way� that v and w are strongly
coupled �	�
�

Linearity is also represented and lin���
�� indicates that ����x�� � �� ����u��
� ����v�� � ����w�� � �� and ����y�� � ����z�� � 	� It is evident that ����w��
� �� for instance� since �v���w�� � � and �u���w�� �� 	 for all u � Uvar� Specif�
ically� hw� �i � occ�v� �� and hw� 	i �� occ�u� �� for all u � Uvar� The subtlety
is that the domain represents variable multiplicity information slightly more ac�
curately than the S�ndergaard domain �		� �
� Note that although ����y�� �
	 and y is aliased to both u and z� lin���
�� indicates that the variable that
occurs through u and y �namely u�� occurs only once in ��y� whereas the vari�
able through y and z �that is to say u�� occurs multiply in ��y�� This can be
exploited to gain more precise analysis�

The abstract domain� the set of abstract substitutions� is de�ned below using
the convention that abstractions of concrete objects and operations are distin�
guished with a � from the corresponding concrete object or operation�

De�nition
 Subst�
Svar

� The set of abstract substitutions� Subst�
Svar

� is de�ned
by� Subst�

Svar
�
�Occ

Svar
��

Like previous sharing groups domains ��
� 	�
� Subst�
Svar

��� is a �nite lattice
with set union as the lub� Subst�

Svar
is �nite since Occ

Svar
is �nite�

The lin abstraction naturally lifts to sets of substitutions� but to de�ne con�
cretisation� the notion of approximation implicit in linearity �speci�cally in the
denotations � and 	� must be formalised� In the abstraction� a program variable
is paired with � if it is de�nitely bound to a term in which the shared variable
only occurs once� and is paired with 	 if it can possibly be bound to a term in
which the shared variable occurs multiply� This induces the poset Occ

Svar
���

de�ned by� o � o� if and only if var�o� � var�o�� and for all hu�mi � o there ex�
ists hu�m�i � o� such that m � m�� The poset lifts to the preorder Subst�

Svar
���

by� �� � ��� if and only if for all o � �� there exists o� � ��� such that o � o��

De�nition� �lin and �lin� The abstraction and concretisation mappings�lin �

�Subst	�� � Subst�

Svar
and �lin � Subst�

Svar
�
�Subst	�� are de�ned by�

�lin��� � �������lin���
��� �lin���� � f��
� � Subst	� j lin���
�� � ��g

The structure of �lin and �lin mirrors that of the abstraction and concretisation
operations found in ��
� 	�
�

As illustrated in example 	� the lin abstraction can encode the variable mul�
tiplicity of a substitution� More signi�cantly� if � � �lin����� the variable multi�
plicity of ��t� can be �partially� deduced from t and �� � The precise relationship
between ����t�� and t and �� is formalised in de�nition �� and lemma ��� with
an analog of �� denoted �� �

De�nition�� �� � The abstract variable multiplicity operator �� � Term

Occ

Svar
� f�� �� 	g is de�ned by�

�� �t� o� �

������
�����

� if � v � var�o� � �v�t� � �
	 if � v � var�o� � �v�t� � 	
	 if � v� v� � var�t� � v� v� � var�o�
 v �� v�

	 if � v � var�t� � hv� 	i � o
� otherwise

Lemma���

var�t� � Svar
 occ�u� �� � o� �u���t�� � �� �t� o�

To conservatively calculate the variable multiplicity of a term t in the context of
a set of substitutions represented by �� � the sharing group operator �� is lifted
to abstract substitutions via ln and nl�

De�nition�� ln and nl� The mappings ln � Term
 Subst�
Svar

� Subst�
Svar

and nl � Term
 Subst�
Svar

� Subst�
Svar

are de�ned by�

ln�t� ��� � fo � �� j���t� o� � �g� nl�t� ��� � fo � �� j���t� o� � 	g

The operators ln and nl essentially categorise �� into two sorts of sharing group�
sharing groups which describe aliasing for which ��t� is de�nitely linear� and
sharing groups which represent aliasing for which ��t� is possibly non�linear�
An immediate corollary of lemma ��� corollary ��� asserts that ��t� is linear if
nl�t� ��� is empty�

Corollary���

��
� � �lin��� �
 var�t� � Svar
 nl�t� ��� � 	 � ����t�� �� 	

The signi�cance of corollary �� is that it explains how by inspecting t and �� �
��t� can be inferred to be linear� thereby enabling linear instances of uni�cation
to be recognised�

� Abstracting uni�cation

The collecting version of the unify operator� unifyc � provides a basis for ab�
stracting the basic operations of logic programming by spelling out how to ma�
nipulate �possibly in�nite� sets of substitutions� The usefulness of the collecting
semantics as a form of program analysis� however� is negated by the fact that
it can lead to non�terminating computations� Therefore� in order to de�ne a
practical analyser it is necessary to �nitely abstract unifyc � To synthesise a
sharing analysis� an analog of unifyc� unify� � is introduced to manipulate sets
of substitutions following the abstraction scheme prescribed by �lin and �lin�

Just as unifyc is de�ned in terms of mgu� unify� is de�ned in terms of an
abstraction of mgu� mge� which traces the steps of the uni�cation algorithm�
The uni�cation algorithm takes as input� E� a set of uni�cation equations� E is
recursively transformed to a set of simpli�ed equations which assume the form
v � v� or v � �n� These simpli�ed equations are then solved� The equation
solver mge� adopts a similar strategy� but relegates the solution of the simpli�ed
equations to solve� The skeleton of the abstract equation solver mge is given
below in de�nition �
�

De�nition�� mge� The relation mge � Eqn
 Subst�
Svar

 Subst�
Svar

is de�ned
by�

mge�	� �� � ���
mge�v � v� �E� ��� �� � ifmge�E� �� � ���
 v � v�

mge�v � v� �E� ��� �� � ifmge�E� solve�v� v� � ���� �� �
 v �� v�

mge�v � �n �E� ��� �� � ifmge�E� solve�v� �n � ���� ���
 v �� var��n�
mge��n � v �E� ��� �� � ifmge�v � �n �E� ��� �� �
mge��n � � �n �E� ��� �� � ifmge�t� � t�� � � � �� tn � t�n �E� ��� �� �
 f � f �

To spare the need to de�ne an extra �composition� operator for abstract sub�
stitutions� mge is de�ned to abstract a variant of mgu� Speci�cally� if � �
mgu�f��a� � ��b�g�� ��
� � �lin����� and mge�fa � bg� �� � ���� then �� ab�
stracts the composition � � � �rather than ��� that is� �� � �
� � �lin��� ��

To de�ne solve� and thereby mge� a number of auxiliary operators are re�
quired� The �rst� denoted rl�t� ���� represents the sharing groups of �� which are
relevant to the term t� that is� those sharing groups of �� which share variables
with t�

De�nition�	 rl ���
� The mapping rl � Term
 Subst�
Svar

� Subst�
Svar

is de�
�ned by� rl�t� ��� � fo � �� j var�o� � var�t� �� 	g�

Note that rl�t� ��� � fo � �� j���t� o� �� �g and therefore rl�t� ��� � ln�t� ��� �
nl�t� ���� In ��

 the equivalent operator is denoted rel�

The second operator� t� is a technical device which is used to calculate
occ�u� � � �� from a set of sharing groups occ�w� �� for the variables w with u �
var���w��� Since occ�u� ���� � fhv� �u�����v��i ju � var�����v��
 v � Svarg�
observe that hv� �i � occ�u� ���� if a single variablew satis�es u � var���w�� and
additionally �w���v�� � � with �u���w�� � �� Otherwise hv� 	i � occ�u� � ��� if
there exist distinct variables w and w� for which u � var���w��� var���w���� or
�w���v�� � 	� or �u���w�� � 	� Thus hv�min��u�var���w��mv�w� 	�i � occ�u� ��
�� where mv�w � max��u���w��� �w���v���� The r�ole of the t operator is to com�
pute occ�u� � � �� by calculating the pairs hv�min��u�var���w��mv�w� 	�i given
mv�w for u � var���w���

De�nition�� t� The operator t � �
�Occ
Svar

� � Occ
Svar

is de�ned by�

tw�W ow � fhv�min��hv�mv�wi�owmv�w� 	�i j v � �w�W var�ow�g

Although the motivation for t is technical� example � illustrates that the oper�
ator itself is straightforward to use and compute� Sometimes� for brevity� t is
written in�x�

Example �� Three examples of using the t operator are given below� �rst� fhu�
�i� hv� �i� hw� 	igtfhv� �i� hw� 	i� hx� 	i� hy� �ig � fhu� min��� 	�i� hv� min�����
	�i� hw� min�	 � 	� 	�i� hx� min�	� 	�i� hy� min��� 	�ig � fhu� �i� hv� 	i� hw� 	i�
hx� 	i� hy� �ig� second� 	 t 	 � 	� and third� tw��ow � 	�

Note that t is commutative and associative but is not idempotent� and specif�
ically� o t o � var�o�
 f	g� Also observe that var�tw�W ow� � �w�W var�ow�
hinting at the fact that t generalises set union which is used to combine sharing
groups in the original sharing analyses ��
� 	�
�

In the conventional approach� worst�case aliasing is always assumed and a
closure under union operator is used to enumerate all the possible sharing groups
that can possibly arise in uni�cation ��
� 	�
� The t operator de�nes an analog of
closure under union� closure under t� denoted ��� and de�ned in de�nition ���

De�nition�� closure under t� �� The closure under t operator �� � Subst�
Svar

� Subst�
Svar

is de�ned by� ��� � �� � fo t o� j o� o� � ���g�

Closure under t is used more conservatively than the closure under union oper�
ator of ��
� 	�
 and is only invoked in the absence of useful linearity information�
An interesting consequence of Subst�

Svar
��� being a preorder �rather than a

poset�� is that equivalent ��� can have di�erent representations� For instance� if
�� � ffhu� �i� hv� 	igg� ��� � ffhu� �i� hv� 	ig� fhu� 	i� hv� 	igg but ��� � ��� �
��� where �� � ffhu� 	i� hv� 	igg and ��� � ffhu� 	i� hv� 	igg� Clearly ��� is
preferable to ���� and more generally� redundancy can be avoided in the calcu�
lation and representation of ��� by computing ��� with fvar�o�
f	g j o � ��g��

Finally� to achieve a succinct de�nition of the abstract equation solver� it is
useful to lift t to sets of sharing groups in the matter prescribed in de�nition ���

De�nition�
 �� The mapping �� � � Subst�
Svar

 Subst�
Svar

� Subst�
Svar

is
de�ned by� �� ���� � fo t o� j o � ��
 o� � ���g�

The nub of the equation solver mge is solve� In essence� solve�v� t� �� � solves
the syntactic equation v � t in the presence of the abstract substitution �� �
returning the composition of the uni�er with �� � The di�erent cases of operator
solve apply di�erent analysis strategies corresponding to when ��v� is linear�
��t� is linear� both ��v� and ��t� are possibly non�linear� �If both ��v� and
��t� are linear� cases � and 	 coincide�� The default strategy corresponds to the
standard treatment of the abstract solver amgu of ��

�

De�nition�� solve� The abstract equation solver solve � Uvar
 Term

Subst�

Svar
� Subst�

Svar
is de�ned by�

solve�v� t� �� � � �� n �rl�v� ��� � rl�t� �����������
�����

�ln�v� ���� ln�t� ��� � � �ln�v� ���� �nl�t� ��� �
if nl�v� �� �� 	

ln�v� �� � � rl�t� ��� � 	

�ln�v� ���� ln�t� ��� � � �nl�v� ��� � ln�t� �����
if nl�t� ���� 	

ln�t� ��� � rl�v� �� � � 	

rl�v� ���� � rl�t� ���� otherwise

Note that �� � 	 � 	 and 	��� � 	 and in particular� for case � of solve� the
closure ln�v� ���� need not be calculated if nl�t� ��� � 	� Similarly� in case 	� if
nl�v� ��� � 	� ln�t� ���� need not be computed� The correctness of solve is as�
serted by lemma 	�� The justi�cation of lemma 	� relies on very weak properties
of substitutions� and speci�cally� only that a most general uni�er� if it exists� is
idempotent�

