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1 Overview

The RPC project group is investigating high performance communication network interface struc-
tures which are compatible with existing operating systems, in this instance SunOS 4.1 Unix. The
use of parallel processing in the marshalling and unmarshalling of RPC arguments together with
direct /O to and from the user’s data area and early scheduling of user processes, are expected
to give a higher throughput than more traditional implementations.

The network front end comprises PC based TRAM’s. The Unix machine is a Sun SPARC1+
running SunOS 4.1.3. The interconnection between the two systems is by the SCSI bus. To
implement this structure requires a kernel device driver to act as a bridge between the Unix
environment on the SPARC station and the TRAM’s in the PC.

2 The Kernel

The structure of a device driver is closely tied to the run time structure of the Unix kernel. A
short description of the essentials is given here to provide background before the structure of SCSI
device drivers is discussed.

The kernel is divided into a top half and a bottom half. The top half of the kernel provides
services to applications in response to system calls or traps. The top half of the kernel executes
in a privileged execution mode in which it has access to both kernel memory and the context in
which the user process is executing, its user aree or u dot structure.

The bottom half of the kernel contains the routines that are invoked to handle hardware interrupts
and traps that are not related to the current process. These interrupts may be delivered by
hardware devices such as a real-time clock or I/O device. Activities in the bottom half of the
kernel occur asynchronously and cannot rely on having a specific process executing at the time of
interrupt.

Whilst executing the code for a system call the kernel is never preempted, it must either run
to completion or voluntarily give up the processor to wait for a resource. It may, however, be
interrupted by activities in the bottom half of the kernel. The top half may block entry into
routines in the bottom half of the kernel by setting the processor priority level to a value which
blocks out the appropriate interrupts.
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Figure 1: Block Diagram of Sun Common SCSI Architecture.

3 Sun Common SCSI Architecture

The SCSA provides a library of support routines for the transmission of SCSI commands from
a Target driver! to a Host Adapter driver?. The interface is independent of the host adapter
hardware being used, and the SCSI command set being transported. The SCSA separates those
functions related to SCSI protocol management, which are included in the Host Adapter Driver,
from the functions related to SCSI command content, which are included in the Target Driver.

4 SCSI Character Device Drivers

Unix supports access to a hardware device through either the block or character interface. Block
oriented device interfaces use the buffer cache which resides in the kernel’s address space. AllT/O
operations are block oriented and done to or from these kernel buffers. This approach requires at
least one memory-to-memory copy to satisfy a user request.

Character oriented device interfaces have one of two styles, depending on the characteristics of the
underlying hardware. For block oriented devices such as a disk, a character device interface may
provide unstructured or raw access to the device. True character devices provide a byte stream
oriented interface. A processor device, such as the SCSI Tram, requires this type of interface
because it is not limited to sending or receiving fixed size blocks of data.

Classically any device driver has three major sections.

1. Autoconfiguration and Initialization routines.

2. Routines for servicing I/O requests.

1A Target driver is responsible for the generation of SCSI commands and interpretation of data arising from the
transmission of such commands.

2The Host Adapter driver is responsible for the management of the SCSI protocol chip and DMA resources,
together with virtual address mapping.



3. Routines for servicing interrupts.

4.1 Autoconfiguration Process

The autoconfiguration of the driver takes place when the system is initialized. It is responsible
for determining if a hardware device is present and to initialize both the device, and any software
state associated with it.

For SCSI device drivers the autoconfiguration process proceeds as follows. The host adapter is
configured prior to any search for target drivers. Once the host adapter is configured it is required
to call a SCSA routine scsi_config() which identifies it to the SCSA library. scsi_config
then traverses the config(8) generated array of scsi_conf structures looking for target devices
which have been declared to exist on a SCSI bus connected to this adapter. For each match, a
scsi_device structure is generated and the appropriate target drivers slave() routine is called
with the scsi_device structure as it argument.

A target driver’s slave() routine is responsible for validating the presence of the hardware. It
should return 0 for failure or 1 for success, and set the sd_present field of the scsi_device to
reflect the presence of the device. If the slave() routine returns 1 and the sd_present field is
set then the SCSA library will call the target driver’s attach routine. The attach routine must
decide whether the addressed hardware is ready for service.

For systems with openproms, the semantics of the dev_info structure state that a device 1s consid-
ered present when the devi_driver field is initialized to point to the device’s dev_ops structure.
The SCSA implementation requires that this be filled in the same time as the sd_present field.

