
Property-based testing - The ProTest project

John Derrick1 and Neil Walkinshaw1 and Thomas Arts2 and Francesco
Cesarini3 and Lars-Ake Fredlund4 and Victor Gulias5 and John Hughes6 and

Simon Thompson7

1Department of Computing, University of Sheffield, Sheffield, S1 4DP, UK
2 Goteborgs Universitet, Goeteboug, Sweden

3 Erlang Training and Consulting LTD, London
Universidad Politecnica De Madrid, Madrid, Spain

4 Lambdastream Servicios Interactivos SL, A Coruna, Spain
6Quviq AB, Savedalen, Sweden

7 University of Canterbury, Canterbury, Kent, UK
Email: J.Derrick@dcs.shef.ac.uk

Abstract. The ProTest project is an FP7 STREP on property based
testing. The purpose of the project is to develop software engineering
approaches to improve reliability of service-oriented networks; support
fault-finding and diagnosis based on specified properties of the system.
And to do so we will build automated tools that will generate and run
tests, monitor execution at run-time, and log events for analysis.

The Erlang / Open Telecom Platform has been chosen as our initial
implementation vehicle due to its robustness and reliability within the
telecoms sector. It is noted for its success in the ATM telecoms switches
by Ericsson, one of the project partners. In this paper we provide an
overview of the project goals, as well as detailing initial progress in de-
veloping property based testing techniques and tools for the concurrent
functional programming language Erlang.

1 Introduction

Communication networks, based on telephony, wireless and Internet, have over
the last few years been converging. At the present time and for the foreseeable
future, more and more services will be added to these merging networks. More-
over, these services are becoming more complex, both in themselves and in their
interactions with each other and their end users. The telecoms industry has an
admirable record in providing reliability and robust services to its clients, and
indeed it is the telecoms industry that can point to 5-nines reliability: that is
99.999% reliability, of their core systems.

This context provides the motivation of the ProTest project - namely that of
maintaining 5-nines reliability in future service-oriented networks and systems.

The software for new services and network devices is rapidly growing in com-
plexity, among other things because of the variety of formats and multiplicity
of delivery modes evident in modern communication protocols (with thousands

of optional fields, for instance). In addition, such software needs to be context-
aware, since the requirements vary when the same software is used in different
ways. There are several ingredients for ensuring that such complex systems pro-
vide the expected reliability, among them choosing a good architecture, using
the right technologies, improving the software process, and also being extremely
thorough and efficient in testing.

Testing of complex systems is difficult and time-consuming in the extreme,
and in the ProTest project we build upon the innovative idea of using properties
as objects for testing software. In order to deliver dynamic services and interop-
erable network applications with guaranteed properties, we focus testing around
these properties.

The economic motivator is that testing with properties as objects improves
the competitiveness of software developers, since they can deliver higher quality
software for a lower price. It also allows collaborating companies to improve the
definition of their software interfaces and therewith improve the compatibility
between their services.

Our objective is to deliver methods and tools to support property-based
development of systems, and in order to do so we need tools to integrate property-
based testing into the development life cycle. To this extent we are conducting
work along four technical themes as follows:

Property discovery. Current testing is based on sets of test cases embedded
in test suites; over the lifetime of the project we will aim to provide tools to aid
the software developers to extract properties from this test data. Current speci-
fications and models are often informal: so we will develop specialised property
languages to ease the formalisation of existing specifications.

Test and property evolution. All software systems are subject to change and
evolution; we will thus provide tools to support the evolution of tests and prop-
erties in line with the evolution of the system itself.

Property monitoring. Not all properties can be tested in advance of systems
being executed, and so we will provide tools to support the post hoc examination
of trace details for conformance to (or indeed violation of) particular constraints.

Analysing concurrent systems. At the heart of service oriented systems is con-
currency: servers will provide services to multiple clients in a seamlessly concur-
rent way; services will federate to provide complex functionality through concur-
rently performing parts of a task. We will provide tools by which such concurrent
systems can be analysed for fundamental properties by way of model-checking
and testing.

In subsequent sections of this paper we explain work in progress under each
of these themes.

2 Background

The ProTest project aims to introduce property-driven development into the
software engineering process. Property-driven development can be used in a va-
riety of programming languages and systems. The particular platform chosen for

initial implementation of the project is Erlang/OTP (Open Telecom Platform),
but a crucial aspect of our proposal is the dissemination and adoption of the ap-
proach much more widely, particularly into the model driven development arena
(UML) and other implementation languages (C/C++, Java, etc).

Erlang/OTP has been chosen as the implementation vehicle because of its
robustness and reliability within the telecoms sector; witness, for example, its
success in the implementation of the AXD301 ATM telecoms switch by Ericsson,
one of the project partners. Erlang [AVWW96] is a concurrent functional lan-
guage with specific support for the development of distributed, fault-tolerant sys-
tems with soft real-time requirements. Language and implementation design have
aimed from the start to support a concurrency-oriented programming paradigm
and the massively concurrent systems that it leads to.

The project consortium contains a balance of academics from Universities of
Sheffield, Kent, Politecnica de Madrid, Goteborg, Chalmers University of Tech-
nology, SMEs, and a larger company. One of the SMEs is Quviq which is a
spin-off from academia, founded to commercialise the property-based testing
tool QuickCheck. The remaining industrial partners are system builders (Erics-
son, LambdaStream), consultants, and trainers (ETC), who provide invaluable
insights into what is required of practical tools, what properties will need to be
checked, and ways of fitting the results from the project into practical software
development methods.

