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Abstract

The ODP �Open Distributed Processing� development model is a natural progression
from OSI� Multiple viewpoints are used to specify complex ODP systems� The conformance
assessment methodology for ODP de�nes the relationships between speci�cations and imple�
mentations that must be proved in order that conformance to ODP systems can be asserted�
These relationships include transformation� re�nement� conformance and consistency� This
paper develops a formal interpretation of these concepts� In particular the paper de�nes a
framework for checking the consistency of di�erent speci�cations of the same ODP system�
This framework is essential if FDT	s are to be successfully employed in the development of
ODP systems� In the second part of the paper� we present examples of consistency checking
in both LOTOS and RAISE�

Keywords� Open Distributed Processing� Conformance Assessment� Formal Methods�
Speci�cation� Implementation� Consistency�
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� Introduction

The ODP �Open Distributed Processing� standardisation initiative is a natural progression from
OSI� broadening the target of standardization from the point of interconnection to the end�to�end
system behaviour� The ODP framework� development of which began in earnest in �	
�� with
the initiation of work on the ODP Reference Model �ODP�RM�� can be said to be reaching a
level of relative maturity ��
� In particular� Parts � and � of the reference model are currently
Committee Drafts being balloted for progression to Draft International Standard� A goal of the
ODP architecture as described in ��
 is to enable the construction of potentially global computing
systems that may both cross many administrative boundaries and utilize a variety of systems and
communications technology� including that which currently exists and that which may be provided
for the purpose in the future�

Those working on the ODP reference model have avoided the mistake made when de�ning the
OSI reference model of leaving consideration of conformance until later� Instead the meaning of
conformance to ODP has been built into the ODP reference model from the start� It is therefore
important to develop a conformance assessment methodology� and de�ne the place within that
of active and passive testing� and consistency checking� Furthermore� a conformance assessment
methodology su�cient to meet the needs of ODP should be general and powerful enough to be used
for conformance assessment of OSE pro�les and of the full complexity of OSI network management�

One of the cornerstones of the ODP framework is a model of multiple viewpoints which enables
di�erent participants to observe a system from a suitable perspective and at a suitable level of
abstraction ��� �
� There are �ve separate viewpoints presented by the ODP model� Enterprise� In�
formation� Computational� Engineering and Technology� Requirements of� and statements about�
an ODP system can be made from any of these viewpoints and� therefore� conformance assessment
is separately relevant to each viewpoint� This means that a methodology to address conformance
assessment in ODP will have a very broad range and consequently will be very widely applicable�

However� while it has been accepted that the viewpoint model greatly simpli�es the development
of system speci�cations and o�ers a powerful mechanism for handling diversity within ODP� the
practicalities of how to make the approach work are only beginning to be explored� In particu�
lar� one of the consequences of adopting a multiple viewpoint approach to development is that
descriptions of the same or related objects can appear in di�erent viewpoints and must co�exist�
Furthermore� di�erent notations are likely to be used in di�erent viewpoints� Consistency of
speci�cations across viewpoints thus becomes a central issue� both in the development and the
conformance assessment process� However� the actual mechanism by which consistency can be
checked and maintained is only just being addressed ��� �� �
� Many of the ODP consistency
concepts have not been formalized� In particular� the mathematical properties of speci�cations
co�existing in di�erent viewpoints and potentially in di�erent languages need to be clari�ed�

Work underway in Peter Linington�s Open Distributed Processing research group at the University
of Kent at Canterbury aims to respond to these issues� The initial step in this research has been
the development of a formal model of consistency within ODP� We strongly believe that a formal
approach to the problem of consistency checking should be employed� In particular� the ability to
reason rigorously about the speci�cations under consideration will greatly aid the development of
proofs of mutual consistency� This is especially important given the increasing role that formal
methods are playing within ODP� Part � of the ODP�RM outines requirements for applying formal
description techniques in the speci�cation of ODP systems� Languages under investigation include
LOTOS� Estelle� SDL� Z� Object�Z and RAISE� We illustrate our formal model of consistency
checking using two of these candidate languages� RAISE and LOTOS�

The concepts and terminology surrounding the consistency checking issue are not �rmly �xed� In
fact� concepts are frequently misinterpreted within this domain� Thus� the role of this paper can be
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seen to be two fold� Firstly� it will clarify a coherent set of terminology surrounding the consistency
checking issue� Implicit in this will be the highlighting of the exact position that consistency �ts
into the present ODP model� Then secondly� we will focus directly on the consistency issue and
present a �rst step towards the de�nition of a formal theory of consistency between speci�cations�

Thus� the paper is structured as a description and de�nition of general ODP concepts and prin�
ciples� leading up to a precise de�nition of consistency and related concepts� The paper �rst
discusses the general ODP model of product development �in Section �� and then in Section �
the theory of conformance assessment suggested by the ODP framework is developed� A formal
interpretation of this conformance assessment process is developed in Section �� A discussion of
the framework is given in Section �� followed by some simple examples of consistency relationships
in formal description techniques in Section �� Finally� Section � contains some concluding remarks�

� Preliminaries� The ODP Development Process

Work on conformance assessment for Open Distributed Systems �ODP� has identi�ed a number
of issues in the development process and the conformance assessment process by which con�dence
in a product or an instance of a product can be gained ��
� The purpose of this paper is to give
formal interpretations of some of these notions�

Product development extends from the initial requirements to the �nal product that ful�lls those
requirements� Initially the requirements are clari�ed to produce a speci�cation�

The development process then focuses on this speci�cation and is responsible for the generation of
a number of subsequent speci�cations using one of a number of types of step ��transformations��
including translation and re�nement�

Speci�cations are expressed in some natural or formal language� Translation produces a speci��
cation with the same meaning in a �possibly� di�erent language� Re�nement� on the other hand�
produces a speci�cation with new details that serve to de�ne the product more closely �note that
re�nement can occur across language boundaries and thus� there can be an element of translation
in the process��

Once these steps have resulted in su�cient precision an example of the product is realized �a �real
implementation��� based on the �nal ��implementation�� speci�cation�

The development process and the transformations implicit in it are shown in Figure �� The product
then enters use� it should then meet the needs expressed in the document de�ning its requirements�
Conformance assessment is the process used in order to give con�dence that a product does meet
its requirements�

� Conformance assessment within ODP

The conformance assessment process determines whether a product satis�es �ie conforms to� a
given speci�cation� In this way we can obtain a measure of con�dence that a product satis�es the
requirements that the speci�cation has been derived from�

The relationships between speci�cations and real implementations that are relevant to conformance
assessment were identi�ed in ��
� These are divided into two groups�

�i� relationships between speci�cations and real implementations �conformance�� and�
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Figure �� Example Product Development Relationships

�ii� relationships between speci�cations alone �compliance� re�nement� consistency and internal
validity��

We outline their informal de�nition as given in ��
�

Conformance is a relation between a speci�cation and a real implementation� such as an example
of a product� It holds when speci�c properties in the speci�cation are met by the implementation�
Conformance assessment is the process through which this relation is determined�

Compliance is a relation between two speci�cations� A and B� B complies wth A when speci�cation
A makes requirements which are all ful�lled by speci�cation B�

One speci�cation is a re�nement of another when all the products that could conform to the
re�nement could also conform to the speci�cation from which it was re�ned� Compliance and
re�nement are in fact very closely related concepts and in terms of this paper we will not distinguish
them� However� within the full ODP model re�nement is associated with the design process� while
compliance is a more general term for relating speci�cations in the abstract�

ODP systems are speci�ed from di�erent viewpoints� Consistency between the speci�cations is
needed as it is important that the properties of one speci�cation do not contradict those of another�
Consistency is a relation between two speci�cations that holds when it is possible for at least one
example of a product to exist that can conform to both of the speci�cations�

A speci�cation is internally valid when there are no con�icts between its properties and those
implicit properties required of the speci�cation� and when there is at least one example product
that could conform to it� Properties� such as freedom from deadlock� which are always required to
hold in speci�cations are called implicit properties� However� the full value of distinguishing such
properties is still not clear� A further discussion of this issue is made in Section ����
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Conformance assessment is the determination of these relationships either by testing �conformance�
or by speci�cation checking �compliance� re�nement� consistency and internal validity��

��� Conformance assessment� testing

A speci�cation de�nes aspects of a real implementation�s behaviour� thus an implementation can
be tested to con�rm the presence of the required behaviour�

Testing is the process of providing the stimuli to the implementation and con�rming the expected
observable outcomes for each appropriate test� In ODP speci�c points of conformance are identi�ed
in the speci�cation ��
� At these conformance points the expected observable outcome following
the application of a known stimuli can be prescribed�

��� Conformance assessment� speci�cation checking

The need for speci�cations of ODP systems by a number of viewpoints is well documented ��� �
�
The presence of a number of viewpoint speci�cations complicates the conformance assessment
process�

The study ��
 identi�ed a number of mappings between speci�cations that occur in the devel�
opment and the conformance assessment process� Transformations between speci�cations during
the development process included translation and re�nement� with speci�cations being mapped
onto real implementations by realization or animation� Checks between speci�cations during the
conformance assessment process included re�nement checking� while checks between a real imple�
mentation and a speci�cation included only testing�

In addition there are transformations between speci�cations during the development process �uni��
cation� and an additional check between speci�cations during the conformance assessment process
�consistency�� The following table summarizes the di�erent mappings that result�

Mapping Development Conformance
speci�cation to Process Process
Speci�cation translation� internal validity checks�

re�nement� re�nement checks�
uni�cation consistency checks

Real animation testing
Implementation

The speci�cation of the same ODP system from di�erent viewpoints means that there must be
some way to combine di�erent viewpoint speci�cations at some stage during the development
process �assuming the �nal implementation is to have a single speci�cation�� This combination is
referred to as uni�cation�

Simply combining speci�cations is not possible unless common notions in the di�erent speci��
cations are �rst normalized by identifying them and associating them with the same term� An
example of de�ning common notions would be highlighting the correspondence between variables
in the two speci�cations� The appropriate correspondences must normally be supplied explicitly
by experts who understand the intent behind the di�erent speci�cations�

Once such normalization has taken place it is possible that the resulting speci�cation will have no
possible implementation� This is because the viewpoint speci�cations have placed contradictory
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Figure �� Checking Consistency

requirements on an implementation� The development procedure must ensure that the speci�ca�
tions developed are consistent�

Speci�cations from di�erent viewpoints may be checked for consistency by applying transforma�
tions �eg translation and re�nement� to each of them as necessary into a common language� perform
a normalization of their universe of discourse and then show that at least one implementation of
the uni�ed speci�cation is possible� This process� in the case where the common language chosen is
one of the original speci�cation languages is shown� in Figure �� In this diagram U�A�B� signi�es
the uni�cation of speci�cations A and B� In addition� transformation ��� is the actual consistency
checking step�

A consistency check is de�ned in ��
 by �xing the language of one of the speci�cations and
transforming the other speci�cations to that language� It then requires the resulting speci�cations
to be behaviourally compatible� That is� an ODP object displaying behaviour conforming to one
speci�cation should be able to be replaced by an ODP object with behaviour conforming to the
other� Thus an object that conforms to both speci�cations must be found�

Uni�cation �transformation and normalization� of speci�cations is useful� therefore� both in the
assessment of consistency and in the production of a single implementation from many speci�ca�
tions�

� Formal Interpretation

In this section a general mathematical framework is developed for reasoning about the conformance
assessment process� To do so we consider relations which are supposed to express formally the
notions of conformance� re�nement and consistency�

ODP systems are speci�ed from a number of di�erent viewpoints� each viewpoint speci�cation is
speci�ed in a language� Let Li �i � IN� be a collection of languages� and let Speci � Spec�Li� be
the set of speci�cations written in that language� De�ne

