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From Test Cases to
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Thomas Arts
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Abstract

This paper uses the inference of finite state machines fromtEU
test suites for Erlang programs to make two contributioist fve
show that the inferred FSMs provide feedback on the adegofacy
the test suite that is developed incrementally during teedeven
development of a system. This is novel because the feedback w
give isindependenof the implementation of the system.

Secondly, we use FSM inference to develop QuickCheck prop-
erties for testing state-based systems. This has the efféns-
forming a fixed set of tests into a property which can be tesséty
randomly generated data, substantially widening the egeand
scope of the tests.

Categories and Subject Descriptors D. Software P.2 SOFT-
WARE ENGINEERIN{ D.2.5 Testing and Debugging: Testing
tools

General Terms Verification

Keywords TDD, test-driven development, Erlang, EUnit, unit
test, QuickCheck, property, inference, finite-state maehi

1. Introduction

In this paper we show how finite state machines can be automat-
ically extracted from sets of unit tests — here Euhit [6] gefstrr
Erlang programs. We use these FSMs in two ways. First, they ca
in themselves provide feedback on the adequacy of a settsf tes
independently of any implementation. Secondly, they caimdres-
formed and used within Quviq QuickChedK [1] 14] to guide the
random generation of test sequences for state-based sysfén
discuss these contributions in turn now.

Test-driven Development

Test-driven developmenfl[B] 4] (TDD) advocates that telstaikl
precede implementations. Systems should be developeshiecr
tally, with each increment delivering enough functionatid pass
another test, as illustrated here.
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Under this approach, how can we validate the system? It widllg
meet the tests, because it has been developed precisebstthean.
The question becomes one wdlidating the tests themselvds
this paper we propose that during TDD of state-based systams
can validate the tests by extracting the finite state maoti&é)
implicit in the current test set.

1 system n

The FSMis extracted by means of grammar inferehce [23] @tsr s
of positive and negative traces. This FSM provides feedbadke
testsindependentlyf any implementation, and thus ‘triangulates’
the process.

We would argue that that makes the process of test-driven de-
velopment more robust. In particular, it allows us to giveaaswer
to the questiorfWhen have | written enough tests®h the basis
of the tests alone, rather than by examining an implememtaive
return to this question in Secti@h 5.

We illustrate our approach to TDD by working through a case
study in Erlang, developing unit tests in EUnit, and usingt&t
Chum [19] to extract a series of FSMs from the test suite as it
evolves.

Testing state-based systems

This work was developed within the European Framework 7
ProTest project[18] to develop property-based testing=ibang.



In particular we seek to develop QuickChBgioperties from sets
of unit tests, thus providing a migration path from tradigb unit
testing to property-based testing. To test state-base@ragsin
QuickCheck it is usual to develop a state machine model gusin
eqc_fsm Or eqc_statem) which encapsulates the permissible se-
qguences of API calls.

We show how the FSM extracted from a set of unit tests can
be transformed into a QuickCheck FSM, and thus how a set of
unit tests can be combined into a property. This has the henefi
of allowing the system to be tested on many more inputs, namel
all those permissible in the FSM, and a selection of thesebean
generated randomly using QuickCheck generators.

Abstraction

In modelling a system using a finite state machine we need to
perform abstraction over the state data. In the case studyldta
consist of a finite collection of resources, and this is miedeby
sets with small cardinalities before we seek to identify aegel
case. In the case of test development, this allows us toifgent
complete sets of tests for ‘small’ models before moving te th
general case. In QuickCheck this process identifies carelglate
data values.

Roadmap

We begin by discussing the background to this work in Section
B We first introduce test-driven development, and thenudisc
EUnit and QuickCheck for testing Erlang systems. We als& loo
at grammar inference as a mechanism for inferring finiteesta
machines from sets of words in the language and its complemen
We use StateChum to do FSM inference in our case study.

Section[B discusses a systematic approach to developing anof

assessing tests during test-driven development througicalse
study of a ‘frequency server’. We use Eunit to express ths &gl
StateChum to infer finite state machines from test sets ifla fu
automated way. While doing this we discuss the question of ho
to abstract away from particular aspects of the system mifoy a
model of the system under test.

Sectior# builds on this by developing a QuickCheck state ma-
chine for the example. This machine is based on the FSM &derr
in the previous section, and we discuss the process of hgilttie
QuickCheck machine from this FSM with a view to automating th
process as much as possible in the future.

Finally we discuss related work in Sectiph 5 and draw some
conclusions in Sectidd 6.

2. Background

In this section we give a brief overview of the main topics ethi
form the background to the work reported this paper, as well a
providing references where more information can be found.

2.1 Test-driven development

A manifesto for test-driven development (TDD) is given incRs
monographll4]. This gives advice on adopting TDD in practa=
well as answering frequently-asked questions. The thddiest-
driven development is that it is the formulation of tests ethi
should be used to drive the development process.

Specifically, the requirements for the system are given bsra s
ries of tests developed incrementally. At each stage théeimgn-
tor will write enough to satisfy the existing tests and (iedhy at
least) nothing more. Hence the importance of the tests icifypey
the system, and so the importance of finding mechanisms bghwhi
the tests can be validated in some independent way. In 8fttie
compare our approach to others in the TDD community.

L1n this article, QuickCheck refers to Quviq QuickCheck vemsl.18

2.2 EUnit

EUnit [H, [@] provides a framework for defining and executing
unit tests, which test that a particular program unit — ina&g|,

a function or collection of functions — behaves as expeciénr:
framework gives a representation of tests of a variety dediht
kinds, and a set of macros which simplify the way EUnit testis ¢
be written.

For a function without side-effects, a test will typicallyok at
whether the input/output behaviour is as expected, ancettep-
tions are raised (only) when required.

Functions that have side-effects require more complexatipp
The infrastructure needed to test these programs (calfeduse)
includes a facility to setup a particular program state rpiaotest,
and then to cleanup after the test has been performed.