Our own work on QuickCheck [AHJW06] combines random test case gener-
ation, with a flexible language for specifying generators, with the use of prop-
erties to adjudge success [CH00]. The inevitable noise in random test cases is
removed by automatic simplification, using an approach resembling Zellers delta-
debugging [ZH02]. This technique enabled us to isolate subtle faults in industrial
telecommunications software [AHJW06], and has also been used successfully to
test software for space missions [GHJ07].

Refactoring has become a well-known technique, particular in the realm of
object oriented software development. It is standard for Integrated Development
Environments, such as Eclipse, NetBeans and IntelliJ IDEA, to support a selec-
tion of refactorings, particularly those to do with the structure of the code base.
Refactorings are also commonly discussed in the context of transforming code
so that it conforms to a particular design pattern or coding standard. Here we
build on existing work undertaken at Kent who have developed refactoring tool
support for functional programming [Tho04] in the languages Erlang [LT08] and
Haskell [LTR05] and their relationship [LT06].

Trace analysis is a natural extension to testing. Instead of only studying the
outcome of a test case, all events (at some appropriate level of detail) during the
test execution are recorded in a trace. By analyzing the trace in an intelligent
way more information can be extracted from a single test. The Erlang run-time
system has a built-in trace recording functionality, which has lead to wide-spread
use of trace analysis as a verification technique for Erlang systems. Trace analysis
for Erlang systems has been studied by [AF02] and further by [ACS04]. Our
previous work on trace analysis for Erlang includes trace abstraction, in which

an approximation of a system’s state space is built from an actual concrete trace.
This is done using an abstraction function; the resulting state space is called an
abstract trace.

Model checking offers the promise of a push-button solution for verification,
and during the last twenty years many researchers have been pursuing that goal.
In practise the technique still suffers from the well known state explosion prob-
lem, i.e. models become too large for analysis. Thus a priority is developing
tractable models by abstracting from the full complexity of the artefact being
verified. Our work in the project on model checking will investigate the inte-
gration of property-based testing and model checking techniques for Erlang. As
model checking inevitably fails to fully verify a piece of software (e.g., due to
state explosion or the problem of constructing an accurate model from a complex
program), we have to resort to testing. But, in fact, testing and model checking
are often complementary techniques. In ProTest we will explore their combina-
tion in model based testing (to provide accurate estimations of space coverage,
to provide a test oracle, etc) and to explore non-exhaustive model checking as
an alternative to testing for highly concurrent and complex distributed systems.

3 Property discovery

Our work on property discovery covers two main aspects, one dealing with ob-
taining properties from a specification, the other dealing with obtaining proper-
ties from a library of existing test cases.

3.1 Properties from specifications

To enhance how QuickCheck can be applied to other languages, we have pro-
duced a library for testing finite state machines, which has been used in an
industrial project in which the UML design tool Rose/RT was connected to
QuickCheck, allowing systems designed in Rose/RT to be using QuickChecks
finite state machine library. We have also developed a general approach to test
C software with QuickCheck. In this way, all QuickCheck libraries developed in
the ProTest project also become available to Rose/RT and C programmers.

We have also developed two ways of obtaining properties from specification,
viz. obtaining properties from data type definitions and from databases. The
methods have been evaluated in a number of industrial projects, and some subtle
errors were identified in the financial systems of these companies and the methods
proved useful [ACH08]. The novelty here is that one is assured that the properties
together span the complete set of all possible tests.

Going further we have developed a fully automatic method to generate prop-
erties from purely functional descriptions for both Haskell and Erlang. This tool,
called QuickSpec [Hug08], can automatically generate properties for a given li-
brary of functions. QuickSpec reads in an API of an Erlang module or a Haskell
module, and automatically produces a list of equations that hold for the func-
tions in that module. The method uses random testing to do this (no heavy

theorem proving is performed); the only extra input the tool might require is
some information on how to generate test data.

For example, given the function names of the standard list functions append
(++), reverse, tail, cons, empty list ([]), insert and sort, the tool produces the
following algebraic properties of the functions, fully automatically, in about 1
second:

1: insert(X,[]) = [X]
2: insert(X,[X|Xs]) = [X|[X|Xs]]
3: insert(Y,[X]) = insert(X,[Y])
4: insert(Y,insert(X,Xs)) = insert(X,insert(Y,Xs))
5: reverse([]) = []
6: reverse([X]) = [X]
7: reverse(reverse(Xs)) = Xs
8: sort([]) = []
9: sort([X|Xs]) = insert(X,sort(Xs))
10: sort(insert(X,Xs)) = insert(X,sort(Xs))
11: sort(reverse(Xs)) = sort(Xs)
12: sort(sort(Xs)) = sort(Xs)
13: sort(Ys++Xs) = sort(Xs++Ys)
14: stail([]) = []
15: stail([X|Xs]) = Xs
16: Xs++[] = Xs
17: []++Xs = Xs
18: [X|Xs]++Ys = [X|Xs++Ys]
19: reverse(Xs)++[X] = reverse([X|Xs])
20: reverse(Xs)++reverse(Ys) = reverse(Ys++Xs)
21: stail(Xs)++Xs = stail(Xs++Xs)
22: (Xs++Ys)++Zs = Xs++(Ys++Zs)

The basic method we use is the following. We start by generating a finite set
of well-typed terms that contain variables (in the above example there are 2298
such terms of depth 3). Next, we compute equivalence classes of these terms, by
means of random testing and refining: we start by assuming that all terms are
in the same equivalence class, and partition equivalence classes into smaller ones
by running random tests and inspecting the values of the terms (in the above
example, this results in 1931 equivalence classes). For each equivalence class,
we pick one representative, and produce equations between that representative
and all other terms in an equivalence class. For the example, this results in 367
equations, these are all equations that are true, but there are clearly too many
to be useful, thus we spent some effort into producing a list of non-overlapping
algebraic equations.

