
A Domain-Specific Language for
Scripting Refactorings in Erlang

Huiqing Li and Simon Thompson

School of Computing, University of Kent, UK
{H.Li, S.J.Thompson}@kent.ac.uk

Abstract. Refactoring is the process of changing the design of a pro-
gram without changing its behaviour. Many refactoring tools have been
developed for various programming languages; however, their support
for composite refactorings – refactorings that are composed from a num-
ber of primitive refactorings – is limited. In particular, there is a lack of
powerful and easy-to-use frameworks that allow users to script their own
large-scale refactorings efficiently and effectively.
This paper introduces the domain-specific language framework of Wran-
gler – a refactoring and code inspection tool for Erlang programs – that
allows users to script composite refactorings, test them and apply them
on the fly. The composite refactorings are fully integrated into Wrangler
and so can be previewed, applied and ‘undone’ interactively.

Key words: analysis, API, DSL, Erlang, refactoring, transformation, Wrangler.

1 Introduction

Refactoring [1] is the process of changing the design of a program without chang-
ing what it does. A variety of refactoring tools have been developed to provide
refactoring support for various programming languages, such as the Refactor-
ing Browser for Smalltalk [2], IntelliJ Idea [3] for Java, ReSharper [3] for C#,
VB.NET, Eclipse [4]’s refactoring support for C++, Java, and much more. For
functional programming languages there is, for example, the HaRe [5] system
for Haskell, and for Erlang the two systems Wrangler [6] and RefactorErl [7].

In their recent study on how programmers refactor in practice [8], Murphy-
Hill et. al. point out that “refactoring has been embraced by a large community
of users, many of whom include refactoring as a constant companion to the de-
velopment process”. However, following the observation that about forty percent
of refactorings performed using a tool occur in batches, they also claim that
existing tools could be improved to support batching refactorings together.

Indeed, it is a common refactoring practice for a set of primitive refactorings
to be applied in sequence in order to achieve a complex refactoring effect, or
for a single primitive refactoring to be applied multiple times across a project
to perform a large-scale refactoring. For example, a refactoring that extracts a
sequence of expressions into a new function might be followed by refactorings

2 Huiqing Li and Simon Thompson

that rename and re-order the parameters of the new function. This could be
followed by ‘folding’ all instances of the new function body into applications
of the new function, thus eliminating any clones of the original expression. As
another example, in order to turn all ‘camelCase’ names into ‘camel case’ format,
a renaming refactoring will have to be applied to each candidate.

Although composite refactorings are applied very often in practice, tool sup-
port for composite refactorings lags behind. While some refactoring tools, such as
the Eclipse LTK [9], expose an API for users to compose their own refactorings,
these APIs are usually too low-level to be useful to the working programmer.

In this paper, we present a simple, but powerful, Domain Specific Lan-
guage (DSL) based framework built into Wrangler, a user-extensible refactoring
and code inspection tool for Erlang programs. The framework allows users to:

– script reusable composite refactorings from the existing refactorings in a declar-
ative and program independent way;

– have fine control over the execution of each primitive refactoring step;
– control the propagation of failure during execution;
– generate refactoring commands in a lazy and dynamic way.

User-defined composite refactorings can be invoked from the Refactor menu in
the IDE, and so benefit from features such as result preview, undo, etc.

Using the DSL allows us to write refactorings – such as the change of naming
style discussed earlier – in a fraction of the time that would be required to do this
by hand; we therefore make the cost of learning the DSL negligible in comparison
to the benefits that accrue to the user. Moreover, once written these refactorings
can be reused by the author and others.

Not only does the DSL make descriptions more compact, it also allows us to
describe refactorings that are impossible to describe in advance. For example,
suppose that a program element is renamed at some point in the operation; in
the DSL we can refer to it by its old name rather than its new name, which may
only be known once it has been input interactively during the transformation.

While this work is described in the context of Erlang. the underlying ideas
and DSL design are equally applicable to other programming languages, and can
be implemented in a variety of ways (e.g. reflection, meta-programming).

The rest of the paper is organised as follows. Section 2 gives an overview of
Erlang, Wrangler and its template-based API. Section 3 formalises some con-
cepts that we use in describing our work. In Section 4 we explain the rationale
for our approach to designing the DSL, which we then describe in detail in Sec-
tion 5. Examples are given in Section 6, and the implementation is discussed in
Section 7. Sections 8 and 9 conclude after addressing related and future work.

The work reported here is supported by ProTest, EU FP7 project 215868.

