
Improved Semantics and Implementation through
Property-Based Testing with QuickCheck

Huiqing Li
School of Computing
University of Kent, UK
H.Li@kent.ac.uk

Simon Thompson
School of Computing
University of Kent, UK

S.J.Thompson@kent.ac.uk

ABSTRACT
Testing is the primary method to validate that a software
implementation meets its specification. In this paper, we
demonstrate an approach to validating an executable se-
mantics using property- and model-based random testing in
QuickCheck to automate and unify the testing of the seman-
tics and its implementation. Our approach shows the use
of executable semantics to bridge the gap between formal
mathematical specification and implementation, as well as
emphasising the suitability of functional programming lan-
guages – in this case Erlang – for writing executable seman-
tics.

The approach is illustrated through a concrete example,
in which the implementation of a proposed extension to the
Erlang programming language – scalable groups – is tested.
This new component comes with a small-step operational
semantics written in mathematical notation, and was ini-
tially tested using unit testing. Through our work, we were
able to find new bugs in both the implementation and the
specification.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Design

Keywords
Testing, Specification, Executable Semantics, Implementa-
tion, QuickCheck, Erlang, Property-Based Testing

1. INTRODUCTION
The goal of software testing is to validate that an im-

plementation satisfies its specification. If a specification is
written in a non-executable language, the implementation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AST ’14, May 31 - June 1, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2858-6/14/05 ...$15.00.

is generally checked against a set of examples for which the
expected results have been manually computed, and the cor-
rectness of the specification is either manually determined
or checked in a separate process. When a specification is
written in an executable language, it is much easier to check
the correctness of the specification itself, however the test-
ing of implementation and specification may still have to be
done separately without proper tool support.

As a matter of fact, most programmers are reluctant to
formulate formal specifications of the program they write.
This could be due to the effort involved in formulating for-
mal specifications, or the minor short-term payoff that re-
sults when there is no easy way to check that the formal
specification corresponds to the program implemented.

In this paper, we demonstrate an approach to writing ex-
ecutable semantic specification using property- and model-
based random testing in QuickCheck [7] to automate the
testing of the implementation and, indeed, the specification
itself. Our work also highlights the benefit of using an exe-
cutable approach to semantics from the very start, so that
the specification, as well as the implementation, can be co-
herently evolved and tested during development. While the
testing of a specific Erlang component is presented in this
paper, the methodology should be applicable to other com-
ponents of Erlang, or languages with QuickCheck support,
as long as there is some way of observing the state of the
implementation, and the semantics is deterministic.

Our approach is demonstrated by the testing of a proposed
extension to the Erlang programming language. The pro-
posed extension is a library for scalable groups, ‘s_groups’,
written in Erlang, which aims to provide better scalabil-
ity support for massively distributed Erlang applications.
Along with the implementation, a small-step transition se-
mantics for the s group operations in the library has been de-
fined. Since most of these s group operations affect the sys-
tem state, the semantics first defines an abstract state rep-
resenting the extended Erlang system, then describes each
operation as a transition between states. The formal seman-
tics was written in non-executable mathematical notation;
prior to our testing automation, the correctness of the spec-
ification was principally ensured by manual inspection.

Property- and model-based testing is our chosen testing
approach. Property-based testing (PBT) provides a high-
level approach to testing, rather than focusing on individual
test cases. In PBT the required behaviour is specified by
properties, expressed in a logical form. For example, a func-
tion without side effects might be specified by means of the
full input/output relation using a universal quantification

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

AST’14, May 31 – June 1, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2858-6/14/05...$15.00
http://dx.doi.org/10.1145/2593501.2593509

50

over all the inputs; a stateful system will be described by
means of model, which is an extended finite state machine.
The system is then tested by checking whether it has the re-
quired properties for randomly generated data, which may
be inputs to functions, sequences of API calls to the stateful
system, or other representations of test cases.

Property-based testing is gaining popularity, especially in
the community of functional programming languages. For
Haskell, there is the original QuickCheck tool [5] developed
by Koen Claessen and John Hughes in 2000; for Erlang
there are QuickCheck [7] commercialised by QuviQ, and
PropEr (http://proper.softlab.ntua.gr).