When one naively generates equations that hold between terms, many of
which are not independent. To reduce the number, we have developed several
filtering algorithms that remove superfluous equations. Choosing the right filter-
ing algorithm constitutes finding a balance between (1) not keeping too many

equations, (2) how expensive is it to check that equations follow from other
equations, (3) not removing too many equations (even though an equation fol-
lows from other ones, it might still be useful to have in the list). The algorithm
we finally settled for uses a congruence closure algorithm to approximate if an
equation follows from a set of equations.

We have applied QuickSpec to a number of concrete Erlang and Haskell
modules. Most notably, we applied it on the Erlang standard functional array
library, and on a library for fixed-point arithmetic that was written by a com-
pany in South Africa. Exploring the properties that QuickSpec produced (and
the properties it did not produce!) was a great way of understanding code that
someone else had written, and has lead us to come up with a number of concrete
techniques that may be used for applying QuickSpec in this way. Other appli-
cations of QuickSpec include providing a cheap and easy way for programmers
and testers to start writing properties.

3.2 Reverse Engineering

We have developed two methods to extract properties from test cases - one
dynamic, the other static. That is, in the first approach, the test cases are run,
generating traces for the program. From these traces a finite state machine can
be abstracted. This is described fully in the companion paper [WD09] as well as
in [WDG09].

The second approach works on the level of the source code of the test cases. It
is a guided automatic approach; testers know best what part of the test case they
like to generate and what part they want to keep specific. Recent work with test
suites from Ericsson, and with tests from an Open Source project (Engineyard’s
Natter application) confirm that this approach is a fruitful one.

3.3 Building Domain Specific Languages

QuickCheck has long provided a DSL (Domain Specific Language) for specifica-
tions based on abstract state machines; however, this DSL represents states as
arbitrary Erlang data values - for example, a list of key-value pairs if modeling
a key-value store. With this approach, each operation of the API under test is
applicable in every state, unless an explicit precondition is given to restrict this.
Software is commonly specified instead via a state transition diagram, in which
states are distinguished by name, and operations are typically applicable only
in a certain named state.

Of course, such a specification can be based on the previous state machine
library, but doing so in effect encodes the structure of the diagram in an ugly
way in many different places in the code.

To help overcome this, we have developed a new FSM library, implemented on
top of the original one, which separates state names and state data. Specifications
using the new library are much more concise and perspicuous than the equivalent
specification using the old one. Our FSM library allows weights to be assigned
to transitions, but assigning weights well is difficult, since changing a weight

on one transition can affect the execution frequency of many others in quite
non-obvious ways. We have therefore developed an optimization criterion for
weighting (which essentially tries to distribute test effort as evenly as possible
across the transitions in the state diagram), and an approximation algorithm
for assigning weights automatically. Although the algorithm is not optimal (and
finding an optimal solution appears to be NP-hard), it usually produces good
results.

The weight assignment algorithm can take priorities into account - for ex-
ample, if the user specified that testing the lock transaction is 10x as important
as testing others (for example, because it contains new code), then the weight
assignment algorithm results in the distribution to the left. Note that unlock is
also assigned a higher weight necessary, since without an unlock, we can never
perform more than one lock in a test case. The new library has now been released
as a part of Quviqs product.

4 Refactoring

Our second strand of work addresses software evolution and the way that this
impacts on testing, and in particular property-based testing. The Wrangler refac-
toring tool [LT08,ST08], developed at Kent, is used to support refactorings of
tests, test-aware refactorings and property discovery.

Initial work has investigated the impact of various refactorings on testing as
practised in three systems:

– EUnit (for unit testing of Erlang systems),
– Quviq QuickCheck (for property-based testing of Erlang systems), and
– Common Test / OPT Test Server (for system testing)

and we describe a selection of work below.

4.1 Duplicate/Similar code detection in Wrangler

Duplicated/similar code is common in software, especially in test cases. For
example, in industrial test suites, some test case functions only differ in an atom
and a record definition. It would be desirable to have a generalised abstraction
of these similar test case functions, and make each test case an instance of the
generalised abstraction.

Wrangler’s support for ”duplicated code detection” and ”expression search”
is able to report code fragments that are syntactically identical after semantic-
preserving renaming of variable names, ignoring variations in literals, layout and
comments.

The requirement of ”syntactic identity” is somehow restrictive because it
could not detect code fragments that look similar but are not syntactically iden-
tical. For instance, Wrangler’s original ”expression search” would not report the
following two pieces of code as clones because of the slight syntactical difference
in the record field ”codec” though they look very similar.