2 Erlang, Wrangler and Its Template-based API

Erlang is a strict, impure, dynamically typed functional programming language
with support for higher-order functions, pattern matching, concurrency, commu-
nication, distribution, fault-tolerance, and dynamic code loading.

A Domain-Specific Language for Scripting Refactorings in Erlang 3

-module (fact).

-export ([fac/1]).

fac(0) -> 1;

fac(N) when N > 0 ->

N * fac(N-1).

Fig. 1. Factorial in Erlang

Composite refactorings

Built-in
refactorings

Wrangler infrastructure

User-defined
refactorings DSL for

composite
refactoringsTemplate, rule-

based API

Fig. 2. The Wrangler Architecture

An Erlang program typically consists of a number of modules, each of which
defines a collection of functions. Only functions exported explicitly through the
export directive may be called from other modules; furthermore, a module may
only export functions that are defined in the module itself.

Calls to functions defined in other modules generally qualify the function
name with the module name: the function foo from the module bar is called as:
bar:foo(...). Figure 1 shows an Erlang module containing a definition of the
factorial function. In this example, fac/1 denotes the function fac with arity of
1. In Erlang, a function name can be defined with different arities, and the same
function name with different arities can represent entirely different functions
computationally.

Wrangler [6], downloadable from https://github.com/RefactoringTools, is
a tool that supports interactive refactoring and “code smell” inspection of Er-
lang programs, and is integrated with (X)Emacs and with Eclipse. Wrangler is
itself implemented in Erlang. Abstract Syntax Trees (ASTs) expressed as Erlang
data structures are used as the internal representation of Erlang programs. The
AST representation is structured in such a way that all the AST nodes have a
uniformed structure, and each node can be attached with various annotations,
such as location, source-code comments, static-semantic information, etc.

One of the problems faced by refactoring tool developers is the fact that the
number of refactorings that they are able to support through the tool is limited,
whereas the number of potential refactorings is unbounded. With Wrangler, this
problem is solved by providing a high-level template- and rule-based API, so
that users can write refactorings that meet their own needs in a concise and
intuitive way without having to understand the underlying AST representation
and other implementation details. A similar strategy is used to solve the problem
of describing composite refactorings, that is, a high-level DSL-based framework
is provided to allow users to script their own composite refactorings. Wrangler’s
architecture is shown in Figure 2.

Wrangler’s Template-based API [10] allows Erlang programmers to express pro-
gram analysis and transformation in concrete Erlang syntax. In Wrangler, a code

https://github.com/RefactoringTools

4 Huiqing Li and Simon Thompson

template is denoted by an Erlang macro ?T whose only argument is the string
representation of an Erlang code fragment that may contain meta-variables or
meta-atoms. A meta-variable is a placeholder for a syntax element in the pro-
gram, or a sequence of syntax elements of the same kind; and a meta-atom is a
place holder for a syntax element that can only be an atom, such as the function
name part of a function definition.

Syntactically a meta-variable/atom is an Erlang variable/atom, ending with
the character ‘@’. A meta-variable, or atom, ending with a single ‘@’ represents
a single language element, and matches a single subtree in the AST; a meta-
variable ending with ‘@@’ represents a list meta-variable that matches a sequence
of elements of the same sort. For instance, the template

?T("erlang:spawn(Arg@@)")

matches the application of spawn to an arbitrary number of arguments, and
Args@@ is a placeholder for the sequence of arguments; whereas the template

?T("erlang:spawn(Args@@, Arg1@)")

only matches the applications of spawn to one or more arguments, where Arg1@

is a placeholder for the last argument, and Args@@ is the placeholder for the
remaining leading arguments (if any).

Templates are matched at AST level, that is, the template’s AST is pattern
matched to the program’s AST using structural pattern matching techniques.
If the pattern matching succeeds, the meta-variables/atoms in the template are
bound to AST subtrees, and the context and static semantic information at-
tached to the AST subtrees matched can be retrieved through functions from
the API suite provided by Wrangler.

The Erlang macro ?COLLECT is defined to allow information collection from
nodes that match the template specified and satisfies certain conditions. Calls
to the macro ?COLLECT have the format:

?COLLECT(Template, Collector, Cond)

in which Template is a template representation of the kind of code fragments
of interest; Cond is an Erlang expression that evaluates to either true or false;
and Collector is an Erlang expression which retrieves information from the
current AST node. We call an application of the ?COLLECT macro as a collector.