QuviQ QuickCheck is the tool of choice for our testing,
mainly because the system under test is written in Erlang.
In particular, we utilise its support for abstract state ma-
chines through the eqc statem library. With eqc statem, the
user defines an abstract state machine model of the system
under test (SUT); this model includes an initial abstract
state in which test cases begin, as well as describing how
each command changes that state. For each command, a
number of things can be described: preconditions to decide
whether or not to include a candidate command in test cases;
postconditions to check that the value returned by the com-
mand executed is correct; a description of the changes on
the abstract state as a result of command execution; and
how to generate an appropriate function call to appear next
in a test case.

The semantic specification of s groups is written in non-
executable mathematical notation, so the first step of our
testing process was to faithfully translate this notation to an
abstract model as represented by a QuickCheck eqc statem
module. Erlang is a functional programming language; as
a result the Erlang representation of semantics is naturally
very close to the mathematical representation. The declar-
ative nature of the language also tends to make Erlang code
short and compact.

The rest of the paper is organised as follows. Section 2 in-
troduces Erlang and scalable groups; Section 3 gives a brief
introduction to PBT and the QuviQ QuickCheck tool. The
translation from mathematical specification to executable
semantics and the semantics-driven testing of s groups are
presented in Section 4. Related work is discussed in Sec-
tion 6 and Section 7 concludes the paper.

2. ERLANG AND SCALABLE GROUPS
Erlang [3] is a functional programming language with

built-in support for concurrency based on share-nothing pro-
cesses and asynchronous message passing between them; on
creation, processes are dynamically allocated a process iden-
tifier (or pid) which is used as an address for sending mes-
sages. Erlang processes are lightweight, and as a result an
Erlang program can be made up of thousands or millions of
processes that may run on a single processor, a multicore
processor or a manycore system. In Erlang, the same func-
tion name can be used multiple times with different number
of arguments; a general way to identify a function is to use
the format Module:Function/Arity or Function/Arity.

Erlang compiles to code that runs on the BEAM virtual
machine (VM), and each instance of a running VM is called
an Erlang node. Erlang has built-in support for distribution,
and a distributed Erlang system consists of a number of Er-
lang VMs communicating with each other. Message pass-
ing between processes on different nodes is indistinguishable

from communication on the same node. Whilst different
Erlang nodes in a distributed Erlang system can run on dif-
ferent computers (or ‘hosts’), it is also possible for multiple
Erlang nodes to run on the same host.

Besides addressing a process using its pid, it is also pos-
sible to register a process under a static name. The ability
to globally register names in a system consisting of several
Erlang nodes is central to distributed Erlang programming.
Global names registered in a distributed Erlang system are
stored in replicated global name tables on every node, so
there is no central storage point. However, any action which
results in a change to the global name table, requires that
name tables on other nodes are (automatically) updated too.

By default, the connections between normal Erlang nodes,
that is nodes started without the -hidden flag, is transitive.
That is, if a node A connects to node B, and node B has a
connection to node C, then node A will also try to connect to
node C. Each of these connected nodes will hold a replication
of the global name tables.

With the current model of distributed Erlang, the larger
the number of nodes in a cluster, the more expensive it be-
comes for each node to periodically check the liveness of
connections, and the longer it takes to get the replications
of global names updated. This limits the scalability of Er-
lang when the number of nodes in an Erlang cluster goes into
the hundreds. This problem is currently being addressed in
the European FP7 RELEASE project [1, 2].

The RELEASE project aims to scale Erlang to build re-
liable general-purpose software on massively parallel ma-
chines. One of the outcomes of the project is the notion of
scalable groups, short as s groups [4]. A s group is a cluster
of transitively connected Erlang nodes with its own ‘global’
name space. A s group could overlap with other s groups, so
that a single Erlang node could belong to multiple s groups.
For example, Fig 1 shows six Erlang nodes configured to
form three s groups, G1, G2 and G3, with G2 overlapping with
both G1 and G3. A node that belongs to at least one s group
is called a s group node, and a node that does not belong
to any s groups is called a free node. A free node behaves
as before except that its connection with an s group node is
not transitive. The support for s groups is added to Erlang

Figure 1: s groups with overlapping

as a library consisting of 4,300 lines of code. Internally the
s group library maintains the full connections of s groups,
global name registration and global state synchronisation
within s groups. It provides operations for:

• creation and deletion of s groups,
• adding and removing nodes to and from an s group,
• (un)registration of global names in a s group,
• operations for inspecting s groups and global names.