Lemma���

��
� � �lin����
 � � mgu�f��v� � ��t�g�

fvg � var�t� � Svar
 v �� var�t�� �� � �
� � �lin�solve�v� t� �� ��

The correctness of mge follows from lemma 	� and is stated as corollary 	��

Corollary ���

��
� � �lin��� �
 � � mgu���E��

mge�E� �� � ���
 var�E� � Svar � �� � �
� � �lin����

It is convenient to regard mge as a mapping� that is� mge�E� �� � � �� if
mge�E� �� � ���� Strictly� it is necessary to show that mge�E� �� � ��� is deter�
ministic for mge�E� �� � to be well�de�ned� Like in ��
� the conjecture is that
mge yields a unique abstract substitution regardless of the order in which E is
solved� This conjecture� however� is only really of theoretical interest because all
that really matters is that any abstract substitution derived by mge is safe� This
is essentially what corollary 	� asserts�

To de�ne unify� � the �nite analog of unifyc � it is necessary to introduce an
abstract restriction operator� denoted ��� ��

De�nition�� abstract restriction� �� � The abstract restriction operator
� �� � � Subst�

Svar

�Uvar� � Subst�

Svar
is de�ned by� �� �� U � fo ��

U j o � ��g where o �� U � fhu�mi � o ju � Ug�

The de�nition of unify� is �nally given below� followed by the local safety the�
orem� theorem 	
�

De�nition�� unify� � The mapping unify� � Atom
 Subst�
P var

 Atom

Subst�

P var
� Subst�

Pvar
is de�ned by�

unify� �a� �� � b� ��� � mge�fa �
 �b�g� �� �
 ��� �� �� Pvar

Theorem�� local safety of unify� �

� � �lin����
 � � �lin��� �

var�a� � var�b� � Pvar � unifyc�a� �� b� � � � �lin�unify� �a� �� � b� ����

Examples
 and � demonstrate the precision in propagating groundness infor�
mation that the domain inherits from sharing groups� and accuracy that is addi�
tionally obtained by tracking linearity� Furthermore� example � illustrates that
the domain is more powerful than the sum of its parts� that is� it can trace lin�
earity and sharing better than is achievable by running the S�ndergaard �		� �

and sharing group analyses ��
� 	�
 together in lock step ��
� The examples also
comment on the e�ciency of the analysis�

Example � propagating groundness� The supremacy of the sharing group domains
over the S�ndergaard domain for propagating groundness information can be il�
lustrated by separately solving two equations� �rst� x � f�y� z� and second�
x � f�g� g�� Suppose Svar � fx� y� zg� To demonstrate the groundness propaga�
tion of sharing groups� let �� � f	� fhx� 	ig� fhy� 	ig� fhz� 	igg so that worst�case
linearity is assumed� Solving x � f�y� z� for �� yields

�� � solve�x� f�y� z�� �� � �

f	� fhx� 	i� hy� 	ig� fhx� 	i� hz� 	ig� fhx�	i� hy� 	i� hz� 	igg

Since x occurs in each �non�empty� sharing group of �� � grounding x must also
ground both y and z� and indeed �� � solve�x� f�g� g�� �� � � f	g� Furthermore�
�� indicates that y and z are independent� In contrast� the abstract uni�cation
algorithm proposed for the S�ndergaard domain ��
� cannot infer that x and y
are grounded or independent�

Example � tracking linearity� Suppose E � fx � u� y � f�u� v�� z � vg and con�
sider the abstraction ofmgu�E� and speci�cally the calculationmge�E� lin���
����
Assuming Svar � fu� v� x� y� zg� dubbing �� � lin���
�� � f	� fhu� �ig� fhv� �ig�
fhx� �ig� fhy� �ig� fhz� �igg� and solving the equations left�to�right

�� � solve�x� u� �� � � f	� fhu� �i� hx� �ig� fhv� �ig� fhy� �ig�fhz� �igg
�� � solve�y� f�u� v�� �� �� f	� fhu� �i� hx� �i� hy� �ig� fhv� �i� hy� �ig�fhz� �igg
�� � solve�z� v� �� � � f	� fhu� �i� hx� �i� hy� �ig� fhv� �i� hy� �i� hz��igg

Therefore �� � mge�E� �� � and indeed � � fx �� u� y �� f�u� v�� z �� vg �
mgu�E� with ��
� � �lin��� �� Without exploiting linearity �or freeness�� the
sharing group analyses of ��
� 	�
 have to include an additional sharing group
fu� v� x� y� zg for possible aliasing between u and v �and x and z�� Tracking
linearity strengthens the analysis� allowing it to deduce that u and v �and x
and z� are de�nitely not aliased� Note also that the size of the data structure
�the abstract substitution �� � is pruned from
 to � sharing groups and that� in
contrast to the analyses of ��
� 	�
� the calculation of a closure is avoided�

Example 	 re
ned sharing and linearity� The domain re�nes the way linearity
information is recorded and in particular the analysis can di�erentiate between
which variables can occur multiply in a term �or binding� and which vari�
ables always occur singly in a term �or binding�� For instance� consider the
set of substitutions � � f��
�� ���
�g where � � fx �� f�u� v�g and �� �
fx �� f�w�w�g� � represents two possible bindings for x� In the �rst� ��x�
is linear� whereas in the second� ���x� is non�linear� This is re�ected in �� �
�lin��� � lin���
�� � lin����
��� and speci�cally� if Svar � fu� v� w� x� y� zg

�� � f	� fhu� �i� hx� �ig� fhv� �i� hx��ig� fhw� �i� hx�	ig� fhy� �ig� fhz��igg

The abstraction �� indicates that u and v never occur more than once through
��x� and ���x�� and that w can occur multiply through ��x� or ���x�� Informally�
the abstraction records why x is possibly non�linear� This� in turn� can lead to
improved precision and e�ciency� as is illustrated by the calculation ofmge�fx �
f�y� z�� w � gg� ���� Again� solving the equations left�to�right

�� � solve�x� f�y� z�� �� �� f	�fhu� �i� hx� �i� hy� �ig� fhu��i� hx� �i� hz� �ig�
fhv� �i� hx� �i� hy� �ig� fhv� �i� hx��i� hz��ig�
fhw� �i� hx� 	i� hy� 	ig� fhw��i� hx� 	i� hz� 	ig�
fhw� �i� hx� 	i� hy� 	i� hz� 	igg

�� � solve�w� g� �� � � f	�fhu� �i� hx� �i� hy� �ig� fhu��i� hx� �i� hz� �ig�
fhv� �i� hx� �i� hy� �ig� fhv� �i� hx��i� hz��igg

In terms of precision� linearity is still exploited for u and v� even though worst�
case aliasing has to be assumed for w� Consequently� on grounding w� u and v
�and y and z� become independent� The S�ndergaard domain� however� cannot
resolve linearity to the same degree of accuracy and therefore the analysis of ��

cannot infer u and v �and y and z� become unaliased� Also� the combined domains
approach ��
 does not help� since the precision comes from restructuring the
domain� In terms of e�ciency� observe that although the closure of ln�f�y� z�� ���
is computed� the number of sharing groups in �� is kept low by only combining
ln�f�y� z�� �� �� with nl�x� ��� �rather than with rl�x� �����

The extra expressiveness of the domain is not con�ned to abstracting multiple
substitutions� If � � fx �� f�u� v� w�w�g and �� � lin���
��� for instance�

�� � f	� fhu� �i� hx� �ig� fhv� �i� hx��ig�fhw� �i� hx�	ig�fhy� �ig� fhz� �igg

so that �� is structurally identical to �� � Although omitted for brevity� the
calculation mge�fx � f�y�� y�� y�� y	�� w � gg� ��� deduces that yi and yj �for
i �� j� become independent after w is grounded� This� again� cannot be inferred
in terms of the S�ndergaard domain�

� Related work

Recently� four interesting proposals for computing accurate sharing information
have been put forward in the literature� In the �rst proposal ��
� domains and
analyses are combined to improve accuracy� This paper develops this theme and
explores the virtues of fusing linearity with sharing groups� In short� this paper
explains how accuracy and e�ciency can be further improved by restructuring
a combined domain as a single domain�

In the second proposal �

� the correctness of freeness analyses is considered�
An abstract uni�cation algorithm is proposed as a basis for constructing accu�
rate freeness analyses with a domain formulated in terms of abstract equations�
Safety follows because the abstract algorithm mimics the solved form algorithm
in an intuitive way� Correctness is established likewise here� The essential distinc�
tion between the two works is that this paper tracks groundness and linearity�
Consequently� the approach presented here can derive more accurate sharing in�
formation� Also� as pointed out in �	
� �it is doubtful whether it �the abstract
uni�cation algorithm of �

� can be the basis for a very e�cient analysis�� The
analysis presented here� on the other hand� is designed to be e�cient�

Very recently� in the third proposal �	
� an analysis for sharing� groundness�
linearity and freeness is formalised as a transition system which reduces a set of
abstract equations to an abstract solved form� Sharing is represented in a sharing
group fashion with variables enriched with linearity and freeness information by
an annotation mapping� The domain� however� essentially adopts the Jacobs and
Langen ��

 structure� Consequently the analysis cannot always derive sharing as
accurately as the analysis reported here� Moreover� the use of a tightly�coupled
domain seems to simplify some of the analysis machinery� For instance� the notion
of abstraction introduced in this paper is more succinct than the equivalent

de�nition in �	
� This simplicity seems to stem from the fact the domain is an
elegant and natural generalisation of sharing groups ��

� Also� the analysis of
�	
 has not� as yet� been proved correct�

Fourthly� a referee pointed out a freeness analysis which also tracks linearity
to avoid the calculation of closures in sharing groups ���
� Interestingly� ���
 seems
to adopt a conventional notion of linearity� rather than embedding linearity into
sharing groups in the useful way that is described in this paper�

To be fair� however� the analyses of ����
� 	
 do infer freeness� This can be
useful ���
� Although freeness information is not derived in this paper� it seems
that freeness can be embedded into sharing groups in a similar way to linearity�
What is more� if freeness is recorded this way� it can be used to improve sharing
beyond what is achievable by just tracing linearity� This is unusual� contrasts to
�	
� and is further evidence for the usefulness of restructuring sharing groups�

� Conclusions

A powerful� formally justi�ed and potentially e�cient analysis has been pre�
sented for inferring de�nite groundness and possible sharing between the vari�
ables of a logic program� The analysis builds on the combined domain approach
��
 by elegantly representing linearity information in a sharing group format�
By revising sharing groups to capture linearity� a single coherent domain and
analysis has been formulated which more precisely captures aliasing behaviour�
propagates groundness information with greater accuracy� and in addition� a
yields a more re�ned notion of linearity� In more pragmatic terms� the analysis
permits aliasing and groundness to be inferred to a higher degree of accuracy
than in previous proposals� The analysis is signi�cant because sharing informa�
tion underpins many optimisations in logic programming�

Acknowledgements

Thanks are due to Manuel Hermenegildo and Dennis Dams for useful discussions
on linearity� This work was supported by ESPRIT project ������ �ParForce��

References

� M� Bruynooghe� A practical framework for the abstract interpretation of logic
programs� J� Logic Programming�
�
�
�
���
��
�

�� M� Bruynooghe and M� Codish� Freeness� sharing� linearity and correctness � all
at once� In WSA���� pages
���
��� September
����

�� J��H� Chang and A� M� Despain� Semi�intelligent backtracking of prolog based
static data dependency analysis� In JICSLP���� IEEE Computer Society�
����

�� M� Codish� D� Dams� G� Fil�e� and M� Bruynooghe� Freeness analysis for logic pro�
grams � and correctness� In ICLP���� pages

��
�
� MIT Press� June
����

�� M� Codish� D� Dams� and E� Yardeni� Derivation and safety of an abstract uni	�
cation algorithm for groundness and aliasing analysis� In ICLP���� pages ������
Paris� France�
��
� MIT Press�

�� M� Codish� A� Mulkers� M� Bruynooghe� M� J� Garc��a de la Banda� and
M� Hermenegildo� Improving abstract interpretation by combining domains� In
PEPM���� ACM Press�
����

�� A� Cortesi and G� Fil�e� Abstract interpretation of logic programs
 an abstract
domain for groundness� sharing� freeness and compoundness analysis� In PEPM����
pages ����
� ACM Press�
��
�

�� P� Cousot and R� Cousot� Abstract interpretation
 A uni	ed lattice model for
static analysis of programs by construction or approximation of 	xpoints� In
POPL�		� pages �������� ACM Press�
����

�� D� Dams� Personal communication on linearity lemma ���� July�
����

�� S� K� Debray� Static inference of modes and data dependencies in logic programs�

ACM TOPLAS�

���
�
������ July
����

� W� Hans and S� Winkler� Aliasing and groundness analysis of logic programs

through abstract interpretation and its safety� Technical Report Nr� ������ RWTH
Aachen� Lehrstuhl f�ur Informatik II Ahornstra�e ��� W��
�� Aachen�
����

�� M� Hermenegildo� Personal communication on freeness analysis� May�
����

�� M� Hermenegildo and F� Rossi� Non�strict independent and�parallelism� In

ICLP��
� pages �������� Jerusalem�
���� MIT Press�

�� D� Jacobs and A� Langen� Static Analysis of Logic Programs� J� Logic Program�

ming� pages
����
��
����

�� A� King� A new twist to linearity� Technical Report CSTR ���
�� Department of

Electronics and Computer Science� Southampton University� Southampton�
����

�� J� Lassez� M� J� Maher� and K� Marriott� Foundations of Deductive Databases and

Logic Programming� chapter Uni	cation Revisited� Morgan Kaufmann�
����

�� B� Le Charlier� K� Musumbu� and P� Van Hentenryck� A generic abstract interpre�

tation algorithm and its complexity� In ICLP���� pages ������ MIT Press�
��
�

�� J� W� Lloyd� Foundations of Logic Programming� Springer�Verlag�
����

�� K� Marriott and H� S�ndergaard� Analysis of constraint logic programs� In NA�

CLP��
� pages ��
����� MIT Press�
����
��� K� Muthukumar and M� Hermenegildo� Combined determination of sharing and

freeness of program variables through abstract interpretation� In ICLP���� pages
������ Paris� France�
��
� MIT Press�

�
� K� Muthukumar and M� Hermenegildo� Compile�time derivation of variable depen�
dency through abstract interpretation� J� of Logic Programming� pages �
������

����

��� H� S�ndergaard� An application of the abstract interpretation of logic programs

occur�check reduction� In ESOP���� pages �������� Springer�Verlag�
����

��� R� Sundararajan and J� Conery� An abstract interpretation scheme for groundness�
freeness� and sharing analysis of logic programs� In �
th FST and TCS Conference�
New Delhi� India� December
���� Springer�Verlag�

��� A� Taylor� High Performance Prolog Implementation� PhD thesis� Basser Depart�
ment of Computer Science� Sydney� Australia� July
��
�

��� H� Xia� Analyzing Data Dependencies� Detecting And�Parallelism and Optimizing

Backtracking in Prolog Programs� PhD thesis� University of Berlin� April
����

This article was processed using the LaTEX macro package with LLNCS style