Examples of EUnit tests are given in the body of the paper, and
are explained as they occur. The telXt [7] gives an introdactd
EUnit testing; further details can be found n [, 6] and tindiree
documentation for the system.

2.3 Grammar and state machine inference

The StateChum tool extracts a finite state machine from dets o
positive and negative instances[19]. That is, the userigesv
sets of words which are in (resp. out) of the language of the st
machine, and grammar inference techniques are used totheer
minimal machine conforming to this requirement.

The algorithm uses state mergingechnique: first the (finite)
machine accepting exactly the positive cases is consttutten
states are merged in such a way that no positive and negative
tates are identified. The particular implementation assuthat
he language accepted is prefix-closed, so that in termsstihte
a single positive case can be seen as representing a number of
positive unit tests. Further details of the algorithm arf2 [22].

FSM and grammar inference is a well-established field: dy ear
introduction can be found ifn[22].

2.4 QuickCheck

QuickCheck [[IL'T4] supports random testing of Erlang progra
Properties of the programs are stated in a subset of firgt-twdic,
embedded in Erlang syntax. QuickCheck verifies these ptieper
for collections of Erlang data values generated randormibyy user
guidance in defining the generators where necessary.

When testing state-based systems it makes sense to build an
abstract model of the system, and to use this model to dratmte
of the real system. Devising this model is crucial to the afie
testing, and the technique outlined in this paper facdiganodel
definition from existing test data rather than from an infatm
description of the system under test.

QuickCheck comes with a librarg§c_fsm) for specifying test
cases as finite state machines. For each state in the FSM it is
necessary to describe a number of things.

e The possible transitions to other states.
o A set of preconditions for each transition.

e How to actually perform the transition (that is, a functitvat
performs whatever operations are necessary).

e Postconditions to make a check after the state transition.

e A description of the changes on the state as a result of the
transition.

This information is supplied by defining a set of callbackdtions;
we will see an example of this in practice in Secfibn 4.



3. Test-driven development

In this section we introduce a procedure for systematicddiyel-
oping the unit tests that are used in the test-driven dewstop
process of systems. This is illustrated through the runekagnple
of a simple server.

3.1 Example: a frequency server

As a running example (taken frofl [7]) we write tests for a danp
server that manages a number of resources — frequenciesafor e
ple —which can each be allocated and deallocated. The gaver
cess is registered to simplify the interface functionshsa it is not
necessary to use the process identifier of the server to coinata
with it. The Erlang type specification for the interface ftioos is
as follows:

start([integer )]1) -> pidQ).

stop() -> ok.

allocate() -> {ok,integer()} |
{error, no_frequency}.

deallocate(integer()) -> ok.

-spec
-spec
-spec

-spec

The start function takes a list of frequencies as argument and
spawns and registers a new server that manages those fcezgien
Thestop function communicates with the server to terminate it in
a normal way.

Theallocate function returns a frequency if one is available,
or an error if all frequencies have already been allocatdte T
deallocate function takes a previously allocated frequency as
argument and has the server release that frequency.

3.2 Testing start/stop behaviour

As straightforward as this server seems to be, it is still@dgdea
to define some tests before we write the code. We use EUnis [6] a
framework for writing our unit tests, but the principles st paper
apply however we write unit tests.

We start by defining tests for starting and stopping the serve
not worrying about allocation and deallocation. Of courgewant

a test in which we start and stop the server, but we also want to

test that we can start it again after stopping. Since thensetest
subsumes the first, we only define the second.

startstop_test() ->
7assertMatch(Pidl when is_pid(Pidl),start([])),
7assertMatch(ok,stop()),
7assertMatch(Pid2 when is_pid(Pid2),start([1])),
7assertMatch(ok,stop()).

We start the server twice, each with a different list of reses,
more or less an arbitrary choice. The second caBtep is per-
formed to clean up and return to the state in which no server is
registered. Note that we match the returned values of the oat.
ok for stop and a pid fostart, precisely as required by the speci-
fication.

Note that although we have defined this as a single EUnititest,
can also be seen as representing four separate tests, forenget
by each?assertMatch expression. The four tests check that that
the system can be started, that it can be started and themestop

and so forth: one test case for each prefix of the sequence of

7assertMatch Statements.

Now we would be able to write our first prototype, but it is
obvious that if we writestart andstop to just return the correct
return types, then the test would pass. This indicates tedtave
too few tests for a proper test-driven development of a mivrat
server. How do we find out which additional tests to add?

One answer is to appeal to our programmers’ intuition, but a
more satisfactory — and principled — approach is to look extset

stop start

passive
Config debugMode true
+ start stop start stop

Figure 1. Start/stop behaviour: first model

of tests and see what state space is implicit in these. M@eifsp
cally, we can extract the minimal finite state machine (FSidjrf
the traces, and then judge the adequacy of the resulting FSM i
modelling the proposed system, thereby assessing thetiesis
selves.

3.3 Visualizing the state machine

In this section we demonstrate how we can use the StateChum i
brary [19], to improve our set of unit tests by generating @itEi
State Machine which represents the minimal FSM implicitha t
tests. Inspecting that FSM allows us to decide which testsldtbe
added (or indeed removed) in order to make the state spae cor
spond to the intended model, and thus to establish the ctoemgles

of the test data set.

Translating EUnit tests to sequences

In order to use StateChum on a set of given EUnit tests, we aieed
algorithm to translate EUnit tests to sequences that aengig in-
put to StateChum. The translation we start of with is to repkach
?assertMatch(Result, Fun(Ay,..., A,)) in atest by the func-
tion nameF un to obtain a sequence of function calls. In particular,
thestartstop_test () above is translated into the sequence:

+ start stop start stop

where the leading+’ indicates that this is positive tracethat is a
trace that is to be accepted by the inferred FSM.