51

3. PROPERTY-BASED TESTING
QuickCheck [7] supports random testing of Erlang, and

also of C programs through a foreign function interface.
Properties of the programs are stated in a subset of first-
order logic. A property is verified by QuickCheck generating
multiple test cases for which the property is checked. When
a counterexample is found, QuickCheck tries to generate a
simpler – and thus more comprehensible – counterexample
by discarding commands which do not contribute to the fail-
ure; this process is called shrinking. A failing case indicates
bugs in either the implementation under test or the written
properties. For example, testing the following property

prop_list_delete()->
?FORALL(I, int(),
?FORALL(List, List(int()),

not (lists:member(I, lists:delete(I, List)))))

of the Erlang function lists:delete/2 might report

Failed! After 37 tests.
-8
[5, -8, 12, -8, 9]
Shrinking......(6 times)
-8
[-8,-8]

this happens because lists:delete(I, List) only removes
the first occurrence of I in List, not all occurrences.

The general way to test state-based systems is to build
an abstract model of the system in the form of either an ab-
stract state machine or a finite state machine, and to use this
model to drive the testing of real system. An abstract state
machine can be implemented as a client module of the pre-
defined QuickCheck eqc statem behaviour; whereas a finite
state machine with a collection of named states and transi-
tions between them can be implemented as a client module
of the pre-defined eqc fsm behaviour. These machines have
a finite number of (control) states, but also they have a data
state which is modified by performing commands (or tran-
sitions); strictly they are extended finite state machines (or
EFSMs). The machines are presented symbolically – with
variables for states etc. – so that commands can be gener-
ated and executed by the system under test.

To implement an abstract state machine, the user needs
to define a number of callback functions:

• initial_state() returns the initial model state.

• precondition(S, C) returns true if the symbolic com-
mand C can be performed in state S. This is used to decide
whether or not to include a candidate command in test
cases. A symbolic command binds a symbolic variable to
the result of a symbolic function call, for example

{set, {var, 1}, {call, lists, sort, [[2,1]]}}

sets variable {var, 1} to the result of the symbolic call:
lists:sort([1,2]). When the symbolic call is executed
during test execution, the symbolic variable will be re-
placed by the actual value it was set to.

• postcondition(S, C, R) checks the postcondition of sym-
bolic call C, executed in dynamic state S, with result R.

• next_state(S, R, C) is the state transition function. Dur-
ing test generation, it computes the symbolic state after
symbolic call C, performed in symbolic state S, with re-
sult R; during test execution, the same function is used to
compute the next dynamic state.

• command(S) generates a candidate symbolic call to appear
next in a test case, if the current symbolic state is S; test
sequences are generated by calling this repeatedly.

• invariant(S) is an optional call-back which can be used
to check an invariant during test execution.

Implementing a finite state machine using eqc_fsm follows
a similar structure, except that a state is separated into a
state name and state data.

4. TESTING SCALABLE GROUPS
In this section we describe the use of QuickCheck to derive

the executable semantics of s groups from its formal specifi-
cation as well as the simultaneous testing of semantics and
implementation.

4.1 The approach
The architecture of the testing framework is shown in

Figure 2. First an abstract state machine embedded an
eqc statem client module is derived from the semantic speci-
fication. The state machine defines the abstract state repre-
sentation and the transition from one state to another when
an operation is applied. Test case and data generators are
then defined to control the test case generation; this includes
the automatic generation of eligible s group operations and
the input data to those operations. Test oracles are encoded
as the postcondition for s group operations.

During testing, each test command is applied to both the
abstract model and the actual s group implementation. The
application of the test command to the abstract model takes
the abstract model from its current state to a new state as
described by the transition functions; whereas the applica-
tion of the test command to the real system leads the sys-
tem to a new actual state. The actual state information
is collected from each node in the distributed system, then
merged and normalised to the same format as the abstract
state representation. For a successful testing, after the exe-
cution of a test command, the test oracles specified for this
command should be satisfied. Various test oracles can be de-
fined for s group operations; for instance one of the generic
constraints that applies to all the s group operations is that
after each s group operation, the normalised system state
should be equivalent to the abstract state.