Code fragment 1:
%%%
?COMMENT("Test case create_2 started.",[]),
%%%
SidMux = {mux_id_1, h223_id_1},
{TdmSid, LocalData, _, _} = precond_one_blade_tdm_mux_create(SidMux),
?CHECK(ok, hcfTraceServerSupport, start, [[{brchDspRhI, exported}]]),
SidLc = {mux_id_1, audio_id_1},
CreateData = #brchMuxLcAccess{sid = SidLc,
stream_type = ?BRCH_AUDIO,
local_data = LocalData,
codec = {?AMR,
{?R_122, ?BRCH_DISABLED,
?BRCH_DISABLED, ?BRCH_BIT},
33, 44, 40},
event_module = iptermCb},
?CH(1, brchShI, create, [[CreateData]]),
?CHECK([], hcfTraceServerSupport, get_trace_list, []),
clean_up([SidLc, SidMux, TdmSid]),
?RESULT("DONE", []).

Code fragment 2:
%%%
?COMMENT("Test case create_3 started.",[]),
%%%
SidMux = {mux_id_1, h223_id_1},
{TdmSid, LocalData, _, _} = precond_one_blade_tdm_mux_create(SidMux),
?CHECK(ok, hcfTraceServerSupport, start, [[{brchDspRhI, exported}]]),
SidLc = {mux_id_1, audio_id_1},
CreateData = #brchMuxLcAccess{sid = SidLc,
stream_type = ?BRCH_AUDIO,
local_data = LocalData,
codec = {?G723_1, {?R_53, ?BRCH_DISABLED},
33, 44, 40},
event_module = iptermCb},
[{ok, [{SidLc, _IntCep}], ?BRCH_REPLICATION_NEEDED}] =
?CH(1, brchShI, create, [[CreateData]]),
?CHECK([], hcfTraceServerSupport, get_trace_list, []),
clean_up([SidLc, SidMux, TdmSid]),
?RESULT("DONE", []).

To be able to detect this kind of similarity, we have extended Wrangler with
a ”Similar expression search” . The functionality allows the user to search for
expressions that are similar to the expression selected according to a similarity
score specified by the user.

Furthermore, ”Similar expression search” also automatically generates the
least general common abstraction of those similar expressions found, which is
also known as anti-unifier. With the example above, Wrangler would suggest the
generalised abstraction as:

new_fun(NewVar_1, NewVar_2, NewVar_3) ->
?COMMENT(NewVar_1, []),
SidMux = {mux_id_1, h223_id_1},
{TdmSid, LocalData, _, _} = precond_one_blade_tdm_mux_create(SidMux),
?CHECK(ok, hcfTraceServerSupport, start, [[{brchDspRhI, exported}]]),
SidLc = {mux_id_1, audio_id_1},
CreateData = #brchMuxLcAccess{sid=SidLc,
stream_type = ?BRCH_AUDIO,
local_data=LocalData,
codec={NewVar_2, NewVar_3, 33, 44, 40},
event_module=iptermCb},
[{ok, [{SidLc, _IntCep}], ?BRCH_REPLICATION_NEEDED}] =
?CH(1, brchShI, create, [[CreateData]]),
?CHECK([], hcfTraceServerSupport, get_trace_list, []),
clean_up([SidLc, SidMux, TdmSid]),
?RESULT("DONE", []).

Being able to generate the least general abstraction automatically speeds up
the similar code elimination process, because the user does not need to inspect
the differences manually, and generalise the function step by step.

The notion of least general abstraction (anti-unifier) and the definition of
”similarity” need to be refined further, but for the moment we have a working
definition. We are now also in the process of designing a more efficient algorithm
so that we could apply ”similar code detection” to large projects, as well as
investigating a more general notion of ”similarity” than having a non-trivial
common generalisation.

Apart from the work on duplicate code detection and the introduction of
”similar expression search”, a number of new refactorings have also been added
including the introduction macros (optionally with parameters), folding expres-
sions against a macro definition, and the normalisation of record expressions.

4.2 Extension to Wrangler to refactor EUnit test data

We have been working on the extension of the Wrangler tool to accompany
the basic refactorings in Wrangler with refactorings of EUnit test data. This
extension has two aspects:

1. When application code is refactored, Wrangler should make sure that the
test code of the application code is also refactored consistently.

2. Since test code is also Erlang code, it can be refactored in its own right, but
Wrangler needs to make sure the refactoring of test code preserves the test
framework’s particular idioms, such as naming conventions.

The extension affects all the refactorings that change module/function/macro
interfaces, such as renaming, generalisation, move function between modules,
function extraction, etc.

The major challenge with extending Wrangler to the EUnit test framework
lies in the interpretation of symbolic representation of test data, and the multiple
roles of atoms in the Erlang language. For example, with EUnit’s test data
representation, a single module name, which is an atom, can be used to represent
the whole test set from the exported test functions of the named module; so when
the named module is renamed, Wrangler needs to make sure all the related uses
of this module name in the test data are renamed, and also make sure that atoms
with the same name, but not used as a module name are not renamed.

To ensure that Wrangler refactors test data correctly, we designed some in-
variants which should hold for a refactoring. For example, for each test generation
function, F say, affected by a renaming refactoring, suppose F becomes F’ after
the refactoring, then the following invariant should hold:

rename(parse(F())) == parse(F’())

where function parse transforms the test set representation into a normal
form, rename does renaming in the normal form in which each atom’s role can
be decided precisely. If the above invariant does not hold for a particular test
generation function, Wrangler will ask the user for manual inspection.

4.3 Wrangler and Eclipse: integration with Erlide

Another strand of work has been to support the integration of Wrangler into
the Eclipse binding for Erlang, Erlide. Erlide is under active development at
Ericsson, as well as being made available freely to the Erlang community. Wran-
gler is currently a part of the standard Erlide distribution, freely available for
download.

