
Bowman, Howard and Derrick, John (1994) Towards a Formal Model of
Consistency in ODP. Technical report. University of Kent, Computing Laboratory,
University of Kent, Canterbury, UK

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21202/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21202/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Towards a Formal Model of Consistency in ODP

Howard Bowman and John Derrick�

Computing Laboratory� University of Kent� Canterbury� CT� �NF� UK�
�Phone� � 		 ��� �
	���� Fax� �		 ��� �
��

� Email� hb��ukc�ac�uk and jd
�ukc�ac�uk��

March
��
��	

Abstract

The ODP �Open Distributed Processing� development model is a natural progression
from OSI� Multiple viewpoints are used to specify complex ODP systems� The conformance
assessment methodology for ODP de�nes the relationships between speci�cations and imple�
mentations that must be proved in order that conformance to ODP systems can be asserted�
These relationships include transformation� re�nement� conformance and consistency� This
paper develops a formal interpretation of these concepts� In particular the paper de�nes a
framework for checking the consistency of di�erent speci�cations of the same ODP system�
This framework is essential if FDT	s are to be successfully employed in the development of
ODP systems� In the second part of the paper� we present examples of consistency checking
in both LOTOS and RAISE�

Keywords� Open Distributed Processing� Conformance Assessment� Formal Methods�
Speci�cation� Implementation� Consistency�

�

� Introduction

The ODP �Open Distributed Processing� standardisation initiative is a natural progression from
OSI� broadening the target of standardization from the point of interconnection to the end�to�end
system behaviour� The ODP framework� development of which began in earnest in �	
�� with
the initiation of work on the ODP Reference Model �ODP�RM�� can be said to be reaching a
level of relative maturity ��
� In particular� Parts � and � of the reference model are currently
Committee Drafts being balloted for progression to Draft International Standard� A goal of the
ODP architecture as described in ��
 is to enable the construction of potentially global computing
systems that may both cross many administrative boundaries and utilize a variety of systems and
communications technology� including that which currently exists and that which may be provided
for the purpose in the future�

Those working on the ODP reference model have avoided the mistake made when de�ning the
OSI reference model of leaving consideration of conformance until later� Instead the meaning of
conformance to ODP has been built into the ODP reference model from the start� It is therefore
important to develop a conformance assessment methodology� and de�ne the place within that
of active and passive testing� and consistency checking� Furthermore� a conformance assessment
methodology su�cient to meet the needs of ODP should be general and powerful enough to be used
for conformance assessment of OSE pro�les and of the full complexity of OSI network management�

One of the cornerstones of the ODP framework is a model of multiple viewpoints which enables
di�erent participants to observe a system from a suitable perspective and at a suitable level of
abstraction ��� �
� There are �ve separate viewpoints presented by the ODP model� Enterprise� In�
formation� Computational� Engineering and Technology� Requirements of� and statements about�
an ODP system can be made from any of these viewpoints and� therefore� conformance assessment
is separately relevant to each viewpoint� This means that a methodology to address conformance
assessment in ODP will have a very broad range and consequently will be very widely applicable�

However� while it has been accepted that the viewpoint model greatly simpli�es the development
of system speci�cations and o�ers a powerful mechanism for handling diversity within ODP� the
practicalities of how to make the approach work are only beginning to be explored� In particu�
lar� one of the consequences of adopting a multiple viewpoint approach to development is that
descriptions of the same or related objects can appear in di�erent viewpoints and must co�exist�
Furthermore� di�erent notations are likely to be used in di�erent viewpoints� Consistency of
speci�cations across viewpoints thus becomes a central issue� both in the development and the
conformance assessment process� However� the actual mechanism by which consistency can be
checked and maintained is only just being addressed ��� �� �
� Many of the ODP consistency
concepts have not been formalized� In particular� the mathematical properties of speci�cations
co�existing in di�erent viewpoints and potentially in di�erent languages need to be clari�ed�

Work underway in Peter Linington�s Open Distributed Processing research group at the University
of Kent at Canterbury aims to respond to these issues� The initial step in this research has been
the development of a formal model of consistency within ODP� We strongly believe that a formal
approach to the problem of consistency checking should be employed� In particular� the ability to
reason rigorously about the speci�cations under consideration will greatly aid the development of
proofs of mutual consistency� This is especially important given the increasing role that formal
methods are playing within ODP� Part � of the ODP�RM outines requirements for applying formal
description techniques in the speci�cation of ODP systems� Languages under investigation include
LOTOS� Estelle� SDL� Z� Object�Z and RAISE� We illustrate our formal model of consistency
checking using two of these candidate languages� RAISE and LOTOS�

The concepts and terminology surrounding the consistency checking issue are not �rmly �xed� In
fact� concepts are frequently misinterpreted within this domain� Thus� the role of this paper can be

�

seen to be two fold� Firstly� it will clarify a coherent set of terminology surrounding the consistency
checking issue� Implicit in this will be the highlighting of the exact position that consistency �ts
into the present ODP model� Then secondly� we will focus directly on the consistency issue and
present a �rst step towards the de�nition of a formal theory of consistency between speci�cations�

Thus� the paper is structured as a description and de�nition of general ODP concepts and prin�
ciples� leading up to a precise de�nition of consistency and related concepts� The paper �rst
discusses the general ODP model of product development �in Section �� and then in Section �
the theory of conformance assessment suggested by the ODP framework is developed� A formal
interpretation of this conformance assessment process is developed in Section �� A discussion of
the framework is given in Section �� followed by some simple examples of consistency relationships
in formal description techniques in Section �� Finally� Section � contains some concluding remarks�

� Preliminaries� The ODP Development Process

Work on conformance assessment for Open Distributed Systems �ODP� has identi�ed a number
of issues in the development process and the conformance assessment process by which con�dence
in a product or an instance of a product can be gained ��
� The purpose of this paper is to give
formal interpretations of some of these notions�

Product development extends from the initial requirements to the �nal product that ful�lls those
requirements� Initially the requirements are clari�ed to produce a speci�cation�

The development process then focuses on this speci�cation and is responsible for the generation of
a number of subsequent speci�cations using one of a number of types of step ��transformations��
including translation and re�nement�

Speci�cations are expressed in some natural or formal language� Translation produces a speci��
cation with the same meaning in a �possibly� di�erent language� Re�nement� on the other hand�
produces a speci�cation with new details that serve to de�ne the product more closely �note that
re�nement can occur across language boundaries and thus� there can be an element of translation
in the process��

Once these steps have resulted in su�cient precision an example of the product is realized �a �real
implementation��� based on the �nal ��implementation�� speci�cation�

The development process and the transformations implicit in it are shown in Figure �� The product
then enters use� it should then meet the needs expressed in the document de�ning its requirements�
Conformance assessment is the process used in order to give con�dence that a product does meet
its requirements�

� Conformance assessment within ODP

The conformance assessment process determines whether a product satis�es �ie conforms to� a
given speci�cation� In this way we can obtain a measure of con�dence that a product satis�es the
requirements that the speci�cation has been derived from�

The relationships between speci�cations and real implementations that are relevant to conformance
assessment were identi�ed in ��
� These are divided into two groups�

�i� relationships between speci�cations and real implementations �conformance�� and�

�

Specifications Real Implementations

Translate

Refine

Refine

Translate

Refine

ProductImplementation
Specification

Realization

Figure �� Example Product Development Relationships

�ii� relationships between speci�cations alone �compliance� re�nement� consistency and internal
validity��

We outline their informal de�nition as given in ��
�

Conformance is a relation between a speci�cation and a real implementation� such as an example
of a product� It holds when speci�c properties in the speci�cation are met by the implementation�
Conformance assessment is the process through which this relation is determined�

Compliance is a relation between two speci�cations� A and B� B complies wth A when speci�cation
A makes requirements which are all ful�lled by speci�cation B�

One speci�cation is a re�nement of another when all the products that could conform to the
re�nement could also conform to the speci�cation from which it was re�ned� Compliance and
re�nement are in fact very closely related concepts and in terms of this paper we will not distinguish
them� However� within the full ODP model re�nement is associated with the design process� while
compliance is a more general term for relating speci�cations in the abstract�

ODP systems are speci�ed from di�erent viewpoints� Consistency between the speci�cations is
needed as it is important that the properties of one speci�cation do not contradict those of another�
Consistency is a relation between two speci�cations that holds when it is possible for at least one
example of a product to exist that can conform to both of the speci�cations�

A speci�cation is internally valid when there are no con�icts between its properties and those
implicit properties required of the speci�cation� and when there is at least one example product
that could conform to it� Properties� such as freedom from deadlock� which are always required to
hold in speci�cations are called implicit properties� However� the full value of distinguishing such
properties is still not clear� A further discussion of this issue is made in Section ����

�

Conformance assessment is the determination of these relationships either by testing �conformance�
or by speci�cation checking �compliance� re�nement� consistency and internal validity��

��� Conformance assessment� testing

A speci�cation de�nes aspects of a real implementation�s behaviour� thus an implementation can
be tested to con�rm the presence of the required behaviour�

Testing is the process of providing the stimuli to the implementation and con�rming the expected
observable outcomes for each appropriate test� In ODP speci�c points of conformance are identi�ed
in the speci�cation ��
� At these conformance points the expected observable outcome following
the application of a known stimuli can be prescribed�

��� Conformance assessment� speci�cation checking

The need for speci�cations of ODP systems by a number of viewpoints is well documented ��� �
�
The presence of a number of viewpoint speci�cations complicates the conformance assessment
process�

The study ��
 identi�ed a number of mappings between speci�cations that occur in the devel�
opment and the conformance assessment process� Transformations between speci�cations during
the development process included translation and re�nement� with speci�cations being mapped
onto real implementations by realization or animation� Checks between speci�cations during the
conformance assessment process included re�nement checking� while checks between a real imple�
mentation and a speci�cation included only testing�

In addition there are transformations between speci�cations during the development process �uni��
cation� and an additional check between speci�cations during the conformance assessment process
�consistency�� The following table summarizes the di�erent mappings that result�

Mapping Development Conformance
speci�cation to Process Process
Speci�cation translation� internal validity checks�

re�nement� re�nement checks�
uni�cation consistency checks

Real animation testing
Implementation

The speci�cation of the same ODP system from di�erent viewpoints means that there must be
some way to combine di�erent viewpoint speci�cations at some stage during the development
process �assuming the �nal implementation is to have a single speci�cation�� This combination is
referred to as uni�cation�

Simply combining speci�cations is not possible unless common notions in the di�erent speci��
cations are �rst normalized by identifying them and associating them with the same term� An
example of de�ning common notions would be highlighting the correspondence between variables
in the two speci�cations� The appropriate correspondences must normally be supplied explicitly
by experts who understand the intent behind the di�erent speci�cations�

Once such normalization has taken place it is possible that the resulting speci�cation will have no
possible implementation� This is because the viewpoint speci�cations have placed contradictory

�

SPECIFICATION A
IN LANGUAGE X

SPECIFICATION B
IN LANGUAGE Y

(1) TRANSLATE/
REFINE SPECIFICATION

SPECIFICATION A
IN LANGUAGE Y

IMPLEMENTATION

(3) CHECK CONFORMANT
IMPLEMENTATION EXISTS

(2) NORMALIZE

SPECIFICATION U(A,B)
IN LANGUAGE Y

Figure �� Checking Consistency

requirements on an implementation� The development procedure must ensure that the speci�ca�
tions developed are consistent�

Speci�cations from di�erent viewpoints may be checked for consistency by applying transforma�
tions �eg translation and re�nement� to each of them as necessary into a common language� perform
a normalization of their universe of discourse and then show that at least one implementation of
the uni�ed speci�cation is possible� This process� in the case where the common language chosen is
one of the original speci�cation languages is shown� in Figure �� In this diagram U�A�B� signi�es
the uni�cation of speci�cations A and B� In addition� transformation ��� is the actual consistency
checking step�

A consistency check is de�ned in ��
 by �xing the language of one of the speci�cations and
transforming the other speci�cations to that language� It then requires the resulting speci�cations
to be behaviourally compatible� That is� an ODP object displaying behaviour conforming to one
speci�cation should be able to be replaced by an ODP object with behaviour conforming to the
other� Thus an object that conforms to both speci�cations must be found�

Uni�cation �transformation and normalization� of speci�cations is useful� therefore� both in the
assessment of consistency and in the production of a single implementation from many speci�ca�
tions�

� Formal Interpretation

In this section a general mathematical framework is developed for reasoning about the conformance
assessment process� To do so we consider relations which are supposed to express formally the
notions of conformance� re�nement and consistency�

ODP systems are speci�ed from a number of di�erent viewpoints� each viewpoint speci�cation is
speci�ed in a language� Let Li �i � IN� be a collection of languages� and let Speci � Spec�Li� be
the set of speci�cations written in that language� De�ne

SPEC �
�

i

Speci

SPEC includes the text of all possible speci�cations of ODP systems �including inconsistent ones��

�

In practice� however� an ODP speci�cation would consist of speci�cations from di�erent viewpoints
and a number of additional mappings showing the relationships between constructs used in the
di�erent viewpoint languages� However for the purposes of the initial abstract model developed
here� it su�ces to consider the �at domain SPEC�

��� Conformance

Conformance is a relationship between speci�cations and potential real implementations� Let Imp
denote the collection of real implementations� Note that Imp is the class of products or instances
of a product� and thus is a very di�erent type of object to SPEC� Most theories of conformance
do not make this distinction� but to reason correctly about the ODP development and assessment
process we believe it is important to do so� Beyond noting that SPEC � Imp � �� we can say
little about the structure of Imp�

The formal conformance relation� denoted conf in the sequel� is intended to express the notion of
an implementation conforming to a speci�cation� Thus

conf � SPEC � Imp

Since the link between a product and its model remains informal by nature� it can never be proved
that a speci�cation and implementation are related by conf� The best we can do is to assert that
�S� I� � conf on the basis of conformance testing carried out� If however conformance testing
indicates that the behaviour of the implementation I contradicts that required by S� then we can
say that �S� I� �� conf �

Previous notions of conformance have considered the formal conformance relation to be a subset
of SPEC�SPEC� ��� �� �� �
� The theory of equivalence and re�nement remains much the same
what ever approach is taken� indeed Section ��� contains analogous de�nitions and results to those
de�ned by the non�transitive conformance relation imp � SPEC � SPEC in ��
�

��� Equivalence and Re�nement

The transformations taking place during the ODP development process include translation and
re�nement� A speci�cation S� is a translation of a speci�cation S� if they are equivalent� denoted
S� � S��

De�nition � S� � S� i� fI � S� conf Ig � fI � S� conf Ig

Intuitively� two speci�cations are equivalent i� they determine exactly the same set of valid imple�
mentations� as de�ned by conf �this is depicted in Figure ��� Equivalence should certainly preserve
semantics� That is� if two speci�cations have the same underlying semantic interpretation� denoted
M�S�
 � M�S�
� then they should be regarded as equivalent� This implies that if S� conf I and
M�S�
 �M�S�
 then S� conf I�

It is obvious that equivalence is re�exive� symmetric and transitive� Therefore � is an equivalence
relation whatever conf is�

Re�nement is a development activity which restricts the set of valid implementations of a speci��
cation� The re�nement relation is denoted by v�

De�nition � S� v S� i� fI � S� conf Ig � fI � S� conf Ig

�

S
1

S
2

conf conf

I

S
1

S
2

conf

conf

I Implementation
Plane

Implementation
Plane

S
1

S
2

S
2

S
1

equivalent to refines

Figure �� Equivalence and Re�nement

This de�nition ensures that any implementation that conforms to S� will also conform to speci��
cation S�� see Figure ��

Proposition �

�i� v is a pre�order �ie re�exive and transitive�
�ii� S� � S� i� S� v S� and S� v S� �ie� v is a partial order with respect to equivalence�

The two relations v and conf are further related� as shown by the next proposition �where 	
denotes relation composition��

Proposition � �v 	 conf� � conf

Proof

The result follows from the following two arguments�
�i� Let S��v 	conf�I� Then there exists S� with S� v S� and S�confI� By the de�nition of conf�
S�confI�
�ii� Id � v implies that conf � �v 	conf�� �

We now consider some properties of the relations stronger than re�nement� These will characterize
re�nement�

Proposition � For all R� we have R � v i� �R 	 conf� � conf

Proof

�
� This follows from the facts that� R � v implies that R 	 conf � �v 	conf�� and v 	 conf �
conf �

��� We argue by contradiction� Consider any relation R such that R � v doesn�t hold� We show
that R 	 conf � conf doesn�t hold�

By hypothesis� there exist P and Q with PRQ and ��P v Q�� Since P v Q doesn�t hold� there
exists an implementation I with QconfI and ��PconfI�� Hence there exist I� P�Q� such that
�PRQ�
 �QconfI�
 ��PconfI�� Hence R 	 conf � conf doesn�t hold� �

By restricting to re�exive relations stronger than re�nement� the next proposition and corollary
easily follow�

Proposition � For all R� we have Id � R implies that �R � v� i� �R 	 conf � conf�

Corollary � Re�nement is the least relation R such that R 	 conf � conf 	

��� Normalization and Uni�cation

Normalization as a process takes two speci�cations de�ned over the same language� and produces a
normalized version which is a combination of the two speci�cations� again with respect to �wrt� to
the same language� The �rst attempt would be to regard normalization de�ned over the language
Li as a function N � Spec � Spec � Spec where Spec � Speci�

However it is possible to normalize two speci�cations in many di�erent ways� all that we should
be concerned about is that all normalizations should be equal wrt to equivalence� �� Hence
normalization de�ned over the language Li is a function N � Spec�Spec � Spec� where Spec� �
Spec� � in the usual notation is the set of equivalence classes of Spec wrt �� The equivalence
class of a speci�cation S wrt � is denoted �S
� however as is common convention we will denote
classes by representatives without loss of generality when no ambiguity arises�

Properties � A normalization function must satisfy the following properties

�i� N �T�� T�� � N �T�� T�� � commutativity
�ii� N �T�� N �T�� T��� � N �N �T�� T��� T�� � associativity
�iii� T�� T� v N �T�� T�� � common re�nement
�iv� If T� v T� then N �T�� T�� � T�

Normalization should clearly be commutative� It should also be associative� since the normalization
of three speci�cations should be independent of how that normalization is achieved� Common
re�nement expresses the fact that implementations conforming to N �T�� T�� should also conform to
the original speci�cations T�� T�� Note that this does not guarantee that there exists a conforming
implementation� only that if one does exist then it must conform in the manner shown�

A normalization function N and a speci�cation T�� induce a function NT� � Spec � Spec� given by
NT��T�� � N �T�� T��� It is then clear that we can consider this as a function NT� � Spec

� � Spec��
since if T� � T� then N �T�� T�� � N �T�� T��� This expresses our intuition that if we translate in
di�erent ways then the normalization should be the same� We can thus view normalization as a
function N � Spec� � Spec� � Spec��

Proposition 	 Any normalization function N satis�es the following properties

�i� N �T� T � � T � idempotency
�ii� NT��NT� �T��� � NT��T�� � �by associativity�
�iii� N is not one�one	

Proof

The �rst two are obvious� For the third� it is su�cient to exhibit two pairs of speci�cations
�T�� T��� �T�� T�� with N �T�� T�� � N �T�� T�� but T� �� T�� T� �� T�� The example

T� � �x � �� y � �
� T� � �z � �
� T� � �x � �
� T� � �y � �� z � �

su�ces since N �T�� T�� � N �T�� T�� � �x � �� y � �� z � �
� �

Uni�cation can now be expressed formally in terms of equivalence and normalization�

De�nition � Let S� � Spec�� S� � Spec�	 Then S� � Spec� is the uni�cation of S� and S�
�written S� � U�S�� S��� if there exists speci�cations T�� T� � Spec� such that S� � T�� S� � T�
and S� � N �T�� T��	

	

Thus uni�cation is the process of transforming speci�cations from �potentially� di�erent viewpoints
into a common language� and then normalizing in order to identify the commonality between the
two speci�cations�

Proposition
 For arbitrary speci�cations and any uni�cation the following hold

�i� U is commutative and associative
�ii� S�� S� v U�S�� S�� � common re�nement
�iii� U�S� S� � S

Proof

These follow easily from analogous properties of normalization� �

��� Consistency and Validity

Consistency is a relation� denoted C in the sequel� between two speci�cations de�ned in arbitrary
viewpoints� Thus C � SPEC � SPEC� Informally two speci�cations are consistent if their
uni�cation can be implemented� Formally we make the de�nition�

De�nition � Let S� � Spec�� S� � Spec�	 Then �S�� S�� � C i� there exists an implementation
I and a speci�cation language L� such that S� � T�� S� � T� and N �T�� T��confI for some
T�� T� � Spec�	

Proposition � Consistency is a symmetric relation� but it is neither re�exive nor transitive	

Proof

The �rst is obvious� To see that C is not re�exive we just need to consider an inconsistent
speci�cation� for example S � �x � �� x � �
� Then consistency amounts to showing that there
exists an implementation I with SconfI� But this is clearly impossible�

To see that C is not transitive we will �nd speci�cations S�� S�� S� with �S�� S�� � C� �S�� S�� � C
but �S�� S�� �� C� An appropriate example is�

S� � �x � y� x �� �
� S� � �x � z� x �� �
� S� � �y � �z� x � z

�

ODP speci�cations will be de�ned from a number of viewpoints� consistency checks need to be
applied to an arbitrary number of speci�cations and not just two� so we extend the de�nition of
consistency to the following�

De�nition 	 Three speci�cations S�� S�� S� are �globally� consistent if �S��U�S�� S��� � C	 The
extension of consistency to an arbitrary �nite number of speci�cations is done in the obvious
manner	

In order to show that this de�nition is well�founded� we shall prove the following proposition�

Proposition � Let S� � Spec�� S� � Spec�� S� � Spec�	 Then

�S��U�S�� S��� � C i� �S��U�S�� S��� � C i� �S��U�S�� S��� � C

��

Proof

Suppose that �S��U�S�� S��� � C� Then there exists a language L� and an implementation I such
that S� � T��U�S�� S�� � T� and N �T�� T��confI for some T�� T� � Spec��

Let U � U�S�� S��� Then U � N �T�� T�� for some T�� T� � Spec� with S� � T� and S� � T�� By
de�nition U � T�� Thus

N �T�� N �T�� T��� conf I

Since N is associative� N �N �T�� T��� T�� conf I where S� � T� and N �T�� T�� � U�S�� S��� Hence
�S��U�S�� S��� � C� The other cases are proved in a similar fashion� �

The relation between arbitrary �or global� consistency and pairwise consistency can be seen in the
following proposition�

Proposition

�	 Global consistency of three or more speci�cations implies pairwise consistency	
�	 Pairwise consistency does not imply global consistency	

Proof

For the �rst let S� � Spec�� S� � Spec�� S� � Spec� be consistent speci�cations� Then there exists
a language L� and an implementation I such that S� � T��U�S�� S�� � T� and N �T�� T��confI
for some T�� T� � Spec�� Since U�S�� S�� � T� v N �T�� T�� we have U�S�� S��confI� Hence
�S�� S�� � C� The other cases are similar�

To show that pairwise consistency does not imply global consistency it is enough to �nd an example
where �S�� S��� �S�� S��� �S�� S�� � C� but �S��U�S�� S��� �� C� An appropriate example is

S� � �x � y� x �� �
� S� � �x � z
� S� � �y � �z

�

Internal validity is a property of single speci�cations� Informally a speci�cation is internally valid
when �there are no con�icts between its properties and those implicit properties required of the
speci�cation� and when there is at least one example product that could conform to it� ��
�

When the ODP development process is viewed formally� all requirements of a system should
be captured in the initial speci�cation by the process of requirements capture� In our formal
interpretation we will not consider any requirements beyond those present in the speci�cation�
With that interpretation a speci�cation is internally valid when there is at least one example
product that could conform to it� This is just the property that a speci�cation is consistent with
itself�

De�nition
 A speci�cation S is internally valid if �S� S� � C	

The following is an obvious consequence of this de�nition��

Proposition �� C is re�exive if we restrict the set of speci�cations that it is de�ned over to be
those that are internally valid	

� Discussion of the Framework

The framework presented here makes a distinction between speci�cations and implementations�
Other approaches to conformance and the de�nition of implementation relations have not made