4.1.1 dev_ops structure

The dev_ops structure is designed to identify the entry points to a device driver, it is however
largely redundant with the cdevsw and bdevsw structures. The paragraphs below describe the
relevant fields of the structure. The other elements of the dev_ops structure do not need to be
initialized as they are unused under the present implementation.

devo_rev The device driver revision level, which must be set to one when programming for SunOS
4.1. Under revision level one, the only valid elements of the dev_ops structure are the identify
and attach routines.

devo_identify The function of the identify routine is to determine if this driver works with the
device. For drivers which do not occupy a physical slot on the SBus, such as a SCSI target
driver, no identify routine needs to be declared. Instead the target drivers slave routine
must be declared to check the devices availability.

devo_attach For a SCSI target driver the attach routine has two main responsibilities.

1. To allocate any state memory (data structures) the device driver needs in order to
function. This keeps the size of the object files and, more importantly, the kernel to a
minimum if the device is not present.

2. To perform any device initialization needed.

The attach routines of drivers which occupy a physical slot, such as the host adapter, have
more responsibilities than just these two.

4.2 The Top Half.

The top half of the driver is responsible for servicing I/O requests, as a result of a system call or
on behalf of the virtual memory system. It executes synchronously in the top half of the kernel
and is permitted to block by calling sleep().



4.2.1 Entry Points.

Device drivers are connected to the rest of the kernel by the entry points recorded in the array for
their class, their use of a common buffering system, and their use of low level hardware support
routines. For character devices the array of entry points consists of cdevsw structures, the array
is declared in /usr/src/sys/sun/conf.c and the structure in /usr/src/sys/sys/conf.h. To
index into this array each device is distinguished by a major device number. A device’s minor
device number is interpreted at the driver level, and is hence unimportant at this stage.

The relevant fields of the cdevsw structure are described below.

open Prepare the device for I/O operations. This routine will be called for each open system call
on a character special device file. Typically it should validate the minor device number and
do other device specific error checking, such as ensuring the device was identified correctly
in the autoconfiguration phase. If there are no errors it should then proceed to initialize the
device, allocating any resources which are needed on a per-minor device basis, and wait for
the device to come online.

close Shutdown the device. This routine is called when the last client using the device either
explicitly calls the close system call, or terminates. Consequently it must clean up for all
clients which have had the device open, typically releasing or unlocking any resources which
were used by the device and indicate that data cannot be transferred until the device has
been reopened.

read Read data from the device. A read request requires that the driver copy the data from
the device to the application’s virtual address space. It must check that the minor device
number passed to it is within its range, but subsequent actions are dependent on the type of
device.

write Write data to the device. This entry point is similar to the read routine except the direction
of data flow is reversed.

ioctl Perform an operation other than a read or write. These operations differ for each type of
device, but can provide a means for setting device parameters and for checking the status of
a device. This entry point is intended to implement any commands which are not covered
by the rest of the device-driver entry points.

select Check the device to see if any data is available for reading, or space is available for writing.
This entry point is used by the select system call to check file descriptors associated with
this device. The driver must maintain a local per-device structure that can associate a
process with each device, and keep track of state information to enable this check to be
made.

mmap Map a device’s contents into memory. This entry point is used by the mmap() system call
to provide page table entry (PTE) information about pages of the device’s memory. This
information is needed by the kernel to map the page to a virtual address.

4.2.2 Typical Operation

When an I/O request is received by the Target Driver it must prepare a SCSI command that,
when passed to the Target Device, will perform the desired function. There is a relatively simple
sequence of events which must be performed in order for the transfer to take place.

1. Target Driver executes functions to obtain a block of memory.

2. Target Driver fills in the blanks in the block of memory to describe the command for the
host adapter.
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Figure 2: Response to a Kernel 1/O request.

3. Target Driver calls Host Adapter Driver functions to obtain the other resources necessary
to execute the desired command.