Integration with Eclipse through Erlide provides a number of advantages over
emacs. For example, it has a well-defined notion of project, and so this gives a
scope to refactorings which affect more than one module; it has a well-defined
distribution and update mechanism, which means that users will automatically
pick up the latest version of the tool (should they choose to); it provides multiple
views of a code base, so that users can access refactorings in different ways. In
addition, through its refactoring API, it provides some facilities ”for free” such
as preview of the effect of refactorings (across multiple modules), and through
its interface it is possible to present results of searches or the effect of a multisite
refactoring in a more explicit way than emacs. For instance, search results can
be browsed, and choices for multi-site refactorings be specified through a series
of check boxes.

Future work will see the creation of a new integration structure which relies
more on Erlide. With this development it will be possible to access the refac-
torings through the Outline, Navigator and Duplicated Code views as well as

through the Refactor menu at present. This will in turn simplify the User In-
terface, and eliminate a number of current error possibilities which arise as a
consequence of the form of the interface.

5 Property monitoring

The final goal of the audit-log analysis is to be able to monitor audit-log prop-
erties at (or close to) real time, and to do so will require a way to rigidly specify
what should be checked. Thus, in parallel to the experiments with an early pro-
totype, we have studied the problem of describing inter-log-file relations.

Work on developing a prototype monitoring tool has concentrated on an
initial prototype that automatically analyses a (set of) log file(s), given a de-
scription of what constitutes the ’key’ and what is the interesting ’value’. This
simple analysis can for example track a session ID through several separate log
files, or track a single request by focusing on a request ID. Events are either
sorted by appearance in the log files or by their timestamps. The sequences are
presented graphically using the graphviz visualization package. The prototype
is also able to check sessions against a specification (represented as a state ma-
chine). A difficulty identified with this prototype is that we need to have a more
flexible way of describing parts of log entries that are interesting and how these
should be used, and this will be part of our future plans.

Use of the prototype showed that we need to design the logs in a system in
such a way that we can define and check properties easily. We have been able to
use a simple example of an SMS Log System to design the criteria and guidelines
defined earlier to provide a testing basis for the tool.

6 Analysing concurrent systems

Our work on support for concurrent system analysis has included a number of
themes. Part of this is working out how to shrink counter-examples resulting
from an error found in a system, and to support repeatable testing. Another
major theme is development of McErlang, a model-checker for Erlang.

6.1 Shrinking Trace counter-examples

The goal here is to investigate, and implement, methods to shrink trace counter-
examples (resulting from testing or model checking concurrent systems) to ease
the task of understanding the reason for a fault detected during testing. As such
trace counter-examples frequently grow very large, having such a reduction facil-
ity is highly desirable. Our work has resulted in the development of a new tool,
PULSE, which is now implemented as part of the commercial QuickCheck distri-
bution. PULSE has been used for finding race conditions in industrial software.
See [CPS+09] for more information.

To achieve property-based testing of concurrent software, several challenges
have to be overcome. We must be able to decide whether tests have passed, and
to run tests repeatably.

Our approach to automatically simplifying failing tests is based on running
many simpler variations on the first failing test found, culminating in a minimal
example that provokes a fault in the software under test. Finding such minimal
failing tests is invaluable in speeding fault diagnosis. Yet our approach depends
fundamentally on being able to repeat a test, with the same result as the first
time it was run; finding minimal failing tests then requires that we can repeat
smaller tests, in the same way as the original failing test was run. In concurrent
programs, where the scheduling can vary from run to run, achieving repeatable
behaviour is already a challenge.

Our first goal is thus to enable repeatable testing of concurrent Erlang code.
This could be achieved by modifying the underlying Erlang virtual machine to
use a custom, controllable process scheduler. But in practice, users will not be
interested in using a custom version of the Erlang VM to test their systems
- in fact, many projects continue to use outdated virtual machines long after
upgrades are released, to avoid problems in their own software that might be
caused by changes in the behaviour of the VM. Thus we consider it essential
to achieve repeatable testing without changing the underlying Erlang VM. As
multicore systems become more and more prevalent, it will be less and less
reasonable to assume that the underlying scheduler can be replaced.

Our approach is instead to instrument the code under test, to make it com-
municate with a scheduler of our own design, written in Erlang, such that our
scheduler can impose purely deterministic execution on the code under test,
regardless of the underlying concurrent execution. We have developed an instru-
menting compiler (in only 400LOC) which handles almost full Erlang, and an
associated scheduler which takes control of the order of delivery of interprocess
messages. By varying this order, we can even test the behaviour of distributed
systems (which have a different semantics for message passing) on a single Erlang
node. In addition we created a way to visualize the scheduling of events, such
that the analysis of error cases becomes much easier. The scheduler currently
makes random scheduling choices, and has proven quite effective in revealing
race conditions in the examples studied so far.

6.2 Developing model-checking techniques for Erlang

The other strand of work in our support for concurrency involves development of
model checking as a complementary verification technique to the use of testing.
Our initial goal was to deliver a model checker that supports a very large frag-
ment of the Erlang language (e.g., with full support for all Erlang data types,
the distributed Erlang API, and many OTP behaviours) to ease the task of
constructing a verifiable model from an Erlang program.

A prototype model checker existed at the start of the project, and we have
concentrated on delivering a number of enhancements to it, including:

– support for model checking a much larger language fragment. To achieve this
a new source-to-source translation was realised as a number of transforma-
tions on HiPE Core Erlang code – an intermediate code level in the Erlang
compiler. In addition more OTP behaviours are handled (gen fsm, gen event,
partial support for ets tables, ...). In fact we are able to use the source code
for some Erlang/OTP modules, without changes, in model checking.