By default, QuickCheck generates 100 test cases for each
run, with each test case consisting of a sequence of test com-
mands. The number of test cases to test can be changed
however. The testing claims to be successful if all the test
cases have been passed, otherwise it fails and a minimised
counter example is given after the first failing test case. The
number of test cases can be

The function defining the top-level property for testing
s groups is shown in Figure 3. This function generates a
command sequence Cmds, i.e. a test case, using the com-
mand generator defined in the test module (the name of
test module is specified by the macro ?MODULE), then runs
these commands one by one. Before each command is run,
its precondition is checked by the precondition function as-
sociated with it, and after the command is executed, its
postcondition is checked by the postcondition function as-
sociated it. The result of run_commands(?MODULE,Cmds) is
a three-element tuple containing the history H of execution,
the state S after the last command that was executed suc-
cessfully and the reason Res that the execution stopped. For

52

Figure 2: Testing s groups Using QuickCheck

1. prop_s_group() ->
2. ?SETUP(
3. fun setup/0,
4. ?FORALL(Cmds,commands(?MODULE),
5. begin
6. {H,S,Res} = run_commands(?MODULE,Cmds),
7. re_setup(),
8. pretty_commands(?MODULE,Cmds,{H,S,Res},Res==ok)
9. end)).

Figure 3: Testing s groups: the top-level property

a successful execution, we specify that Res should be the lit-
eral ‘ok’. In the case that the property Res==ok fails to
hold, the function pretty_command pretty-prints the execu-
tion history of the failing test, showing the calls made with
actual arguments, the results and the model state.

The use of macro ?FORALL specifies a property that holds
if for test cases that can be generated the property Res==ok

holds. The ?SETUP macro is defined in QuickCheck to al-
low setting up and tearing down of the environment for one
QuickCheck run. In line 3, setup/0 is used to start a set
of Erlang nodes in distributed mode with s group support
enabled before the QuickCheck run; this function returns a
teardown function which is called after the QuickCheck run
for shutting the SUT down. In line 7, re_setup() restarts
and initialises the SUT after each test case.

4.2 Formal semantic specification of s_groups
In a distributed Erlang system with s groups, three kinds

of nodes are distinguished, and they are:

• s group nodes: a s group node is a node that belongs to
at least one s group.

• Free hidden nodes: a free hidden node is a non s group
node started with the command line flag -hidden. Con-
nections between hidden nodes and other nodes are not
transitive, and a hidden node does not share globally reg-
istered names with other nodes.

• Free normal nodes: a free normal node is a non s group
node started without the command line flag -hidden. Con-
nections between free normal nodes are transitive, and
transitively connected free normal nodes share the same
global name space.

Both free hidden nodes and free normal nodes can join a
s group, hence become s group nodes. When leaving an
s group, a node becomes free normal, or hidden, depending
how the node was initially started. The semantic specifi-
cation of s group operations gives more detailed accounts
about how the state of a node is affected after each opera-
tion, but that is not necessary for understanding the testing
methodology presented, hence not covered in this paper. At
the top level, the state of a distributed Erlang system with
s groups is formally modelled as a four-element tuple:

state ≡ (grps, fgs, fhs, nds), where

grps ≡ {s group} ≡ {(s group name, {node id}, namespace)}
fgs ≡ {free group} ≡ {({node id}, namespace)}
fhs ≡ {free hidden group} ≡ {(node id, namespace)}
nds ≡ {node} ≡ {(node id, node type, connections, gr names)}
gr names ≡ NoGroupName | {s group name}
namespace ≡ {(name, pid)}
connections ≡ {node id}
node type ≡ Normal | Hidden

The first element of the tuple, grps, represents the set of
s groups in the system. Each s group is represented by its
name specified by s group name, the identifiers of nodes
that belong to the s group, and the global namespace (i.e.
globally registered names within this s group), that is repli-
cated among the nodes in that s group. A namespace is a
set of two-element tuples each of which is a mapping from a
globally registered name to a pid.

The tuple element fgs represents the set of free groups
in the system. A free group is a maximal set of transitively
connected free normal nodes. A free group is represented
by the identifiers of nodes that belong to this group and the
global namespace that is shared by the group nodes.

The tuple element fhs is the set of free hidden groups in
the system. A free hidden group consist of only one hidden
node with its own namespace.

The tuple element nds is the set of all the nodes con-
tained in the distributed Erlang system. Each node itself is
also represented by a tuple consisting of the identifier of the
node, node id, the type of the node (normal or hidden), the
identifiers of nodes that this node has connection with, as
well as the names of s groups this node belongs to. A free
node has the group name of NoGroupName.

With the abstract state being defined, a s group operation
is then defined as a transition with the following form:

(state, command, ni)→ (state′, value)

Among the operations supported by the s group library,
nine of them change the system state if performed success-
fully. The nine functions are the focus of our testing, and
they are: new_s_group/2, delete_s_group/1, add_nodes/2,
remove_nodes/2, register_name/3, re_register_name/3,
unregister_name/2, whereis_name/2 and send/2.

4.3 From specification to eqc_statem model
The translation from formal specification to eqc_statem

abstract state machine was done manually. However the
declarative nature of the Erlang programming language and
the coding structure of eqc_statem allows a natural map-
ping from the formal specification to the abstract model.
For instance, Figure 4 shows the state representation in Er-
lang, which is used by the eqc_statem model to hold the
system state information during testing. The Erlang repre-
sentation of state is defined as a record with four fields, each

53

-- ‘state’ is defined as a record with four fields.
-- For each field, its default value are specified.
-record(state,

{s_groups =[] ::[s_group()],
free_groups =[] ::[free_group()],
free_hidden_groups=[] ::[free_hidden_group()],
nodes =[] ::[a_node()]}).

-- ‘-type’ is used to define type synonyms.
-type s_group()::{s_group_name(),

[node_id()], namespace()}.
-type free_group()::{[node_id()], namespace()}.
-type free_hidden_group()::{node_id(), namespace()}.
-type a_node()::{node_id(), node_type(),

connections(), gr_names()}.
-type gr_names()::no_group_name|[s_group_name()].
-type namespace()::[{atom(), pid()}].
-type connections()::[node_id()].
-type node_type()::visible|hidden.
-type s_group_name()::string().
-type node_id()::node().

Figure 4: Abstract State Representation in Erlang

((grs,fgs, fhs,nds), new s group(s,nis),ni)

−→ ((grs′, fgs′, fhs′,nds′′), (s,nis)) If ni ∈ nis

−→ ((grs, fgs, fhs,nds),Error) Otherwise

where

nds′ ≡ InterConnectNodes(nis,nds)

nds′′ ≡ AddSGroup(s,nis,nds′)

grs′ ≡ grs ⊕ {(s,nis, {})}
(fgs′, fhs′) ≡ RemoveNodes(nis, fgs, fhs)

Figure 5: Semantic specification of a new s group

of which is of the type of list. As the field name indicates,
each tuple element of the formal state tuple representation
is represented as a record field.

The state transitions of s group operations are implemented
by the next_state callback function, which is the state tran-
sition function of the abstract state machine. This function
takes the current abstract state, the symbolic function call to
a test command, and returns the new abstract state. This
function is also used internally by Quickcheck during test
case generation to symbolically perform state transitions.

Let’s take the create a new s group operation as an ex-
ample. The function new_s_group(SGroupName, NodeIds)

creates a new s group SGroupName consisting of the nodes
specified by NodeIds. This function can only be performed
from a node that belongs to NodeIds. Figure 5 shows the
top-level specification of this operation. The skeleton of Er-
lang representation of the state transition in eqc_statem is
as follows:

next_state(State, _V, {call, ?MODULE, new_s_group,
[SGroupName, NodeIds, CurNode]}) ->

case lists:member(CurNode, NodeIds) of
false -> State;
true -> ... derive the new abstract state ...

end.

In the code fragment above, the tuple
{call,?MODULE,new_s_group,[SGroupName,NodeIds,CurNode]}

is a symbolic call to the new_s_group operation defined in
the test module, where SGroupName, NodeIds and CurNode

map respectively to s,nis, and ni in the formal specification.
During test execution, next_state returns the new abstract
state which is computed by the body of the next_state func-
tion; the actual value returned by the call to new_s_group

is passed on to the postcondition checking instead.
The function new_s_group defined in the test module is

a wrapper function in which the actual implementation of
new_s_group is invoked. This function issues a remote pro-
cedure call (rpc) to the Erlang node CurNode, and asks it to
perform the operation s_group:new_s_group(SGroupName,

NodeIds). After this rpc operation, the wrapper function
issues a new rpc call to each node in the distributed system
collecting their state information. The state information col-
lected is then analysed and compared to the new abstract
state in the postcondition checking phase of the testing, more
details about this are covered in Section 4.5.