Information collection is typically accomplished by a tree-walking algorithm.
In Wrangler, various AST traversal strategies have been defined, in the format
of macros, to allow the walking of ASTs in different orders and/or for different
purposes. A tree traversal strategy takes two arguments: the first is a list of
collectors or transformation rules, and the second specifies the scope to which
the analysis, or transformation, is applied to.

For example, the macro ?FULL TD TU encapsulates a tree-walking algorithm
that traverses the AST in a top-down order (TD), visits every node in the AST
(FULL), and returns information collected during the traversal (TU for ‘type uni-
fying’, as opposed to ‘type preserving’). The code in Figure 3 shows how to
collect all the application occurrences of function lists:append/2 in an Er-
lang file. For each application occurrence, its source location is collected. This@

A Domain-Specific Language for Scripting Refactorings in Erlang 5

?FULL_TD_TU([?COLLECT(?T("lists:append(L1@, L2@)"),

api_refac:start_end_loc(_This@), true)], [File])

Fig. 3. Collect the application instances of lists:append/2.

is a predefined meta-variable representing the current node that matches the
template.

The template-based API can be used to retrieve information about a program
during the scripting of composite refactorings, as will be shown in Section 6.
As was explained above, more details about the API can be found in [10]; in
particular, it explains how the API can be used to define transformation rules
which are also applied to ASTs by means of a tree-walking algorithm (as above).

3 Terminology

This section introduces terminology that we use in discussing our DSL. Particu-
larly we explain what we mean by success and failure for a composite refactoring.

Definition 1 A precondition is a predicate, possibly with parameters, over a
program or a sub-program that returns either true or false.
Definition 2 A transformation rule maps one program into another.

Definition 3 A primitive refactoring is an elementary behaviour-preserving
source-to-source program transformation that consists of a set of preconditions
C, and a set of transformation rules T. When a primitive refactoring is applied
to a program, all the preconditions are checked before the program is actually
transformed by applying all the transformation rules. We say a primitive refac-
toring fails if the conjunction of the set of preconditions returns false; otherwise
we say the primitive refactoring succeeds.

Definition 4 Atomic composition.
Given a sequence of refactorings R1, ..., Rn, n ≥ 1, the atomic composition of
R1, ..., Rn, denoted as R1 ◦R2 ◦ · · · ◦Rn, creates a new refactoring consisting of
the sequential application of refactorings from R1 to Rn.

If any of the applications of Ri, 1 ≤ i ≤ n fails, then the whole refactoring
fails and the original program is returned unchanged. The composite refactoring
succeeds if all the applications Ri for 1 ≤ i ≤ n succeeds, and the result program
is the program returned after applying Rn.

Definition 5 Non-atomic composition.
Given a sequence of refactorings R1, ..., Rn, n ≥ 1, the non-atomic compo-
sition of R1, ..., Rn, denoted as R1 � R2 � · · · � Rn, creates a new refactoring
consisting of the sequential application of refactorings from R1 to Rn.

If refactoring Ri fails, the execution of Ri+1 continues, on the last succeed-
ing application (or the original program if none has succeeded so far). A failed
refactoring does not change the status of the program. The program returned by
applying Rn is the final result of the application of the composite refactoring. As
a convention, we say that a non-atomic composite refactoring always succeeds.

6 Huiqing Li and Simon Thompson

Fig. 4. Execution of composite refactorings

Figure 4 illustrates some execution scenarios of both atomic and non-atomic
composite refactorings. As shown in c) and d), an atomic composite refactoring
can be part of a non-atomic composite refactoring, and vice versa; this feature
allows the tool to handle more complex refactoring scenarios.

In practice, the choice of atomic or non-atomic composition depends on the
nature of the refactoring to be performed. Atomic composition is necessary if
the failure of a constituent refactoring could lead to an inconsistent or incorrect
program, whereas a non-atomic composition can be used when the failure of a
constituent refactoring does not affect the consistency of the program, and the
final program returned is still acceptable from the user’s point of view.

For example, it is reasonable to make a non-atomic composition of a set of
renaming refactorings that turn ‘camelCase’ function names into ‘camel case’
format; even if one of these fails, perhaps because the new name is already used,
the program still works as before. Moreover, the user can manually make the
changes to the remaining ‘camel case’ identifiers; if 90% of the work has been
done by the script, 90% of user effort is correspondingly saved.

4 Rationale

Here we discuss the rationale for the design of the DSL. While it is possible to
describe composite refactorings manually; that approach is limited:

– When the number of primitive refactoring steps involved is large, enumerating
all the primitive refactoring commands could be tedious and error prone.

