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a b s t r a c t

Spider diagrams provide a visual logic to express relations between sets and their

elements, extending the expressiveness of Venn diagrams. Sound and complete inference

systems for spider diagrams have been developed and it is known that they are

equivalent in expressive power to monadic first-order logic with equality, MFOL[¼].

languages that are finite unions of languages of the form K G , where K is a finite

commutative language and G is a finite set of letters. We note that it was previously

established that spider diagrams define commutative star-free languages. As a corollary,

all languages of the form K Gn are commutative star-free languages. We further

demonstrate that every commutative star-free language is also such a finite union.

In summary, we establish that spider diagrams define precisely: (a) languages definable

in MFOL[¼], (b) the commutative star-free regular languages, and (c) finite unions of the

form K Gn, as just described.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Spider diagrams [7,11] provide a visual notation for finite
sets, their members and interrelationships. An example
spider diagram is shown in Fig. 1. They are given a model
theoretic semantics, starting with a finite universal set, U,
and interpreting each closed curve, called a contour, as a
subset of U. Each minimal area (i.e. a region not further
subdivided by any segment of a contour), called a zone,
represents an intersection of sets and their complements.
Between them, the zones represent the universal set: the
union of the sets represented by the zones is U. For instance,
in Fig. 1, there are two contours, representing the sets P and
. All rights reserved.

Delaney),
Q, along with four zones. The zone inside the contour P but
outside the contour Q represents the set P \ Q . Each dot (or
set of joined dots), called a spider, is interpreted as a distinct
element of the universe belonging to the appropriate set. For
example, the spider comprising a single dot in Fig. 1 tells us
that there is an element in the set P \ Q and the spider
comprising two dots tells us that there is another element
which is in the set P \ Q or in the set P \ Q ; the line
connecting the two dots represents disjunction. Finally, the
set represented by a shaded zone can only include elements
represented by spiders with a dot in that zone. In Fig. 1,
therefore, the zone inside P but outside Q contains at most
two elements, since there are two dots in this zone. This
diagram is an example of a unitary spider diagram. More
complex spider diagrams are formed by using logical
operators, such as 4 and 3. Spider diagrams also have an
associated sound and complete reasoning system [20] and,
in [11], Stapleton et al. showed that spider diagrams are
equally as expressive as monadic first-order logic with
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Fig. 1. A spider diagram. Fig. 2. An assignment of letters to zones.
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equality, MFOL[¼]. To illustrate this result, the spider
diagram in Fig. 1 is equivalent to the MFOL[¼] sentence

(x1(x2ðPðx1Þ4:Q ðx1Þ4:Q ðx2Þ4x1

ax248yððPðyÞ4:Q ðyÞÞ ) ðy¼ x13y¼ x2ÞÞÞ:

In this paper, we present a novel approach to the study
of spider diagrams, through examining their relationship
with regular languages. Regular languages lie at the heart
of theoretical computer science. Much is known about
how they relate to finite automata, symbolic logic, and
algebraic formalisms. Each of these relationships gives a
different insight into regular languages as well as illumi-
nating the other areas themselves. As with earlier work,
our study of spider diagrams with regular languages
provides insights into both regular languages and dia-
grammatic logic. For instance, we can now determine
whether two spider diagrams are semantically equivalent
by establishing whether they define the same language;
two languages are equal if the minimal automata that
accept them are the same.

We now explain how spider diagrams are associated
with languages. The first step assigns sets of letters to
contours, so that each zone corresponds to a single letter.
If we have contours labelled P and Q, as in Fig. 1, and
alphabet S¼ fa,b,c,dg then we can assign fa,bg to P and
fb,cg to Q. This induces an assignment of the letters to
zones as follows:
1.
 a is assigned to the zone that is inside the contour
P but outside the contour Q,
2.
 b is assigned to the zone that is inside both contours
P and Q,
3.
 c is assigned to the zone that is inside the contour
Q but outside the contour P, and
4.
 d is assigned to the zone that is outside both contours
P and Q.

This assignment of letters to zones is illustrated in Fig. 2.
Using this assignment, we can use spider diagrams to define
languages by considering the information provided by the
diagram. The presence of a spider in a diagram corresponds
to the presence of a letter in a word. For instance, in Fig. 1,
the spider comprising a single dot inside P but outside Q

tells us that words must contain an a, and the other spider
tells us that words must contain either an a (in addition to
that present because of the first spider) or a d (because of
the dot outside both contours). The disjunctive information
arises from the fact that this spider comprises two dots
connected by a line; the line represents disjunction. Thus, all
words in the language defined by this spider diagram must
contain one of the words aa, ad and da as a scattered
subword (defined in Section 3) of a. The shading provides an
upper bound on the number of occurrences of letters in
words: all of the letters that are assigned to shaded zones
must be represented by spiders. So, in Fig. 1, the shading
tells us that the only a letters arise from spiders because the
shaded zone is assigned the letter a. Apart from the
restriction on the number of as, any other letters can be
present. Thus, this spider diagram defines the language
faa,ad,dag fb,c,dgn; this is the shuffle product of faa,ad,dag

and fb,c,dgn which comprises of all words formed by
interspersing the letters of words in faa,ad,dag with words
in fb,c,dgn. Of note is that spider diagrams cannot assert any
ordering information between the letters of a word, so they
define only commutative languages.

We connect our work to Thomas’ definition of a
language definable by a sentence in MFOL[o] [22].
Thomas proves that the star-free regular languages,
including those which are not commutative, are precisely
those definable in monadic first-order logic of order
(MFOL[o]), in which the only binary predicate is o ,
interpreted as strict total order; the requirement for a
strict total order arises from the fact that languages
definable in MFOL[o] need not be commutative, so o
is necessary when placing constraints on the order of
letters. The notion of when a MFOL[o] sentence defines a
language requires a correspondence to be defined
between monadic predicate symbols and sets of letters,
just as we demonstrated when linking spider diagrams to
languages in our example above by assigning sets of
letters to contour labels. To illustrate, using the same
example alphabet S¼ fa,b,c,dg, we assign the set fa,bg to
the predicate symbol P and the set fb,cg to the predicate
symbol Q, just as we assigned these sets to contours
above. In this case, the MFOL[o] sentence

(xðPðxÞ48yðyax) xoyÞ

defines the language consisting of all words that begin
with a letter a or a letter b; intuitively, there is a letter ((x)
that is in the set fa,bg (since P(x) holds and P is assigned
fa,bg) that comes before every other letter (since
8yðyax) xoyÞ). Since this language is not commutative,
it is not definable by a spider diagram or in MFOL[¼ ].

In light of the observation that spider diagrams define
commutative languages, spider diagrams of order were
proposed [4], which are expressively equivalent to
MFOL[o] [5], and therefore define all star-free regular
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languages. In this paper, we prove that the following four
statements are equivalent, where S is the alphabet:
1.
 L is the language of a spider diagram,

2.
Fig. 3. Spider diagrams defining languages.
L is defined by a sentence in monadic first-order logic
with equality, MFOL[¼ ],
3.
 L is a commutative star-free regular language, and

4.
 L is a finite union of languages of the form K Gn

where K is a finite commutative language and GDS.
Thus, the work reported here complements Thomas’ by
showing that the commutative languages are precisely
those definable in MFOL[¼ ].

Section 2 illustrates our approach to prove that spider
diagrams define precisely the commutative star-free reg-
ular languages by working through a set of representative
examples. Section 3 presents our notation for discussing
finite automata and regular languages. In Section 4 we
define the syntax and semantics of spider diagrams.
Section 5 formalises when an interpretation is a model
for a word. Section 6 defines the language of a spider
diagram and proves that the language is a finite union of
languages of the form K Gn as just described. Section 7
proceeds to derive our characterisation of commutative
star-free languages as finite unions of shuffle products as
previously described.
2. Illustrating our approach

To prove our main results, a key step requires us to
prove that spider diagrams can define all star-free regular
languages. To do this, we first characterise the set of
languages defined by spider diagrams in terms of shuffle
products; the shuffle products that correspond to spider
diagrams have a particular form, K Gn, where K is a finite
commutative language and G is a set of letters. Subse-
quently, by examining finite automata, we show that
every commutative star-free regular language can be
written as a finite union of shuffle products of the
required form. We are then able to convert shuffle
products in this form into spider diagrams.

Here, we work through a set of examples to illustrate
the approach; the formal definitions of the concepts used
will be given later in the paper. First, we provide exam-
ples of spider diagrams and derive the language they
define in terms of shuffle products, following the strategy
used in Section 6. We further illustrate how we convert
such shuffle products into spider diagrams. Second, we
provide an example of a commutative, star-free regular
language and demonstrate how we identify a spider
diagram defining the language via automata, following
the strategy used in Section 7. Later in the paper, we make
reference back to these examples where appropriate.