4.4 Test case generation
The abstract state machine model cannot be run without

test case generation. With our test, automatic test case gen-
eration includes two levels of data generation: test command
generation and command input data generation.

QuickCheck comes with a library of data generators. It
supports not only the random generation of values of an Er-
lang built-in type, such as integer, float, char, boolean,
etc, but also the generation of values of compound data
types. It allows tuples and lists containing generators to be
used as generators for values of the same form. For exam-
ple, {int(), bool()} is a generator that generates random
pairs of integers and booleans. In QuickCheck, constants
can be used as generators for their own value.

While random data generation is used, QuickCheck pro-
vides a collection of macros for generating data that satisfy
certain constraints. For example the macro ?SUCHTHAT(X,

G, P) generates values X from G such that the condition P is
true; the macro ?SIZED(Size, G) is used to control the size
of the generated data, etc.

In the context of our testing, test data generators take
the abstract state representation as input, and generate data
that satisfies certain constraints. For instance, the following
code fragment shows the random generation of a fresh non-
empty s group name: that is a string of lower case letters.

gen_s_group_name(_S=#state{groups=Grps}) ->
%% get existing s_group names.
GrpNames= [GrpName||{GrpName, _, _}<-Grps],
%% generate a new unused s_group name.
?SUCHTHAT(Name, gen_reg_name(),

not lists:member(Name, GrpNames)).

%% generate a non empty list of lower case letters.
gen_reg_name()->

eqc_gen:non_empty(eqc_gen:list(
eqc_gen:choose(97, 122)))).

Command sequence generation is controlled by the call-
back function command(S), as shown in Figure 6. In the
definition of command, each symbolic call is a command gen-
erator; the function frequency makes a weighted choice be-
tween the generators in its argument, proportional to the
weight paired with it. In our case, the probability of choos-
ing an s group operation is half the probability of choosing
a global name operation.

54

command(S) -> frequency(
[{5, {call, ?MODULE, new_s_group,

gen_new_s_group_pars(S)}}
,{5, {call, ?MODULE, add_nodes,

gen_add_nodes_pars(S)}}
,{5, {call, ?MODULE, remove_nodes,

gen_remove_nodes_pars(S)}}
,{5, {call, ?MODULE, delete_s_group,

gen_delete_s_group_pars(S)}}
,{10,{call, ?MODULE, register_name,

gen_register_name_pars(S)}}
,{10,{call, ?MODULE, whereis_name,

gen_whereis_name_pars(S)}}
,{10,{call, ?MODULE, re_register_name,

gen_re_register_name_pars(S)}}
,{10,{call, ?MODULE, unregister_name,

gen_unregister_name_pars(S)}}
,{10,{call, ?MODULE, send, gen_send_pars(S)}}]).

Figure 6: Command Generator

Test sequences are generated by using command(S) re-
peatedly. However, generated calls are only included in test
sequences if their precondition is also true. For instance,
the precondition function defined below is used to make
sure that the set of node identifiers fed to the new_s_group

operation cannot be empty.

precondition(_S, {call, ?MODULE, new_s_group,
[_SGroupName, NodeIds, _CurNode]}) ->

NodeIds/=[];

4.5 Test Oracles
With the state transition functions and test case genera-

tors defined, we now have a nearly executable abstract state
machine. However, with postconditions returning True by
default, the execution will always be successful unless an
exception occurs. For more rigorous testing, postconditions
need to be defined for each operation being tested.

The call to postcondition(S, C, R) in an eqc_statem

client module checks the postcondition of symbolic call C,
executed in dynamic abstract state S, with result R. Post-
conditions are validated after execution of every test com-
mand. If a validation fails the failing test case is reported.
In the context of our s group testing, the actual result R is
the value returned by applying a s group operation to the
distributed Erlang system under test, hence is independent
of the abstract state S.