– The static composition of refactorings does not support generation of refactor-
ing commands that are program-dependent or refactoring scenario dependent,
or where a subsequent refactoring command is somehow dependent on the re-
sults of an earlier application.

– Some refactorings refer to program entities by source location instead of name,
as this information may be extracted from cursor position in an editor or IDE,
say. Tracking of locations is again tedious and error prone; furthermore, the

A Domain-Specific Language for Scripting Refactorings in Erlang 7

location of a program entity might be changed after a number of refactoring
steps, and in that case locations become untrackable.

– Even though some refactorings refer to program entities by name (rather than
location), the name of a program entity could also be changed after a number of
refactoring steps, which makes the tracking of entity names hard or sometimes
impossible, particularly when non-atomic composite refactorings are involved.

We resolve these problems in a number of ways:

– Each primitive refactoring has been extended with a refactoring command
generator that can be used to generate refactoring commands in batch mode.

– A command generator can generate commands lazily, i.e., a refactoring com-
mand is generated only as it is to be applied, so we can make sure that the
information gathered by the generator always reflects the latest status, includ-
ing source locations, of the program under refactoring.

– Wrangler always allows a program entity to be referenced using its original
name, as it performs name tracking behind the scenes.

– Finally, and most importantly, we provide a small domain-specific language
(DSL) to allow composition of refactorings in a compact and intuitive way.
The DSL allows users to have a fine control over the generation of refactoring
commands and the interaction between the user and the refactoring engine so
as to allow decision making during the execution of the composite refactoring.

Our work defines a small DSL, rather than a (fluent) API, since it supports a
variety of ways of combining refactorings, including arbitrary nesting of refac-
toring descriptions within others, rather than offering a variety of parameters on
a fixed set of API functions.

Existing approaches to composite refactoring tend to focus on the deriva-
tion of a combined precondition for a composite refactoring, so that the entire
precondition of the composite refactoring can be checked on the initial program
before performing any transformation [11,12]. The ostensible rationale for this
is to give improved performance of the refactoring engine. However, given the
usual way in which refactoring tools are used in practice – where the time to
decide on the appropriate refactoring to apply will outweigh the execution time
– we do not see that the efficiency gains that this approach might give are of
primary importance to the user.

In contrast, our aim is to increase the usability and applicability of the refac-
toring tool, by expanding the way in which refactorings can be put together.
Our work does not try to carry out precondition derivation, instead each prim-
itive refactoring is executed in the same way as it is invoked individually, i.e.,
precondition checking followed by program transformation. While it may be less
efficient when an atomic composite refactoring fails during the execution, it does
have its advantages in expressibility.

5 A Framework for Scripting Composite Refactorings

In this section we give a detailed account of Wrangler’s support for composite
refactorings, treating each aspect of the DSL in turn.

8 Huiqing Li and Simon Thompson

5.1 Refactoring Command Generators

For each primitive refactoring we have introduced a corresponding command
generator of the same name. The interface of a command generator is enriched in
such a way that it accepts not only concrete values as a primitive refactoring does,
but also structures that specify the constraints that a parameter should meet
or structures that specify how the value for a parameter should be generated.
In general, generators will have different type signatures, corresponding to the
different signatures of their associated refactorings.

When applied to an Erlang program, a command generator searches the
AST representation of the program for refactoring candidates according to the
constraints on arguments. A command generator can also be instructed to run
lazily or strictly; if applied strictly, it returns the complete list of primitive
refactoring commands that can be generated in one go; otherwise, it returns a
single refactoring command together with another command generator wrapped
in a function closure, or an empty list if no more commands can be generated.
Lazy refactoring command generation is especially useful when the primitive
refactoring command refers some program entities by locations, or the effect of a
previous refactoring could affect the refactorings that follow; on the other hand,
strict refactoring command generation is useful for testing a command generator,
as it gives the user an overall idea of the refactoring commands to be generated.

Each primitive refactoring command generated is a tuple in the format:
{refactoring, RefacName, Args}, where RefacName is the name of the refac-
toring command, and Args is the list of the arguments for that refactoring
command. A refactoring command generator is also syntactically represented
as a three-element tuple, but with a different tag, in the format of {refac ,

RefacName, Args}, where RefacName is the name of the command generator,
and Args are the arguments that are specified by the user and supplied to the
command generator. Both refactoring and refac are Erlang atoms.

Taking the ‘rename function’ refactoring as an example, the type specification
of the refactoring command is shown in Figure 5 (a), which should be clear
enough to explain itself. The type specification of the command generator is
given in Figure 5 (b). As it shows, a command generator accepts not only actual
values, but also function closures that allow values to be generated by analysing
the code to be refactored .