In the examples of this section, we take the alphabet to
be S¼ fa,b,c,dg and we assume the contour labels (analo-
gous to predicate symbols in symbolic logic) are in the set
C¼ fP,Qg. Further, we assign the set of letters fa,bg to P

and fb,cg to Q.
2.1. Converting spider diagrams to shuffle products

Consider the spider diagram d13d2 in Fig. 3a. This
diagram is a disjunction of the so-called unitary diagrams;
these are diagrams that do not involve any logical con-
nectives. The diagram d1 expresses that there is an
element in the set P, by the use of the spider placed
inside the contour labelled P. In addition, the shading tells
us that there can be no other elements in P: shading
asserts that all elements in the sets represented by shaded
zones must be represented by spiders. The diagram d2

expresses that there is an element that is not in P or Q.
In language terms, the diagram d1 defines L¼ fa,bg

fc,dgn, since:
1.
 there is a spider inside the contour labelled P (assigned
the set of letters fa,bg) so there must be an a or a b

present in words of L; this gives rise to fa,bg in the
shuffle product and
2.
 there is shading inside the contour labelled P, so the
only a or b letters present must be those arising from
the spiders, and the lack of shading elsewhere means
that we can have any number (including 0) occur-
rences of c and d; this gives rise to fc,dgn in the shuffle
product.
We denote fa,bg in the shuffle product by Kðd1Þ and fc,dg
in the shuffle product by Gðd1Þ, so L¼ Kðd1Þ Gðd1Þ

n. The
diagram d2 similarly defines the language Kðd2Þ Gðd2Þ

n

where Kðd2Þ ¼ fdg and Gðd2Þ ¼ fa,b,c,dg ¼S. Hence, the
diagram d13d2 defines the language

ðKðd1Þ Gðd1Þ
n
Þ [ ðKðd2Þ Gðd2Þ

n
Þ:

Whilst in the example just given it was easy to identify
the sets K and G for each unitary diagram, in more
complex examples it is not so straightforward. Complex-
ity arises because of the disjunctive information provided
by spiders. In the previous example, the spider in d1 was
taken to represent either an a or a b since it was inside P;
because this is the only spider in d1, we do not have to
worry about how the letters arising from this spider
interact with letters arising from other spiders. When
there are many spiders present, we must ensure that the
set K fully represents the different possibilities for the
letters arising from each spider.

For instance, the diagram d3 in Fig. 3b contains three
spiders, each of which provides disjunctive information.
Moreover, each spider represents a different element, in
set theory terms, and in language terms each spider gives
rise to a letter in each word of the language defined by d3.
Of note here is that the spider comprising two dots
represents an element which is either in P (the left most



Fig. 4. Transforming to disjunctive normal form.
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node) or not in P (the right most node). The fact that there
are three spiders tells us that there are at least three
letters in each word, namely:
1.
disj
an a or a b, arising from the spider inside P,
Fig. 5. Translating shuffle products to diagrams.

2.
 a c or a d, arising from the spider outside P, and

3.
 an a, a b, a c or a d, arising from the spider that

comprises two dots.
Forming the set Kðd3Þ is, therefore, not so straightfor-
ward: we need to pick one letter from each spider and
arrange them in all possible orders. Then, we need to pick
a different combination of letters from the spiders and
arrange them in all possible orders, and repeat this
process until we cannot form any more words. To simplify
the details, we use the known result that tells us each
spider diagram can be converted into a disjunction of
unitary spider diagrams where all of the contour labels
are present and each spider has just one node [11]. In the
case of d3, this diagram is obtained by first adding Q,
shown in d4, and then ‘splitting’ the spiders in d4 so that
they have only single dots, shown in Fig. 4.

Adding contours followed by splitting spiders means
that all of the information provided by the spiders is now
represented in disjunctive normal form1 (DNF), from which
we can easily derive the sets K and G, one of each from
each unitary diagram. Here, we have Gðd4,iÞ ¼ fa,b,c,dg ¼S
in each case (because there is no shading and there is no
bound on the number of occurrences of any letter, so all
letters are in Gðd4,iÞ). To form each Kðd4,iÞ, we start by
mapping each spider to the letter corresponding to the
zone in which it is placed. For instance, we define
k : Sðd4,1Þ-S, where Sðd4,1Þ ¼ fs1,s2,s3g is the set of spiders
in d4,1, by kðs1Þ ¼ kðs2Þ ¼ a, where s1 and s2 are the spiders
inside P but outside Q and the letter a is assigned to P but
not Q, and kðs3Þ ¼ c, where s3 is the spider inside Q but
outside P and the letter c is assigned to Q but not P. We
can now form Kðd4,1Þ:

Kðd4,1Þ ¼ fkðs1Þg fkðs2Þg fkðs3Þg ¼ fag fag fcg

¼ faac,aca,caag:

Each Kðd4,iÞ is similarly formed; equivalently, Kðd4,iÞ is the
commutative closure of a word formed by ordering the
letters arising from the spiders in any order. The language
of d3, denoted Lðd3Þ, is given by the union of the languages
1 Recall, a statement is in disjunctive normal form provided it is a

unction of conjunctions of literals.
defined by each d4,i, denoted Lðd4,iÞ, so

Lðd3Þ ¼ ðKðd4,1Þ Gðd4,1Þ
n
Þ [ � � � [ ðKðd4,11Þ Gðd4,11Þ

n
Þ:

We prove that spider diagrams define languages of the
form above (Theorem 4 in Section 6).

In fact, we also prove that any language which can be
written as a finite union of languages of the form K Gn,
where K is a finite commutative language and G is a finite
set of letters, can be defined by a spider diagram
(Theorem 6 in Section 6). To illustrate the approach,
suppose we have K1 ¼ fdg, G1 ¼ fa,b,c,dg, K2 ¼ fa,bg, and
G2 ¼ fc,dg and we want to define the language

ðK1 Gn

1Þ [ ðK2 Gn

2Þ ¼ ðfdg fa,b,c,dgnÞ [ ðfa,bg fc,dgnÞ

using a spider diagram; as with our translation of spider
diagrams into shuffle products, we convert shuffle pro-
ducts into spider diagram in disjunctive normal form. It is
easy to convert fdg fa,b,c,dgn into a spider diagram in
disjunctive normal form: the diagram must contain both
contours P and Q and the letter d (in K1) gives rise to a spider
outside both P and Q (since neither P nor Q are assigned the
letter d). There is no shading, since G1 ¼S. The spider
diagram d5 in Fig. 5 defines fdg fa,b,c,dgn. In the case of
fa,bg fc,dgn, the is no unitary diagram in disjunctive normal
form that defines this language. This is because the set
K2 ¼ fa,bg, whilst commutative and finite, cannot arise from
such a diagram: a unitary diagram in DNF giving rise to K2

can only contain one spider, since the words in K2 have
length 1, but that spider would have two nodes, one for the
letter a and another for the letter b, contradicting the ‘spiders
have single nodes’ condition of being in DNF. We partition K2

into two sets, namely fag and fbg; in the general case, we
partition K into sets that are the commutative closure of a
single word, w, in K with each letter in w giving rise to a
spider in an appropriate zone. We see that

fa,bg fc,dgn ¼ ðfag fc,dgnÞ [ ðfbg fc,dgnÞ

and we can now convert each of the shuffle products in this
union into a disjunction of two unitary spider diagrams, each
of which is in disjunctive normal form; these two diagrams
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are d6 and d7 in Fig. 5. In both cases, we have shaded zones
because the set G2 is not equal to S: the zones corresponding
to the letters not in G2 are shaded. Thus, the language
ðK1 Gn

1Þ [ ðK2 Gn

2Þ is defined by d53d63d7. Following this
approach, we are able to prove Theorem 6 in Section 6.

To summarise, in Section 6 we prove that spider
diagrams can define precisely the languages that are finite
unions of shuffle products of the form K Gn where K is a
finite commutative language and G is a finite set of letters.
Fig. 7. Minimal automata obtained from A1 and A2.

Fig. 8. Another translation of shuffle products to diagrams.
2.2. Converting commutative star-free regular languages to

spider diagrams

We now demonstrate how to covert commutative star-
free regular languages to spider diagrams. Our strategy is
to show that every such language can be written as a
finite union of shuffle products of the form K Gn where K

is a finite commutative language and G is a finite set of
letters. To do so, we analyse properties of minimal finite
automata accepting such languages.

We illustrate our approach by considering the com-
mutative star-free language, L, defined by the (star-free)
regular expression

|d| [ ð|fa,bg| fa,bg|fa,bg| Þ:

A minimal finite automaton, A, accepting L¼ LðAÞ can be
seen in Fig. 6a. We note that the language L can be
described as a union of two languages: the set of words
accepted at one of the final states together with the set of
words accepted at the other final state. Thus, we can
‘decompose’ A into two automata, A1 and A2, each
accepting one of these two sets of languages, say LðA1Þ

and LðA2Þ respectively; these automata are also shown in
Fig. 6b and c respectively.

We prove, in Theorem 8 of Section 7, that each of the
automata arising from this decomposition accepts a
commutative star-free regular language. In essence, this
reduces our problem of establishing how to define com-
mutative star-free regular languages using spider dia-
grams to only those languages accepted by automata
with single final states. Moreover, as a corollary of the
Hopcroft minimisation algorithm [9], we may minimise
these deterministic complete finite automata without
introducing additional final states (as the algorithm
merges indistinguishable states and does not create new
final states).
Fig. 6. Finite automata accepting commu
Consider the minimal automata minðA1Þ and minðA2Þ

in Fig. 7a and b obtained from A1 in Fig. 6b and A2 in
Fig. 6c respectively. We see that any letter which occurs
on a cycle in the minimal automaton which is on a path to
the final state also occurs on a loop at the final state. For
instance, in minðA2Þ there is a loop labelled c at the start
state and c also occurs on a loop at the final state.
Intuitively, the loop on the start state tells us that the
number of cs at the beginning of any accepted word is not
bounded. By commutativity, we can move all such cs to
the end of the accepted word and remain in the accepted
language. Thus, there must be a loop labelled c on the
final state. Here, the intuitive reasoning about the exis-
tence of an appropriate loop at the final state is relatively
straightforward, since c itself labelled a loop at a non-final
state. We prove that this property of letters on cycles
giving rise to loops on the final state is true of any
minimal automaton with a single final state that accepts
a commutative star-free regular language in Lemma 6. To
extract a set, G, from such an automaton we simply read
off the letters that occur on loops at the final state;
intuitively, their occurrence on such a loop means that
there are no restrictions on their use in words of the
(commutative) language. In our example, we have

GðminðA1ÞÞ ¼ fa,b,c,dg
tative star-free regular languages.
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and

GðminðA2ÞÞ ¼ fcg:

All that remains is for us to determine how to extract the
set K from such an automaton. To identify K, we simply read
off the words that are accepted without following any cycles
and take the commutative closure of this set; trivially, all
words in K are accepted by the automaton, since the
language is commutative. In our example, we have

KðminðA1ÞÞ ¼ fdg

and

KðminðA2ÞÞ ¼ fa,bg:

It can be shown that minðA1Þ accepts fdg fa,b,c,dgn and
minðA2Þ accepts fa,bg fcgn. Therefore, the original automa-
ton A accepts

ðfdg fa,b,c,dgnÞ [ ðfa,bg fcgnÞ:

A diagram defining this language is in Fig. 8, which is
semantically equivalent to d53d63d7 in Fig. 5. However,
the diagram in Fig. 5 does not arise from the union of shuffle
products given above: the shuffle product fdg fa,b,c,dgn

gives rise to d5 but fa,bg fcgn does not give rise to d63d7

since the lack of a d in the righthand component of the
shuffle product, namely fcgn, requires the zone outside both
P and Q to be shaded.

We prove, in Theorem 9 in Section 7, that a minimal
automaton, A, with a single final state that accepts a
commutative star-free regular language, accepts
KðAÞ GðAÞn, where KðAÞ and GðAÞ are as just illustrated.
Theorem 10 brings our results on automata together to
establish that every commutative star-free language is a
finite union of languages of the form K Gn. From this, we
are able to prove our main result, in Theorem 11 of
Section 7, that the following statements are equivalent:
1.
 L is the language of a spider diagram,

2.
 L is a commutative star-free regular language, and

3.
 L is a finite union of languages of the form K Gn

where K is a finite commutative language and GDS.

In addition, since it is known that spider diagrams are
equivalent in expressiveness to monadic first-order logic
with equality [20], the following statement is also equiva-
lent: L is defined by a sentence in monadic first-order
logic with equality.

3. Background: formal language theory

This section presents the notation we will use in
respect of formal languages, alongside known results
and concepts. The reader who is familiar with formal
languages and properties of star-free regular languages
may choose to skip this section.

Our notation for formal languages is primarily drawn
from [13]. A regular language over a finite alphabet S is
one that is defined using a regular expression:
1.
 the empty word, l, and the empty language, |, are
regular expressions,
2.
 each letter, a, in S is a regular expression, and

3.
 if r1 and r2 are regular expressions then so are:

(a) r1 ,
(b) ðr1 [ r2Þ,
(c) ðr1 \ r2Þ,
(d) ðr1 � r2Þ, and
(e) rn.
Regular expressions define regular languages in the
obvious inductive way, where the base cases are given
by: l defines flg, | defines |, and a defines fag. Since we
consider only regular languages, we shall simply say
language to mean regular language. A language is star-

free if it can be defined by a regular expression without
using the Kleene star, n.

The following are regular expressions, given the alpha-
bet S¼ fa,bg: a, b, a � a, b � b and ða � aÞn [ ðb � bÞn. Thus, the
regular expression r¼ ða � aÞn [ ðb � bÞn (which can also be
written as ðaaÞn [ ðbbÞn as an abuse of notation) defines
the language containing all words with an even number of
as and no bs or an even number of bs and no as. Examples
of words in this language include l, aa, aaaa, bb, and bbbb

whereas a, ab, and aabb are examples of words not in the
language. Where it is appropriate to do so, we blur the
distinction between a regular expression and the lan-
guage it defines.

The length of a word w over alphabet S is denoted 9w9
whereas the number of occurrences of a letter, a, in w is
denoted 9w9a. For example, aa and bb have length 2, aabab

has length 5 and so forth.
The commutative closure of a word w, denoted comm(w),

is the set

commðwÞ ¼ fw0 2 Sn : for all a 2 S,9w09a ¼ 9w9ag:

The commutative closure of a language L is
commðLÞ ¼

S
w2LcommðwÞ: If L¼ commðLÞ then L is commu-

tative. The regular expression r¼ ðaaÞn [ ðbbÞn defines a
commutative language.

The shuffle product of two words u¼ u1 . . .un and
v¼ v1 . . .vm, denoted u v, is defined recursively as

ðu1 . . .un v1 . . .vmÞ ¼ fu1gðu2 . . .un v1 . . .vmÞ

[ fv1gðu1 . . .un v2 . . .vmÞ,

where ðl uÞ ¼ ðu lÞ ¼ fug: The shuffle product of aa and
bb is

aa bb¼ faabb,abab,abba,baab,baba,bbaag:

If w 2 u v then u is a scattered subword of w. For
example, ab is a scattered subword of abaab. We define
w-su to be the set of scattered residuals of u within w,
obtained by deleting letters of u from w. Formally

w-su¼ fv 2 Sn : w 2 u vg:

For example, the set of scattered residuals of ab in
aababaa is faabaa,abaaag:

The shuffle product of two languages L1 and L2, denoted
L1 L2, is
[

u2L14v2L2

u v:
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Given a finite alphabet, S, a finite automaton, A¼/Q ,S,
d,q0,FS, is a 5-tuple where:
1.
Fig
(lef
Q is a set of states,

2.
 d is the transition function, so d : Q � S-Q , so if

dðq1,aÞ ¼ q2 then the machine makes a transition from
q1 to q2 on reading the letter a,
3.
 q0 is the initial state, and

4.
 F is the set of final states.
The transition function d can be extended to dn : Q �

Sn-Q where

dn
ðq,lÞ ¼ q

and

dn
ðq,a1a2 . . . anÞ ¼ dn

ðdðq,a1Þ,a2 . . . anÞ:

The language accepted by A is the set of words, L, such that
w 2 L if and only if dn

ðq0,wÞ 2 F.
As is typical, we can represent a finite automaton,

A¼/Q ,S,d,q0,FS, using a directed edge-labelled graph
whose nodes are Q and the edges are induced by d: there
is a directed edge labelled a from state qi to qj if and only if
dðqi,aÞ ¼ qj. This graph is the transition diagram of A. For
example, in Fig. 9a, the automaton with the depicted
transition diagram accepts the language defined by the
regular expression ðaaÞn [ ðbbÞn. We blur the distinction
between a finite automaton and its transition diagram
where it is convenient to do so. For instance, we will refer
to a path in the automaton when, strictly, we mean a path
in the transition diagram.

A word u 2 L is said to exercise a path, p, in (the
transition diagram of) A¼/Q ,S,d,q0,FS if performing
the actions on the letters of the word u takes the path p

through the automaton. A cycle, C, in finite automaton A is
a sequence of edges in the transition diagram beginning at
a state q and ending on q (i.e. dn

ðq,uÞ ¼ q where u exercises
C). A trivial cycle is a cycle of length 1. We define A9a to be
the graph obtained by deleting all edges from the transi-
tion diagram of the automaton except those labelled by
the letter a 2 S.

For example, in Fig. 9a, the word aab exercises the path
starting at q0, and then transitioning to q1 then to q3 and
ending at q5. It also exercises the path starting at q3, then
transitioning to q1, then q3 and ending at q5. There is a
trivial cycle at the non-final state q5. The graph A9a is
obtained from the graph in Fig. 9a by deleting all of the b

labels and then deleting all of the edges which are left
with no label. The resulting graph can be seen in Fig. 9b.
. 9. The minimal finite automaton which recognises ðaaÞn [ ðbbÞn

t) and A9a (right).
One key observation on which our arguments rely is
captured by the following property:

Proposition 1 (Modified from [12]). Let A be a minimal

automaton accepting a star-free language. Then for each a 2 S
the graph A9a contains no non-trivial cycles.

Given a language, L, a congruence relation, � L, on Sn is
defined such that for all u,v 2 Sn we have u� Lv if and
only if for all x,y 2 Sn

xuy 2 L3xvy 2 L:

It can trivially be shown that � L is an equivalence
relation. The equivalence class of � L of which u is a
representative is denoted ½u�L or, simply, ½u� when the
language is clear from the context.

Continuing with the example ðaaÞn [ ðbbÞn, we have:
1.
 ½l� ¼ flg,

2.
 ½a� ¼ a � ðaaÞn,

3.
 ½b� ¼ b � ðbbÞn,

4.
 ½aa� ¼ aa � ðaaÞn,

5.
 ½bb� ¼ bb � ðbbÞn, and

6.
 ½ab� ¼ ðSnabSn

Þ [ ðSnbaSn
Þ:
Consider the prefix, x. When a minimal finite auto-
maton, A, accepting L, reads x it takes us to some state, qi.
From qi, we can read u taking us to state qj and, also from
qi, we can read v taking us to state qk. Now, if xuy and xvy

are both in L or both not in L, it must be that qj and qk are
the same state (if different, qj and qk would be indis-
tinguishable and this would contradict the minimality of
A). We have the following property:

Proposition 2 (Modified from [21]). Let A¼/Q ,S,d,q0,FS
be the minimal automaton accepting a regular language L

and let u,v 2 Sn. Then u� Lv if and only if for each q 2 Q it is

the case that dn
ðq,uÞ ¼ dn

ðq,vÞ.

Recall that a monoid is a set together with an associa-
tive, binary operation under which there is an identity
element. So, Sn under concatenation is a monoid which
has identity l. Given a monoid, M, and a congruence
relation, R, on M, one can form the quotient monoid M=R

in the standard manner. The syntactic monoid of a lan-
guage L is the quotient monoid ðSn=� L, � ,½l�LÞ where the
binary operation � is defined by ½x�L � ½y�L ¼ ½xy�L and ½l�L is
the identity. A syntactic monoid, ðSn=� L, � ,½l�LÞ, of L is
aperiodic if, for each ½x�L 2 S

n=� L, there exists n 2 N such
that ½x�nL ¼ ½x�

nþ1
L .

In our running example, ðaaÞn [ ðbbÞn, the syntactic
monoid is M¼ ðSn=� L, � ,½l�LÞ where

Sn=� L ¼ f½l�,½a�,½b�,½aa�,½bb�,½ab�g:

Under the binary operation, �, we see that ½a� � ½a� ¼ ½aa�,
½a� � ½ab� ¼ ½ab�, and ½b� � ½l� ¼ ½b� for example. The monoid M

is not aperiodic, since ½a�2na½a�2nþ1 for any integer n

(intuitively, having an even number of as – ½a�2n – is not
equivalent to having an odd number of as – ½a�2nþ1 – since
the former describes words in L whereas the latter
does not).

Since we are considering star-free languages, the
following classic result is helpful to us.
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Proposition 3 (Schützenberger [16]). Let LDSn with syn-

tactic monoid M. Then L is star-free if and only if M is finite

and aperiodic.

Hence the language ðaaÞn [ ðbbÞn is not star-free: whilst
its syntactic monoid M is finite, it is not aperiodic. By
contrast, the language L¼ ðabÞn has a finite aperiodic
monoid, namely ðSn=� L, � ,½l�LÞ where

Sn=� L ¼ f½l�,½a�,½b�,½aa�,½ab�,½ba�g,

since
1.
 ½l� ¼ ½l�2,

2.
 ½a�2 ¼ ½a�3,

3.
 ½b�2 ¼ ½b�3,

4.
 ½aa� ¼ ½aa�2,

5.
 ½ab� ¼ ½ab�2, and

6.
 ½ba� ¼ ½ba�2.
Hence, ðabÞn defines a star-free regular language, even
though this regular expression is not star-free itself. The
regular expression ðabÞn, over alphabet S¼ fa,bg, can be
written as a star-free regular expression

ðb|Þ \ ð|aa|Þ \ ð|bb|Þ \ ð|aÞ:
4. Spider diagrams

This section provides a brief overview of spider dia-
grams, modified from [11]. The contour labels in spider
diagrams are selected from a finite set C. A zone, denoted
(in,out), is a pair of disjoint subsets of C. The set in

contains the labels of the contours that the zone is inside
whereas out contains the labels of the contours that the
zone is outside. The set of all zones is denoted Z. A region

is a set of zones. To describe the spiders in a diagram, it is
sufficient to say how many spiders are placed in each
region. In the following definition, PZ denotes the power
set of Z.

Definition 1 (Howse et al. [11]). A unitary spider diagram,
d1, is a quadruple /C,Z,ShZ,SIS where:
1.
 C ¼ Cðd1ÞDC is a set of contour labels,

2.
 Z ¼ Zðd1ÞDfðin,C�inÞ : inDCg is a set of zones,

3.
 ShZ ¼ ShZðd1ÞDZðd1Þ is a set of shaded zones, and

4.
 SI¼ SIðd1ÞD! N

þ
� ðPZ�f|gÞ is a finite set of spider

identifiers such that for all ðn,rÞ,ðm,sÞ 2 SIðd1Þ if r¼s

then n¼m.
The set of spiders in d1 is defined to be

Sðd1Þ ¼ fði,rÞ : ðn,rÞ 2 SIðd1Þ41r irng:

For each ði,rÞ 2 Sðd1Þ, the habitat of (i,r), denoted Zði,rÞ, is r;
that is, Zði,rÞ ¼ r. The symbol ? is also a unitary spider
diagram. If d1 and d2 are spider diagrams then ðd13d2Þ,
ðd14d2Þ and :d1 are compound spider diagrams.
The abstract syntax of the diagram d1 in Fig. 3a is
Cðd1Þ ¼ fPg, with zones

Zðd1Þ ¼ fð|,fPgÞ,ðfPg,|Þg,

shaded zones ShZðd1Þ ¼ fðfPg,|Þg, and spider identifiers

SIðd1Þ ¼ fð1,fðfPg,|ÞgÞg:

By convention, we employ a lower-case di to denote a
unitary spider diagram. An upper case Di will denote an
arbitrary diagram. It is useful to identify which zones could
be present in a unitary diagram, given the label set, but are
not present; semantically, missing zones provide information.

Definition 2 (Howse et al. [11]). A zone (in,out) is missing

from unitary diagram d1 if it is in MZðd1Þ ¼ fðin,Cðd1Þ�

inÞ : inDCðd1Þg�Zðd1Þ.

Formally, the semantics of spider diagrams are model-
based: a model is an assignment of sets to contour labels
that agrees with the intended meaning of the diagram.
Our definition of an interpretation includes o as a strict
total order on the universal set U. Whilst spider diagrams
place no constraints on o , regular expressions are able to
do so. Thus, the presence of o will be meaningful when
we define models for words later in the paper.

Definition 3 (Delaney et al. [5]). An interpretation is a
triple I¼ ðU,o ,CÞ where U is a finite set, o is a strict
total order over U and C : C-PU assigns a subset of U to
each contour label. We extend C to zones and regions:
1.
 each zone, ðin,outÞ 2 Z, represents the set
T

Pi2in

C

ðPiÞ \
T

Pi2out

ðU�CðPiÞÞ and
2.
 each region, r 2 PZ, represents the set which is the
union of the sets represented by r’s constituent zones.

The formal definition of a model for a unitary spider
diagram differs, in presentation, from that in Howse et al.
[11] because our interpretations contain a strict total order
o . However, the relation o is irrelevant when determining
whether an interpretation is a model for a diagram. Further,
our definition closely mirrors the one given for constraint
diagrams in [19] (constraint diagrams extend spider dia-
grams by adding more syntax). In any case, an interpretation
is a model under our definition precisely when it is a model
under the definition given in [11].

Definition 4. Let I¼ ðU,o ,CÞ be an interpretation and let
d1 (a ?) be a unitary spider diagram. Then I is a model for
d1, denoted mFd1, if and only if the following conditions
hold:
1.
 The missing zones condition. All of the missing zones

represent the empty set, that is,
S

z2MZðd1Þ

CðzÞ ¼ |.
2.
 The spider mapping condition. There exists an injective
function, f : Sðd1Þ-U, called a valid function, such that
the following conditions hold:
(a) The spiders’ locations condition. All spiders repre-

sent elements in the sets represented by the
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regions in which they are placed: 8ðsÞ 2 Sðd1Þ

f ðsÞ 2 CðZðsÞÞ.
(b) The shading condition. Shaded regions represent a

subset of elements denoted by spiders: 8z 2
ShZðd1Þ CðzÞD imðf Þ, where im(f) denotes the
image of f (i.e. the set of elements in the codomain,
U, to which the function f maps elements of the
domain, Sðd1Þ).
If d1 ¼ ? then no interpretation is a model for d1. For
compound diagrams, the definition of a model extends in
the obvious inductive way.

The interpretation m¼ ðU,o ,CÞ where U ¼ f1,2,3g, o
is the natural order over U, CðPÞ ¼ f2g and CðQ Þ ¼ f1,2,3g
is a model for the diagram d1 in Fig. 3a but not for d2.
Therefore m is a model for d13d2.

5. Word models

In order to discuss the language of a spider diagram,
we associate sets of letters with contour labels, as first
done in [5], following Thomas’ approach in [22]. We
illustrated this in Section 2 and we now formalise the
approach using a function called a letter map.

Definition 5. A function, lm : C-PS, that maps contour
labels to sets of letters is called a potential letter map.
A potential letter map is a letter map if its extension to
zones, lm : C [ Z-PS, defined by

lmðin,outÞ ¼
\

Pi2in

lmðPiÞ \
\

Pi2out

ðS�lmðPiÞÞ

ensures that any zone, (in,out), where in [ out¼ C is
assigned at most one letter, that is 9lmðin,outÞ9r1:

The letter map condition ensures that the spider
diagram logic is capable of distinguishing each letter:
given any letter, a 2 S, there is a zone, z 2 ðin,C�inÞ, where
lmðzÞ ¼ fag. Thus, a letter map establishes a one-to-one
correspondence between zones that partition C and let-
ters. We are, therefore, assuming 9S9r29C9. Further, when
we consider letter map functions, we assume that they
are extended to zones as defined above.

We define a function zone : S-fðin,C�inÞ : inDCg by
zoneðaÞ ¼ ðin,C�inÞ where lmðin,C�inÞ ¼ fag. Given such a
correspondence between letters and zones, we define
when an interpretation models a word.

Definition 6. An interpretation I¼ ðU,o ,CÞ is a model for
a word w¼ a1a2 . . . an if there exists a bijection, U, from
the multi-set fa1,a2, . . . ,ang to U such that the following
conditions hold:
1.
 Letter location condition. Each letter ai interprets an
element in the set represented by the zone to which
the letter ai is assigned: for each ai,UðaiÞ 2CðzoneðaiÞÞ.
2.
 Letter order condition. The order relation o respects
the order of letters in w: for each ai where
i41,Uðai�1ÞoUðaiÞ:

Such an U is said to be valid.
To illustrate the above concepts, suppose we have
S¼ fa,b,cg and C¼ fP,Qg. Define a letter map by
lmðPÞ ¼ fa,bg and lmðQ Þ ¼ fbg. Consider an interpretation
I¼ ðf1,2,3g,o ,CÞ where o is the natural order over U,
CðPÞ ¼ f1,2g and CðQ Þ ¼ f2g. Then I models the word abc

and only the word abc. If, instead, we had CðPÞ ¼ f1g then I

would not model any word since I has an element in the
set CðQ Þ�CðPÞ, in other words, there is an element in the
set represented by the zone ðfQg,fPgÞ, but lmðfQg,fPgÞ ¼ |.
Consequently, given any word, w, no valid U can exist in
this interpretation.

Thus, in this section, we have demonstrated that a
letter map function provides us with a link between the
diagrams world and the formal language world. From this
point forward we assume, in our theoretical exposition,
that a particular letter map has been identified. Using a
letter map, we are able to identify when interpretations
model words. In the next section, we use models to define
the language of a spider diagram, given a letter map.
6. The language of a spider diagram

A spider diagram, D1, defines a language, L1, if the
model set of D1 equals the model set of L1; the models of
L1 are precisely those that model each of its words. Since
spider diagrams place no constraint on o , it naturally
follows that they place no constraints on the order of
letters in words; hence, their languages are commutative.

For illustrative purposes, let S¼ fa,b,c,dg, C¼ fP,Qg and
a letter map defined by lmðPÞ ¼ fa,bg and lmðQ Þ ¼ fb,cg. The
interpretation m¼ ðU,o ,CÞ where U ¼ f1,2,3g, o is the
natural order over U, CðPÞ ¼ f1g and CðQ Þ ¼ f2,3g is a
model for d1 in Fig. 3a and is also a model for the word
acc. Therefore, the word acc is in the language of d1.

Definition 7. Let D1 be a spider diagram and M be the set
of models for D1. Let L1 be a subset of Sn and M0 be the set
models for words in L1. L1 is the language of D1, denoted
LðD1Þ, if and only if M¼M0. Given D1, if D1 has a language,
L1, then we say that D1 defines L1.

We now use some key results from the literature [18]
to characterise precisely the languages of spider dia-
grams: every spider diagram is semantically equivalent
to a disjunction of unitary spider diagrams, each of which
is ? or
1.
 contains all of the contour labels in C,

2.
 has no missing zones, and

3.
 has only spiders placed in single zones.
Thus, we can identify the class of languages defined by
spider diagrams by analysing diagrams in this disjunctive

normal form (DNF). We note that a single unitary diagram
meeting the above ‘DNF’ conditions is itself a diagram in
DNF. Since unitary diagrams in DNF have only spiders
with single zone habitats, to aid our exposition, we will
abuse notation by abbreviating ZðsÞ ¼ fzg to ZðsÞ ¼ z.
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6.1. Diagrams with no language

Whether any given diagram defines a language
depends on the letter map chosen. This is because a letter
map need not assign letters to all zones. If this is the case
then there are interpretations that do not model any word
but these interpretations model diagrams. Trivially:

Theorem 1. Let D1 be a spider diagram in DNF. Then D1

defines a language if and only if each unitary part of D1

defines a language.

We use Fig. 10 to illustrate when diagrams define
languages. Suppose that S¼ fa,b,cg, C¼ fP,Qg and a letter
map is defined as illustrated in d1. Thus, the zone ð|,fP,QgÞ
does not contain any letter. The diagram d2 defines the
language Sn, since all of its models also model words, and
every word model also models d2. However, the diagram
d3 does not define any language. The spider placed in the
zone ð|,fP,QgÞ forces this zone to represent a non-empty
set in any model. Such a model cannot satisfy any word
due to the lack of a letter assigned to this zone. Although
the diagrams d4 and d5 are not in DNF, they provide some
insights into the subtlety of this issue. The diagram d4

forces all elements to be in P and defines the language
fa,bg*. However, the diagram d5 does not define a lan-
guage. Whilst the element represented by the spider
could correspond to a letter c in a word, since lm(P) does
not include c, the diagram has models where there are
elements that are not in P or Q; such models for d5 do not
model words. Our results in this section are presented for
diagrams in DNF for simplicity.

In the unitary case, a spider diagram, d1, in DNF defines
a language if and only if the zones, z, for which lmðzÞ ¼ |,
are shaded and have no spider in them. To prove that this
characterisation does indeed identify those unitary dia-
grams in DNF that define languages, we make use of the
following lemma, obtained from results in [11].

Lemma 1. Let d1 be a unitary diagram in DNF:
1.
 if d1a ? then d1 has a model and
2.
 in any interpretation, any two distinct zones in d1

represent disjoint sets.
Lemma 2. Let d1 be a unitary spider diagram in DNF. Then

d1 defines a language, L1, if and only if d1 ¼ ? or for all z
Fig. 10. The definability of languages.
ind1, if lmðzÞ ¼ | then
1.
 z is shaded in d1 and
2.
 for all spiders, s, in d1, ZðsÞafzg.
Proof. If d1 ¼ ? then d1 defines the empty language.
Suppose that d1 is not ? and defines a language, L. For a
contradiction, suppose that there exists a zone,
z¼ ðin,C�inÞ, in d1 where lmðzÞ ¼ | and one of the above
conditions does not hold.

First, suppose that z in not shaded. Choose an inter-
pretation I¼ ðSðd1Þ [ fzg,o ,CÞ where o is any ordering
and C : C-Sðd1Þ [ fzg is defined by

CðLÞ ¼

fs 2 Sðd1Þ : L 2 in0 where ZðsÞ if L=2in

¼ ðin0,C�in0Þg,

fs 2 Sðd1Þ : L 2 in0 where ZðsÞ otherwise:

¼ ðin0,C�in0Þg [ fzg:

8>>>><
>>>>:

It is straightforward to show that I models d1 where a
valid mapping, f, of spiders to universal set elements
simply maps them to themselves (that is, f is the identity
map). Since L1 is the language of d1, there exists a word,
w¼ a1 . . . an, in L1 modelled by I. Choose a valid U for w.
Since U is bijective, a letter, ai in w maps to z and, by the
validity of U, we have

z¼ U ðaiÞ 2 CðzoneðaiÞÞ:

It can be shown that z 2CðzÞ. Therefore, CðzoneðaiÞÞ\

CðzÞa|. By Lemma 1, distinct zones in d1 represent
disjoint sets, so zoneðaiÞ ¼ z. By the definition of zone,
lmðzÞ ¼ ai reaching a contradiction.

Alternatively, suppose that z contains a spider, s, that is
ZðsÞ ¼ fzg. By Lemma 1, d1 has a model, I. Clearly, in I, f ðsÞ 2

CðzÞ for some valid mapping, f, of spiders to universal set
elements. Since d1 defines a language, I models some w in
L. But then some letter, ai, in w must map to f(s) under a
valid U. Then we have

U ðaiÞ ¼ f ðsÞ 2 CðzoneðaiÞÞ:

But f ðsÞ 2 CðzÞ, so we deduce that zoneðaiÞ ¼ z (again using
Lemma 1), giving a contradiction. Hence, in either case we
have derived a contradiction so the two conditions
must hold.

For the converse, suppose that the two conditions hold for
each z in d1. We must show that d1 defines a language. Let
I¼ ðU,o ,CÞ be a model for d1. It is sufficient to show that I

models a word. To construct such a word w¼ a1 . . . an

where 9U9¼ n, simply define ai to be the letter such that
CðzoneðaiÞÞ contains the ith element of U under o . It is
straightforward to show that I models w. &

6.2. Diagrams that define languages

For diagrams that do define languages, we will now
proceed to classify those languages. First, we will estab-
lish that the defined languages are all commutative and
star-free. We will then proceed to show that they are
finite unions of shuffle products of languages K and Gn

where K is a finite commutative language and G is a finite
set of letters.



Fig. 12. Illustrating the proofs of Lemmas 3 and 4.
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6.2.1. Commutative and star-free languages

Spider diagrams are unable to specify any order
information. From this it follows, intuitively, that the
language of a spider diagram is commutative. Moreover,
Thomas [22] establishes that MFOL[o] can define pre-
cisely the star-free languages. Since spider diagrams are
equivalent to MFOL[¼], they too can define only star-free
languages. Hence:

Theorem 2. The language of spider diagram D1 is commu-

tative and star-free.

Proof. Let w 2 LðD1Þ then m¼ ðU,o ,CÞ is a model for w

and D1. Then any m0 ¼ ðU,o 0,CÞ where o 0 is any strict
total order on U is a model for D1. Furthermore, each m0

models a permutation of w. Thus, the language of D1 is
commutative.

Let M be the set of interpretations that model D1. Then
M is the set of models for a sentence in MFOL½ ¼ � [20].
Furthermore M is the set of models for a star-free regular
language as each star-free regular language definable in
MFOL½o � [22]. Thus, as MFOL½ ¼ �D! MFOL½o �, the language
of D1 is star-free. Therefore, the language of D1 is both
commutative and star-free. &

6.2.2. Shuffle products

For a unitary diagram, d1, we will now define Kðd1Þ to
be the set of words derived from the spiders in d1, and
Gðd1Þ to be the set of letters arising from the non-shaded
zones, as illustrated in Section 2.

Definition 8. Let d1 ða ?Þ be a unitary diagram in DNF
with Sðd1Þ ¼ fs1,s2, . . . ,sng. Define k : Sðd1Þ-S by fkðsÞg ¼
lmðZðsÞÞ. If Sðd1Þa|, we define

Kðd1Þ ¼ fkðs1Þg fkðs2Þg � � � fkðsnÞg

and Kðd1Þ ¼ flg otherwise. For d1 ¼ ? we define Kðd1Þ ¼ |.

Definition 9. Let d1ða ?Þ be a unitary diagram in DNF.
We define

Gðd1Þ ¼ fa 2 S : zoneðaÞ 2 Zðd1Þ�ShZðd1Þg:

For d1 ¼ ? we define Gðd1Þ ¼ |.

Given lmðPÞ ¼ fa,bg and lmðQ Þ ¼ fb,cg over the alphabet
S¼ fa,b,c,dg, we note that for a diagram containing only
shading, such as that in Fig. 11, K ¼ flg and G¼ | and we
have flg |n ¼ flg flg ¼ flg.

The following two lemmas are necessary to prove
Theorem 3 which states that the language of a unitary
spider diagram, d1, is Kðd1Þ Gðd1Þ

n.
Fig. 11. A shaded diagram.
Consider the diagram d6 in Fig. 12a. We show, in the
following lemma, that d6 defines the language
Kðd6Þ Gðd6Þ

n where Kðd6Þ ¼ fbc,cbg and Gðd6Þ ¼ fa,c,dg.
We take a model for d6, say m¼ ðf1,2,3,4g,o ,CÞ, where
CðPÞ ¼ f1g and CðQ Þ ¼ f1,3g and define lmðPÞ ¼ fa,bg and
lmðQ Þ ¼ fb,cg. Then m models a unique word bdcd. Using
the notation x½i� to assert that x is the letter in the ith
position in w, there exists a U where Uðb½1�Þ ¼
1,Uðd½2�Þ ¼ 2,Uðc½3�Þ ¼ 3 and Uðd½4�Þ ¼ 4. From U and f we
define k from spiders to letters, where s1 is the spider in
both P and Q and s2 is the other spider: kðs1Þ ¼ b as
f ðs1Þ ¼ Uðb½1�Þ ¼ 1, and kðs2Þ ¼ c as f ðs2Þ ¼ Uðc½3�Þ ¼ 3. We
show that fkðs1Þg fkðs2Þg ¼ Kðd6Þ: Kðd6Þ ¼ fbg fcg ¼

fbc,cbg as expected. Furthermore, as Gðd6Þ ¼ fa,c,dg the
scattered residual of bdcd-sbc, namely dd, is in Gðd6Þ

n.

Lemma 3. Let d1 be a unitary diagram in disjunctive normal

form. Then either d1 defines no language or d1 defines a

language and Lðd1ÞDKðd1Þ Gðd1Þ
n.

Proof. Suppose d1 defines a language. If d1 ¼ ? then
Lðd1Þ ¼ | and Kðd1Þ Gðd1Þ ¼ | and establishing the result.
Otherwise, let w¼ a1a2 . . . an 2 Lðd1Þ and let m¼ ðU,o ,CÞ
be a model for d1 and w. We show that w 2 Kðd1Þ Gðd1Þ

n.
Since m models both d1 and w, choose a valid f from
spiders in d1 to U and a valid U mapping of letters in w to
elements of U. Define a function k : Sðd1Þ-fa1,a2, . . . ,ang

by kðsÞ ¼ ai where f ðsÞ ¼ UðaiÞ; k exists since U is bijective.
Furthermore, since U is bijective and f is injective, we
deduce k is injective. Therefore, assuming Sðd1Þ of the
form fs1,s2, . . . ,sxg, we can define

k 2 fkðs1Þg fkðs2Þg � � � fkðsxÞg,

where k is a scattered subword of w. To show k 2 Kðd1Þwe
prove zoneðkðsÞÞ ¼ ZðsÞ. By spiders’ locations condition

f ðsÞDCðZðsÞÞ:

Given f ðsÞ ¼ UðkðsÞÞ we deduce

U ðkðsÞÞ 2 CðZðsÞÞ: ð1Þ

Since U is valid, we also have

U ðkðsÞÞ 2 CðzoneðkðsÞÞÞ: ð2Þ

Thus, from (1) and (2), the zones ZðsÞ and zoneðkðsiÞÞ do
not represent disjoint sets. Since d1 is in DNF, by defini-
tion we know that the contour label set is C and d1 has no
missing zones, so zoneðkðsiÞÞ 2 Zðd1Þ. We know that ZðsÞ is
a zone in Zðd1Þ. By Lemma 1, distinct zones in d1 represent
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disjoint sets, so we deduce

zoneðkðsÞÞ ¼ ZðsÞ

as required. Hence k 2 Kðd1Þ.
Let g¼ g1g2 . . . gy be a scattered residual of w-sk. We

show that each gi is in Gðd1Þ. As each spider s in Sðd1Þ is
mapped, via the bijective function U, to a letter of k then
UðgiÞ=2CðsÞ: Then, by the shading condition

CðgiÞ=2 [
z2ShZðd1Þ

CðzÞ

and since UðgiÞ ensures UðgiÞ 2 CðzoneðgiÞÞ we deduce
zoneðgiÞ is not shaded in d1. Thus

gi 2 fa : zoneðaÞ 2 Zðd1Þ�ShZðd1Þg ¼Gðd1Þ:

Therefore g 2 Gðd1Þ
n.

Thus, given a unitary diagram d1 and an interpretation
m such that m models d1, m is a model for w 2 k g where
k 2 Kðd1Þ,g 2 Gðd1Þ

n. Hence either d1 defines no language
or Lðd1ÞDKðd1Þ Gðd1Þ

n. &

Whereas Lemma 3 shows that the language of a unitary
spider diagram is of the form Kðd1Þ Gðd1Þ

n, the following
lemma shows that any language of the form Kðd1Þ Gðd1Þ

n is
a subset of the language of that unitary spider diagram.
Consider d7 in Fig. 12b. Here Kðd7Þ ¼ fbbg and Gðd7Þ ¼ fa,c,dg.
Given w 2 k g,k 2 Kðd7Þ,g 2 Gðd7Þ

n, we show that an inter-
pretation m that models w is a model for d7. To do this we
define f and show the required properties hold. Taking
w¼bbcd as an example word and m¼ ðf1,2,3,4g,o ,CÞ,
where CðPÞ ¼ f1,2g,CðQ Þ ¼ f1,2,3g, as a model for w there
exists U and k from which we define f. As k is injective from
spiders to letters in w we use the bijection U to extend the
mapping from spiders to elements of the universe. Denoting
the spiders by s1 and s2, we have f ðs1Þ ¼ Uðkðs1ÞÞ ¼ Uðb½1�Þ and
f ðs2Þ ¼ Uðkðs2ÞÞ ¼ Uðb½2�Þ. Then both the spiders’ locations
condition and the shading condition hold, largely, by defini-
tion of k,U and f.

Lemma 4. Let d1 be a unitary diagram in DNF. Then either

d1 defines no language or Kðd1Þ Gðd1Þ
nDLðd1Þ.

Proof. Let d1 ¼ ? then, by definition, Kðd1Þ ¼Gðd1Þ ¼ |
and | |¼Lðd1Þ ¼ |. Otherwise, let w 2 Kðd1Þ Gðd1Þ

n.
Then there exists k¼ k1k2 . . . kx 2 Kðd1Þ and g¼ g1g2 . . .

gy 2 Gðd1Þ
n such that w 2 k g. Since k 2 Kðd1Þ there exists

k : Sðd1Þ-S that maps spiders to letters in a manner that
respects lm. In particular, without loss of generality, k
ensure that kðsiÞ ¼ ki and fkðsiÞg ¼ lmðZðsÞÞ, where
Sðd1Þ ¼ fs1,s2, . . . ,sxg; from this it follows that zoneðkiÞ ¼

ZðsiÞ. We show that any model, m¼ ðU,o ,CÞ, for w also
models d1. Suppose w¼ a1a2 . . . an then choose a valid U
from fa1,a2, . . . ,ang to U.
1.
 The missing zones condition holds as d1 is in DNF and,
therefore, has no missing zones.
2.
Fig. 13. Spider diagrams constructed from an arbitrary K and G.
Define f : Sðd1Þ-U such that, for each s 2 Sðd1Þ by
f ðsÞ ¼ fUðkðsÞÞg. We now show that f is valid.
(a) We first show the spiders’ locations condition

holds. Let s 2 Sðd1Þ and we have f ðsÞ ¼ fUðkðsÞÞg by
definition of f. Then

UðkðsÞÞ 2 CðzoneðkðsÞÞÞ by definition of U,

2 CðZðsÞÞ by definition of k:
Thus f ðsÞ 2CðZðsÞÞ and the spiders’ locations
condition holds.

(b) For the shading condition let z 2 ShZðd1Þ and
assume CðzÞJimðf Þ. Then there exists e 2 CðzÞ
such that e=2imðf Þ. Furthermore if e=2imðf Þ then
UðaiÞ ¼ e 2 CðzÞ where a 2 Gðd1Þ. However, by defi-
nition of Gðd1Þ,zoneðaÞ=2ShZðd1Þ and a contradiction
arises. Therefore there are no elements in CðzÞ
where z 2 ShZðd1Þ that are not in the image of f and

8z 2 ShZðd1ÞðCðzÞD imðf ÞÞ

as required.
Hence C is valid. Therefore m models d1, and
Kðd1Þ Gðd1Þ

nDLðd1Þ. &

Theorem 3. For any unitary spider diagram d1 in DNF,
either d1 defines no language or the language Kðd1Þ Gðd1Þ

n.

Proof. Suppose d1 defines a language. By Lemma 3,
Lðd1ÞDKðd1Þ Gðd1Þ, and by Lemma 4, Kðd1Þ Gðd1ÞD
Lðd1Þ. Therefore the language of d1 is Kðd1Þ Gðd1Þ

n. &

We now extend our result for unitary spider diagrams
to the compound case.

Theorem 4. For any spider diagram D1 ¼ d13 . . .3dn in

DNF, either D1 defines no language or the language of D1 is

LðD1Þ ¼
S

1r irnKðdiÞ GðdiÞ
n.

Theorem 4, proved by induction over the base case
provided by Theorem 3, leads us to conjecture that spider
diagrams can define all languages of this form, i.e. finite
unions of languages of the form K Gn where K is a finite
commutative language and G is a finite set of letters. We
now show that is indeed the case.

Lemma 5. Let w¼ a1a2 . . . an be a (possibly empty) word,
let K ¼ fa1g fa2g � � � fang and let GDS. Then K Gn is

the language of a unitary spider diagram.

Proof. We construct a unitary diagram d1 ¼/C,Z,ShZ,SIS
in DNF where Cðd1Þ ¼ C and

ShZðd1Þ ¼ Zðd1Þ�fzoneðaÞ : a 2 Gg,

SIðd1Þ ¼ fð9w9a,zoneðaÞÞ : a 2 S49w9aa0g:

Obviously K ¼ Kðd1Þ and G¼Gðd1Þ. Therefore, by Theorem
4, Lðd1Þ ¼ K Gn. &

Consider K ¼ fab,ba,cd,dc,abbg and G¼S. We partition
K into K1 ¼ fab,bag,K2 ¼ fcd,dcg and K3 ¼ fabb,bab,bbag

and, as in Lemma 5, create d8,d9 and d10, depicted in
Fig. 13, such that Lðd8Þ ¼ K1 Gn,Lðd9Þ ¼ K2 Gn, and
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Lðd10Þ ¼ K3 Gn. Given D1 ¼ d83d93d10 we have

LðD1Þ ¼ ðK1 Gn
Þ [ ðK2 Gn

Þ [ ðK3 Gn
Þ

¼ ðK1 [ K2 [ K3Þ Gn
¼ K Gn:

The next theorem takes a finite commutative language K

and a set of letters, G, and shows that their shuffle
product is the language of a compound diagram.

Theorem 5. Let L1 ¼ K Gn where K is a finite commutative

language and GDS. Then there exists a diagram D1 such

that LðD1Þ ¼ L1.

Proof. If Ka| we partition K into K1,K2, . . . ,Kn where
each Ki ¼ fa1g fa2g � � � fa9w9g for some w¼ a1a2 . . .

a9w9 2 K. By Lemma 5, for each Ki, we can construct a
spider diagram, di, such that LðdiÞ ¼ Ki Gn. Take D1 to be
the disjunction of all di’s constructed from Ki Gn. Since

K Gn
¼

[
0r irn

ðKi Gn
Þ

we deduce LðD1Þ ¼ K Gn. Where K ¼ | the unitary dia-
gram ? defines K Gn. &

Theorem 5 is extended to consider finite unions of
languages of the form K Gn.

Theorem 6. Let L1 ¼
Sn

i ¼ 1ðKi Gn

i Þ where each Ki is a finite

commutative language and GiDS. Then there exists a

diagram D1 such that LðD1Þ ¼ L1.

Proof. By Theorem 5, for each Ki Gn

i there exists Di such
that LðDiÞ ¼ Ki Gi. Then L1 ¼Lð3n

i ¼ 1DiÞ. &

To conclude this section, from Theorems 2 and 6 we
have the following corollary.

Corollary 1. Let L1 ¼
Sn

i ¼ 1ðKi GiÞ where each Ki is a finite

commutative language and GiDS. Then L1 is commutative

and star-free.

In the next section we show all commutative star-free
language are of this form.

7. Characterisations of commutative star-free languages

In this section, we show that a language is commu-
tative and star-free if and only if it is a finite union of
languages of the form K Gn, where K is a finite commu-
tative language and G is a finite set of letters. This is
similar to Higman’s characterisation of the shuffle ideal
languages [8]. We consider minimal finite automata that
accept commutative star-free languages, such as A
in Fig. 14. We show that such an automaton can be
Fig. 14. Finite a
decomposed into n automata A1, . . . ,An where n is the
number of final states in A and the union of the languages
of the component automata is the language of A. More-
over, each Ai has a single final state. Given each Ai, such
as A1 in Fig. 14, we show that a finite commutative
language, K, and a set of letters, G, may be extracted from
minðAiÞ where LðAiÞ ¼ K G, as demonstrated in Section
2. In order to determine the set G we will use Proposition
1 given in Section 3, which states that for a minimal
automaton accepting a star-free language the graph
minðAÞ9a,a 2 S contains no non-trivial cycles. We show
any letter occurring on a cycle in minðAiÞ from which we
can reach the final state, also occurs on a trivial cycle at
the final state of minðAiÞ. The set G contains precisely the
letters occurring on trivial cycles at the final state.

We begin with a restatement of the fact that the
language of an automaton is the union of the sets of
words accepted at each final state.

Theorem 7. Let A¼/Q ,S,d,q0,ff 1,f 2, . . . ,f ngS be a mini-

mal finite automaton accepting a commutative star-free

language L and A1,A2, . . . ,An be decomposed automata

where Ai ¼/Q ,S,d,q0,ff igS. Then LðAÞ ¼
Sn

i ¼ 1 LðAiÞ:

Proposition 2 is used in the proof of the following
theorem in order to show each Ai accepts a commutative
language. The property states that u� Lv if and only if for
each q 2 Q it is the case that dn

ðq,uÞ ¼ dn
ðq,vÞ. Moreover, it

is possible to construct an epimorphism from the syntac-
tic monoid, ML, of L¼LðAÞ to that of Li ¼LðAiÞ, namely
MLi

, to show MLi
is both finite and aperiodic. Thus it

follows that Li is commutative and star-free.

Theorem 8. Let A¼/Q ,S,d,q0,ff 1,f 2, . . . ,f ngS be a mini-

mal finite automaton accepting a commutative star-free

language L. The automaton A may be decomposed into n

automata, Ai ¼/Q ,S,d,q0,ff igS, where each Ai accepts a

commutative star-free language Li.

Proof. Let M¼ ðSn=� L, � ,lÞ be the syntactic monoid of L

and Mi ¼ ðS
n=� Li

, � ,lÞ be the syntactic monoid of Li. We
show that each Ai accepts a commutative star-free
language by establishing that the function f : M-Mi

defined by fð½u�LÞ ¼ ½u�Li
is an epimorphism.

We first prove that f is well-defined by showing that if
½u�L ¼ ½v�L then fð½u�LÞ ¼fð½v�LÞ. Let minðAiÞ ¼/Qi,S,
di,q0i

,ff 0igS and define g : Q-Qi where g is the natural
mapping induced by the minimisation of Ai to minðAiÞ.
Then g ensures that for all q and q0 in Q, if q and q0 are
distinguishable in A but indistinguishable in Ai then
gðqÞ ¼ gðq0Þ and if q and q0 are distinguishable in both A
utomata.
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and Ai then we have gðqÞagðq0Þ. Obviously, the function g

is surjective.
As stated in Proposition 2, given any u and v in Sn we

have u� Lv if and only if for each q 2 Q ,dn
ðq,uÞ ¼ dn

ðq,vÞ.
Observing gðdðq,aÞÞ ¼ diðgðqÞ,aÞ it follows that for each q in
Q, dn

i ðgðqÞ,uÞ ¼ dn

i ðgðq
0Þ,vÞ. Since g is surjective

dn

i ðq,uÞ ¼ dn

i ðq,vÞ:

Thus if u� Lv then u� Li
v and ½u�LD ½v�Li

and it follows
that ½u�LD ½u�Li

. Hence fð½u�LÞ ¼fð½v�LÞ, so f is well-
defined.

We now show that f is an epimorphism. Let ½u�L,½v�L 2 M

then

fð½u�L½v�LÞ ¼fð½uv�LÞ ¼ ½uv�Li
¼ ½u�Li

½v�Li
¼fð½u�LÞfð½v�LÞ

Trivially f is surjective. Hence f is an epimorphism.
Since L is commutative and star-free we know that M is

commutative and aperiodic. Furthermore, as f : M-Mi is
an epimorphism, Mi is commutative and aperiodic. Hence,
by Property 3, Li is commutative and star-free.

We now proceed to derive results on automata with
single final states. Since minimizing automata does not
introduce any new final states, without loss of generality
we can proceed by considering only minimal automata. In
the previous section, for each unitary diagram d1, in DNF we
defined a finite commutative set Kðd1Þ and a set of letters
Gðd1Þ such that LðdÞ ¼ Kðd1Þ Gðd1Þ. We now define KðAÞ
and GðAÞ as analogous sets derived from the automaton A.

Definition 10. Let A¼/Q ,S,d,q0,ff gS be a finite auto-
maton accepting a commutative star-free language. We
define KðAÞ to be the set of words accepted by Awhere no
cycle is followed.

In Fig. 14, KðminðA1ÞÞ ¼ fag and KðminðA2ÞÞ ¼ fab,bag, both
of which are commutative.

Definition 11. Let A¼/Q ,S,d,q0,ff gS be a finite auto-
maton accepting a star-free commutative language. We
define GðAÞ to be fa 2 S : ðf ,a,f Þ 2 dg.

In Fig. 14, GðminðA1ÞÞ ¼ fag and GðminðA2ÞÞ ¼ fa,bg. The
language of automata A is commðKðAÞÞ GðAÞn, where
comm(X) denotes the commutative closure of X. This is
established in Theorem 9 using the following key lemma:

Lemma 6. Let A¼/Q ,S,d,q0,ff gS be a minimal automaton

with a single final state accepting a commutative star-free

language L. Let c be a cycle from which we can reach f. Then

any letter that occurs on a transition that is part of c also

occurs on a trivial cycle at the final state.

Proof. Suppose A contains such a cycle, c, starting on
state q and exercised by the word w¼ a1a2 . . . ak. Then
there exists u,v 2 Sn such that u �w � v 2 L, since A is
minimal. Since w exercises c, we have dðq0,uÞ ¼ dðq0,uwÞ.
Then, for any nZ0, u �wn � v 2 L by traversing, c, n times.
We choose n49Q9. The word wn

p ¼ an
1an

2 . . . a
n
k is a permu-

tation of wn and, as L is a commutative language

u � v � an
1an

2 . . . a
n
k 2 L: ð3Þ

Then A must contain a cycle cak
exercised by a word

containing only the letter ak, as the postfix ak
n

of wp
n

is longer than the number of states in A. Furthermore, by
Property 1, the cycle cak

is trivial. Then we can rewrite (3) as

u � v � an
1an

2 . . . a
xþyþ z
k 2 L where xþyþz¼ n,yZ1

and ak
y

exercises the trivial cycle cak
. Then we can add any

number of aks to the word u � v � an
1an

2 . . . a
xþyþ z
k and remain

within L by traversing c more times. By commutativity, u �

v �wn � am
k 2 L for any mZ0. Since v � v �wn 2 L, there is a

trivial cycle labelled ak at the final state, shown by choosing
m¼1. Similarly, each letter, ai, in wn therefore gives rise to a
trivial cycle at the final state, as required. &

Theorem 9. Let A¼/Q ,S,d,q0,ff gS be a minimal automa-

ton with a single final state accepting a commutative

star-free language L. Then

L¼ commðKðAÞÞ GðAÞn:

Proof. Let w be in the language of A. We show
w 2 commðKðAÞÞ GðAÞn. If w exercises a path that gave
rise to a word in KðAÞ or some permutation of w exercises
such a path then w 2 commðKðAÞÞ, establishing the result.
Otherwise, w exercises a path that includes at least one
cycle. Let w¼ u0v1u1 . . .un�1vnun where each vi is a word
that exercises a cycle ci in A and k¼ u0u1 . . .un 2 K.
Reorder the letters in w so that we obtain a word of the
form kx so kx¼ kv1v2 . . .vn. Then each letter in x arises
from a letter on a transition in each ci. Therefore, each
such letter is in GðAÞ. Hence kx is in commðKðAÞÞ GðAÞn.
That is, a permutation of w is in K Gn. As commðKðAÞÞ is
commutative it follows that commðKðAÞÞ GðAÞn is com-
mutative (so w 2 commðKðAÞÞ GðAÞnÞ.

The converse, KðAÞ GðAÞDLðAÞ, is shown by a similar
argument. By definition KðAÞDLðAÞ. By Theorem 8, A
accepts a commutative language, therefore commðKðAÞÞD
LðAÞ. Let k 2 commðKðAÞÞ, g 2 GðAÞn then kg 2 LðAÞ as, by
definition of GðAÞ, for each letter gi in g there is a
transition dðf ,giÞ ¼ f . Again, as A accepts a commutative
language, k gDLðAÞ. Therefore commðKðAÞÞ GðAÞnD
LðAÞ, as required. Hence, LðAÞ ¼ commðKðAÞÞ GðAÞn. &

We now derive a characterisation of commutative
star-free languages.

Theorem 10. Let L be a commutative star-free language

over S. Then L is a finite union of languages of the form

K Gn where K is a finite commutative language and GDS.

Proof. Where L¼ | then K ¼G¼ |. Otherwise, Theorems
7 and 8 establish that, as L is commutative and star-free,
an automaton

A¼/Q ,S,d,q0,ff 1,f 2, . . . ,f ngS

accepting L may be decomposed into A1, . . . ,An with
Ai ¼/Q ,S,d,q0,ff igS such that

Sn
i ¼ 1 LðAiÞ ¼ L. By

Theorem 8, LðAiÞ is commutative and star-free. Therefore,
by Theorem 9, LðAiÞ ¼ commðKðAiÞÞ GðAiÞ

n. Hence L¼

LðAÞ ¼
Sn

i ¼ 1ðcommðKðAiÞÞ GðAiÞ
n
Þ: &
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Thus, we have considered the commutative star-free
languages which we have shown to be finite unions of
shuffle products K G, where K is a finite commutative
language and GDS. Using the results we have derived
and other results from the literature [11], we present our
main theorem.

Theorem 11. The following statements are equivalent:
1.
 L is the language of a spider diagram,

2.
 L is defined by a sentence in monadic first-order logic

with equality,

3.
 L is a commutative star-free regular language, and
4.
 L is a finite union of languages of the form K Gn where K

is a finite commutative language and GDS.

Proof. That 3) 4 is shown in Theorem 10 and 4) 3 is
shown in Corollary 1. The proof of 431 is given by
Theorems 4 and 5. Stapleton proved that for all sentences
in monadic first-order logic with equality there exists a
spider diagram with the same set of models and vice-
versa [20]. Therefore, by our definition of the language of
a diagram 132.

8. Related work and discussion

The literature concerning star-free regular languages
provides a syntactic characterisation, a logical character-
isation and an algebraic characterisation of the language
class. Using the syntactic characterisation, as we have
seen, star-free regular languages can be defined using a
star-free regular expression. This syntactic approach has
led to the definition of infinite hierarchies that character-
ise the class of star-free regular languages. One such
infinite hierarchy, the so-called dot-depth hierarchy [1],
can be syntactically defined using the empty language
and the complement of the empty language as the base
cases. The base cases are referred to as level 0 of the
hierarchy. Level nþ1

2 of the hierarchy (nZ0) is the
Boolean closure of level n and level nþ1 of the hierarchy
is defined using a closure involving the concatenation of
languages at level nþ 1

2 of the hierarchy.
Thomas [22] proved that languages in the class of star-

free regular languages are exactly those which are defined
by sentences in monadic first-order logic of order. In that
paper, Thomas shows that the level at which a star-free
language, L, first appears in the dot-depth hierarchy is the
same as the minimum number of quantifier alternations
in an MFOL[o] sentence, S, in prenex normal form that
defines L. For instance, a language L definable by such an S

drawn from (n8n will first appear at level two in the
hierarchy.

Using an algebraic approach to defining regular lan-
guages [15], Schützenberger [16] proved that the syntac-
tic monoid of a star-free regular language is finite and
aperiodic. Eilenberg [6] extended these results to consider
varieties of finite monoids, and established a correspon-
dence between varieties and well known subclasses
of regular languages. More recently, Eilenberg’s variety
theorem has been extended to consider ordered mon-
oids [14]. In our work, we have used these results in
establishing that spider diagrams define commutative
star-free regular languages as the syntactic monoid of
the language defined by a spider diagram is commutative.

Shin [17] and Stapleton et al. [11], amongst others,
have examined the expressiveness of diagrammatic
logics. In Shin’s case, she showed that Venn-II (a logic
based on Venn diagrams) is exactly as expressive as
monadic first-order logic, MFOL. Stapleton et al. showed
that spider diagrams are exactly as expressive as monadic
first order logic with equality, MFOL[¼]. In each case, the
proof strategies begin by establishing that for every
diagram there is a semantically equivalent sentence in
the corresponding logic by providing a syntactic transla-
tion. Thereafter, every sentence in the corresponding logic
is established to be semantically equivalent to a diagram.
In the Venn-II case, this strategy involves defining syn-
tactic translations from MFOL to Venn-II. However, in the
spider diagram case, a model theoretic analysis is con-
ducted of MFOL[¼] sentences in order to prove that
MFOL[¼] is no more expressive than spider diagrams.
These proof techniques give us ways in which to view
diagrams as sentences and vice versa. This means that we
can use results from either paradigm and translate them
to the other paradigm. For instance, we can now adopt
theorem proving support developed for symbolic logics
and utilise it for these diagrams to establish properties
like semantic equivalence, as demonstrated in [23].

The connections between formal language theory and
diagrammatic logic, developed in this paper, are also of
practical use when performing reasoning with diagrams.
Given two diagrams d1 and d2, Howse, Stapleton and
Taylor’s sound and complete reasoning system for spider
diagrams can be used to determine semantic equivalence,
but the algorithm to do so is computationally complex
[11]; the exact complexity has not been computed, but it
is far from being polynomial. The results in this paper give
us another, more efficient, route to decide whether two
diagrams are semantically equivalent. Suppose an auto-
maton Aðd1Þ was constructed such that Aðd1Þ accepts the
star-free regular language defined by d1. An automaton
Aðd2Þ may be similarly constructed. The classic Hopcroft
algorithm [9] can be used to minimize each of Aðd1Þ and
Aðd2Þ in Oðn log(n)), where n is the number of states in
each automaton. The equivalence of minimal automaton
can be checked in Oðn2=5Þ to decide whether d1 is seman-
tically equivalent to d2 [10].

9. Conclusion

The main contributions of this paper are the develop-
ment of a formal framework within which we can study
spider diagrams by investigating commutative star-free
languages, and various characterisations of the expres-
siveness of spider diagrams derived from results concern-
ing formal languages. In particular, we have presented
various characterisations of the expressiveness of spider
diagrams with respect to formal languages, specifically
that they define precisely the languages definable by
MFOL[¼], the star-free regular languages, and languages
that are finite unions of languages of the form K Gn

where K is a finite commutative language and GDS.
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This research was originally inspired by Thomas’ paper
on the definability of star-free languages in MFOL[o]
[22]. From the results in [20], it immediately follows that
sentences in MFOL[¼ ] are all semantically equivalent to
MFOL[o] sentences drawn from the set of sentences in
prenex normal-form with alternating quantifier blocks
(n8n [ (n [ 8n; one can obtain sentences in this form by
converting spider diagrams in DNF to MFOL[o] sen-
tences. Thus, as a consequence of the results in this paper,
we can deduce that all commutative star-free languages
are at level 2 of the dot-depth hierarchy, and may have
appeared at level 1 or level 0. Indeed, we fully expect to
be able to generalise results concerning spider diagrams
in DNF to provide an effective procedure for determining
the level in this hierarchy at which such a language first
appears: spiders correspond to the presence of ( and
shading corresponds to the presence of 8, so to derive a
procedure one needs to produce a ‘minimal’ disjunctive
normal form for spider diagrams.

Future plans also include the development of a dia-
grammatic logic with the expressive power of monadic
second-order logic, begun in [3] which has previously
been shown by Büchi to define the class of regular
languages [2]. In [3] the syntax of spider diagrams has
be extended with an v operator, unlabelled curves and
arrows. We believe that it may well be possible to derive
new insights into the properties of regular languages via
such a diagrammatic logic, akin to the results that we
have presented in this paper. The different characteristics
of the syntax of the various approaches to defining regular
languages (using diagrams, finite automata, symbolic
logics, and regular expressions) imply that the study of
each can provide unique insight into properties of the
others, as we have demonstrated in this paper.
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