For the conformance testing of semantics and implemen-
tation, a natural test oracle is the consistent evolution of
abstract state and actual state. In other words, the new ab-
stract state derived by the application of the test command
to the abstract state should be semantically equivalent to
the actual state collected from the real system after the ex-
ecution of the test command on the real system. This is the
major test oracle used by our testing.

The postcondition of the new_s_group is as shown in Fig-
ure 7, in which the application new_s_group_next_state is
used to derive the value returned and the new abstract state
when applying the command to the abstract state S, and the
function is_the_same compares the abstract state and the
actual state. As one may have noticed, the calculation of
the new abstract state is done twice during the testing, once
in the new_state function and once is the postcondition.

This could be avoided if QuickCheck allowed new_state to
pass the new abstract state to postcondition.

%%Res is the actual value returned by the command;
%%ActualState is the state collected from nodes.
postcondition(S,{call, ?MODULE, new_s_group,

[SGroupName, NodeIds, CurNode]}),
{Res, ActualState}) ->

{AbsRes, NewS} = new_s_group_next_state(
S, [SGroupName, NodeIds, CurNode]),

(AbsRes == Res) and is_the_same(ActualState, NewS).

Figure 7: Postcondition

Other invariants on either the abstract state or the real
system state could also be specified. For instance, the three
classes of nodes, i.e. s group nodes, free hidden nodes and
free normal nodes, should always form a partition of the set
of nodes in a distributed Erlang system; a normal free node
should not have any connections with free nodes outside its
group and so on.

4.6 The Initial State
Before running the test, we need to define the callback

function initial state which returns the initial abstract state
to start the testing with. When the semantics and imple-
mentation are to be simultaneously tested, one should make
sure that the abstract state is initialised in the same way as
the real system so that we have a consistent abstract and
real state when test starts. With the testing of s groups,
the number of Erlang nodes included in the system as well
as the type of each node (hidden or normal) are customis-
able, so the scale of the system under tested can be adjusted
without extra effort.

5. RESULTS
The test code covering the nine s groups operations con-

tains 1,100 lines of code. So far, thousands of tests have been
run using this test model. In this section, we summarise the
kinds of errors encountered during testing.

• Errors in the test code. Test code is code, hence not im-
mune from errors. As a result, some of the errors encoun-
tered, especially in the early stage of the testing, were
errors in the test code itself.

• Errors in the semantic specification. In this case, the ac-
tual state is different from the abstract state after some
test execution, and human examination identifies that the
actual state represents the expected result. We found two
semantic errors during testing. One error was that a free
normal node was not properly removed from its original
free group when the node joins a s group; the other er-
ror was due to erroneous manipulation of the gr names of
a node resulting that gr names contains both NoGroup-
Name and a s group name.

• Errors in the implementation. An error in the imple-
mentation also leads to a disagreement between the ac-
tual state and the abstract state, but in this case the
abstract state represents the expected result. Our test-
ing revealed two errors in the implementation. One er-
ror was due to the synchronisation between nodes where
one node was expecting a ‘nodeup’ message from another
node but failed to receive it after a timeout although the

55

other node was actually up; the other error was related to
the remove nodes operation, where a mismatch between
the expected result and actual value returned by a list
search operation happened and crashed the Erlang node.

• Inconsistency between semantics and implementation. In
this case, although the actual system state and the ab-
stract state are equivalent, the value returned by the im-
plementation and the abstract state machine are not al-
ways the same. In one case the formal semantics speci-
fied that the send operation should return ‘undefined’ as
the result if the message receiving process does not exist,
however the actual implementation returned a tuple with
the first element as ‘badarg’ and the second element be-
ing the arguments supplied; in another case the semantics
specified that the ‘unregister_name’ operation always
returns ‘True’, whereas the implementation could also re-
turn ‘{no, cannot_unregister_from_remote_group}’.

QuickCheck’s support for shrinking is extremely helpful when
testing fails. Minimising the sequence of commands leading
to the failure makes it possible for manual execution and
inspection of the failing case.

While our example jointly tests both semantics and im-
plementation, the same model can also be used to test the
semantics itself before the implementation is available. Of
course, to do so we need to redefine the test oracles so that
only properties about the abstract state are specified.