– The first parameter of the generator accepts either a file name, or a condition
that a file (name) should satisfy to be refactored. In the latter case, Wrangler
searches the program for files that meet the condition specified, and only those
files are further analysed to generate values for the remaining parameters.

– The second parameter accepts either a function name tupled with its arity,
or a condition that a function should meet in order to be refactored. In the
latter case, every function in an Erlang file will be checked, and those functions
that do not meet the condition are filtered out, and a primitive refactoring
command is generated for each function that meets the condition.

– The third argument specifies how the new function name should be generated.
It could be a fixed function name, a generator function that generates the

A Domain-Specific Language for Scripting Refactorings in Erlang 9

-spec rename_fun(File::filename(), FunNameArity::{atom(), integer()},

NewName::atom()) -> ok | {error, Reason::string()}.

(a) type spec of the ‘rename function’ refactoring.

-spec rename_fun(File::filename() | fun((filename()) -> boolean()),

FunNameArity::{atom(), integer()}

| fun(({atom(),integer()}) -> boolean()),

NewName::atom()

|{generator, fun(({filename(), {atom(), integer()}})

-> atom())}

|{user_input,fun(({filename(), {atom(), integer()}})

-> string())},

Lazy :: boolean())

-> [{refactoring, rename_fun, Args::[term()]}] |

{{refactoring, rename_fun, Args::[term()]}, function()}.

(b) type spec of the ‘rename function’ command generator.

{refac_, rename_fun, [fun(_File)-> true end,

fun({FunName, _Arity}) -> is_camelCase(FunName) end,

{generator, fun({_File,{FunName,_Arity}}) ->

camelCase_to_camel_case(FunName)

end}, false]}

(c) An instance of the ‘rename function’ command generator.

Fig. 5. Primitive refactoring command vs. refactoring command generator

new function based on the previous parameter values, or a name that will be
supplied by the user before the execution of the refactoring, in which case the
function closure is used to generate the prompt string that will be shown to
the user when prompting for input.

– Finally, the last parameter allows the user to choose whether to generate the
commands lazily or not.

The example shown in Figure 5 (c) illustrates the script for generating refactoring
commands that rename all functions in a program whose name is in camelCase

format to camel case format. As the condition for the first parameter always
returns true, every file in the program should be checked. The second argument
checks if the function name is in camelCase format using the utility function
is camelCase, and a refactoring command is generated for each function whose
name is in camelCase format. The new function name is generated by applying
the utility function camelCase to camel case to the old function name. In this
example, we choose to generate the refactoring commands in a strict way.

For some command generators, it is also possible to specify the order in which
the functions in an Erlang file are visited. By default, functions are visited as
they occur in the file, but it is also possible for them to be visited according to
the function callgraph in either top-down or bottom-up order.

10 Huiqing Li and Simon Thompson

RefacName ::= rename fun | rename mod | rename var | new fun | gen fun | ...
PR ::= {refactoring, RefacName, Args}
CR ::= PR

| {interactive, Qualifier, [PRs]}
| {repeat interactive, Qualifier, [PRs]}
| {if then, fun() → Cond end, CR}
| {while, fun() → Cond end, Qualifier, CR}
| {Qualifier, [CRs]}

PRs ::= PR | PRs, PR

CRs ::= CR | CRs, CR

Qualifier ::= atomic | non atomic

Args ::= ...A list of Erlang terms...

Cond ::= ...An Erlang expression that evaluates to a boolean value...

Fig. 6. The DSL for scripting composite refactorings

5.2 The Domain-Specific Language

To allow fine control over the generation of refactoring commands and the way
a refactoring command to be run, we have defined a small language for script-
ing composite refactorings. The DSL, as shown in Figure 6, is defined in Erlang
syntax, using tuples and atoms. In the definition, PR denotes a primitive refac-
toring, and CR denotes a composite refactoring. We explain the definition of
CR in more detail now, and some examples are given in Section 6.

– A primitive refactoring is, by definition, an atomic composite refactoring.

– {interactive, Qualifier, [PRs]} represents a list of primitive refactorings
that to be executed in an interactive way, that is, before the execution of ev-
ery primitive refactoring, Wrangler asks the user for confirmation that he/she
really wants that refactoring to be applied. The confirmation question is gen-
erated automatically by Wrangler.