SPEC �
�

i

Speci

SPEC includes the text of all possible speci�cations of ODP systems �including inconsistent ones��
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In practice� however� an ODP speci�cation would consist of speci�cations from di�erent viewpoints
and a number of additional mappings showing the relationships between constructs used in the
di�erent viewpoint languages� However for the purposes of the initial abstract model developed
here� it su�ces to consider the �at domain SPEC�

��� Conformance

Conformance is a relationship between speci�cations and potential real implementations� Let Imp
denote the collection of real implementations� Note that Imp is the class of products or instances
of a product� and thus is a very di�erent type of object to SPEC� Most theories of conformance
do not make this distinction� but to reason correctly about the ODP development and assessment
process we believe it is important to do so� Beyond noting that SPEC � Imp � �� we can say
little about the structure of Imp�

The formal conformance relation� denoted conf in the sequel� is intended to express the notion of
an implementation conforming to a speci�cation� Thus

conf � SPEC � Imp

Since the link between a product and its model remains informal by nature� it can never be proved
that a speci�cation and implementation are related by conf� The best we can do is to assert that
�S� I� � conf on the basis of conformance testing carried out� If however conformance testing
indicates that the behaviour of the implementation I contradicts that required by S� then we can
say that �S� I� �� conf �

Previous notions of conformance have considered the formal conformance relation to be a subset
of SPEC�SPEC� ��� �� �� �
� The theory of equivalence and re�nement remains much the same
what ever approach is taken� indeed Section ��� contains analogous de�nitions and results to those
de�ned by the non�transitive conformance relation imp � SPEC � SPEC in ��
�

��� Equivalence and Re�nement

The transformations taking place during the ODP development process include translation and
re�nement� A speci�cation S� is a translation of a speci�cation S� if they are equivalent� denoted
S� � S��

De�nition � S� � S� i� fI � S� conf Ig � fI � S� conf Ig

Intuitively� two speci�cations are equivalent i� they determine exactly the same set of valid imple�
mentations� as de�ned by conf �this is depicted in Figure ��� Equivalence should certainly preserve
semantics� That is� if two speci�cations have the same underlying semantic interpretation� denoted
M�S�
 � M�S�
� then they should be regarded as equivalent� This implies that if S� conf I and
M�S�
 �M�S�
 then S� conf I�

It is obvious that equivalence is re�exive� symmetric and transitive� Therefore � is an equivalence
relation whatever conf is�

Re�nement is a development activity which restricts the set of valid implementations of a speci��
cation� The re�nement relation is denoted by v�

De�nition � S� v S� i� fI � S� conf Ig � fI � S� conf Ig
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This de�nition ensures that any implementation that conforms to S� will also conform to speci��
cation S�� see Figure ��

Proposition �

�i� v is a pre�order �ie re�exive and transitive�
�ii� S� � S� i� S� v S� and S� v S� �ie� v is a partial order with respect to equivalence�

The two relations v and conf are further related� as shown by the next proposition �where 	
denotes relation composition��

Proposition � �v 	 conf� � conf

Proof

The result follows from the following two arguments�
�i� Let S��v 	conf�I� Then there exists S� with S� v S� and S�confI� By the de�nition of conf�
S�confI�
�ii� Id � v implies that conf � �v 	conf�� �

We now consider some properties of the relations stronger than re�nement� These will characterize
re�nement�

Proposition � For all R� we have R � v i� �R 	 conf� � conf

Proof

�
� This follows from the facts that� R � v implies that R 	 conf � �v 	conf�� and v 	 conf �
conf �

��� We argue by contradiction� Consider any relation R such that R � v doesn�t hold� We show
that R 	 conf � conf doesn�t hold�

By hypothesis� there exist P and Q with PRQ and ��P v Q�� Since P v Q doesn�t hold� there
exists an implementation I with QconfI and ��PconfI�� Hence there exist I� P�Q� such that
�PRQ� 
 �QconfI� 
 ��PconfI�� Hence R 	 conf � conf doesn�t hold� �

By restricting to re�exive relations stronger than re�nement� the next proposition and corollary
easily follow�

Proposition � For all R� we have Id � R implies that �R � v� i� �R 	 conf � conf�






Corollary � Re�nement is the least relation R such that R 	 conf � conf 	

��� Normalization and Uni�cation

Normalization as a process takes two speci�cations de�ned over the same language� and produces a
normalized version which is a combination of the two speci�cations� again with respect to �wrt� to
the same language� The �rst attempt would be to regard normalization de�ned over the language
Li as a function N � Spec � Spec � Spec where Spec � Speci�

However it is possible to normalize two speci�cations in many di�erent ways� all that we should
be concerned about is that all normalizations should be equal wrt to equivalence� �� Hence
normalization de�ned over the language Li is a function N � Spec�Spec � Spec� where Spec� �
Spec� � in the usual notation is the set of equivalence classes of Spec wrt �� The equivalence
class of a speci�cation S wrt � is denoted �S
� however as is common convention we will denote
classes by representatives without loss of generality when no ambiguity arises�

Properties � A normalization function must satisfy the following properties


�i� N �T�� T�� � N �T�� T�� � commutativity
�ii� N �T�� N �T�� T��� � N �N �T�� T��� T�� � associativity
�iii� T�� T� v N �T�� T�� � common re�nement
�iv� If T� v T� then N �T�� T�� � T�

Normalization should clearly be commutative� It should also be associative� since the normalization
of three speci�cations should be independent of how that normalization is achieved� Common
re�nement expresses the fact that implementations conforming to N �T�� T�� should also conform to
the original speci�cations T�� T�� Note that this does not guarantee that there exists a conforming
implementation� only that if one does exist then it must conform in the manner shown�

A normalization function N and a speci�cation T�� induce a function NT� � Spec � Spec� given by
NT��T�� � N �T�� T��� It is then clear that we can consider this as a function NT� � Spec

� � Spec��
since if T� � T� then N �T�� T�� � N �T�� T��� This expresses our intuition that if we translate in
di�erent ways then the normalization should be the same� We can thus view normalization as a
function N � Spec� � Spec� � Spec��

Proposition 	 Any normalization function N satis�es the following properties


�i� N �T� T � � T � idempotency
�ii� NT��NT� �T��� � NT��T�� � �by associativity�
�iii� N is not one�one	

Proof

The �rst two are obvious� For the third� it is su�cient to exhibit two pairs of speci�cations
�T�� T��� �T�� T�� with N �T�� T�� � N �T�� T�� but T� �� T�� T� �� T�� The example

T� � �x � �� y � �
� T� � �z � �
� T� � �x � �
� T� � �y � �� z � �


su�ces since N �T�� T�� � N �T�� T�� � �x � �� y � �� z � �
� �

Uni�cation can now be expressed formally in terms of equivalence and normalization�

De�nition � Let S� � Spec�� S� � Spec�	 Then S� � Spec� is the uni�cation of S� and S�
�written S� � U�S�� S��� if there exists speci�cations T�� T� � Spec� such that S� � T�� S� � T�
and S� � N �T�� T��	

	



Thus uni�cation is the process of transforming speci�cations from �potentially� di�erent viewpoints
into a common language� and then normalizing in order to identify the commonality between the
two speci�cations�

Proposition 
 For arbitrary speci�cations and any uni�cation the following hold


�i� U is commutative and associative
�ii� S�� S� v U�S�� S�� � common re�nement
�iii� U�S� S� � S

Proof

These follow easily from analogous properties of normalization� �

��� Consistency and Validity

Consistency is a relation� denoted C in the sequel� between two speci�cations de�ned in arbitrary
viewpoints� Thus C � SPEC � SPEC� Informally two speci�cations are consistent if their
uni�cation can be implemented� Formally we make the de�nition�

De�nition � Let S� � Spec�� S� � Spec�	 Then �S�� S�� � C i� there exists an implementation
I and a speci�cation language L� such that S� � T�� S� � T� and N �T�� T��confI for some
T�� T� � Spec�	

Proposition � Consistency is a symmetric relation� but it is neither re�exive nor transitive	