– the implementation of an alternative small-step Erlang semantics which is
able to detect more program errors, but which may yield substantially larger
state spaces,

– initial support for using multiple processors (SMP) for model checking,
– improved handling of Linear Temporal Logic claims through the integration

of a new translator from Linear Temporal Logic to Buchi automata (see
discussion below),

– support for combining simulation and model checking algorithms to reduce
the state space needed to verify a program. This is used to reduce the cost
of using OTP behaviours such as e.g. the supervisor behaviour,

– providing user documentation, including a tutorial, a user manual, and a
web page.

This has resulted in the production of the McErlang model checker which has
been released as open source under the agreed project license (a BSD variant);
more documentation and the option to download it is available at the tool web
site: https://babel.ls.fi.upm.es/trac/McErlang/.

A sign of the increasing maturity of the tool is that we were able to analyse a
RoboCup simulation league team programmed in Erlang (comprising some 8500
lines of Erlang code) using the McErlang tool, see [EFIL08]. A number of recent
improvements to the McErlang tool realised in the ProTest project are described
in [EF09].

LTL-to-Buchi translation One of the additions made to McErlang during the
ProTest project was to add the possibility of expressing and checking correctness
properties expressed in Linear Temporal Logic (LTL). This is fairly straight-
forward, since LTL expressions can be automatically translated into Buchi au-
tomata. However, for model checking to be efficient it is important to produce as
small an automaton as possible, thus a good translator was needed. The obvious
solution was to use an existing implementation. However, this was not done for
two reasons: by developing an in-house translator we avoided licensing problems
(our in-house translator is licensed under the same BSD license as McErlang
unlike, e.g., the LTL2Buchi translator used in the JavaPathfinder project), and
secondly its proper integration into the McErlang verification framework enabled
a better end-user experience (e.g., with regards to formula parsing/deparsing,
conversion to an executable Erlang module, and so on).

The LTL-to-Buchi translator we have developed [Sve09] consists of the fol-
lowing three parts: - A rewrite engine, which aims to simplify the LTL formula.
It uses a fixed set of (heuristically chosen) rewrite rules. - A core translation al-
gorithm Construction of the Buchi automaton from the re-written LTL formula.

We use a tableau-based algorithm. - A reduction step, where optimizations such
as simulation reductions and removal of non-reachable and non-accepting states,
are applied to the Buchi automaton.

The efficiency of the LTL-to-Buchi translator was evaluated against two ref-
erence implementations; the LTL2Buchi translator in the JavaPathfinder and
the Wring tool. Our translator clearly outperforms Wring; moreover the eval-
uation also uncovered a few remaining errors in the Wring tool. The resulting
automata generated by our tool and LTL2Buchi are very similar in size, perhaps
not very surprising since similar translation algorithms are used. However, on
average our implementation generates about 1% smaller automata, when tested
on randomly generated LTL formulas.

The development process (the implementation was carried out using property
driven development supported by the QuickCheck tool) for the LTL-to-Buchi
translator, as well as the implementation and the result of the evaluation are
described in [EF09].

7 Tool integration

In addition to work on the individual tools and methods described above, we
aim to integrate the tools we are building in a number of ways. As a first step,
we focused on the verification of the global process registry with an approach
that combined QuickCheck and McErlang. Here, the QuickCheck tool was used
to generate a number of test sequences for the global process registry; these
were then fed to McErlang which explored all possible interleavings of the test
sequences using its model checking algorithms. Finally the results (a set of se-
quences of return values of a set of API calls) were checked using the QuickCheck
tool. Early results are promising, as the combined tool set was also able to dis-
cover race conditions in the global process registry.

We are also working on a integration of the other relevant tools. Essentially
we want to be able to run a set of QuickCheck tests where the program under
test is capable of being controlled by different schedulers: (i) either using the
standard Erlang program scheduler, or (ii) using the PULSE scheduler which
offers more control over scheduling and a more random behaviour, or (iii) the
program is controlled by the McErlang model checker which in theory can fully
explore the state space corresponding to any given test case.

As an example of how the tools and methodologies can be integrated consider
the following example, where we describe how we can refactor a test suite into
properties.

7.1 Example

The test suite in this example is 2228 lines of code, containing 4 groups of test
cases:

– 5 test cases in the create group,

– 4 test cases in the set topology group,
– 11 test cases in the modify group,
– 10 test cases in the delete group.

It is clear that certain test cases have some similarity. For example, we have
a number of occurrences where a test case for audio is repeated for video. There
are two ways in which we can work with this in the refactoring tool: We can
search for expressions identical to this, or we can perform a general search for
code clones in the existing file (or indeed in a complete project). Currently under
development is a facility to search for ”similar” code.

Using this approach we automatically find that test cases create 2, create 3
and create 4 only differ in an atom and a record definition. The test cases create 2
and create 3 are for audio, the test case create 4 is for video.

create_2(id) -> "create_2";
create_2(doc) -> "Create basic VIG MUX + audio LC AMR segment";
create_2(setupimg) -> "";
create_2(fts) ->
"/vobs/mgwblade/HCF/HCF_CRA1190072/test/doc/15241/XYZ_FTS.fm";
create_2(class) -> auto;
create_2(time) -> {{00,00,00},{00,00,00}};
create_2(config) -> [];
create_2(main) ->
%%
?COMMENT("Test case create_2 started.",[]),
%%
SidMux = {mux_id_1, h223_id_1},
{TdmSid, LocalData, _, _} = precond_one_blade_tdm_mux_create(SidMux),
?CHECK(ok, hcfTraceServerSupport, start, [[{brchDspRhI, exported}]]),
SidLc = {mux_id_1, audio_id_1},
CreateData = #brchMuxLcAccess{sid = SidLc,
stream_type = ?BRCH_AUDIO,
local_data = LocalData,
codec = {?AMR,
{?R_122, ?BRCH_DISABLED,
?BRCH_DISABLED, ?BRCH_BIT},
33, 44, 40},
event_module = iptermCb},
[{ok, [{SidLc, _IntCep}], ?BRCH_REPLICATION_NEEDED}] =
?CH(1, brchShI, create, [[CreateData]]),
?CHECK([], hcfTraceServerSupport, get_trace_list, []),
%%
%% Clean up this test case
%%
clean_up([SidLc, SidMux, TdmSid]),
?RESULT("DONE", []).

If we select the body of the create 2(main) clause and search for expressions
(i.e., similar code), we will find create 4, but also a create 3, which is also for
audio, but which differs much less. We found out that generalizing code further
apart from each other will result in being able to automatically include code
closer to the original copy.

Using the facilities in Wrangler to generate this, we automatically get the
most general antiunifier of the code, that is, variables replace subterms that are
different. The most general part is copied into a new function create 234, since
it combines the 3 test cases create 2, create 3 and create 4.

Another refactoring (”folding”) lets us now replace the bodies of create 2,
create 3 and create 4 to function calls to create 234 with different arguments.

So far, this is pure refactoring, the code that we produce has the same se-
mantics as the original test cases. Now we introduce a step that helps us to lift
test cases to properties. We collect all calls to create 234 in one generator that
randomly selects one of the alternatives and we create a property that does test
each of these 3 alternatives:

create_234_gen() ->
oneof([{audio_id_1,?BRCH_AUDIO,{?G723_1, {?R_53, ?BRCH_DISABLED}, 33,
44, 40}},
{audio_id_1,?BRCH_AUDIO,{?AMR, {?R_122, ?BRCH_DISABLED,
?BRCH_DISABLED, ?BRCH_BIT}, 33, 44, 40}},
{video_id_1,?BRCH_VIDEO,{?H264, ?BRCH_NO_OPTION, 33, 44, 40}}
]).

prop_create_234() ->
?FORALL({Media,Channel,Codec},create_234_gen(),
create_234(Media,Channel,Codec)).

The property should be a bit more complex, since it should return true or
false, not the result of create 234, but for reasons of clarity we keep it simple
here.

Now normal refactoring steps should be used to refactor the generator in this
property to more detailed generators. We know how to do this manually, and
automation will possible, and is in our future plans.

The result will be:

media() ->
oneof([audio_id_1,video_id_1]).

streamtype(audio_id_1) ->
?BRCH_AUDIO;

streamtype(video_id_1) ->
?BRCH_VIDEO.

codec(audio_id_1) ->
oneof([{?G723_1, {?R_53, ?BRCH_DISABLED}, 33, 44, 40},
{?AMR, {?R_122, ?BRCH_DISABLED, ?BRCH_DISABLED, ?BRCH_BIT}, 33,
44, 40}
]);

codec(viedo_id_1) ->
{?H264, ?BRCH_NO_OPTION, 33, 44, 40}

This requires that we know that there is a dependency between the different
fields and it also requires automatic refactoring of the property as soon as the
generators are refined:

prop_create_234() ->
?FORALL(Media,media(),
?FORALL(Channel,streamtype(Media),
?FORALL(Codec,codec(Media),
create_234(Media,Channel,Codec)).

Now the tester can add additional alternatives to the generator which will
automatically increase the number of tests, without having to copy and paste
test cases. In addition, the test code becomes more structured and readable.

This example shows how refactoring and related transformations in Wrangler
can be used to support the extraction of Quick Check properties from ’free’ tests.
A similar approach allows Quick Check properties to be extracted from EUnit
tests, and we anticipate implementing a suite of transformations supporting in
the near future.

8 Conclusions

Our work on property discovery has already shown very promising results. Work-
ing with our industrial partners we are now close to having automatic support
for extracting properties from test cases. In addition, we have worked on two
other ways of obtaining properties from specification, viz. obtaining properties
from data type definitions and from databases. The methods have been eval-
uated by the Swedish company Kreditor, and Ericssons OTP team, and have
shown their immediate benefit. We have developed a tool, called QuickSpec that
can automatically generate properties for a given library of functions.

We have developed two methods to extract properties from test cases. One is
dynamic, the other static. In the first approach, the test cases are run, generating
traces for the program, from these traces a finite state machine can be abstracted.
The second approach works on the level of the source code of the test cases. It is
a guided automatic approach; testers know best what part of the test case they
like to generate and what part they want to keep specific.

Our work on test and property evolution has concentrated on the develop-
ment of the Wrangler refactoring tool that can be used to support refactorings

of tests, test-aware refactorings and property discovery. We have investigated
the impact of various refactorings on the industrial practise of testing using:
EUnit, QuickCheck, and Common Test / OPT Test Server, and have worked
on extending Wrangler with refactorings of EUnit test data. We have begun the
integration of Wrangler into the Eclipse binding for Erlang, Erlide.