– {repeat interative, Qualifier, [PRs]} also represents a list of primitive refac-
torings to be executed in an interactive way, but different from the previous
one, it allows user to repeatedly apply one refactoring, with different param-
eters supplied, multiple times. The user-interaction is carried out before each
run of a primitive refactoring.

– {if then, fun() → Cond end, CR} represents the conditional application of
CR, i.e. CR is applied only if Cond, which is an Erlang expression, evaluates
to true. We wrap Cond in an Erlang function closure to delay its evaluation
until it is needed.

– {while, fun() → Cond end, Qualifier, CR} allows CR, which is gener-
ated dynamically, to be continually applied until Cond evaluates to false.
Qualifier specifies whether the refactoring is to be applied atomically or not.

A Domain-Specific Language for Scripting Refactorings in Erlang 11

– {Qualifier, [CRs]} represents the composition of a list of composite refac-
torings into a new composite refactoring, where the qualifier states whether
the resulting refactoring is applied atomically or not.

5.3 Tracking of Entity Names

In a composite refactoring, it is possible that a refactoring needs to refer to a
program entity that might have be renamed by previous refactoring steps. Track-
ing the change of names statically is problematic given the dynamic nature of a
refactoring process.Wrangler allows users to refer to a program entity through its
initial name, i.e. the name of the entity before the refactoring process is started.
For this purpose, we have defined a macro ?current. An entity name, tagged
with its category, wrapped in a ?current macro tells Wrangler that this en-
tity might have been renamed, therefore Wrangler needs to search its renaming
history, and replaces the macro application with the entity’s latest name. If no
renaming history can be found for that entity, its original name is used.

6 Examples

In this section, we demonstrate how the DSL, together with Wrangler’s template-
based API, can be used to script large-scale refactorings in practice. The exam-
ples are written in a deliberately verbose way for clarity. In practice, a collection
of pre-defined macros can be used to write the script more concisely.

Example 1. Batch clone elimination Wrangler’s similar code detection function-
ality [13] is able to detect code clones in an Erlang program, and help with the
clone elimination process. For each set of code fragments that are clones to each
other, Wrangler generates a function, named as new fun, which represents the
least general common abstraction of the set of clones; the application of this
function can be then used to replace those cloned code fragments, therefore to
eliminate code duplication. The general procedure to remove such a clone in
Wrangler is to copy and paste the function new fun into a module, then carry
out a sequence of refactoring steps as follows:

– Rename the function to some name that reflects its meaning.
– Rename the variables if necessary, especially those variable names in the for-

mat of NewVari , which are generated by the clone detector.
– Swap the order of parameters if necessary.
– Export this function if the cloned code fragments are from multiple modules.
– For each module that contains a cloned code fragment, apply the ‘fold ex-

pression against function definition’ refactoring to replace the cloned code
fragments in that module with the application of the new function.

The above clone elimination process can be scripted as a composite refactoring
as shown in Figure 7. The function takes four parameters as input:

– the name of the file to which the new function belongs,

12 Huiqing Li and Simon Thompson

1 batch_clone_removal(File, Fun, Arity, ModNames) ->

2 ModName = list_to_atom(filename:basename(File, ".erl")),

3 {atomic,

4 [{interactive, atomic,

5 {refac_, rename_fun, [File, {Fun, Arity},

7 {user_input, fun(_)->"New name:" end},

8 false]}},

9 {atomic, {refac_, rename_var,

10 [File, current_fa({ModName,Fun,Arity}),

11 fun(V) -> lists:prefix("NewVar", V) end,

12 {user_input,

13 fun({_, _MFA, V})->io_lib:format("Rename ~p to:", [V]) end},

14 true]}},

15 {repeat_interactive, atomic,

16 {refac_, swap_args, [File, current_fa({ModName, Fun, Arity}),

17 {user_input, fun(_, _)->"Index 1: " end},

18 {user_input, fun(_, _)->"Index 2: " end},

19 false]}},

20 {if_then, [ModName] /= ModNames,

21 {atomic, {refac_, add_to_export,

22 [File, current_fa({ModName, Fun, Arity}), false]}}},

23 {non_atomic, {refac, fold_expr,

24 [{file, fun(FileName)->M=filename:basename(FileName, ".erl"),

25 lists:member(M, ModNames)

26 end}, ?current({mfa, {ModName, Fun, Arity}}),1, false]}}

27]}.

29 current_fa({Mod, Fun, Arity}) ->

30 {M, F, A} = ?current({mfa, {Mod, Fun, Arity}), {F, A}.

Fig. 7. Batch Clone Elimination

– the name of the new function and its arity,
– and the name of the modules that contain one or more of cloned code frag-

ments, which is available from the clone report generated by the clone detector.