Proof

The �rst is obvious� To see that C is not re�exive we just need to consider an inconsistent
speci�cation� for example S � �x � �� x � �
� Then consistency amounts to showing that there
exists an implementation I with SconfI� But this is clearly impossible�

To see that C is not transitive we will �nd speci�cations S�� S�� S� with �S�� S�� � C� �S�� S�� � C
but �S�� S�� �� C� An appropriate example is�

S� � �x � y� x �� �
� S� � �x � z� x �� �
� S� � �y � �z� x � z


�

ODP speci�cations will be de�ned from a number of viewpoints� consistency checks need to be
applied to an arbitrary number of speci�cations and not just two� so we extend the de�nition of
consistency to the following�

De�nition 	 Three speci�cations S�� S�� S� are �globally� consistent if �S��U�S�� S��� � C	 The
extension of consistency to an arbitrary �nite number of speci�cations is done in the obvious
manner	

In order to show that this de�nition is well�founded� we shall prove the following proposition�

Proposition � Let S� � Spec�� S� � Spec�� S� � Spec�	 Then

�S��U�S�� S��� � C i� �S��U�S�� S��� � C i� �S��U�S�� S��� � C

��



Proof

Suppose that �S��U�S�� S��� � C� Then there exists a language L� and an implementation I such
that S� � T��U�S�� S�� � T� and N �T�� T��confI for some T�� T� � Spec��

Let U � U�S�� S��� Then U � N �T�� T�� for some T�� T� � Spec� with S� � T� and S� � T�� By
de�nition U � T�� Thus

N �T�� N �T�� T��� conf I

Since N is associative� N �N �T�� T��� T�� conf I where S� � T� and N �T�� T�� � U�S�� S��� Hence
�S��U�S�� S��� � C� The other cases are proved in a similar fashion� �

The relation between arbitrary �or global� consistency and pairwise consistency can be seen in the
following proposition�

Proposition 


�	 Global consistency of three or more speci�cations implies pairwise consistency	
�	 Pairwise consistency does not imply global consistency	

Proof

For the �rst let S� � Spec�� S� � Spec�� S� � Spec� be consistent speci�cations� Then there exists
a language L� and an implementation I such that S� � T��U�S�� S�� � T� and N �T�� T��confI
for some T�� T� � Spec�� Since U�S�� S�� � T� v N �T�� T�� we have U�S�� S��confI� Hence
�S�� S�� � C� The other cases are similar�

To show that pairwise consistency does not imply global consistency it is enough to �nd an example
where �S�� S��� �S�� S��� �S�� S�� � C� but �S��U�S�� S��� �� C� An appropriate example is

S� � �x � y� x �� �
� S� � �x � z
� S� � �y � �z


�

Internal validity is a property of single speci�cations� Informally a speci�cation is internally valid
when �there are no con�icts between its properties and those implicit properties required of the
speci�cation� and when there is at least one example product that could conform to it� ��
�

When the ODP development process is viewed formally� all requirements of a system should
be captured in the initial speci�cation by the process of requirements capture� In our formal
interpretation we will not consider any requirements beyond those present in the speci�cation�
With that interpretation a speci�cation is internally valid when there is at least one example
product that could conform to it� This is just the property that a speci�cation is consistent with
itself�

De�nition 
 A speci�cation S is internally valid if �S� S� � C	

The following is an obvious consequence of this de�nition��

Proposition �� C is re�exive if we restrict the set of speci�cations that it is de�ned over to be
those that are internally valid	

� Discussion of the Framework

The framework presented here makes a distinction between speci�cations and implementations�
Other approaches to conformance and the de�nition of implementation relations have not made

��



such a distinction ��� �� �� �
� For example the relation conf in LOTOS is a non�transitive relation
which has been taken as the formal basis for conformance testing in ��
� In fact the theory of
equivalence and re�nement remains much the same whether or not one enforces this distinction�
We have done so here� so that we can later unify the theory of conformance testing into that of
conformance assessment� Our work could be extended to combine the conf relation presented here
with non�transitive implementation relations such as conf in LOTOS�

Although the conformance relation conf is the basic relation in our abstract framework� in actual
practice� it is the de�nition of re�nement that is important� Di�erent languages have di�erent
notions of re�nement� It is improbable to expect that they will all satisfy De�nition � that we
took as the basic condition of re�nement� For example we might allow re�nements to satisfy the
weaker condition�

S� v S� implies that fI � S� conf Ig � fI � S� conf Ig

Likewise when de�ning consistency of two speci�cations we require the production of an actual
implementation which conforms to the uni�cation of the two speci�cations� In practice in a
development situation we might show that there exists an implementation speci�cation IS which
is the re�nement of the uni�cation� and show that the speci�cation IS is consistent by conformance
testing�

� Examples

The following two subsections illustrate the mathematical framework we have presented in this
paper� The examples considered are very simple� Any more realistic illustrations of the framework
are beyond the scope of this paper� The �rst subsection presents examples of consistency and
re�nement in the Raise speci�cation language ��
� while the second subsection illustrates the
framework using examples in LOTOS ��� �
� The Raise examples are concerned with consistency
arising from speci�cation of data properties� while the LOTOS examples consider the consistency
between behavioural speci�cations� Both the sets of examples are restricted to consideration of
consistency between two speci�cations which are in the same language� Thus� our examples do not
consider the important issue of cross language translation� although� our framework has explored
this issue�

��� RAISE

The RAISE Speci�cation Language �RSL� is a �wide�spectrum� language which allows speci�cation
in three di�erent paradigms� declarative� imperative and concurrent� The language is expression�
oriented� with a �pure� functional core� On top of this are added expressions which can read or
write to variables� and take input from and give output to communication channels� Su�cient
checks �or imprecations� are made to ensure that side�e�ects and communications are restricted
to appropriate parts of the language� axioms are expected not to have side�e�ects� for instance�

The formal implementation relation de�ned in RAISE has been chosen to ensure that an im�
plementation can be substituted for its speci�cation� A speci�cation in RSL is a collection of
objects or schemes� each of which is built from a class expression� Basic class expressions in RSL
correspond to theory presentation �signature � axioms� in algebraic speci�cation languages�

A class expression signi�es a theory and denotes a class of models� One class expression imple�
ments another if every provable consequence of the later is a provable consequence of the former�
This is equivalent to sub�classing of models �under a technical assumption�� If we denote the
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implementation relation by impl� and provable consequence by �� we have

S� impl S� if S� � �� S� � �

De�ne impl for class expressions by saying that class expr� impl class expr� if both the following
hold�

� class expr� statically implements class expr�

� The theory of class expr� is provable in class expr�

Some simple examples illustrate these concepts� Consider the following schemes�

S � class type T value x�y � T axiom x�� y end
S� � class type T � Int value x � T � �� y � Int � � end
S� � class value x � Int � �� y � Int � � end
S� � class type T � Int value x � T � �� y � T � � end

S� implements S� its signature includes that of S and it satis�es the theory of S that x is di�erent
from y�

S� does not statically implement S �it de�nes no type T�� S� is implemented by S��

It is clear that the RSL implementation relation satis�es the requirements of a re�nement relation
on our framework�


���� Consistency checking in RAISE

Let S� S�� S� and S� be the schemes de�ned above� Simple examples of consistency checking can
be found by considering combining the schemes via normalization� Note that this is su�cient for
uni�cation since we do not cross a language boundary�

�� S� implements S� So the normalization of the two� N �S� S��� is just S��

�� S� implements both S and S�� In fact S� is the greatest upper bound� wrt impl� which
implements both S and S�� As one would expect in these circumstances� N �S�� S�� � S��

�� As an example of two inconsistent speci�cations we consider the normalization of S and S��
Clearly here� if the values x and y refer to the same entities in both schemes� then these schemes
are inconsistent� This can be seen since their normalization is