��

such a distinction ��� �� �� �
� For example the relation conf in LOTOS is a non�transitive relation
which has been taken as the formal basis for conformance testing in ��
� In fact the theory of
equivalence and re�nement remains much the same whether or not one enforces this distinction�
We have done so here� so that we can later unify the theory of conformance testing into that of
conformance assessment� Our work could be extended to combine the conf relation presented here
with non�transitive implementation relations such as conf in LOTOS�

Although the conformance relation conf is the basic relation in our abstract framework� in actual
practice� it is the de�nition of re�nement that is important� Di�erent languages have di�erent
notions of re�nement� It is improbable to expect that they will all satisfy De�nition � that we
took as the basic condition of re�nement� For example we might allow re�nements to satisfy the
weaker condition�

S� v S� implies that fI � S� conf Ig � fI � S� conf Ig

Likewise when de�ning consistency of two speci�cations we require the production of an actual
implementation which conforms to the uni�cation of the two speci�cations� In practice in a
development situation we might show that there exists an implementation speci�cation IS which
is the re�nement of the uni�cation� and show that the speci�cation IS is consistent by conformance
testing�

� Examples

The following two subsections illustrate the mathematical framework we have presented in this
paper� The examples considered are very simple� Any more realistic illustrations of the framework
are beyond the scope of this paper� The �rst subsection presents examples of consistency and
re�nement in the Raise speci�cation language ��
� while the second subsection illustrates the
framework using examples in LOTOS ��� �
� The Raise examples are concerned with consistency
arising from speci�cation of data properties� while the LOTOS examples consider the consistency
between behavioural speci�cations� Both the sets of examples are restricted to consideration of
consistency between two speci�cations which are in the same language� Thus� our examples do not
consider the important issue of cross language translation� although� our framework has explored
this issue�

��� RAISE

The RAISE Speci�cation Language �RSL� is a �wide�spectrum� language which allows speci�cation
in three di�erent paradigms� declarative� imperative and concurrent� The language is expression�
oriented� with a �pure� functional core� On top of this are added expressions which can read or
write to variables� and take input from and give output to communication channels� Su�cient
checks �or imprecations� are made to ensure that side�e�ects and communications are restricted
to appropriate parts of the language� axioms are expected not to have side�e�ects� for instance�

The formal implementation relation de�ned in RAISE has been chosen to ensure that an im�
plementation can be substituted for its speci�cation� A speci�cation in RSL is a collection of
objects or schemes� each of which is built from a class expression� Basic class expressions in RSL
correspond to theory presentation �signature � axioms� in algebraic speci�cation languages�

A class expression signi�es a theory and denotes a class of models� One class expression imple�
ments another if every provable consequence of the later is a provable consequence of the former�
This is equivalent to sub�classing of models �under a technical assumption�� If we denote the

��

implementation relation by impl� and provable consequence by �� we have

S� impl S� if S� � �� S� � �

De�ne impl for class expressions by saying that class expr� impl class expr� if both the following
hold�

� class expr� statically implements class expr�

� The theory of class expr� is provable in class expr�

Some simple examples illustrate these concepts� Consider the following schemes�

S � class type T value x�y � T axiom x�� y end
S� � class type T � Int value x � T � �� y � Int � � end
S� � class value x � Int � �� y � Int � � end
S� � class type T � Int value x � T � �� y � T � � end

S� implements S� its signature includes that of S and it satis�es the theory of S that x is di�erent
from y�

S� does not statically implement S �it de�nes no type T�� S� is implemented by S��

It is clear that the RSL implementation relation satis�es the requirements of a re�nement relation
on our framework�

���� Consistency checking in RAISE

Let S� S�� S� and S� be the schemes de�ned above� Simple examples of consistency checking can
be found by considering combining the schemes via normalization� Note that this is su�cient for
uni�cation since we do not cross a language boundary�

�� S� implements S� So the normalization of the two� N �S� S��� is just S��

�� S� implements both S and S�� In fact S� is the greatest upper bound� wrt impl� which
implements both S and S�� As one would expect in these circumstances� N �S�� S�� � S��

�� As an example of two inconsistent speci�cations we consider the normalization of S and S��
Clearly here� if the values x and y refer to the same entities in both schemes� then these schemes
are inconsistent� This can be seen since their normalization is