We explain the script in detail now.

– Lines 4-8. This lets the user decide whether to rename the function. The new
name is provided by the user if the function is to be renamed.

– Lines 9-14. This section generates a sequence of ‘rename variable’ refactor-
ings to form an atomic composite refactoring. Making this sequence of ‘rename
variable’ refactorings atomic means that we expect all the renamings to suc-
ceed, however, in this particular scenario, it is also acceptable to make it
non-atomic, which means that we allow a constituent renaming refactoring to
fail, and if that happens the user could redo the renaming of that variable
after the whole clone elimination process has been finished.
The second argument of the generator specifies the function to be searched. An
utility function current fa, as defined between lines 29-30, is used to ensure
the latest name is referenced. The function on line 11 gives the searching

A Domain-Specific Language for Scripting Refactorings in Erlang 13

tuple_args(Prog) ->

Pars = ?STOP_TD_TU(

[?COLLECT(?T("f@(As1@@, Line, Col, As2@@) when G@@ -> B@@."),

{api_refac:fun_def_info(f@),length(As1@@)+1}, true)], Prog),

{non_atomic, lists:append(

[{refactoring,tuple_args,[MFA,Index,Index+1]}||{MFA, Index}<-Pars])}.

Fig. 8. Batch tupling of function arguments

criterion for the variables to be renamed, and in this case it requires that
all the variables with a name starting with “NewVar” should be renamed.
New variable names are provided by the user as shown by the third argument.
Refactoring commands are generated lazily, as indicated by the last argument,
to ensure that the variables to be renamed are correctly identified.

– Lines 15-19. The code here allows re-ordering of function parameters. The
user can choose to re-order as many times as necessary, or not at all.

– Lines 20-22. This generates a refactoring that adds the new function to the
export of the module only if the clones are from multiple modules.

– Lines 23-26. Finally, this code generates a list of ‘fold expression against func-
tion definition’ refactoring commands, one for each module listed in ModNames.
We allow these refactorings to be composed in a non atomic way so that the
refactoring process will continue if a refactoring fails for some reason.

Example 2. Batch tupling of function arguments The example in Figure 8 shows
how Wrangler’s template-based API can help to create composite refactorings.
This example searches an Erlang program for single-clause function definitions
whose parameters include Line and Col next to each other, and generates a
‘tuple arguments’ refactoring command for each candidate found to put Line

and Col into a tuple. Prog specifies the scope of the project, i.e, the places to
search for Erlang files.

7 Implementation

Wrangler has been extended with another layer to support scripted composite
refactorings, and this includes a number of extensions as follows.

– An interpreter of the DSL language. The interpreter takes a composite refac-
toring script as input, and generates refactoring commands that to be executed
by the refactoring engine. Only one refactoring command is passed to the refac-
torer engine a time. Depending on the result returned and the context, the
interpreter could continue to generate another refactoring command or ask for
a rollback of the program to a particular point if an atomic refactoring fails.

– Support for rolling back a program to the starting point of an atomic composi-
tion when it fails. This is an extension of Wrangler’s original undo mechanism.

– A command generator for each primary refactoring as discussed in Section 5.1.

14 Huiqing Li and Simon Thompson

– A mechanism for recording each primitive refactoring command executed. Wran-
gler records each primitive refactoring command executed and the result re-
turned during the execution of a composite refactoring. This information pro-
vides valuable insights into the refactoring commands generated/executed, as
well as the reason of failure if some refactorings fail during the execution.

– A generic composite refactoring behaviour. A behaviour in Erlang is an appli-
cation framework that is parameterized by a callback module. The behaviour
solves the generic parts of the problem, while the callback module solves the
specific parts. In this spirit, a behaviour, named gen composite refac, has been
implemented especially for composite refactorings. Two callback functions are
specified by the behaviour. To implement a composite refactoring, the user
needs to create a callback module, implement and export the callback func-
tions. Once the callback module is compiled, the refactoring can be invoked
and tested from the IDE. The result can be previewed before being commit-
ted/aborted. A composite refactoring can also be undone.

8 Related Work

The idea of composite refactorings was proposed by Opdyke [14], and investi-
gated by Roberts [15]. This work focused on the derivation of a composite refac-
toring’s preconditions from the pre- and postconditions of its constituent refac-
torings.This is non-trivial because when performing refactorings R1, R2,Rn

sequentially, performing Ri may establish, or invalidate, the pre-conditions of
Rj , j > i. Ó Cinnéide [12] extends Roberts’ approach in various ways including
static manual derivation of pre- and postconditions for a composite refactoring.