4. Host Adapter Driver manages the resources and can either allocate them now or later at its
discretion.

5. Target Driver passes the descriptive information to the Host Adapter Driver using the trans-
port function.

6. Target Driver is free to prepare other SCSI commands for the same target and for other
attached targets.

Figure 2 illustrates this sequence with the function names of the routines used by the Target
Driver to request resources from the Host Adapter Driver. There are two separate ways to allocate
resources for a command requiring a DMA transfer. The first is to allocate all the resources at one
go using scsi_resalloc this allocates not only the scsi_pkt but also the DMA resources required
to perform the transfer. The second way to perform this allocation is to call scsi_pktalloc,
this routine allocates the necessary scsi_pkt but does not allocate any DMA resources for it.
Subsequently the Target Driver may call scsi_dmaget to promote the command to one with
associated DMA resources. It is usual for a Target Driver to allocate a request sense packet in the
autoconfiguration phase, this packet may then be used in response to error conditions without the
need to go through resource allocation again.

4.3 The Bottom Half.

The bottom half of the driver consists of the routines for servicing interrupts. These routines
execute in the bottom half of the kernel and as a consequence cannot rely on any per-process state
and cannot block by calling the sleep() routine.
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Figure 3: Command completion.

The two halves of the driver communicate by using I/O queues. When an I/0 request is received
by the top half of the driver it must record the command on a per-device queue for processing.
When a command completes the target driver will receive an interrupt from the host adapter.
The interrupt service routine must notify the requester that the command has completed and
then initiate a new command from the device’s queue. The I/O queue is the primary means of
communication between the top and bottom halves of a target driver.

As the T/O queues are shared by the two halves of the driver, access to them must be protected.
The top half of the driver must raise the priority level of the processor, by using splx (), to prevent
the bottom half of the driver from being entered whilst the top half is manipulating the queues.

4.3.1 Typical Operation

When the command has completed successfully or unsuccessfully, the Host Adapter Driver is
responsible for calling the completion routine of the Target Driver. The sequence of steps involved
are described below.

1. Host Adapter Driver fills in remaining status information in allocated memory area.
2. Host Adapter Driver calls the Target Drivers completion routine.

3. Host Adapter Driver is no longer responsible for the command.

4. Target Driver analyses the returned status information.

5. Target Driver requests that the Host Adapter Driver releases the resources allocated for this
command.

6. Target Driver notifies the process that originally requested the transaction that it is complete.
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Figure 4: Structure of RPC Drivers.

5 UKC RPC Drivers

Having dealt with the general case Target Drivers the rest of this document concentrates on the
RPC Target Drivers, their structure and operation.

5.1 Structure

The RPC project calls for a kernel device driver to act as a link between the Unix environment
on the SPARCstations and the parallel processing environment of the TRAM’s. The driver is
required to perform two tasks, the first is to provide multiple RPC interfaces to the application
environment. The second is to communicate with the scsi TRAM. This suggests using two drivers,
a multiplexor and a SCSI Link Driver.

The RPC Multiplexor provides a number of character-special devices, each one offering an au-
tonomous RPC slot. The limit on the number of these devices is 256 as minor(dev) is 8 bits.
It multiplexes these RPC interfaces onto the link provided by the SCSI Link Driver. It is the
multiplexors responsibility to match up outbound RPC’s with their replies, and provide a system
call interface for user processes.

The RPC Link Driver provides an asynchronous send / receive interface across the SCSI bus to
the TRAM. This interface should provide reliable delivery of the commands to the TRAM, the
multiplexor is informed only when writes complete or network input has arrived.

5.2 Autoconfiguration Process

The RPC Multiplexor does not need to go through autoconfiguration as it does not have any
associated hardware. The resources it needs are assigned when the first open system call is



processed, see description of open entry point.

The RPC Link Driver must determine if the TRAM is present and running the RPC Tram Driver.
Its autoconfiguration process proceeds as follows;

ukcsslave is called once the host adapter has been configured. It calls scsi_slave() which sends
a TEST UNIT READY to the Target/Lun address for this device. If this succeeds it will send an
INQUIRY command. If the inquiry succeeds then the sd_inq field in the device structure will be
filled in. ukcsslave then examines the device type to ensure it is a processor and attempts to
match the vendor and product identifiers with those returned by the RPC Tram Driver. If any
of the steps of the scsi_slave routine fail, or ukcsslave cannot match up the device type and
vendor/product identifiers with those of the RPC Tram Driver then it will return 0, indicating to
the host adapter that the hardware failed the autoconfiguration process. At this point the Link
Driver has determined that the unit is present and that it is executing the code for the RPC Tram
Driver.

The next step is to allocate a request sense packet, this is used if a SCSI command generates a
CHECK CONDITION status. It is allocated here so that the Link Driver can transport a REQUEST
SENSE command without the need to perform new allocations. When a command completes with
a CHECK CONDITION, the Host Adapter Driver assumes that the next command transmitted to
that Target/Lun will perform the recovery. The Target/ Lun is frozen by the Host Adapter Driver
until another packet is transmitted for that Target/Lun.