Note also that the algorithm used by StateChum assumes that
the positive traces are closed under initial segments, aptkie
single trace is in fact equivalent to

+ start

+ start stop

+ start stop start

+ start stop start stop

Finally it should be noted that the transformation from théni
tests to the StateChum input can be fully automated.

3.4 Using the derived FSM to assess tests

In order to use StateChum on our example, we need to abstract
from the data part in our test case and concentrate on theisegu

of function calls performed. This sequence is input to &hten

and this input together with the derived FSM is shown in Hig. 1

This figure indicates that there is a single state in whicls it i
possible both to start and to stop the server. Starting appstg
the server don't result in a state change; at least, not ohdbis
of this single test case. In particular, the picture suggtsit one
can successfully perform a stop in the initial state, and stiart the
system twice.

In order to make two distinguishable states we need to supply
StateChum with twamegative sequencewhich correspond to two
negative test cases, that is, test cases that result ineeuerbe-
haviour of some kind. The first test case verifies that one aann
stop in the initial state. This is added to the input for Stdem
by adjoining the line- stop. After doing so, we observe an FSM
with three states, depicted in Fig. 2.

In the initial state — indicated by starredicon — astop leads
to the error state and start leads to a second state. From that



passive

config debugMode true

+ start stop start stop
- stop

start

Figure 2. Start/stop behaviour: second model

passive

config debugMode true

+ start stop start stop
- stop

- start start

start

Figure 3. Start/stop behaviour: final model

second state there issaop transition back to the initial state, but
no further transitions. The third state is a 'dead state’ rotied
by asquare— and this is the result of &top move from the initial
state. The two traces: one negative and one positive, arffigisnt
to predict what happens whensaart call is made in the second
state.

So, we need to add another negative test case, statingdhiat st
ing a system that is already running will result in an errdre hew
FSM derived is shown in Fif] 3, where we now have an extraitrans
tion to the error state. This picture describes the compleitaviour
of thestart andstop functions and all sequences thereof. There-
fore, we are justified in concluding that the set containing pos-
itive and the two negative tests is sufficient for testingdtaat/stop
aspects of the system behaviour.

3.5 Writing negative tests in EUnit

When writing negative tests, we can either choose to spadifgh
exception should occur, or just match on any possible eiagpt
Many testers like the first alternative best, since one atstst
whether the code fails for the right reason. However, in @asec
the reason is not specified, and, by adding it to the test wiethma
possibilities in the design.

For example, if we were to decide that an initsalop raises an
exception with reasonot_running and were then to decide to im-
plement the server using the standard OTP behagenrserver,
then the error generated by the implementation would tep@oc
exception rather thamot_running, and so the negative test would
fail. We could change the exception sought, but rather them-o
specify the error exception, we choose the second alteenaltiove
and match on any possible exception.

stop_without_start_test() ->
?assertException(_,_,stop()).

start_twice_test_() ->
{setup,

fun() -> start([]) end,
fun(_) -> stop() end,
fun() -> 7assertException(_,_,start([])) end}.

If we stop a non running server, an exception is raised amtirgia
an already running server similarly raises an exceptioe.réason
for writing the last test case as a test geneffatdth set-up code,
clean-up code and actual test code is that EUnit raises apten
as soon as th@assertException would fail, e.g., when the
second start succeeds. In such cases one still wants tougbeamd
stop the already running server.

Translating EUnit tests to sequences

Although we used StateChum to derive a full set of tests by
first supplying the negative sequences and then writing dluié- a
tional test cases, we still strive after a translation frobmi tests
to these sequences. We extend therefore our translationcm s
a way that any command sequence in EUnit that ends with an
7assertException IS a negative tests and the translation of these
assertions is given by:
[?assertException(F1,E2, Fun(A1,...,An))] — Fun
[{setup,

fun() -> InitSeq end,

fun() -> StopSeq end,

fun() -> Seq end}] — [InitSeq Seq
Thus ignoring the cleanup code and assuming at most thedast a
sertion is an exception assertion, which determines thedds a
negative sequence.

Taking the examples given at the start of this subsection we

generate the sequences:

- stop
- start start

as shown in FigurEl 3.

3.6

We can now run the tests and all three fail with notificatioomp
ing to the fact thastart andstop are as yet undefined! We now
write the code for starting and stopping the sefiéus:

Initial implementation: start/stop behaviour

start(Fregs) ->
{ok,Pid} =
gen_server:start({local, ?SERVER},
?MODULE, Fregs, [1),
Pid.

stop() —>
gen_server:call (?SERVER, stop) .

%% callbacks
init(Fregs) ->
{ok, Fregs}.

handle_call(stop,_From, State) ->
{stop, normal, ok, State};

handle_call(_Msg,_From,State) ->
{reply,error,State}.

All tests pass and by having seen the correspondence betheen
test cases and the FSM in FId. 3, we have strong confidence that
adding more tests is superfluous and that we can proceed with

2Note the subtle addition of* after the function name, which transforms
a direct test into a test generator. Jée [6] for details.

3 An alternative implementation of the system is provided in Eof [4].



passive
config debugMode true
start stop start stop

allocate

- stop
- start
start

start start

allocate deallocate allocate stop

- start allocate allocate

Figure 4. Single frequency: second model

specifying the tests for the additional functionality dbakting and
deallocating frequencies.

3.7 Defining tests for a data-dependent state space

After having defined test cases for starting and stoppingdineer,
we would now like to allocate and deallocate frequenciesetfvér
or not allocation succeeds depends on the number of fretasenc
that are available. In other words, depending on how marmyfe-
cies we start with and how many allocations we perform, we get
different successful and failing test cases.

Starting by defining a set of test cases for four frequencies
would immediately result in a large number of possible alt@mn
and deallocation scenarios, let alone taking a realistcrgte of
several hundreds of resources. We therefore start by dgfthim
tests for systems with one and two frequencies availableveaic
sure that we get a complete set of tests for each of theséingus
that we can generalise from these to the general case.