ContTraCT is an experimental refactoring editor for Java developed by G.
Kniesel, et. al. [11]. It allows composition of larger refactorings from existing
ones. The authors identify two basic composition operations: AND- and OR-
sequence, which correspond to the atomic and non-atomic composition described
in this paper. A formal model based on the notion of backward transformation
description is used to derive the preconditions of an AND-sequence.

While the above approaches could potentially detect a composition that is
deemed to fail earlier, they suffer the same limitations because of the static
nature of the composition. Apart from that, the derivation of preconditions and
postconditions requires preconditions to be atomic and canonical. In contrast,
our approach might be less efficient when a composite refactoring fails because
of the conflict of pre-conditions, but it allows dynamic and lazy generations
of refactoring commands, dynamic generation of parameter values, conditional
composition of refactorings, rich interaction between users and the refactoring
engine, etc. Our approach is also less restrictive on the design of underlying
refactoring engine.

The refactoring API – described in a companion paper [10] – uses the gen-
eral style of ‘strategic programming’ in the style of Stratego [16]. More detailed
references to related work in that area are to be found in [10].

A Domain-Specific Language for Scripting Refactorings in Erlang 15

9 Conclusions and Future Work

Support for scripting composite refactorings in a high-level way is one of those
features that are desired by users, but not supported by most serious refactoring
tools. In this paper, we present Wrangler’s DSL and API[10] based approach for
scripting composite refactorings. We believe that being able to allow users to
compose their own refactorings is the crucial step towards solving the imbalance
between the limited number of refactorings supported by a tool and the unlimited
possible refactorings in practice.

Our future work goes in a number of directions. First, we would like to carry
out case studies to see how the support for user-defined refactorings is perceived
by users, and whether this changes the way they refactor their code; second,
we will add more composite refactorings to Wrangler, but also make Wrangler
a hub for users to contribute and share their refactoring scripts; and finally, we
plan to explore the application of the approach to HaRe, which is a refactoring
tool developed by the authors for Haskell programs.

References

1. M. Fowler: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA (1999)

2. Roberts, D., Brant, J., Johnson, R.E.: A Refactoring Tool for Smalltalk. Theory
and Practice of Object Systems (1997) 253–263

3. JetBrains: JetBrains. http://www.jetbrains.com
4. Eclipse:: an open development platform. http://www.eclipse.org/
5. Li, H., Thompson, S., Reinke, C.: The Haskell Refactorer, HaRe, and its API.

Electr. Notes Theor. Comput. Sci. 141(4) (2005) 29–34
6. Li, H., et al.: Refactoring with Wrangler, updated. In: ACM SIGPLAN Erlang

Workshop 2008, Victoria, British Columbia, Canada. (2008)
7. Lövei, L., et al.: Introducing Records by Refactoring. In: Erlang ’07: Proceedings

of the 2007 SIGPLAN workshop on Erlang Workshop, ACM (2007)
8. Murphy-Hill, E., Parnin, C., Black, A.P.: How we refactor, and how we know it.

IEEE Transactions on Software Engineering 99 (2011)
9. Frenzel, L.: The Language Toolkit: An API for Automated Refactorings in Eclipse-

based IDEs. Eclipse Magazine, Vol 5 (2006)
10. Li, H., Thompson, S.: A User-extensible Refactoring Tool for Erlang Programs.

Technical Report 4-11, School of Computing, Univ. of Kent, UK (2011)
11. Kniesel, G., Koch, H.: Static composition of refactorings. Sci. Comput. Program.

52 (August 2004)
12. Cinnéide, M.O.: Automated Application of Design Patterns: A Refactoring Ap-

proach. PhD thesis, University of Dublin, Trinity College (2000)
13. Li, H., et al.: Incremental Code Clone Detection and Elimination for Erlang Pro-

grams. In: Fundamental Approaches to Software Engineering (FASE’11). (2011)
14. Opdyke, W.F.: Refactoring Object-Oriented Frameworks. PhD thesis, Univ. of

Illinois (1992)
15. Roberts, D.B.: Practical Analysis for Refactoring. PhD thesis, Univ. of Illinois

(1999)
16. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. A

language and toolset for program transformation. Sci. Comput. Program. 72 (2008)

http://www.jetbrains.com
http://www.eclipse.org/

	A Domain-Specific Language for Scripting Refactorings in Erlang
	Huiqing Li and Simon Thompson