The last stage is to allocate and fill in the Link Drivers private data structure for this Target/Lun.
The sd_present field of the scsi device is filled in to indicate that the device is present, and the
dev_ops entry is filled in.

ukcsattach() is called if ukcsslave returns 1 and the sd_present field is set. As ukcsslave has
already allocated the private data structure for this Target/Lun, ukcsattach only needs to perform
device initialization. If the driver state is NIL it marks it as CLOSED and prints the Target/Lun
and the Vendor identifier. The last stage is to fill in the private data structure un_attached field
to indicate that the device has been attached.

The ukcsattach routine has far less to do than its counterparts in other scsi target drivers. This
is because the real initialization of the device is done by the ukct_setup routine, which is called
by the multiplexor open routine (see open entry point).

5.3 The Top Half.

The following section deals with the top half of both the Multiplexor and Link driver. Although
the Link driver does not provide a system call interface its routines are called by the Multiplexor
in response to system calls and hence are classified as part of the top level.

When an application emits an RPC request a fixed size structure is passed over the read/write
system call interface. This structure describes the RPC request to the RPC drivers and the
TRAM. The RPC drivers use an extended version of this user structure in order to keep track of
the owning process and form the ioqueues. This extended version is passed across the SCSI bus to
the TRAM, hence some of the fields of the structure have no meaning to the RPC drivers. These
two structures are described below.

5.3.1 ukcrpcemd_t

typedef struct {

int ur_cmd; /* command type */

caddr_t ur_ibp; /* input buffer addr */

int ur_ibytes; /* max/actual input length */
caddr_t ur_obp; /* output buffer addr */

int ur_obytes; /* mac/actual output length */



int ur_stag; /* RPC service number */

int ur_utag; /* chosen by user (client) */

int ur_ktag; /* chosen by kernel (server) */
} ukcrpcemd_t;

ur_cmd This field identifies the purpose of the RPC request, and is interpreted by the TRAM. The
RPC drivers are designed as a bridge and hence have no knowledge of the implementation
details of the RPC requests themselves.

ur_ibp This identifies the client’s input buffer to the RPC drivers. The input buffer is “locked
down” whilst the RPC request is in flight, allowing the RPC drivers to DMA directly to the
input buffer.

ur_ibytes When passed by the client to the RPC drivers, this field specifies the maximum amount
of data that may be DM A’ed into the clients input buffer. When passed by the RPC drivers
to the client, this field specifies the actual amount of data which was DMA’ed into the clients
input buffer.

ur_obp Analogous to ur_ibp, this field identifies the client’s output buffer to the RPC drivers.
It is also locked down whilst the RPC request is in flight to allow DMA directly from the
buffer.

ur_obytes This field specifies the maximum amount of data which can be DMA’ed from the
client’s output buffer.

ur_stag This field identifies which service the RPC request is destined for. A service handler
is responsible for associating servers and clients, it does this through the service number
(ur_stag) mechanism.

ur_utag This field is unique to the RPC request and is chosen by the user. If a client has multiple
requests outstanding and a reply returns it may use this field to determine which request
has completed.

ur_ktag This field is used by the kernel to match up RPC requests with their replies at the service
handler level (see ur_stag above). It must be unique within the context of a service, but
two different services may use the same kernel tag (ur ktag). When a request or reply is
received by a service handler, the service number identifies which service 1t is destined for
and the kernel tag identifies it within that service.

5.3.2 ukckcmd_t

typedef struct ukckcmd_node *ukckcmd_ptr;
typedef struct ukckcmd_node {

ukckcemd_ptr uc_next; /* Command Chain */
ukcrpe_ptr uc_uk; /* Back ptr to minor(dev) struct */
struct proc *uc_uproc; /* Owners proc table entry */
int uc_flag; /* Flags */
int uc_mtag; /* minor(dev) + uniqueness bits */
ukcrpcemd_t uc_rpcecmd; /* User command */

} ukckemd_t;

uc_next This field identifies the next entry in the ioqueue. The RPC drivers ioqueue consists of
a linked list of ukckcmd_t structures.

uc_uk Used by the Multiplexor to identify which minor device (RPC slot) this command is
associated with. Primarily this is used when the Link driver calls the Multiplexor completion
routines for read or write, the command can then be queued on the minor device’s completion
queue.



uc_uproc Required by the multiplexor to lock down the user’s input and output buffers. It is
also required by some of the SCSA library support routines.

uc_flag This field may be used by the RPC drivers or TRAM to indicate any special activities
which must be performed for this command.

uc_mtag If RPC replies arrive ‘late’ and the client has issued a close system call it is possible
that another client has opened the slot with outstanding traffic. The uc_mtag field protects
clients from RPC traffic from a previous existence.

uc_rpcemd This holds a copy of the user’s ukcrpcemd_t for use by the RPC drivers.

5.3.3 Entry Points

The Multiplexor implements a subset of the full character device entry points, its cdevsw entry 1s
listed below. The Link driver does not have a cdevsw entry, as it does not implement any system
call interface. The Link driver top level routines are accessed solely by the Multiplexor.

{
Xx_open, xx_close, xx_read, XX_wWrite,
xx_ioctl, Xx_reset, xx_select, XxX_mmap,
(struct streamtab *)xx_str, XxX_segmap,
},
{
ukcr_open, ukcr_close, ukcr_read, ukcr_write, /*105%/
nulldev, nulldev, ukcr_select, 0,
o, o,
},

nulldev is placed in insignificant entries in the cdevsw structure. These entries are not invalid,
they are merely not configured. nodev should be placed in illegal entries in the cdevsw structure,
it will return ENODEV if a process attempts to use the entry point.

ukcr_open The responsibilities of the open entry point for the Multiplexor are extended to en-
compass the Link driver validation, as the Link driver has no open entry point. The RPC
driver open process proceeds as follows;

Upon the first open or subsequently after the Link driver has informed the Multiplexor that
the TRAM has crashed, ukcr_init will be called. ukcr_init initializes the ioqueue and
fills in a structure containing pointers to the Multiplexor’s completion routines for reading
and writing, and the reset routine. It passes this structure to the Link Driver by calling the
ukct_setup routine.

ukct_setup checks that the autoconfiguration process succeeded and sets up the logical send
and receive channels to the TRAM. These channels are implemented by using two logical
units at the same target. It will also interrogate the Host Adapter to see if it supports
synchronous mode transfers and if so sets up the channels to use it. ukct_setup will send
a TEST UNIT READY command to each logical unit to check they are both available, and
allocate a command and data packet for each channel. Assuming no problems arise the
Multiplexor completion structure is stored and a message will be printed to indicate that
the channels have been activated.

Once both channels have been initialized ukct _setup sends a read to the TRAM. The TRAM
is expected to disconnect from the bus and reconnect when data becomes available. This
allows the TRAM to interrupt the SPARCstation and provides a means of asynchronous
communication down the SCSI bus. Once the read has been sent, ukct_setup fills in the
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Link Driver priority level so that the Multiplexor can block the Link Driver and returns.
ukcr_init stores this priority before returning.

If any errors occurred whilst trying to initialize the ioqueue or validate the Link Driver then
ukcr_open returns the error generated by the lower level routine. ukcr_open then ensures
that the requested slot is not being used by anyone else, 1t will return EBUSY if this is the
case. A process receiving EBUSY from an open is expected to increment the minor device
number and reattempt the open. Because parts of the process area will be used for direct
DMA it must not be swapped out, this is done by overloading the meaning of SPHYSIO in
the process table entry. This does mean that physio on other devices is forbidden, but does
allow the Multiplexor to regain control on exit before the user’s virtual machine is released.
Because of this setting of process table entries the Multiplexor must ensure only the opener
may use the slot. Children may inherit the file descriptor associated with an RPC slot from
their parent, but they are forbidden to use it.

ukcr_close The close entry point is responsible for shutting down the slot and tidying up.
ukcr_close verifies that the device is open returning ENXIO if it is not. It must ensure that
the process attempting the close is the one which opened the device. If it is not ukcr_close
returns 0, indicating that the close was successful. In this case the Multiplexor will close the
device when the “real” owner calls close.

ukcr_close must attempt to deal with any outstanding commands. Any currently active
DMA operation must be allowed to complete. Any commands on the write queue for the
TRAM must be sent to ensure little or no traffic is lost. Any items on the read pending
queue are placed on the read queue, from where the associated buffers are unlocked. The
device state is cleared to indicate that it is closed.

Once any commands have been dealt with ukcr_close checks to see if this was the last
outstanding RPC slot open for this process. If it was then SPHYSIO is cleared in the process
table entry. ukcr_close then returns.

ukcr_forceclose is called from exec and exit and allows the user’s pages to be unlocked
before the user’s virtual machine is discarded. It cycles through the valid minor device
numbers, attempting to close each one. The behavior of ukcr_close ensures that the device
will only be closed by the user process which called open. It then attempts to clear SPHYSIO.
It will panic() the kernel should SPHYSIO not be set when it attempts to clear it.

ukcr_read The read entry point reads a ukcrpcemd_t from the user and fills it in with the next
command on the read queue. It ensures that the process has this slot open and that the
correct number of bytes have been requested. If the Link Driver has reported that the TRAM
has crashed then UKF_TRAMDOWN will be set, in this case any open RPC slots must be closed.
Attempting to read from a slot whilst UKF_TRAMDOWN is set is considered an error.

The next ukckemd_t is taken off the read queue, if no commands are available ukcr_read
will return EWOULDBLOCK. The users memory which was locked down for DMA is released
and the user command is copied into the user supplied ukcrpcemd_t. The kernel command
(ukckemd t) is placed on the free message list for reuse.

uker_write The write entry point reads a ukcrpcemd t from the user and transports it to the
TRAM. It must ensure that the process has this slot open and that the correct number of
bytes have been requested. As with the read entry point, if the TRAM has crashed any RPC
slots must be closed. Attempting to write to a slot whilst UKF_TRAMDOWN is set 1s considered
an error.

ukcr write gets a ukckemd_t from the free list and clears it, if no commands are available
ukcr_write will return EWOULDBLOCK. The user’s command is loaded into the kernel command
structure and the user’s buffers are locked down to enable DMA transfers from/to them. The
kernel command is placed on the tram write queue and the start routine (ukcr_start) is

called.

11



If the Link driver is not busy, ukcr _start takes the first kernel command off the tram write
queue and passes 1t to the Link driver by calling the routine ukcr_wtram.

ukcr _wtram ensures that no work is outstanding and that the TRAM hasn’t crashed before
it constructs two buf structures to describe the command to the low level SCSA routines.
It links the second buf, containing the data to the first, containing the kernel command and
places them on the send channel queue. It calls the routine ukcsstart to begin the transfer.

ukcsstart checks to see if resources have already been claimed for this transfer, if not it
will call ukcs make_cmd. ukcs make_cmd calls the SCSA routine scsi_dmaget to allocate the
necessary DMA resources for this SCSI packet, and then uses the MAKECOM_G0_P3 macro
to create a SCSI command descriptor block. If resources were not available ukcsstart marks
this device as waiting for resources. The callback mechanism implemented by the SCSA will
call the routine ukcs retry when resources “may” have become available. ukcs_retry just
attempts to restart any devices waiting for resources. The SCSA requires that it must return
1 if it was either able to allocate resources or chose not to attempt it, else 1t must return 0.
If resources were available ukcsstart moves the command from the pending queue to the
active queue and calls the SCSA routine pkt_transport to transport the command. Once
pkt_transport returns the command is no longer the responsibility of the Link driver, the
Host Adapter will call the Link driver completion routine ukcsintr when it has completed
the command or can proceed no further. Execution unwinds until ukcr write returns.

ukcer_select The select entry point checks that the process has the requested device open and
that the TRAM has not crashed. If there is data available in the case of a read select, or
if data can be sent in the case of a write select, ukcr_select will return 1. If a select has
already blocked for this device and subsequently another select occurs which will also block,
then the collision flag is set. ukcr_select will cause the process to be blocked, returning 0.

Multiplexor Link Driver
—
ukct_setup
System Call
Interface. Top Half wker wtram Top Half
ukcts_wdone Host
Adapter

ukcts_rdonel / \

Bottom Half ukcts_rdone2 [ ] Bottom Half

ukcts_reset \ /

L N
Passed in setup structure.

Figure 5: Interaction between Multiplexor and Link Driver.

5.4 The Bottom Half.

The bottom half of the Multiplexor is invoked by the Link driver when it has completed operations
either successfully or unsuccessfully, on behalf of the Multiplexor or RPC traffic has been received
from the TRAM. The bottom half of the Link driver is invoked by the Host Adapter driver when
it has completed a scsi command on behalf of the Link driver, or resources have become available
when the Link driver is blocked waiting for them. The latter case is described in the ukcr write

3This macro fills out many of the fields of a scsi_pkt for group 0 commands that require the special bits
associated with processor device types.
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entry point. In the former case, the host adapter interrupts the Link driver by calling the ukcsintr
routine. It is the responsibility of ukcsintr to examine the status of the returned command and
figure out what to.