3.8 Asingle frequency

A typical test case would be to allocate a frequency and then
deallocate it. Another typical test case would be to alledadnce
more after deallocation. Since the first test case is subdumthe
second one, we only write the second.

alloc_dealloc_alloc_test_() ->
{setup,
fun() -> start([1]) end,
fun(_) -> stop() end,
fun O ->
7assertMatch({ok,1}, allocate()),
7assertMatch(ok,deallocate(1)),
7assertMatch({ok,1}, allocate())
end
}.
Note that the frequency valueused here is arbitrary. (We assume
it to be more likely to find an error in the implementation bylandy
more different scenarios than by trying more different ealfor the
specific frequencies.) This test must allocate the same \mlice
since there is only one value to be allocated.

We use StateChum again to visualize the FSM, which is equiva-
lent to Fig B with the addition of an arbitrary allocatiomxladeal-
locations after starting the server. So, we do not capterésitt that
it is possible to allocate all available frequencies and #meerror
is returned in that case. In order to add a general test caskefo
exhaustion of frequencies, we need to know how many freqesnc
there are. We propose to get the tests right for one frequigrsty
then take the two frequency case and see if we can genenaise f
there.

stop

passive

config debugMode true

start stop start stop

stop

start start

start allocate deallocate allocate stop
start allocate allocate

deallocate

allocate

Figure 5. Single frequency: third model

Using StateChum we can quickly observe what happens if we
add a negative test for allocating two frequencies in caseniy
have one. The result is shown in Higl. 4 and it is immediatedaicl
that we have to add a few more test cases to make a sensihleepict
out of this FSM.

According to Figl, from the initial state we can perform a
deallocate and then amallocate. We need to exclude that
possibility by stating that deallocation (and indeed altmcation)
can only be done afterstart; this results in Fig.

In the FSM of Fig[® astart can only be followed by an
allocate, which after deallocation allows a new allocation. The
only strange part is that one camop indefinitely often after al-
location; one would like instead to haves@op transition back to
the initial state. In fact, it is good to observe this in a lsation
of a state space, since it is domain-dependent whether avneot
would allow a server that allocates frequencies to just stafhat
one would need to deallocate the frequencies first. In Eriaigy
most natural to perform the deallocation as side-effectag@ng.
We add a test to ensure that we can start again after stopping w
one allocated resource.

The tes® added for the server with one frequency are:

allocate_without_start_test() ->
7assertException(_,_,allocate()).

deallocate_without_start_test() ->
7assertException(_,_,deallocate(1)).

running_server_test_() ->
{foreach,
fun() -> start([1]) end,
fun(_) -> stop() end,
[fun() ->
?assertMatch({ok,1} ,allocate()),
7assertMatch(ok,deallocate(1)),

4EUnit allows to combine a few of these tests with thereach primitive
instead ofsetup



start

+ start stop start stop

- stop

- start start

+ start allocate deallocate allocate stop
- start allocate allocate

- allocate

- deallocate

+ start allocate stop start

- start deallocate

- start allocate start

Figure 6. One frequency: final model and StateChum test set

7assertMatch({ok,1},allocate())
end,
fun() ->
7assertMatch({ok,1} ,allocate()),
7assertMatch({error,no_frequency} ,allocate())
end,
fun() ->
7assertMatch({ok,1} ,allocate()),
7assertMatch(ok,stop()),
7assertMatch(Pid when is_pid(Pid),start([1]))
end] }.

Note that in the above test cases we use domain knowledgtete in

pret the error value returned from allocation as a negagisedase,
expressing the condition that starting the server and paifg two
allocations is impossible. Were we to be given an API for oer f
quency server that raised an exception for a failing allooathen

the test case would be identified as a negative test case mureh m

easily.

At this point we could conclude, if we were confident that all

the transitions shown are as expected. However, the State @fol
diagnostics for this input are:

#Prescribed: 5
#Proscribed: 5
#Unknown: 2

This output states that, of the twelve possible transitioribe ma-
chine, five make a transition to an accepting state and anfitiee
to the dead state: two transitions are as yet undetermirtezltwo
transitions in question are: whether it is possible to dealie be-

allocate

start

+ start stop start stop

- stop

- start start

+ start allocate allocate deallocate allocate
deallocate deallocate stop

- start allocate allocate allocate

- allocate

- deallocate

+ start allocate

+ start allocate

- start allocate

- start allocate

- start allocate

stop start

allocate stop start
deallocate deallocate
start

allocate start

Figure 7. Two frequencies: final model and StateChum test set

fore any allocation, and, whether it is possible to startritaehine
again after the one frequency is allocated.

We can rule these out with two negative test sequences that
come at the end of the complete set of cases listed in[Fig. 6 and
these generate the machine in that figure. The data mightappe
to be skewed in favour of the negative tests: there are 7 inegat
and 3 positive tests. However, noting the prefix-closureperty
of the positive tests, we can see these three tests as empddyi
distinct positive test cases, and under this interpratatie have of
the same order of positive and negative tests.

Translating EUnit tests to sequences

We need to extend the translation of EUnit tests toftheeach
construct, which is equivalent to the translation of selveeaup
commands. In addition we have to add that an assertion that
matches an error produces a negative sequence. As expldired

is somewhat controversial and probably one would like t@rE

the design to raise an exception instead.

3.9 Two frequencies

Now we look at the case where there are two frequencies to be
allocated, and develop a set of tests along the lines of tlee on
frequency machine in Secti@nB.8. The set of tests — destiibe
StateChum input format — are shown in FIb. 7.

The greyed-out tests are identical to the previous casdewhi
the other tests are developed by a similar process to thadtdh
B38. Counting distinct prefixes as separate tests, we hapesifive
tests and 8 negative ones. A number of the later tests aralietio
avoid loops, such as looping on stop behaviour rather trarmiag



the system to the start state when it is stopped; others prevent
starting a system that is already running, whatever stéerit

Note that in the EUnit tests the specific frequency that we

allocate and deallocate was not significant when there vea®pe

frequency available. However, now that we have two fregigsnc
to choose from, a choice has to be made about which frequency
is to be allocated. Now we have either to specify in our teseca

how the algorithm implements the choice, or to abstract gway
the allocation algorithm. In EUnit tests this differencenifiests
itself as the difference between the following two test sagethe

first case, the test requires an implementation that takgsiéncies

from the head of the list:

twofreq_server_test_() ->
{setup,
fun() -> start([1,2]) end,
fun(_) -> stop() end,
fun() ->
7assertMatch({ok,1} ,allocate()),
7assertMatch({ok,2},allocate()),
7assertMatch(ok,deallocate(2)),
7assertMatch({ok,2},allocate()),
7assertMatch(ok,deallocate(1)),
?assertMatch(ok,deallocate(2))
end}.

The alternative is a test that does not enforce any order en th

allocation of frequencies:

twofreq_server_test_() ->
{setup,
fun() -> start([1,2]) end,
fun(_) -> stop() end,
fun() ->
7assertMatch({ok,F1} ,allocate()),
7assertMatch({ok,F2},allocate()),
?assertMatch(ok,deallocate(F2)),
7assertMatch({ok,F3},allocate()),
7assertMatch(ok,deallocate(F1)),
?assertMatch(ok,deallocate(F3))
end}.

The latter test seems preferable in a test-driven developpre-
cess, since it does not over-specify implementation detiibre-
over, if the set of frequencies is extended to contain maae ttvo
frequencies, the test makes still sense without having-evatuate
how the choice of frequencies is actually implemented. im¢hse,
itis likely that re-use of frequencies is preferred to assig as-yet-
unused frequencies.

3.10 Data abstraction

With the translation of EUnit tests to sequences for StateCive
abstract from the data in the EUnit test cases. Accordingad\PI
of the frequency server, thetart and deallocate operations
are parameterised by a list of frequencies and the frequieniog
deallocated, respectively. These parameters play diffectes.

e The list parameter is thetart value for the particular run of
the server, and it can be any legitimate integer list; of seur
its size will constrain the behaviour of the system, but tak ¢
to start is bound to succeed if and only if the system is not
already running. This (pre-)condition is encapsulatedha t

structure of the FSMs seen in Fifs. 6 &hd 7.

On the other hand, the parameterdieallocate is assumed
to be a frequency that is already allocated. This condit®n i

that there aren frequencies available, this would give rise to
some2” states, each one representing a different subset of the
n states having been allocated.

So, we can safely abstract in our EUnit tests from the specific
frequency that is returned byllocate, i.e. we do not need to
know the exact allocation algorithm. But, we cannot eadilsteact
from the specific frequency that is passeddallocate; that
frequency has to be remembered in our test case. Therelfmre, t
abstraction

- start allocate deallocate deallocate

is only a valid abstraction if both deallocations refer te game
frequency. This means that the translation from EUnit tases to
sequences that we have developed fails in some cases, stii$t as

twofreq_server_test_() ->

{setup,

fun() -> start([1,2]) end,

fun(_) -> stop() end,

fun() ->
?assertMatch({ok,F1} ,allocate()),
7assertException(_,_,deallocate(3-F1))
end}.

One solution would be the ‘hard-wiring’ of the frequencias-d
cussed earlier, which would involve two allocation opemas,
allocatel and allocate2 and two deallocation operations,
deallocatel anddeallocate2. However the state machine re-
sulting from that approach suffers from an exponentiakstaplo-
sion (as described earlier).

Instead we use another abstraction. We can ‘loosen’ our inode
so thatdeallocate (N) can be applied whether or nbthas been
allocated or not. A problem with this is that this makes théVIFS
non-deterministic, since in the case thias not already allocated
the result of the transition will be that the set of availaftiates is
unchanged.

We can then interpret an exception for a deallocation as sipos
bility in a positive sequence, which is similar to changihg API
for thedeallocate function so that

-spec deallocate(integer()) -> ok | error.

with the error result indicating that no actual reallocation has
taken place, because the argument frequency was not aitbaafe
can then distinguish the normal termination and error teatin

by translating the EUnit

?assertMatch(error,deallocate(...))

into a failDA operation. This would restore determinism in the
model. Taking this approach, we add thei 1DA transition and the
following test cases to those in FIg. 7

+ start failDA stop

+ start failDA failDA stop

- start allocate failDA allocate allocate
- start allocate allocate failDA

- failDA

and obtain the state machine of Hijj. 8. However, the tradonslaf
EUnit tests to sequences needs to be adapted to treat cemtain
cases as part of a positive sequence and others as makirgsthe t
case negative. This requires the user to specify the difte®and
therefore this method is not entirely satisfactory if fult@amation
is the goal.

As shown in Fig[B, this resolves all thailDA operations,
which are only permissible when zero or one frequencies bega

not something that can be modelled in the FSM without ‘hard allocated. The labels on the transitions to the ‘dead’ $tate been

wiring’ the set of frequencies into the FSM itself. Suppasin

elided for readability in the figure.



failDA
allocate

deallocate .-

failDA

Figure 8. Two frequencies with failed deallocatiofiailDA

3.11 One, two, many ...

A pattern is emerging in FigEl 6 afifl 7: an FSM to model the serve
with n frequencies will have+3 states: an initial state, a dead state

new tests cases that actually test meaningful sequendexvared
by the EUnit tests.

As demonstrated in the previous section, we use StateChum to
generate a state machine from the EUnit tests in order tarobta
states names and their transitions. We may potentiallyargthe
state machine by adding tests cases, but, as explainec:péfer
data part restricts us to test cases with only little datalirad.

Now we translate the obtained state machine in a QuickCheck
specification.

4.1 Sequence of calls

Each state obtained by StateChum is translated into a umbayde
callback functiofl that returns a list with possible next states and
the transitions thereto. For example, the state machinerided

in Fig.[d has 3 states; state names are randomly chosen hyaihe t
but manually translated into something meaningful,isétystarted
anderror. Frominit there are two possible transitions and in the
QuickCheck libraryeqc_fsm, this is specified thus:

init (L) ->
[ {started,{call,?MODULE,start, [nat()]1}},
{error,{call, ?MODULE,stop, [1}}].

started(.) ->
[ {error,{call,?MODULE,start, [nat(0]}},
{init,{call, ?MODULE, stop, [1}}].

andn -+ 1 states representing the different numbers of frequencies error(_) ->

that have been allocated.

We contend that the case of allocation from a set of two freque
cies should be sufficient to test the general case, sinclwaus
to examine the case of allocation and deallocation when $mne
guencies have been allocated and some not.

Of course, it is possible for an implementation to have speci
case ‘Easter ediibehaviour for particular collections of frequen-
cies, but any finite set of tests will be vulnerable to this.i8aking
the assumption that our implementation is generic in thgueecy
set we repeat our contention. Probably a careful testerdvexd
tend the model to contain three resources in order to be albéest
re-use of a frequency in the middle, but it seems a large imeargt
to go any further than that. We have already to define 17 E¥sist
to capture the behaviour of two frequencies and 20 to caphae
behaviour of three frequencies. This corresponds to at@ifulides
of Erlang test code for an implementation that is itself $emdhan
that.

If one is interested in testing even more possible comlonati
of allocating and deallocating resources, one would rajbaerate
a large number of random combinations for a random collectio
of frequencies. We can do precisely this by using the Quigdkh
finite state machine library to generate the test cases.

4, QuickCheck finite state machine

QuickCheck comes with a libraryeqc_fsm) for specifying test
cases as finite state machines. Given a few callback furscfmm
this state machine, the QuickCheck machinery is able torgeme
and run test cases that are sequences generated from thieaekca
functions.

Here we present an approach to generate QuickCheck stat
machine specifications from EUnit tests in contrast to theemo
common manual generation from informal specifications &f th
software under test. The advantage of using QuickCheck,eas w
will see in this section, is that with little extra effort, vget many

5Some hidden message or feature, coded as a surprise insoémdother
artefacts.

()

1.

Note that FiglB has no arguments for the functions; thigimfdion

is present in the EUnit tests, but not in the abstracted stathine.
Therefore, we have to retrieve it from the EUnit tests. Asthi
moment we may realize that starting the server with an enigty |
and a list with only one element has been a completely arbitra
choice in our EUnit tests. In fact, we would like to start tleever
with an arbitrary, positive number of frequenciest ().

Each transition is encoded as a tuple with first argument the
name of the next state and as second argument a symboliocall t
an Erlang function, in this case tkeart andstop functions in
the module tMODULE) we define our specification in, which dif-
fers from the implementation modufrequency.erl. The rea-
son for a local version of the start and stop function is that w
expect these to potentially raise an exception and simiahe
assertException in EUnit we have to notify QuickCheck that
exceptions may be valid. Moreover, we use a maximum number of
frequencies to compute the list with consecutive sequeinctdse
start function.

start (Freqs) ->
catch frequency:start(lists:seq(1,Fregs)).

stop() —>
catch frequency:stop().

In the EUnit tests, the return values of the calls to startsiod are

checked in the assertions. These assertions translafgasttcondi-

tions in the QuickCheck specification. Postconditions atbacks

with five arguments: &rom state, alo state, the data iRrom state,

the symbolic call and the result of that call. Thus, we chétkt t
indeed the positive calls return the right value and thatnekier

we enter the error state, it was because of a call that raisest-a
ception.

postcondition(init,started,_,{call,_,start,_},R) ->
is_pid(R);

6The argument of the state is the state data.



postcondition(started,init,_,{call,_,stop,_},R) ->

R == ok;
postcondition(_From,error,_,{call,_,_,_},R) ->
case R of
{’EXIT’,_} -> true;
_ => false
end.

Finally, we need to write a QuickCheck property to run the tes
cases. First an arbitrary sequence of start and stop consmand
created using the state machine description and then thaesee

is evaluated. In order to make sure that we start in a knowe sta
(even if a previous test has failed), we both stop the frequen
server at the beginning and end of each test, relying on ttoh ca
when the server is not running.

prop_frequency() ->
?FORALL (Cmds , commands (?MODULE) ,

begin
stop(Q),
{H,S,Res} =
stop()
Res == ok

end) .

run_commands (?MODULE, Cmds) ,

4.2 Adding state data

The advantage of running many different sequences of stgatid
stopping the server may not be so obvious for this example rdal
benefit of using a QuickCheck state machine specificatiomwsho
when the state data is used to represent the allocated freigse

We choose to use the state machine from Hig. 7 as our starting

point. In the statestartedwe should add a transition to a state in
which one frequency is allocated. From that new state, water@
transition to yet another one where two frequencies areatial,

[elements(S#freq.used)]}}
[l N> 0] ++
[ {init,{call,?MODULE,stop, [1}}]1.

error(_) ->

1.

The list comprehensions are used to lazily compute the géaien-
eter and only include the alternatives that are valid for plaaticu-
lar state. Starting an already started server may take goyremt,
hence n@MAX there but an arbitrarty positive number.

The deallocation functions depends on the state data. As an
argument todeallocate we supply an arbitrary element of the
list S#freq.used.

In order to successfully test these cases, QuickCheck reed t
know more about the state data. This is achieved by definiltg ca
back functions that operate on the data.

