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Abstract� In this paper we investigate the performance of four di�erent SOR acceleration tech�
niques on a variety of linear systems� Two of these techniques have been proposed by Dancis
��� who uses a polynomial acceleration together with a sub�optimal �� The two other techniques
discussed are vector accelerations� the � algorithm proposed by Wynn �	� and a generalisation of
Aitken
s �� algorithm� proposed by Graves�Morris �
��

The experimental results show that these accelerations can reduce the amount of work required
to obtain a solution and that their rates of convergence are generally less sensitive to the value of
� than the straightforward SOR method� However a poor choice of � can result in particularly
ine�cient solutions and more work is required to enable cheap estimates of a e�ective parameter
to be obtained�

Necessary conditions for the reduction in the computational work required for convergence are
given for each of the accelerations� based on the number of �oating�point operations�

It is shown experimentally that the reduction in the number of iterations is related to the
separation between the two largest eigenvalues of the SOR iteration matrix for a given �� This
separation in�uences the convergence of all the acceleration techniques above�

Another important characteristic exhibited by these accelerations is that even if the number
of iterations is not reduced signi�cantly compared to the SOR method� they are competitive in
terms of number of �oating�point operations used and thus they reduce the overall computational
workload�

Key words� SOR� Acceleration

�� Introduction

Consider the solution of the non�singular� symmetric� positive�de�nite system of n
linear equations

Ax � b ���

by the SOR iteration

�I 	 �D��AL�x�k��� �
�
��� ��I � �D��AU

�
x�k� 	 �D��b� k � 
� �� � � � ���

where D � diag�A�� AL and AU are the strictly lower and upper triangular parts of
A and � is the relaxation parameter� Convergence of the method is guaranteed for

 � � � ��

The SOR iterative method is commonly used for the solution of large� sparse�
linear systems that arise from the approximation of partial di
erential equations� Its
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rate of convergence is dependent on the value chosen for the iteration parameter ��
Following Young ���� the minimum number of iterations required for convergence is
obtained when this parameter has an optimal value� �b� which minimises the spectral
radius of the SOR iteration matrix�

L� � �I 	 �D��AL���
�
��� ��I � �D��AU

�
�

The value of �b may be obtained from the largest eigenvalue� ��� of the Jacobi
iteration matrix B � �D���AL 	 AU � using

�b �
�

� 	
p

�� ���
���

However computing �b is relatively expensive in most cases� Adaptive procedures
exist that can be used to update some initial approximation to �b� as in the ITPACK
�C package ���� but some of the initial iterations have large error vectors �when
compared to SOR using some � � ��� In this case some of the initial estimates of
the solution are �wasted� during the iterative process and this may be undesirable�

An alternative is to use an acceleration technique that may not be so sensitive to
the choice of �� The �rst two acceleration techniques� detailed in x� were proposed
by Dancis ��� and follow the usual approach of trying to select some � for the
SOR iteration� We show that for one of his techniques the selection of � is not as
sensitive as expected� In section � we look at an extension of the � algorithm of
Wynn applicable to vector and matrices iterations �������� and in x� a generalisation
of Aitken�s �� algorithm as proposed by Graves�Morris ��� is described� These are
vector accelerations and thus do not give a prescription for selecting ��

Our investigation is aimed at establishing how sensitive these accelerations are
with respect to the value chosen for �� Section x� describes the test problems used
in the investigation and the results obtained from the experiments� In section x� we
summarise the results and draw some conclusions�

�� Dancis�s Acceleration

Dancis proposes the use of a polynomial accelerator with SOR� � being chosen such
that the coordinate of the error vector� corresponding to the largest eigenvalue of
L�� is annihilated� Dancis recommends that � � 	� 	 �� where 	� is the second
largest eigenvalue of L�� By computing the second largest eigenvalue� ��� of the
Jacobi iteration matrix we can obtain the value of � using Equation ���� with ��
replaced by ���

Two di
erent accelerations are proposed� The �rst� which we refer to as PSOR��
is as follows� Perform r � � SOR iterations and then apply

x
�r�
SOR

� �x �
�

�� 	r�
x
�r���
SOR

�
	r�

�� 	r�
x��� ���

continuing with the SOR iterations thereafter�
The second acceleration �referred to as PSOR�� is obtained by

�x�i��� �
�� ai

�� ai��
x
�i���
SOR

	
ai��� a�

�� ai��
x���� i � �� �� � � �� r ���
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where a � � � �� After r steps of the above iteration have been performed� we set

x
�r���
SOR

� �x�r��� and the SOR iteration is used from then on�
Dancis propose that the value of r be chosen according to a spectral radius

analysis �see ��� page ������ its value is given by

min
r

� �� � ��m�r ��� � ��r 	 	r�� 
��� 	r����b � ��m� r � �� �� � � � � ���

where m is some arbitrarily chosen number of iterations�

�� Wynn�s � Algorithm

In ���� Wynn proposed an extension of the � algorithm ����� for vector and matrix
iterations ������ Consider a sequence S � fskg

�

k�� which is slowly convergent� If

we de�ne the sequences �
�k�
�� � f
g�

k�� and �
�k�
� � S then a new sequence �

�k�
i�� is

generated by

�
�k�
i�� � ��

�k���
i

� �
�k�
i

��� 	 �
�k���
i�� � i � 
� �� � � � � k � 
� �� � � � ���

In certain circumstances� the sequences �
�k�
�i � i � �� �� � � � converge faster to the limit

of S�
We investigate the behaviour of the �

�k�
� sequence obtained from vectors gener�

ated by SOR� We can express the new vector iterates� generated by two successive

applications of ��� to three SOR vectors� x�k���
SOR

� x�k�
SOR

and x
�k���
SOR

� as

�
�k���
� �

�
�x
�k���
SOR

� x
�k�
SOR

��� � �x
�k�
SOR

� x
�k���
SOR

���
�
��

	 x
�k�
SOR

���

where u�� � �u
�ju j�� is the Moore�Penrose generalised inverse and �u denotes the
complex conjugate�

In ��� it is shown that the value of � should be taken as � 	 	�i when using

a sequence f�
�k�
�i g

�

i
� For the acceleration of SOR shown above� with �

�k�
� as the

sequence to be used� then � � � 	 	�� which is the value proposed by Dancis�

�� Graves�Morris�s Acceleration

Graves�Morris suggests� ��� page ���� that the sequence of vectors x�k� generated by
��� may be accelerated using

t�k� � x�k����
��x�k�����

�x�k�����x�k���
�x�k���� k � �� �� � � � ���

where �x�k� � x�k��� � x�k�� which is a generalisation of Aitken�s �� process ����
We will refer to ��� as the G�M iteration�

Experimental results on a few model problems given in ��� show that� for the G�M
iteration� using the value of � which maximises the separation between the largest
eigenvalue of the SOR iteration matrix and the other eigenvalues� a reduction in the
number of iterations needed for convergence occurs� We investigate whether this
reduction is also observed in larger� practical problems and� if so� how critical the
eigenvalue separation is to the rate of convergence�

The value of � is chosen in a similar way as for the � algorithm� following ����
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	� Conditions for the E
ectiveness of the Acceleration Techniques

Our aim is to discover whether we can reduce the amount of computation needed by
SOR to solve a system of the form ��� by using one of the accelerations techniques�

For instance� using the G�M acceleration one might expect �intuitively� that
if at least one iteration is saved� the computing workload is reduced by a factor
of roughly n� multiplications compared to the SOR iteration� We present below
necessary conditions for the techniques discussed to require a smaller number of
�oating point multiplications ��ops� than SOR� These conditions are obtained in
terms of the number of iterations �k� and the number of �ops per iteration� For
SOR and each of the accelerations we consider that the total number of �ops is

�opsSOR � kSOR�n� 	 n�O�

�opsPSOR� �
�
kPSOR��n� 	 n� 	 �n

�
O�

�opsPSOR� �
�
kPSOR��n� 	 n� 	 �rn

�
O�

�ops
��

�
�
k���n

� 	 �n�� �n
�
O�

�opsG�M � kG�M�n� 	 �n�O�

where O� represents a �oating�point multiplication�
It is easy to show that for kSOR � kaccel where accel denotes any of the acceler�

ation techniques� we have
�opsSOR � �opsaccel

if and only if the following conditions are satis�ed

PSOR� n � �� 	 kPSOR� � kSOR�
�kSOR � kPSOR��

PSOR� n � ��r 	 kPSOR� � kSOR�
�kSOR � kPSOR��

�� n � ��k�� � kSOR � ��
�kSOR � k���

G�M n � ��kG�M � kSOR�
�kSOR � kG�M�
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�� Description of the Test Problems and Experiments

In this section we present the results obtained from solving a set of problems us�
ing MATLAB implementations of the above methods� Three of the problems are
taken from the Boeing�Harwell library ��� and for these we used Fortran�� and
BLAS routines to implement the methods and LAPACK subroutines to compute
the eigenvalues�

The problems solved present di
erent characteristics with respect to the distribu�
tion of eigenvalues and are of interest to the analysis of the acceleration techniques
discussed�

In each experiment� we describe the system of linear equations used� the value of
�b computed using ��� and the convergence criteria� The results are tabulated for
each method in terms of number of iterations to achieve convergence and the �ops
counting of SOR and the ratios between the �ops counting of each acceleration with
respect to SOR�

For the analysis of the G�M iteration� we provide a graph showing the two largest
eigenvalues of the SOR iteration matrix� 	� and 	�� such that j	�j � j	�j� For these
test problems� the value of r for the Dancis�s accelerations was found to be ��

���� Varga�s Problem

This is a system of order n � �� described in ��� Appendix B� derived from the
�ve�point �nite�di
erence discretisation of

�
�

�x

�D�x� y�u

�x
�

�

�y

�D�x� y�u

�y
	 ��x� y�u � S�x� y� ��
�

in the region R � �
� ����� �
� ���� subject to the boundary condition �n � 
� where
�n is the outward normal� The functions D� � and S are as shown in Figure �� The
condition number is 
�A� � ������� �
�� The value of �b is �������

Fig� �� Region for Varga
s problem�

D(x,y)=2

D(x,y)=3

σ(x,y)=0.05

σ(x,y)=0.03

0 2.1

2.1

D(x,y)=1
σ(x,y)=0.02

except where marked

1

1

2

2

S(x,y)=0 everywhere
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������ Experiment

In this problem� we are solving
Ax � 
 ����

which has the zero vector as the unique solution� The initial vector x��� was set to
��� �� � � � � ��T and we iterated until the ��norm of the solution vector was less than
�
�	 �this stopping criterion was used in order to reproduce the behaviour of SOR
presented in ��� Appendix B� page �
���� A maximumof �


 iterations was allowed�

An impressive reduction in the number of iterations is achieved by the G�M� ��
and PSOR� accelerations� Note that while the minimum number of iterations for
SOR and PSOR� is obtained when � � �b� for G�M� �� and PSOR� this minimum
occurs at some � � �b�

TABLE I
Varga
s problem� number of iterations�

� SOR G�M �� PSOR� PSOR�

�����	 ���� �� 	� �� ����

��
��	 �		� �� �� �� �		�

����	� ���� �
 
� �
 ����

����
� ��� 
� �� 
� ���

��	��� ��� ��	 ��� ��	 ���

TABLE II
Varga
s problem� �ops counting�

M�ops ratio to SOR���

� SOR G�M �� PSOR� PSOR�

�����	 ���� 
�
� ���� 
��� ������

��
��	 ���� ��
� ���� ���� ������

����	� ��
� ���� 
��� ���� ������

����
� ���	 ���� 	��	 ���� ������

��	��� ���� 	���� ������ ����	 ������

� ratio to minimum SOR �ops���

�����	 �
�	��� ���	
 �
��� ����� �
�	�	�

��
��	 �
���
� 
��
	 ���
� ����� �
�����

����	� ������ ����� ����	 ����
 ������

����
� ����	
 ���
� ���	� ����� ������

��	��� ������ 	���� ������ ����	 ������
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Fig� �� Varga
s problem� Eigenvalue separation and number of iterations of the methods�
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���� Problem TRIDIAG

This problem of order n � �

 is the system de�ned by

A �

�
������

�
 �
� �
 �

�� �
� � �

� � �

� �
 �
� �


�
					

� b �

�
������

�
�
���
�
�

�
					


����

The condition number is 
�A� � ������ and the value of �b is �����
�

������ Experiment

The starting vector used is x��� � �
� 
� � � � � 
�T and the iterations proceed until the
��norm of the residual of the solution vector is less than �
��� or the number of
iterations exceeded �

�

This example shows a situation where �b is close to �� The experiment shows
that in this case little� if any� gain is achieved by the accelerations� Nonetheless even
if a single iteration is spared a reduction in the computational e
ort is veri�ed�

TABLE III
Problem TRIDIAG� number of iterations�

� SOR G�M �� PSOR� PSOR�

�����
 �� �� �� �� ��

���
�	 �
 �� �� �� �


������ �� �� �
 �� ��

�����
 �� �� �� �
 ��

�����	 �
 �� �� �� �


TABLE IV
Problem TRIDIAG� �ops counting�

M�ops ratio to SOR���

� SOR G�M �� PSOR� PSOR�

�����
 ���� 	
��� 	���� 	���� ������

���
�	 ���
 	
��� ������ 	���� �����	

������ ���� ����	� �����	 �����	 �����	

�����
 ���� 	��
� ������ ������ �����	

�����	 ���
 	
��� 	���� �����
 �����	

� ratio to minimum SOR �ops���

�����
 ��	��	 ����	� ������ �����	 ��	���

���
�	 ������ 	��
� ������ �����	 ������

������ ������ ����	� �����	 �����	 �����	

�����
 ������ 	��
� ������ ������ �����	

�����	 ������ 	��
� ������ ��	��� ������
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Fig� 
� Problem TRIDIAG� Eigenvalue separation and number of iterations of the methods�
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���� Problem NOS�

This problem is taken from the Harwell�Boeing sparse matrix collection ��� pp�
������� It is derived from a �nite�element approximation to a structural engi�
neering problem� The system has order n � �

 and its condition number is

�A� � ������� �
�� The RHS vector was chosen as ��� 
� 
� � � � � 
�T � The value
of �b is �����
�

������ Experiment

In this problem we iterated until the ��norm of the residual of the solution vector
was less than �
�	 or the number of iterations exceeded �


� The initial estimate
of x was �
� 
� � � � � 
�T �

This example shows a similar behaviour to that of Varga�s problem� However
in this case the �� acceleration is worse than SOR and PSOR� and PSOR� fail to
produce any acceleration�

TABLE V
Problem NOS�� number of iterations�

� SOR G�M �� PSOR� PSOR�

���	�� ��		 �		 ���� ���� ����

���	

 ��� ��� ��
� ���� ����

�����	 ��	 ��� ��	 ���� ����

������ ��
 �� ��	 ���� ����

������ 	� ��
 ��� ���� ����

TABLE VI
Problem NOS�� �ops counting�

M�ops ratio to SOR���

� SOR G�M �� PSOR� PSOR�

���	�� ����� ����� �����	 ����		 ����		

���	

 ���� ���	� ������ ����
� ����
�

�����	 ��	� ����� ����	� ��	��� ��	���

������ ���� ���
� ��
��	 ������ ������

������ ��	� ������ �����
 ������� �������

� ratio to minimum SOR �ops���

���	�� ������� ����
� �����	� ������� �������

���	

 ����
� ������ ������� ������� �������

�����	 ������ �
���� �����	 ������� �������

������ �	���	 ����� ������ ������� �������

������ ������ ������ �����
 ������� �������
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Fig� �� Problem NOS�� Eigenvalue separation and number of iterations of the methods�
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���� Problem ��	 BUS

This problem is taken from the Harwell�Boeing sparse matrix collection ��� pp� ����
The coe!cient matrix is derived from the modelling of a power system network� The
system has order n � ��� and its condition number is 
�A� � ����
�� �

� The
RHS vector was chosen as ��� 
� 
� � � � � 
�T � The value of �b is �����
�

������ Experiment

In this experiment we used the same stopping criteria as in problem NOS�� It shows
a behaviour similar to that exhibited in Varga�s and NOS� problems except for the
�� acceleration which was always worse than SOR except at � � �b�

TABLE VII
Problem ��� BUS� number of iterations�

� SOR G�M �� PSOR� PSOR�

������ ���� ��� ���� ���� ����

������ ���	 
�� ���� ���� ����

���
	� ���� ��� ���� ���� ����

������ ��� ��� 	�� ���� ����

��	�	� ��� ��
 ��� ���� ����

TABLE VIII
Problem ��� BUS� �ops counting�

M�ops ratio to SOR���

� SOR G�M �� PSOR� PSOR�

������ 	
	��� 
���	 ������ ������ ������

������ �	���� ����� �
���� �
���
 �
���


���
	� �		�	� �
��� ��	��� ����	� ����	�

������ ������ ����� ������ 
����
 
����


��	�	� ���
� 	���� 	��

 ���	��	 ���	��	

� ratio to minimum SOR �ops���

������ ���	��	 
����� ���	��� ���	��	 ���	��	

������ ����	� ������ ���	��� ���	��	 ���	��	

���
	� ������ ������ ���	��� ���	��	 ���	��	

������ 
�	��� ����� �����	 ���	��	 ���	��	

��	�	� ������ 	���� 	��

 ���	��	 ���	��	
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Fig� �� Problem ��� BUS� Eigenvalue separation and number of iterations of the methods�
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�� RUDNEI DIAS DA CUNHA AND TIM HOPKINS

�� Summary

We summarise the results presented in x�� The main points are as follows
�� The PSOR� iteration performed poorly in the test problems used in this paper�

The other three methods generally outperformed the basic SOR method with
the G�M acceleration showing the most consistent improvements�

�� The G�M� �� and PSOR� iterations almost invariably reduced the number of
iterations required to obtain a speci�ed accuracy when � � �b� In some cases
this reduction was observed for � � �b�

�� As with the basic SOR method� the G�M� �� and PSOR� iterations are poor if
� chosen is greater than �b�

�� The reduction in the number of iterations using the G�M method is proportional
to the separation of 	� and 	�� Since the �� and PSOR� iterations produce
similar behaviour to G�M� we believe this separation also has an in�uence on the
convergence properties of these methods� Note that as the separation between
	� and 	� decreases all three iterations exhibit similar behaviour to SOR�

The experimental results presented show that the Graves�Morris�s acceleration tech�
nique is the most attractive of the techniques discussed here� from the point of view
both of the overall amount of computational work required and the range of the �
parameter for which the rate of convergence is improved� Though the number of
experiments performed was small we believe the results indicate that these acceler�
ations of the SOR method are e
ective and may be applicable to other systems�
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