S� � class type T � Int value x � T � �� y � T � � axiom x �� y end

The fact that this is inconsistent can be deduced from the fact that�

S� � x � y S� � x �� y

��� LOTOS

Illustration of our framework can also be presented in the LOTOS speci�cation language �back�
ground to LOTOS can be found in ��� �
�� In particular� by way of contrast to the previous
examples which concentrated on consistency resulting from data relationships� here we will illus�
trate consistency resulting from behavioural properties�

��

The mechanism highlighted in this paper for checking the consistency of two speci�cations involves
�rst normalizing the two speci�cations into a combined form and then showing that a �conformant�
implementation exists� There are two elements to normalization� a translation in order to enforce
the correspondence between terms in the two speci�cations and the actual process of combining
the two speci�cations� In terms of LOTOS behaviours we can illustrate the �rst of these two
elements in terms of the renaming of events� For example� if we had the following two �LOTOS
like� speci�cations of a trivial drinks machine�

DM� �� ���pence � tea � stop

and

DM� �� �pound � tea � stop

then there is clearly a correspondence between the event ���pence in DM� and �pound in DM��
Thus� we would perform suitable translations in order to re�ect this correspondence� For example�
we might translate the two machines to�

DM� �� coin � tea � stop

and

DM� �� coin � tea � stop

Now when we combine the two speci�cations the correspondence between the �rst events in the
two behaviours will be explicit� Let us now give some examples of checking consistency between
LOTOS behaviours� Consider then the following� often not very sensible� drinks machines� where
we assume that all necessary translations have been made to re�ect correspondences between
events��

DM� �� coin� tea � stop �
 tea� coin� stop

DM� �� coin� stop kj tea� stop

DM� �� coin� tea� stop

DM� �� coin� coin� stop

It should be clear that DM� and DM� are consistent� in fact they are equivalent� In addition�
DM� is a re�nement of both of DM� or DM� and is also consistent with both� However� DM�

is inconsistent with all of the other three drinks machines� We can illustrate these consistency
relationships� by composing behaviours together in parallel �such that common events are syn�
chronised� and then determining whether any ambiguities result� For example� the normalization
of DM� and DM�� N �DM�� DM��� is the following behaviour��

�coin�tea�stop�
tea�coin�stop� j�coin�tea
j �coin�tea�stop�

The two behaviours can be seen to be consistent� ie �DM�� DM�� � C� since the behaviour of
N �DM�� DM����

coin

tea

stop

does not contain any ambiguities� In contrast� N �DM�� DM���

��

�coin�tea�stop� j�coin�tea
j �coin�coin�stop�

will yield a deadlock state� as follows��

coin

tea;stop |[tea,coin]| coin;stop

and thus� �DM�� DM�� �� C�

Thus� we take the existence of an unambiguous common behaviour to imply that a common
implementation exists� However� the existence of a deadlock state in the common behaviour
suggests that an implementation which is consistent with both speci�cations does not exist� This
does not actually completely satisfy our de�nition of consistency� since it may still be the case
that the common behaviour is not conformant to the target product� We have overlooked this
requirement� since consideration of conformance to physical products is realistically beyond the
scope of such simple examples�

In summary then� these very simple examples suggest that consistency checking in LOTOS takes
the following general form� Normalization involves translating event names in order to re�ect
correspondences between terms and then combining behaviours using the general parallel opera�
tor� such that common events are synchronised� Consistency checking then involves considering
whether the resultant behaviour contains ambiguities� characteristically deadlocks�

� Conclusion

This paper has made a �rst step towards the development of a formal theory of consistency
between speci�cations� We believe that consideration of this issue is timely� In particular� there is
an urgent need for a formal understanding of consistency within the Open Distributed Processing
setting�

Due to the limited scope of this paper we have only been able to illustrate our framework with
very simple examples� However� we have investigated the consistency properties arising from a
number of more realistic speci�cations� In particular� we are involved in ongoing work on checking
the consistency of the existing LOTOS and Z speci�cations of the ODP trader� The ultimate
objective of our work is to develop automated techniques for consistency checking which can be
used within the ODP product development framework�

Although the work presented in this paper is at an early stage of development we believe it makes
a valuable �rst step towards the development of a theory of consistency checking within the Open
Distributed Processing framework�

��

