
Kahrs, Stefan (1994) First-class polymorphism for ML. In: Sannella, Don,
ed. Programming Languages and Systems — ESOP '94 5th European Symposium
on Programming. Lecture Notes in Computer Science . Springer, Berlin,
Germany, pp. 333-347. ISBN 978-3-540-57880-2.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21199/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/3-540-57880-3_22

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21199/
https://doi.org/10.1007/3-540-57880-3_22
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

F ir s t �C la s s Po ly m o r p h ism fo r M L

Stefan Kahrs�

University of Edinburgh
Laboratory for Foundations of Computer Science

King�s Buildings� EH� �JZ

Abstract� Polymorphism in ML is implicit� type variables are silently
introduced and eliminated� The lack of an explicit declaration of type
variables restricts the expressiveness of parameterised modules �func	
tors
� Certain polymorphic functions cannot be expressed as functors�
because implicit type parameters of polymorphic functions are in one
respect more powerful than formal type parameters of functors�
The title suggests that this lack of expressiveness is due to a restricted
ability to abstract � polymorphism is restricted� Type variables can
only be abstracted from value declarations� but not from other forms of
declarations� especially not from structure declarations�
The paper shows in the case of Standard ML how �syntax and
 semantics
can be modi�ed to �ll this language gap� This is not so much a question of
programming language design as a contribution for better understanding
the relationship between polymorphic functions� polymorphic types� and
functors�

� Introduction

Hindley�Milner polymorphism ��� ��� is the basis of the type systems of most
modern functional programming languages	 The computational� dynamic aspects
of polymorphism are well�understood and the reader is assumed to be familiar
with them	 Less well�understood are the static aspects of polymorphism	

Polymorphism
for values� is introduced whenever type variables are ab�
stracted in a value declaration	 However� wide�spread functional languages like
Standard ML ����
SML for short� and Miranda� �
� have no corresponding intro�
duction of polymorphism for arbitrary declarations� in particular polymorphism
for modules is entirely missing	 In practise� this is not a problem for languages
which do not support parameterised modules� e	g	 Haskell ���	 In the following
we shall stick to SML� mainly because its formal de�nition ���� enables us to
discuss the semantic issues involved� apart from that� this choice is not essential�
the only essential ingredients for our approach are ML�style polymorphism and
the presence of parameterised modules	

The lack of polymorphism for structures
modules in SML� can be illustrated
by comparing the expressive powers of functors
parameterised modules in SML�
and polymorphic functions	

� The research reported here was supported by SERC grant GR
J ������
� Miranda is a trademark of Research Software Ltd�

fun foldleft �f�n� nil � n

� foldleft �f�n� �x��xs� � foldleft �f�f�x�n�� xs�

The function foldleft is polymorphic� the type of the parameter �f�n� is
� �
� � ���� for arbitrary types � and �	 One can think of � and � as implicit type
parameters of foldleft	 We can try to make this explicit by turning foldleft

into a functor�

functor FOLDLEFT �type A� type B� val f� A	B
�B� val n� B� �

struct

local fun loop n� nil � n�

� loop n� �x��xs� � loop �f�x�n��� xs

in val foldleft � loop n

end

end�

The polymorphic function foldleft and the functor FOLDLEFT seem to have
equal expressive power in the following sense� whenever we can write a value
declaration that instantiates foldleft with its �rst argument� like

val foldinstance � foldleft exp�

then there is an equivalent instantiation of the functor FOLDLEFT�

local structure Aux �

FOLDLEFT�type A �

 � type B �

val �f�n� � exp�

in val foldinstance � Aux
foldleft

end�

The only problems here are the ellipses which have to be replaced by appropri�
ate type expressions	 Since these types can be inferred from exp� this does not
seem to be a real problem	 However� there is one� and we can observe it when
considering the standard example of instantiation of foldleft� list reversal�

val reverse � foldleft �op ���nil��

This is a polymorphic instantiation of foldleft� the de�ned function reverse

is itself polymorphic	 Hence� one might expect the appropriate type declara�
tions in the corresponding instantiation of FOLDLEFT to be� type A � �a and
type B � �a list	 But it is unclear where the type variable �a comes from�
and indeed type declarations of this form are illegal in SML
and Miranda� �
type variables on the right�hand side of a type declaration have to be introduced
on the left�hand side	 The reason for this restriction is partly a concern about
soundness� and partly lack of imagination
or desire for simplicity� on the side
of the language designers	

I will show how this restriction can
safely� be eliminated� i	e	 in what way
the syntax and semantics of SML can be modi�ed to support polymorphism for
structures and functors	

� Polymorphism vs� Functors

Parameterised modules in SML are called functors	 A functor maps structures
that match its interface
a signature� to structures	 SML functors are similar to
parameterised �scripts� in Miranda �
� and parameterised �modules� in ET ���	

SML functors generalise polymorphic functions in the following sense	 Para�
meters of polymorphic functions are types
implicit� and values
explicit�	 Func�
tor parameters can be
polymorphic� values�
parameterised� types� and struc�
tures	 Therefore� a functor can be supplied with the arguments of a polymorphic
function via its input signature	 The example of foldleft and FOLDLEFT
motiv�
ated by section �	� in ��
�� illustrates how a functor can simulate a polymorphic
function� but also in which way this simulation is restricted	 Apart from that�
functors are more powerful than polymorphic functions� because the value para�
meters can themselves be polymorphic and because the type parameters can be
parametric	 Here is an example
adapted from ����� that shows the extra power
of functors	

signature MONAD �

sig

type �a M

val unitM� �a
� �a M

val bindM� �a M
� ��a
� �b M�
� �b M

end�

functor Monad�include MONAD� �

struct

fun mapM f m � bindM m �unitM o f�

fun joinM z � bindM z �fn x �� x�

end�

The functor Monad and the signature MONAD both use the formal parameterised
type associated with M with di�erent arguments� in particular joinM has type
��a M� M
� �a M	 Analogously� the polymorphic function bindM is used with
di�erent type instances in the body of the functor	 This cannot be expressed with
polymorphic functions� �� is the weakest type system in Barendregt�s ��cube
��� that can express the Monad functor	

Our goal is to make functors properly more powerful than polymorphic func�
tions � not so much because this lacking power is badly missed in programming
practice� but in pursuit of a better understanding of the two concepts	 We shall
�rst look at ways to circumvent the restriction of polymorphic functor instanti�
ations in the existing language	

It is still possible to de�ne a uniform list reversal as an instance of FOLDLEFT�
but not as a polymorphic function � we can de�ne it as a functor �

functor REVERSE�type T� � FOLDLEFT�

type A � T� type B � T list

val f � op �� � val n � nil��

Syntactic restrictions for functor instantiation make the usage of the functor
REVERSE slightly awkward � it is not possible to instantiate a functor within
an expression� for example as in REVERSE�type T�int�
foldleft�������� the
functor instantiation has �rst to be assigned to a structure name via a structure
declaration	 Again this means that the polymorphic use of REVERSE within the
de�nition of a polymorphic function is not possible� unless the polymorphic
function is turned into a functor	 In Miranda� the analogous situation is even
worse� because each parameterised module is a �le	

It should be emphasised that these restrictions on functor usage are not
merely syntactical accidents� they are deliberate design decisions in the con�
cerned languages to keep all type�checking at compile�time	 See ��� for a discus�
sion on this phase distinction	

The problem of polymorphic instantiations of a functor has been noticed
before� for instance by Hinze in ���	 The solution suggested there is to make
formal type parameters of the functor parametric	 In our FOLDLEFT example�
this concerns its type parameters A and B� with the so�modi�ed functor we can
de�ne a polymorphic reverse by functor instantiation�	

functor FOLDLEFT�� �type �a A� type �b B�

val f� �a A 	 �a B
� �a B� val n� �b B� �

struct local fun loop r nil � r

� loop r �x��xs� � loop �f�x�r�� xs

in val foldleft � loop n

end

end�

local structure Aux � FOLDLEFT���type �a A � �a�

type �b B � �b list�

val f � op ��

val n � nil�

in val reverse � Aux
foldleft � �a list
� �a list

end�

The new functor FOLDLEFT � is not restricted to non�monomorphic applications�
because type declarations like type �a A � int that erase a type argument are
legal in SML	 Indeed� FOLDLEFT can be expressed as an instance of FOLDLEFT �	
But this approach has two snags	 The type parameters for A and B have nothing
to do with the functor itself� neither its interface nor its body apply A or B to
anything di�erent from a type variable	 From a methodological point of view�
the functor interface is therefore a bad place for introducing these type paramet�
ers	 More importantly� we have not really solved yet the problem of how to get
a polymorphic function� which is an instance of foldleft� by instantiating the
corresponding functor � only the special case where polymorphism is restricted
to at most one type parameter	 For example� we cannot de�ne the
fully� poly�
morphic function map by instantiating FOLDLEFT �� because map is parametric
in two type variables	 Of course� we can again abstract a further variable and

� Some SML implementations struggle with this example� but it is perfectly legal�

de�ne another functor FOLDLEFT �� but each abstraction step makes the syntax
of the functor
and its monomorphic instantiations� increasingly messy without
solving the general problem	

We can observe the limitations of functor polymorphism more clearly in the
Monad example	 One of the classic examples for monads are continuation monads

also adapted from ������

structure Contin� MONAD �

struct

type �a M � ��a
� Answer�
� Answer

fun unitM a � fn c �� c a

fun bindM m k � fn c �� m �fn a �� k a c�

end�

structure ContMon � Monad�open Contin��

Wadler suggests various choices for type Answer	 We can express this in SML by
turning the above piece of code into a functor with parameter Answer	 However�
this would enforce a new instance of Monad for every choice for Answer which is
a bit of a waste	 Instead� it would be more natural to replace Answer by a free
type variable �b� giving us a polymorphic continuation monad	

� Polymorphism in SML

The example of foldleft shows how polymorphism is usually treated in SML
and many related languages	 The polymorphism of foldleft has been silently
introduced� we can see this more clearly by mixing the explicit polymorphism of
the type system �� with ML code�

val rec foldleft � �� � �� �� � ��
fn �f��� � � ��n��� �� fn ls� � list ��

case ls of nil � �� n

� �op ��� � �x�xs� �� foldleft � � �f�f�x�n�� xs

The � is the universe of types� i	e	 �� � � denotes type variable abstraction in
��� see ���	 Instantiation of polymorphic values with types
application t� of
terms t to types � in ��� is implicit in ML� similarly the introduction of types
with variables like � for value expressions	 On the level of types� application and
abstraction of types are always explicit� for example in the declaration of type
list�

datatype �a list � nil � �� of �a 	 �a list

Here we have an explicit type variable �a� its explicit abstraction on the left�hand
side and an explicit type application��a list on the right�hand side	

This syntactic di�erence in polymorphism has a semantic equivalent � SML
uses two di�erent notions of type variable abstraction for values and types� called
type schemes and type functions	 The type function ����t is the semantic value

of list
t is a type name� a kind of personal identi�cation number for a type��
the type scheme ����t is the static semantic value of nil� type names have an
arity and
constructed� types are formed by applying an n�ary type name to
n types� type name application being written post�x	 The di�erence between
type functions and type schemes is that instantiation of bound type variables
is always explicit for type functions and always implicit for type schemes	 The
semantic reason for distinguishing these two forms of abstraction is certain equi�
valences that apply to type schemes� for example� the type schemes ������ and
������ are equal� but the corresponding type functions ������ and ������
are di�erent� provided � or � occurs in � 	

There is another important di�erence between polymorphism for values and
polymorphism for types in SML� the e�ect of nested declarations	 Instead of
de�ning foldleft by direct recursion� we can exploit the fact that f is �xed
throughout the recursion
cf	 FOLDLEFT above��

fun foldleft �f�n� ls �

let fun loop r nil � r

� loop r �x��xs� � loop �f�x�r�� xs

in loop n ls

end�

The local function loop is monomorphic� it does not abstract type variables	 We
can see this by annotating the ML code with type abstractions and applications

exercise for the reader�	 However� the declaration of loop still contains
impli�
citly� a free type variable � for the instantiation of the list constructors nil and
��	 This type variable is introduced in the context of the declaration of loop	

Concerning type declarations� the r�ole of nested declarations is di�erent	
Although a type declaration can occur in a context which contains free type
variables
in SML� not in Miranda�� all type variables occurring on its right�
hand side must be declared on its left�hand side� they cannot come from the
context	 The language de�nition of SML imposes this restriction	

We want to lift this syntactic restriction� because it prevents us from writing
the polymorphic functor instantiations	 This raises the question how free type
variables are introduced and eliminated� and in particular what the semantic
equivalent of the elimination operation is	

� Type Variable Declarations

Before we consider the introduction and elimination of type variables for arbit�
rary declarations� let us look at the semantic rule� that de�nes the corresponding
operation for value declarations� i	e	 that introduces type schemes for value vari�
ables � rule �� in the de�nition of the static semantics of SML �����

� The rule presented here is a simpli�ed version � I have removed the parts that
deal with imperative type variables� as they have no particular signi�cance in this
context�

C � U � valbind� VE VE� � ClosCVE

C � valU valbind� VE� in Env

The non�terminal valbind stands for a value declaration	 Sentences of the se�
mantics of SML of the form C � phrase� VE can be read as� in the context C
the syntactical phrase phrase gives rise to
elaborates to is the technical term�
a variable environment VE	 Variable environments bind identi�ers to their type
schemes� they also occur as components of general environments
E � Env�
that can contain other bindings as well	 �VE� in Env� is a general environment
containing the variable environment VE� but no other bindings	

C�U is a context in which type variables from U are declared to be free and
ClosCVE is a variable environment obtained from VE by abstracting all type
variables not free in C� this abstraction introduces type schemes� pointwise for
each variable bound in VE	 It may be a bit surprising that the result of a type
variable abstraction from a variable environment is not a mapping from types to
variable environments� but another variable environment	 The justi�cation goes
as follows� a
static� variable environment can be seen as a tuple of types
or
rather type schemes�� indexed by the bound identi�ers	 If we extend the type
system �� with binary products� the following types are �isomorphic��

�� � ��
T
��� U
��� ��
�� � �� T
����
�� � �� U
���

The abstraction on the left�hand side abstracts a type variable from a tuple� the
right�hand side is a tuple
type� of abstractions	 For instance� the mapping from
left to right can be given as the expression �x � P�
�� � �� 	�
x��
 �� � �� 	�
x���
in ��� where P is the type on the left�hand side of ��	

I write �isomorphic� in quotes� because they are only isomorphic in a weak
sense as indicated by Di Cosmo in ���� we have to impose a few equivalences
to make the composition of both mappings equal to the identity	 These equi�
valences are ���� surjective pairing� and the equation
fx
 gx� �
f
 g�x	 This
weak isomorphism is the justi�cation
in SML� for performing the abstraction
pointwise� i	e	 for picking the type on the right	

Coming back to the mentioned semantic rule in SML� it contains another
slightly mysterious bit	 The subscript U in valU valbind is the set of type vari�
ables scoped at this value declaration	 In other words� the rule incorporates in�
troduction and elimination of free type variables	 For value polymorphism� the
scoping of type variables is a minor issue as it deals only with type variables that
occur explicitly in the text while type scheme polymorphism is mainly tacit and
operates on implicit type variables	 Explicit type variables are not introduced
by an explicit declaration� but rather attached to a value declaration by a gen�
eral principle	 Allowing free type variables to occur in other forms of declarations
raises the need for an explicit form of type variable declaration	 For the purposes
of this paper� I suggest typevars tyvarseq as an additional form of declaration	
The corresponding rule in the static semantics is quite simple�

C � typevars tyvarseq � �tyvarseq� in Env

��� Abstraction� General Idea

Type variables are not bound to anything�� so an environment simply contains a
sequence of non�empty sequences of type variables� listing the free type variables
in that environment	 We shall see later why the semantic value of a type vari�
able declaration is a sequence of sequences rather than a set of type variables	
Semantically more interesting than introduction is elimination of free type vari�
ables	 It seems natural to let type variable declarations follow the usual scoping
rules for declarations and eliminate them at the end of their scope� for example
by modifying the rule for local declarations accordingly�

C � dec� � E� C 	E� � dec� � E�

C � local dec� in dec� end� abstractC
U of E��
E��

A local declaration local dec� in dec� end declares whatever dec� declares�
the declarations in dec� are auxiliary for dec� and their scope ends at the keyword
end	 Thus� if dec� contains type variable declarations their scope also ends at
the end of the local declaration	

The di�erence from SML�s rule for local declaration is the application of the
abstraction operator to E� in the conclusion� rather than taking E� itself as
the result	 It would follow more closely the style of the SML de�nition if the
abstraction were expressed as ClosCE�� but there is a problem� the operation
ClosC abstracts all type variables which are free in its argument and not free
in C� but the order of abstraction is signi�cant for type functions and hence for
our generalised abstraction as well	 I postpone the de�nition of abstract� until
it is clearer which properties it should have	 Consider an example that uses the
feature of type variable declarations�

local typevars �a

in datatype list � nil � �� of �a 	 list

val foldleft � fn �f�n� ��

let fun loop r nil � r

� loop r �x��xs� � loop �f�x�r�� xs

in loop n

end

end�

Notice that the type variable �a in the declaration of list does not come from
the left�hand side but from the context of the declaration	 Within the local
declaration� list is a monomorphic type and foldleft is only polymorphic in
one type variable� its result type	

For merely pragmatic reasons� it is desirable to abstract type variables point�
wise from the components of an environment	 The components which matter in
this respect are
i� type schemes� the semantic values of value variables�
ii� type
functions� the semantic values of type constructors� and
iii� type names� the
personal identi�cation numbers of newly introduced constructed types	

� One can think of a type variable as an ordinary variable bound to �� as in ���

��� Abstraction� Gory Details

We would certainly like the abstraction operator to behave on type schemes
just as ClosC does� i	e	 to increase the set of abstracted type variables of a type
scheme� type abstraction introduces polymorphism	 This principle already allows
us to formulate reverse as an instance of FOLDLEFT�

local

typevars �a

structure Aux �

FOLDLEFT�type A � �a

type B � �a list

val f � op ��

val n � nil�

in val reverse � Aux
foldleft

end

The only item that is subject to type variable abstraction in this example is
the type of reverse� because its declaration is the only non�local one	 Within
the local declaration� reverse has the monomorphic type �a list� �a list�
but �a can be abstracted at the end of the local declaration� introducing a
polymorphic reverse	

Abstracting a type variable from a type name increases the arity of that type
name� the arity of list inside the local declaration is �� but it is � outside� as we
want be able to instantiate �a with various types and as we have to distinguish
these di�erent instantiations semantically to preserve the soundness of the type
system	 We only need to abstract type variables on which a type name depends�
in the example� list depends on �a� because �a occurs freely in its constructor
environment	 For simplicity� we can assume that all
new� type names depend
on all abstracted type variables	

The change of arity of a type name slightly complicates abstraction in the
variable environment case� as further components of the environment may con�
tain that type name and are thus a�ected by such a change� an environment
is like a dependent n�tuple and we need weak isomorphisms operating on de�
pendent tuples
see ���� for an introduction to ��types�� in the binary case as
follows�

�� � �� �x � T
��� U
�
 x� �� �x �
�� � �� T
���� �� � �� U
�
 x��

Notice that x on the left�hand and right�hand side of the �� has di�erent arities�
this corresponds to the di�erent arities of a type name	 Fortunately� this weak
isomorphism exists and is similarly straightforward as in the non�dependent case	

One case remains� type variable abstraction for type functions	 We could stick
to the principle that type abstraction always introduces implicit polymorphism�
so that a type function may have explicit and implicit parameters	 In the ex�
ample it would mean that list has an implicit parameter outside the local

declaration and that it would be the task of type inference to compute it� simil�
arly as it computes the implicit type parameter of nil	 This is surely possible but

seems rather unusual and involves a number of language design problems� e	g	 its
interaction with the module system or whether it would be possible to restrict
implicit polymorphism in type expressions	 I shall not pursue this approach here	

The alternative is to turn abstracted type variables into explicit parameters
of a type function	 Since these additional parameters are explicit� there is a
corresponding e�ect on the syntactical level� the arities of type constructors

change as well	 In the example� the type constructor list has arity � outside
the local declaration� it requires an argument when used in type expressions	

To be able to change the arity of local type names� it would be useful to
explicitly keep track of local type names as an additional component of envir�
onments	 Implementations do that anyway� and some arguments why the SML
de�nition should also be explicit about it can be found in section �	� of ����	

SML already provides a mechanism to replace type names� these are the so�
called realisations which are used for structure�signature matching	 Basically� a
realisation is a �nite map from k�ary type names to k�ary type functions� it can
be applied to various semantic objects by replacing the type names throughout
the object	 Realisation application can be seen as second�order substitution	

For the abstraction operation� such functions are more complicated� i	e	 we
need more structure for realisations� type functions etc	

� Analogously to type declarations� type functions can now contain free type
variables	

� The arity of a type name
or a type function� in SML is a natural number
n� it is convenient to generalise this to a sequence of natural numbers n��
which notationally supports curried application of type constructors	

� A realisation in SML maps a k�ary type name to a k�ary type function�
here� if we abstract a sequence �� of non�empty sequences of type variables
from an environment� the corresponding abstraction realisation maps k��ary
type names to n�

 k��ary type functions� where
 is list concatenation and
n� � map length ��	

Let C be a �xed context and �� be a �xed sequence of non�empty sequences
of type variables and n� � map length ��	 An abstraction realisation � is an
injective map from k��ary type names
not in C� to n�

 k��ary type names
also
not in C�	 We need injectivity and disjointness from the type names in C in
the result to preserve the soundness of the type system�	 Because the arity of
type names is not preserved� we have to rede�ne the application of abstraction
realisations to constructed types�

t � Dom�� �
�� t� �
��

 �
���� �
t�

t
� Dom�� �
�� t� � �
��� t

where �� is a sequence of non�empty sequences of types and t is a type name	
Furthermore the arity of type function changes� i	e	 �
������ � �������
��	

� A technical remark� unfortunately� the consistency condition for semantic objects is
too weak for this purpose�

Now we can de�ne abstractC
�
��
E� as ClosC
�E� where � is an arbitrary

abstraction realisation w	r	t	 context C and type variables ��� which is de�ned
on all type names in E that are not in C	 The closure operator ClosC introduces
type schemes in variable
and constructor� environments	

From the language design point of view� the abstraction operator has an�
other merit	 It allows to separate type abstractions from datatype declarations	
There are some reasons to enforce this separation as the only form for recurs�
ive type declarations	 The static semantic rules for value declarations use the
same structure� i	e	 type variable abstraction is imposed after the recursion has
been solved	 Because of this� it is not possible to de�ne structurally inductive
functions
which pass SML�s type�check� for certain recursive types	

Strengthening the static semantic rules for value declarations such that struc�
turally inductive functions for all recursive datatypes are typable makes typ�

ability ��� undecidable� because this is equivalent to solving arbitrary semi�
uni�cation problems ����	 Although �undecidable� surprisingly does not im�
ply �impractical� in this case
see ����� a type�checker that is necessarily non�
terminating for some inputs may make some people feel uncomfortable	 Having
abstraction and datatype declaration as two separate concepts allows to impose
the same restrictions on recursive types as on recursive functions� such that any
recursive type has its corresponding recursive functions and vice versa	

� Imperative Features

Naive polymorphism is unsound in connection with certain imperative features�
for example it is unsound to have updatable polymorphic variables
references�	
For this reason� SML has a second form of type variables� imperative type vari�
ables	 Abstraction from imperative type variables is restricted to so�called non�
expansive objects� non�expansiveness is a su�cient condition for preventing poly�
morphic references and exceptions	

Standard ML implements this restriction by modifying its abstraction oper�
ator Clos and making ClosCVE dependent on whether VE was derived from an
expansive
value� declaration or not	 A similar modi�cation would be necessary
for our generalised abstraction operator	 For example� we could regard a sequence
of declarations
a structure� as expansive if any of its elementary declarations
is expansive� the expansive elementary declarations consist of exception declara�
tions and expansive value declarations	 An attempt to abstract imperative type
variables from an environment which was derived from an expansive structure
could then be regarded as an error	

But this is not the only di�culty	 Since we can now also abstract type vari�
ables from type constructors� we have additional problems� the abstraction may
put applicative type variables
unrestricted polymorphism� into places where
they should not be� example�

functor EXCEPT�type t� �

struct exception A of t end�

structure S � let typevars �a in EXCEPT�type t � �a� end�

The component type of an exception is not allowed to contain applicative type
variables
for soundness reasons� see ����� page ���� but in the above example
abstraction and module instantiation unfortunately outwit this restriction	

The straightforward solution is to supply type names with an additional
�imperative� attribute
similar to the equality attribute� and to require realisa�
tions to assign only imperative types to imperative type names	 The example
would be ruled out� as t is imperative and �a is not	 Even with imperative type
variables there are problems here� because functor bodies can be expansive� as
the example shows	 One possible way of solving this problem is to require that
formal imperative type names are mapped by a realisation to closed imperative
types� in other words� to essentially restrict generalised type abstraction to the
applicative case	

The presence of non�imperative type names has a number of other e�ects on
the language	

� A type �� t is imperative if t is an imperative type name and all types in
�� are imperative	 This implies a restriction on specialisation of imperative
polymorphism and the types of exception constructors	

� We have to compute an imperative attribute for newly introduced datatypes	
This is completely analogous to the equality attribute� i	e	 a new datatype is
imperative if
roughly� all its constructors have imperative types as argument
types	

� We need a feature to specify the imperative attribute of a formal type para�
meter of a functor� analogous to eqtype for the speci�cation of the equality
attribute	 To keep the extension upwards�compatible with the existing lan�
guage� we can take a type speci�cation type ty to specify that ty is im�
perative and add a feature for the speci�cation of
possibly� non�imperative
types	

A nice side�e�ect of this approach is that the attributes for equality and
imperativeness are treated completely analogous� i	e	 they are attributes of type
names and type variables	 This �ts very well with a Haskell�like understanding
of these attributes as type classes	

Instead of this rather sophisticated approach to imperative features� one
could instead employ the method suggested by Leroy in Chapter � of his thesis
����	 It can be roughly described by the slogan� �type variable abstraction intro�
duces closures�� i	e	
even implicit� type application forces re�evaluation	 This
method eliminates all soundness problems with imperative features� including
the ones mentioned in this section	

� Related Module Systems

In the following� we brie y discuss the
potential� r�ole of type variable abstrac�
tion in the module systems of ET ��� and Miranda �
� ��	

��� ET

The
functional logic� programming language ET is the only programming lan�
guage with a notion of polymorphic abstraction for types I am aware of	 Because
ET�s module system is at
no substructures� and because type declarations are
only permitted at top level� ET has only one place for free type variables �
instantiation of functors	 Type variables can be locally free for a functor instan�
tiation	 In ML syntax� ET�s functor instantiations all have the following shape�

local structure Aux �

let typevars �a

in FOLDLEFT�type A � �a� type B � �a list�

val f � op ��� val n � nil�

end�

in val reverse � Aux
foldleft

end

The semantic operations that support such a notation in ET di�er slightly from
the method described above for SML	 Type declarations in the functor argument
are required to be non�parametric� i	e	 the corresponding type functions are of
arity �	 For the functor body� these types are treated like free type variables and
are abstracted from the exported objects	 A functor instance
with or without
free type variables� instantiates these variables with actual types and restores
the old arity of all type constructors� before all free type variables of the functor
instance are abstracted	

The di�erence to the method described for SML is in sharing of types	 The
�rst abstraction does not depend on the module instance and is performed only
once � an ET functor contains free type names� in contrast to SML where each
functor instance makes a fresh copy of these type names	 Thus� types obtained
from di�erent functor instances in ET are compatible and an ET functor applica�
tion never generates new datatypes	 In other words� ET functors are extensional
� applied to the same arguments they deliver the same results	

��� Miranda

Miranda�s module system has a similar structure to ET� modules are at and
types only exist on top level� but it does not support type variable abstrac�
tion from functor instances	 Concerning type compatibility of functor instances�
Miranda follows SML	 Since the speci�cation of parameterised types in functor
interfaces is possible� ET�s approach is not feasible anyway� because this would
require third order type constructors and second order type variables� making
type inference undecidable	

Miranda supports recursive functor instantiation� i	e	 the exported objects of
a functor can be used to provide it with its input parameters	 It is possible to
create recursive types by recursive functor instantiation	 For the abstraction of
type variables� here we have again the problem whether abstraction and recursion

take place simultaneously� or whether abstraction is imposed after the recursion	
An example
in ML�style syntax� should make it clear�

functor COPY �type t� �

struct

type u � t

end�

structure rec C �

let typevars �a

in COPY�datatype t � nil � cons of �a 	 �a C
u�

end�

The functor COPY exports the non�parameterised type u� which abstraction makes
u parametric before it is stored in C� i	e	 C
u is parametric and has to be provided
with an argument even in recursive occurrences	 One can also express abstraction
after recursion by moving the declaration of �a outside�

local typevars �a

in structure rec C �

COPY�datatype t � nil � cons of �a 	 C
u�

end�

In this slight modi�cation of the last example� C
u is non�parametric within the
recursion� but becomes a parametric type at the end of the local	

� Conclusion

Polymorphism in languages like Standard ML or Miranda is restricted because
it allows to abstract type variables from declarations of values but not from
declarations of types or structures	 In this sense� polymorphism is not �rst�class	
This restriction can be felt in the presence of parameterised modules� which in
a strange way happen to be less expressive than polymorphic functions	

The syntactic cure is simple and � important from a language design point
of view � easy to understand� introduce a new form of declaration� the explicit
declaration of type variables	 Such type variables are abstracted at the end of
their scope	 The semantic cure is a little bit more subtle� because type variable
abstraction has to be de�ned for all possible environment components	

Such pointwise type variable abstraction from environment components is
justi�ed� for one can consider the global abstraction of types from a tuple to
be isomorphic to the tuple with pointwise abstracted types	 This isomorphism
has already been exploited in the semantics of Standard ML and Miranda� but
it becomes slightly more complicated in this setting as
general� environments
have to be regarded as dependent tuples	

Acknowledgements

I would like to thank Bernd Gersdorf� Claudio Russo� Don Sannella and Andrzej
Tarlecki and the ESOP referees for valuable discussions on this subject and
feedback on an earlier version of this paper	

References

�� Hendrik P� Barendregt� Lambda calculi with types� In Handbook of Logic in Com�

puter Science� Vol��� pages �������� Oxford Science Publications� �����
�� Roberto di Cosmo� Type isomorphisms in a type	assignment framework� In ��th

ACM Symposium on Principles of Programming Languages� pages �������� �����
�� Bernd Gersdorf� Entwurf� formale De�nition und Implementierung der funktional�

logischen Programmiersprache ET� PhD thesis� Universit�at Bremen� ����� �mainly
in German
�

�� Robert Harper� John C� Mitchell� and Eugenio Moggi� Higher	order modules and
the phase distinction� In �	th ACM Symposium on Principles of Programming

Languages� pages �������� �����
�� Fritz Henglein� Type inference with polymorphic recursion� ACM Transactions on

Programming Languages and Systems� ����
��������� �����
�� Roger Hindley� The principal type	scheme of an object in combinatory logic�

Transactions of AMS� ���������� �����
�� Ralf Hinze� Einf
uhrung in die funktionale Programmierung mit Miranda� Teubner�

����� �in German
�
�� Ian Holyer� Functional Programming with Miranda� Pitman� �����
�� P� Hudak� S� Peyton Jones� and P� Wadler� Report on the Programming Language

Haskell� a Non	strict� Purely Functional Language� Technical report� University
of Glasgow� ����� �also in SIGPLAN Notices ����
� May ����
�

��� Stefan Kahrs� Mistakes and ambiguities in the de�nition of Standard ML� Tech	
nical Report ECS	LFCS	��	���� University of Edinburgh� �����

��� A�J� Kfoury� J� Tiuryn� and P� Urcyczyn� The undecidability of the semi	
uni�cation problem� Information and Computation� �����
�������� January �����

��� Xavier Leroy� Polymorphic typing of an algorithmic language� Rapports de Recher	
che No� ����� INRIA� �����

��� Per Martin	L�of� An intuitionistic theory of types� predicative part� In Rose and
Shepherdson� editors� Logic Colloquium ��	�� pages ������� North	Holland� �����

��� Robin Milner� A theory of type polymorphism in programming� Journal of Com�

puter and System Sciences� ����������� �����
��� Robin Milner and Mads Tofte� Commentary on Standard ML� MIT Press� �����
��� Robin Milner� Mads Tofte� and Robert Harper� The De�nition of Standard ML�

MIT Press� �����
��� Laurence C� Paulson� ML for the Working Programmer� Cambridge University

Press� �����
��� Stefan Soko�lowski� Applicative High Order Programming� Chapman � Hall Com	

puting� �����
��� Philip Wadler� The essence of functional programming� In ��th ACM Symposion

on Principles of Programming Languages� pages ����� �����

This article was processed using the LaTEX macro package with LLNCS style