5.4.1 ukesintr()

The command completion routine ukcsintr begins by ensuring that the scsi packet is valid. Invalid
packets are those that have requested a non-interrupting service, or that have no private data area
or device associated with them. If the command is incomplete ukcs_incomplete is called.

If the command was a request sense ukcs_incomplete will return QUE_SENSE if retrying it will
not exceed the retry count. If the command was not a request sense ukcs_incomplete will return
QUE_COMMAND if retrying it will not exceed the retry count. If the host adapter got the bus and
the command cannot be retried then the target has not responded to selection, in which case
ukcs_shutdown is called.

ukcs_shutdown detaches both the send and receive channels and marks them as closed. It will call
the Multiplexor’s reset routine via the setup structure it received in ukct_setup (see open entry
point). The Multiplexor reset routine ukcr_reset places all pending writes onto the read pending
queue, and flags all open slots that the tram has crashed (UKF_TRAMDOWN) the only operation which
may be performed on such a slot is a close. ukcs_shutdown and ukcs_incomplete return.

If the command was completed and the device is SENSING then ukcs_handle_sense is called, oth-
erwise ukcs_check_error will be called. ukcs_handle _sense decodes and checks the information
returned by a request sense. Based on the decoded information it may mark the command as
done, or done but with errors or that it should be queued for retransmission. ukcs_check_error
determines if any errors occurred on completed commands. If the command returned with a busy
status then it will be queued for retransmission if retrying it does not exceed the retry count, if
it would then it is marked as done with errors. If the command returned with a check condition
then the Link driver must send a request sense command.

Once the command has been checked by the lower level routines, ukcsintr decides what to do
with the command based upon their return values. If the command needs to be retransmitted,
ukcsintr calls pkt_transport. Otherwise the command completed either successfully or with
errors, in which case ukcsdone is called.

5.4.2 ukesdone

ukcsdone cleans up after the last command and starts the next one. If it receives a command
which has returned with an error condition it frees the resources for the scsi packet and returns.
In later implementations it is envisaged that the Link driver will be required to recover from a
number of different errors, each possibly requiring a slightly different strategy. If the command
completes without errors ukcsdone must determine which channel (send or receive) this command
arrived on.

If the command arrived on the send channel and there is still outstanding work, then the command
which arrived is the ukckemd_t in which case the ukcsstart routine is called to send the data.
Otherwise the Multiplexor is informed that the write completed. The resources associated with
this write command are released.

If the command arrived on the receive channel and there is an outstanding packet on the queue,
then the command which has completed is the ukckemd t. The Multiplexor i1s informed which
read command has partially completed. This two part sequence is needed in case a process dies
before any outstanding RPC’s are completed, in this case it would is crucial that the DMA transfer
direct into the processes memory not be allowed to continue. If the Multiplexor okay’s the second
part of the read, the Link driver fills in the waiting buf structure and calls ukcsstart to begin
the second part of the read. If the Multiplexor refuses the read, the resources for this command
are released and the ukcs_read routine is called to set up the next disconnecting read (see open
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entry point). Otherwise, if nothing is on the pending queue the command which has arrived is the
data. In this case the Multiplexor is informed that the second part of the read has completed. The
resources for this command are released and ukcs_read is called to set up the next disconnecting
read.

In both cases the Multiplexor is informed through the setup structure which was passed to the
Link driver by ukcr_init when it calls the ukct_setup routine. This design ensures that if
the Multiplexor is loadable in future implementations then it can inform the Link driver of its
command completion routines.

6 Conclusion

The multiplexor provides for multiple character special device files, each of which acts as an
autonomous RPC slot. It has no knowledge of the underlying SCSI structure, but instead uses a
simple interface to communicate with the SCSI link driver. The link driver manages the generation
of the necessary SCSI commands to transmit the data over the bus to the PC based TRAM’s.
RPC requests and replies are viewed as opaque data about which neither driver has any knowledge.

Futher work in this area of the project will involve timing the drivers and writing a local ser-
vice handler which does not require SCSI interactions for those RPC’s from clients whose server
executes on the same machine.
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