The state data gets modified by thext_state_data callback
function, which takes five arguments. The first argumentdsstate
from which the transition originates and the second argurtien
state that the transition leads to. The third argument istidtte data,
i.e., the record that we defined above. The fourth argumethteis
(symbolic) result of the evaluation of the symbolic call hetlast
argument.

next_state_data(_,_,S,V,{call,_,start, [Max]}) ->
S#freq{used=[], free=lists:seq(1,Max)};
next_state_data(_,_,S,V,{call,_,allocate,[1}) ->

case S#freq.free == [] of
true -> S;
false —>

S#freq{used=S#freq.used++[V],
free=S#freq.free—-[V]}
end;

etc. Of course, the state names have to be generalised ansewe u next_state_data(_,_,S,V,

QuickCheck’s support for parametrized states, i.e. eaate s
represented by a tuple of which the first argument is the statee
and the second argument is a parameter, the number of &ltbcat
frequencies in our case.

Note that the state machine in F[J. 7 was obtained from tests

with two frequencies and is in fact an abstraction of test# wi
two allocations. We would like to generalise this to an asbit
number of frequencies, but start with setting a maximum abr2 f
the moment.

-define (MAX,2).

We introduce a record to represent an abstraction of the stahe
frequency server: the free frequencies and the used fretsen

-record(freq,{used=[1, free=[1}).

We rename the statgartedinto allocated and add appropriate
transitions. We fix the maximum number of allocations to 2 and
deallocation of frequencies that have not been allocateaithly
added as a transition.

init( ) ->
[ {{allocated,0},{call,?MODULE,start, [7MAX]}},
{error,{call, ?MODULE, stop, [1}}
1.

allocated(N,S) —->
[ {error,{call,?MODULE,start, [nat(01}} 1 ++
[ {{allocated,N+1},{call,?MODULE,allocate, [1}}
[| N < ?MAX] ++
[ {error,{call,?MODULE,allocate, [1}}
[| N == ?MAX] ++
[ {{allocated,N-1},{call,?MODULE,deallocate,

{call,_,deallocate, [Freql}) ->
S#freq{used=S#freq.used--[Freq],
free=S#freq.free++[Freql };
next_state_data(_,_,S,V,{call,_,stop,[1}) ->
S#tfreq{used=[], free=[]}.

In this way, we know which frequencies are allocated and kvhic
are free. Note that if all frequencies are allocated, theallanation
will result in an error and the state stays unchanged.

Similar to the start and stop command before, we add local
commands for allocation and deallocation. This time we bee t
local function to modify the return value, since our modelleaner
when we get a frequency returned frafilocate:

allocate() ->
case frequency:allocate() of
{ok,Freq} -> Freq;
Error -> Error
end.

deallocate(Freq) ->
frequency:deallocate(Freq).

Finally, we add postconditions for allocation and dealtmrato
complete our QuickCheck specification.

postcondition(_,_,S,{call,_,allocate, []1},R) ->
case R of
{error,no_frequency} ->
S#tfreq.free == [];
F when is_integer(F) ->
lists:member (F,S#freq.free)
end;



stop()
34%

stop()
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stop()
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deallocate(_)
34%

Figure 9. Visualization of QuickCheck specification

postcondition(_,_,S,{call,_,deallocate, [Freq]l },R) ->
R == ok;

This specification can be used to generate many differenesegs
of calls to start, allocate, deallocate and stop. Quick&ltaa com-
pute a fair distribution for the occurrences of the commasdsh
that we increase the likelihood to obtain sequences thatitdllo-
cate all available resources instead of just starting aspstg the
server all the time. In a visualization of the QuickCheckestaa-
chine the weights for each transition are provided as a peage
(see Fig[D).
A typical example generated with this state machine could be

test case like:

{set,{var,1},{call,frequency_eqc,start, [2]}},
{set,{var,2},{call,frequency_eqc,stop, [1}},
{set,{var,3},{call,frequency_eqc,start, [2]}},
{set,{var,4},{call,frequency_eqc,stop, [1}},
{set,{var,5},{call,frequency_eqc,start, [2]}},
{set,{var,6},{call,frequency_eqc,allocate, [1}},
{set,{var,7},{call,frequency_eqc,allocate, [1}},
{set,{var,8},{call,frequency_eqc,deallocate,
[{var,6}1}},

{set,{var,9},{call,frequency_eqc,allocate, []}}

4.3 Additional error transitions

There is still a subtle difference between the QuickChedgltest
machine in FiglP and the state machine obtained from EUsii$ te
in Fig.[d, viz. a number of transitions to the error state aigsing.
For example, the deallocation in the state with zero alkxtat
frequencies leads to the error state in Elg. 7. We have neglélis

case in our specification, but we can add it by adding one more

transition to the state defining callback functirilocated:

[ {error,{call,?MODULE,deallocate,
[elements(S#freq.free)]}} || N == 0] ++

Note that we must pick a frequency from the free frequencies,
since none is in use yet. Alternatively, we could take anyti@ty
frequency usingiat ().

Thenext_state_data function can stay as is since we jump to
the error state and no more transitions are allowed fronettence
the specific state of the server is not important. The posiition
has, of course, to be adapted, since a transition to the staite
should be caused by an exception:

postcondition(_,To,S,{call,_,deallocate, [Freq] },R)
when To =/= error ->
R == ok;

Tests generated from this specification expect an exceptisad
when we deallocate after starting the server. We need to edtth
in the local function ofdeallocate as well. However, when we
run the tests against our frequency implementation, werobta
mediate feedback from QuickCheck that the postconditidrkie
deallocation is falsified. In other words, our implemerdatfol-
lows the specification and indeed always li&@llocate return
ok.

Inspecting the EUnit test cases shows that indeed we nester te
starting the server and then deallocating. The transitioRig.[1
was added because of insufficient information. In fact, oae ¢
argue that the transition should not be there at all, butitizatrrect
deallocations are either not allowed, which should be gueea by
the clients of the server, or that the specification of the gtRiuld
be enriched with a possible error result &zfallocate.

Rather would we now add a transition that deallocation dof fre
resources should have no effect. This can be done by additlgean
transition to the state machine:

[ {{allocated,N},{call,?MODULE,failDA,
[elements(S#freq.free)]}}] ++

We usefailDA instead ofleallocate to avoid getting ambiguous
transitions in the state machine. QuickCheck cannot coengoiod
test case distribution when the model is ambiguous.