Overall, the automation of testing boosted our confidence
in the correctness of the implementation and the semantic
specification. As a link between the formal mathematical
specification and the implementation, the abstract model
also makes it more feasible for the co-evolution of specifi-
cation and implementation. An executable abstract model
provides us with a means to explore the new features to be
added to the library.

6. RELATED WORK
There are many tools and methodologies for random test

generation and for model based testing, and their usefulness
has been demonstrated in many cases. For instance, In [10],
Yang, Chen, et.al. reported their use of randomized differen-
tial testing technique to find hundreds of bugs in production
C compilers. Instead of attempting a formal specification of
the C-language semantics, they used a black-box approach
by generating random C programs and comparing the out-
put of several compilers.

Model-based testing has attracted extensive research in-
terest because it offers substantial advantages over tradi-
tional software testing methods. Model-based testing re-
quires the definition of a suitable model, the generation of
the actual test suite and the actual execution of the gen-
erated cases. Various techniques have been proposed for
each aspect of the testing process. A detailed taxonomy of
model-based testing is given in [8] by Utting, et. al.

QuickCheck supports property- and model-based testing
in a rather lightweight. Similar to our work, in [9], Vascon-
celos reports the use of Haskell QuickCheck to express the
correctness of a toy compiler against a denotational semantic
specification; however their testing was not state-based. In
Haskell, writing and testing against model-based specifica-
tions can be achieved using a monadic property language [6].

7. CONCLUSIONS AND FUTURE WORK
A specification is of less value if there is no check at all

that it corresponds to the implemented program. The gap
between specification and implementation somehow discour-
ages programmers to formulate formal specification. In this
paper, we demonstrated how tools like QuickCheck can serve
as the link between formal specification and implementation.
Through the testing of a proposed extension to the Erlang
programming language, this paper reports a property-based
random testing approach to automating and unifying the
testing of the semantics and its implementation, so that test-
ing of both the implementation and specification, as well as
the conformance between them, can be done simultaneously.

Property-based testing provides a high level approach to
testing in the form of abstract invariants that functions
should satisfy universally. Together with automatic test
data generation, property-based testing could easily gener-
ate and apply thousands of tests that would be infeasible to
write by hand, and covering subtle corner cases that would
not be found otherwise.

As to future work, we would like to further explore this
approach to test other critical language components, or li-
braries, written either in Erlang or other programming lan-
guages, such as C, supported by QuickCheck. We foresee
that the same methodology can be used to test other com-
ponents of Erlang/C as long as there is some way of observ-
ing the state of the implementation, and the semantics is
deterministic. We would also like to investigate ways to au-
tomate the generation of formal mathematical specification
from a QuickCheck model.

This research is supported by EU FP7 project RELEASE,
no. 287510. We would like to thank Natalia Chechina and
Phil Trinder for providing the s group specification.

8. REFERENCES
[1] RELEASE. http://www.release-project.eu/.

[2] O. Boudeville, F. Cesarini, et al. RELEASE: A
High-level Paradigm for Reliable Large-scale Server
Software. In TFP’12, St Andrews, UK, 2012.

[3] F. Cesarini and S. Thompson. Erlang Programming.
O’Reilly Media, Inc., 2009.

[4] N. Chechina, P. Trinder, A. Ghaffari, et al. The
Design of Scalable Distributed Erlang. In Draft
Proceedings of IFL’12, Oxford, UK, 2012.

[5] K. Claessen and J. Hughes. Quickcheck: A lightweight
tool for random testing of haskell programs. In ACM
SIGPLAN Notices, 2000.

[6] K. Claessen and J. Hughes. Testing Monadic Code
with QuickCheck. In ACM workshop on Haskell, 2002.

[7] J. Hughes. QuickCheck Testing for Fun and Profit. In
PADL’07, Berlin, 2007.

[8] M. Utting, A. Pretschner, and B. Legeard. A
Taxonomy of Model-based Testing Approaches. Softw.
Test. Verif. Reliab., 22(5):297–312, 2012.

[9] P. Vasconcelos. Experience Report: Verifying a Simple
Compiler Using Property-based Random Testing.
http://www.dcc.fc.up.pt/~pbv/compcheck/.

[10] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding
and understanding bugs in C compilers. In M. W. Hall
and D. A. Padua, editors, PLDI, 2011.

56