S� � class type T � Int value x � T � �� y � T � � axiom x �� y end

The fact that this is inconsistent can be deduced from the fact that�

S� � x � y S� � x �� y

��� LOTOS

Illustration of our framework can also be presented in the LOTOS speci�cation language �back�
ground to LOTOS can be found in ��� �
�� In particular� by way of contrast to the previous
examples which concentrated on consistency resulting from data relationships� here we will illus�
trate consistency resulting from behavioural properties�
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The mechanism highlighted in this paper for checking the consistency of two speci�cations involves
�rst normalizing the two speci�cations into a combined form and then showing that a �conformant�
implementation exists� There are two elements to normalization� a translation in order to enforce
the correspondence between terms in the two speci�cations and the actual process of combining
the two speci�cations� In terms of LOTOS behaviours we can illustrate the �rst of these two
elements in terms of the renaming of events� For example� if we had the following two �LOTOS
like� speci�cations of a trivial drinks machine�

DM� �� ���pence � tea � stop

and

DM� �� �pound � tea � stop

then there is clearly a correspondence between the event ���pence in DM� and �pound in DM��
Thus� we would perform suitable translations in order to re�ect this correspondence� For example�
we might translate the two machines to�

DM� �� coin � tea � stop

and

DM� �� coin � tea � stop

Now when we combine the two speci�cations the correspondence between the �rst events in the
two behaviours will be explicit� Let us now give some examples of checking consistency between
LOTOS behaviours� Consider then the following� often not very sensible� drinks machines� where
we assume that all necessary translations have been made to re�ect correspondences between
events��

DM� �� coin� tea � stop �
 tea� coin� stop

DM� �� coin� stop kj tea� stop

DM� �� coin� tea� stop

DM� �� coin� coin� stop

It should be clear that DM� and DM� are consistent� in fact they are equivalent� In addition�
DM� is a re�nement of both of DM� or DM� and is also consistent with both� However� DM�

is inconsistent with all of the other three drinks machines� We can illustrate these consistency
relationships� by composing behaviours together in parallel �such that common events are syn�
chronised� and then determining whether any ambiguities result� For example� the normalization
of DM� and DM�� N �DM�� DM��� is the following behaviour��

�coin�tea�stop�
tea�coin�stop� j�coin�tea
j �coin�tea�stop�

The two behaviours can be seen to be consistent� ie �DM�� DM�� � C� since the behaviour of
N �DM�� DM����

coin

tea

stop

does not contain any ambiguities� In contrast� N �DM�� DM���
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�coin�tea�stop� j�coin�tea
j �coin�coin�stop�

will yield a deadlock state� as follows��

coin

tea;stop |[tea,coin]| coin;stop

and thus� �DM�� DM�� �� C�

Thus� we take the existence of an unambiguous common behaviour to imply that a common
implementation exists� However� the existence of a deadlock state in the common behaviour
suggests that an implementation which is consistent with both speci�cations does not exist� This
does not actually completely satisfy our de�nition of consistency� since it may still be the case
that the common behaviour is not conformant to the target product� We have overlooked this
requirement� since consideration of conformance to physical products is realistically beyond the
scope of such simple examples�

In summary then� these very simple examples suggest that consistency checking in LOTOS takes
the following general form� Normalization involves translating event names in order to re�ect
correspondences between terms and then combining behaviours using the general parallel opera�
tor� such that common events are synchronised� Consistency checking then involves considering
whether the resultant behaviour contains ambiguities� characteristically deadlocks�

� Conclusion

This paper has made a �rst step towards the development of a formal theory of consistency
between speci�cations� We believe that consideration of this issue is timely� In particular� there is
an urgent need for a formal understanding of consistency within the Open Distributed Processing
setting�

Due to the limited scope of this paper we have only been able to illustrate our framework with
very simple examples� However� we have investigated the consistency properties arising from a
number of more realistic speci�cations� In particular� we are involved in ongoing work on checking
the consistency of the existing LOTOS and Z speci�cations of the ODP trader� The ultimate
objective of our work is to develop automated techniques for consistency checking which can be
used within the ODP product development framework�

Although the work presented in this paper is at an early stage of development we believe it makes
a valuable �rst step towards the development of a theory of consistency checking within the Open
Distributed Processing framework�
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