The £failDA function is simply calling the deallocation in the
implementation module. The next state functionfat1DA leaves
the state untouched and the postcondition checks thak as re-
turned. When running QuickCheck with this property we foand
error in our implementation, since we expected the cliemtsbey
the rule that they would not release the same frequency tavide
always added a released frequency to the list of availabbpiBn-
cies. This gave a list with duplicates in the newly conseddest
cases and the postcondition farlocate found the mismatch by
checking that the given frequency is indeed free.

4.4 Increasing number of frequencies

With the definition of the macrtlAX we can now easily create a
state machine that tests sequences that have 4 frequendiedl a
possible combinations of allocations and deallocatiore dnly
thing to do is to recompile the code with a larger constant, Bu
testing with a small number of frequencies thoroughly masaé
more faults than when testing a larger number of frequeninies
less exhaustive manner.

The QuickCheck specification is about 100 lines of code, whic
is similar to an exhaustive EUnit test suite, but it coversidew
range of tests. For larger, more realistic example, the cizbe
QuickCheck specification tends to grow less fast than an st
suite does.

5. Related work

In this section we examine related work in test-driven depelent,
grammar inference and testing methodologies.



Test-driven development 6. Conclusions and Future Work

As we mentioned in Sectidd 2, Beckfsl [4] answers a number of We have shown the value of extracting the finite state machine
frequently-asked questions. In replying‘tdow many tests should implicit in a set of EUnit tests not only for understandinge th
you write?” he provides a simple example of a function to classify adequacy of the tests developed as a part of the processtof tes
triangles: this elicits an answer inspired by equivalenagiton- driven development but also in defining a QuickCheck FSM Wwhic
ing. No state-based systems are discussed. The quékiiondo can be used for property-based testing of the system unstefrie
you know if you have good testsf&lates to the quality of individ- doing this we noted a number of points.

ual tests, rather than the effect of the collection as a whole

Fowler advocates mutation testing as a mechanism for éisgess
the adequacy of a set of tedfs][21]. AstEls [3] in discussid® Tor
Java also advocates mutation testing with Je§ter [13], disase
code coverage analysis with Clovel [9] and NoUhifl [16].

Of course, these methods can only be used when there is an

implementation to hand. In the context of TDD there is a danty
to this, since the implementation has been developed sgedbjfio
meet the set of tests. By contrast, our method gives feedimatte
test set independently of any implementation.

Random testing

Random testing for functional programs was first introdubgd
QuickCheck for Haskell[I8] and more recently developed for E
lang [1]. It has also inspired related systems for Schensndsird
ML, Perl, Python, Ruby, Java, Scala, F# and JavaScript.
QuickCheck testing is based on the statement of logioa-

ertieswhich are then tested for random inputs generated in a type-

based manner. Simple logical statements of propertiescsufir
functional behaviour; state based systems are tested binglri
them from an FSM which gives an abstract model of the system.
Fuzz testing or fuzzind[20] is a related technique usedgart
ularly with protocol testing, an area where QuickCheck FSkis
also be used. Fuzzing is a “brute force” approach, typicgéy-
erating inputs at random, rather than having their germrdieing

guided by a model such as an FSM. Fuzzing is perceived, howeve

as a mechanism providing a high benefit:cost ratio.

A comprehensive overview of other approaches to random test

ing is given in Pacheto’s thes[s]17]. Pacheto’s thesis eksmines
ways that random testing can be 'directed’ with extra tesiad
generated as a consequence of examining the results ofiakza
ecuted test cases.

Inference and testing

There is a substantial literature on inferring higher-lesteuctures
from trace or event-based data. Among the earliest is Codk an
Wolf’s [[0] which infers an FSM from event-based trace data.
More recent work by Artziet. al. [2] uses those techniques to
general legal test inputs — that is legal sequences of cald’is
—to OO programs, again based on execution traces; this piguer
provides a useful overview of other work in this area. Wedkiaw
and others[[24] use the Daikon tobl]12] as part of an intéract
process of model elicitation.

Daikon implements invariant inference, and has been egténd
to the DySy tool[[TlL] which augments the Daikon approach thase
on test set execution with dynamic symbolic execution. Xid a
Notkin [2€] infer specifications from test case executioasd
based on this develop further test cases.

Our approach differs from these in being based on the tesscas
themselves rather than on their execution: it can therdferased
independently of any implementation.

The Wrangler refactoring tool for Erlanf_[25] provides aton
detection and elimination facilitie§ [lL5], and in the ldteslease
(0.8.8) implements the facility to transform a cloned tegbia
QuickCheck property, thus generalising the range of ptssists
of the system.

e The negative tests — that is those that lead t@atror value
of some sort, raise an exception or cause another form af erro
— are as important as the positive tests in delimiting theecor
behaviour of the system implicit in the tests. This is dueartp
to the nature of the extraction algorithin[23] but is also due
to the fact that without these tests there would be no explici
bounds on the permissible behaviour.

¢ \We assume that we can extract the call sequences within tests
by static examination of the test code. This is not unredslena
since many test cases consist of straight line code, phatigu
for the state-based systems that we examine here.

e Some aspects of the process can be automated with ease, in-
cluding the extraction of the function call sequences amd th
naive conversion of an FSM into QuickCheck notation. Others
require manual intervention, including the choice of daak v
ues for the ‘small’ states and the choice of state data for the
QuickCheck FSM.

e Given that the model we develop is an abstraction of the ac-
tual system, it is natural for non-determinism to creep th®
model. This can be resolved by renaming some of the transi-
tions to avoid non-determinism. The old and new transitars
then be seen as having pre-conditions which will be explicit
the QuickCheck model.

The next step for us to take is to refine the process described
here into a procedure which automates as much as possible of
the FSM development. This will allow QuickCheck properties
state-based systems to be extracted from tests in a seomaigd

but user-guided way.
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