In property monitoring we have developed a prototype tool that automati-
cally analyses a set of log files given a description of what constitutes the ’key’
and what is the interesting ’value’, and is capable of handling some non-trivial
inter-log-file relations.

We have made significant progress in our work on analysing concurrent sys-
tems. Our work on developing methods to shrink trace counter-examples (re-
sulting from testing or model checking concurrent systems) has resulted in the
development of a new tool, PULSE, which is now implemented as part of the
commercial QuickCheck distribution. PULSE has been successfully used to find
race conditions in software provided by an industrial partner.

In addition we have developed a model checker, McErlang, which was re-
leased as open source under the agreed project license that supports a very large
fragment of the Erlang language to ease the task of constructing a verifiable
model from an Erlang program.

References

[ACH08] Thomas Arts, Laura M. Castro, and John Hughes. Testing Erlang data
types with Quviq QuickCheck. In Teoh and Horváth [TH08], pages 1–8.

[ACS04] Thomas Arts, Koen Claessen, and Hans Svensson. Semi-formal devel-
opment of a fault-tolerant leader election protocol in erlang. In Jens
Grabowski and Brian Nielsen, editors, FATES, volume 3395 of Lecture
Notes in Computer Science, pages 140–154. Springer, 2004.

[AF02] Thomas Arts and Lars-Åke Fredlund. Trace analysis of erlang programs.
In Rex L. Page and John Hughes, editors, Erlang Workshop, pages 16–23.
ACM, 2002.

[AHJW06] T. Arts, J. Hughes, J. Johansson, and U. Wiger. Testing Telecoms Software
with Quviq Quickcheck. In Marc Feeley and Philip W. Trinder, editors,
Proceedings of the 2006 ACM SIGPLAN Workshop on Erlang (Erlang’06),
pages 02–10. ACM Press, 2006.

[AVWW96] J. Armstrong, R. Virding, C. Wikström, and M. Williams. Concurrent
Programming in Erlang. Prentice-Hall, second edition, 1996.

[CH00] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random
testing of haskell programs. In ICFP, pages 268–279, 2000.

[CPS+09] Koen Claessen, Michal Palka, Nicholas Smallbone, John Hughes, Hans
Svensson, Thomas Arts, and Ulf Wiger. Finding race conditions in erlang
with quickcheck and pulse. In Graham Hutton and Andrew P. Tolmach,
editors, ICFP, pages 149–160. ACM, 2009.

[EF09] Clara Benac Earle and Lars-Åke Fredlund. Recent improvements to the
mcerlang model checker. In Earle and Thompson [ET09], pages 93–100.

[EFIL08] Clara Benac Earle, Lars-Åke Fredlund, José Antonio Iglesias, and Agapito
Ledezma. Verifying robocup teams. In Doron Peled and Michael

Wooldridge, editors, MoChArt, volume 5348 of Lecture Notes in Computer
Science, pages 34–48. Springer, 2008.

[ET09] Clara Benac Earle and Simon J. Thompson, editors. Proceedings of the 8th
ACM SIGPLAN Workshop on Erlang, Edinburgh, Scotland, UK, Septem-
ber 5, 2009. ACM, 2009.

[GdM08] Robert Glück and Oege de Moor, editors. Proceedings of the 2008 ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-based Program
Manipulation, PEPM 2008, San Francisco, California, USA, January 7-8,
2008. ACM, 2008.

[GHJ07] Alex Groce, Gerard J. Holzmann, and Rajeev Joshi. Randomized differ-
ential testing as a prelude to formal verification. In ICSE, pages 621–631.
IEEE Computer Society, 2007.

[Hug08] John Hughes. Formal Specification for Free! In Teoh and Horváth [TH08].
[LT06] Huiqing Li and Simon Thompson. Comparative study of refactoring haskell

and erlang programs. In SCAM, pages 197–206. IEEE Computer Society,
2006.

[LT08] Huiqing Li and Simon J. Thompson. Tool support for refactoring functional
programs. In Glück and de Moor [GdM08], pages 199–203.

[LTR05] Huiqing Li, Simon Thompson, and Claus Reinke. The haskell refactorer,
hare, and its api. Electr. Notes Theor. Comput. Sci., 141(4):29–34, 2005.

[ST08] Nik Sultana and Simon J. Thompson. Mechanical verification of refactor-
ings. In Glück and de Moor [GdM08], pages 51–60.

[Sve09] Hans Svensson. Implementing an ltl-to-büchi translator in erlang: a protest
experience report. In Earle and Thompson [ET09], pages 63–70.

[TH08] Soon Tee Teoh and Zoltán Horváth, editors. Proceedings of the 7th ACM
SIGPLAN workshop on ERLANG, Victoria, BC, Canada, Se ptember 27,
2008. ACM, 2008.

[Tho04] Simon Thompson. Refactoring functional programs. In Varmo Vene and
Tarmo Uustalu, editors, Advanced Functional Programming, volume 3622
of Lecture Notes in Computer Science, pages 331–357. Springer, 2004.

[WD09] Neil Walkinshaw and John Derrrick. Incrementally discovering testable
specifications from program executions. In FMCO, 2009.

[WDG09] Neil Walkinshaw, John Derrick, and Qiang Guo. Iterative refinement of
reverse-engineered models by model-based testing. In Formal Methods
(FM’09), volume 5850 of LNCS, pages 305–320. Springer, 2009.

[ZH02] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-
inducing input. IEEE Trans. Software Eng., 28(2):183–200, 2002.

