Extending Object-Oriented Database Concepts
to Support a Wider Range of Applications

Dr. Elizabeth Oxborrow
University of Kent at Canterbury
October 1993

ABSTRACT

This paper primarily addresses the issue of what we really mean by ‘Object-
Oriented Databases’. It is argued that the conventional view of an object-oriented
database (OODB) - with the main object-oriented features consisting of object identity,
classification, specialisation, composition and encapsulation — is rather basic and has
limited applications. In order to more adequately support both non-traditional database
applications and traditional ones, and provide continuing support into the future, a
broader view is essential. Features, such as explicit relationships, version management,
arbitrary collections, and multimedia support, should be available as standard. Examples
are provided to illustrate applications which require these enhanced features.

1 INTRODUCTION

There has been much debate about what object-orientation means — about what can be considered to be
object-oriented and what cannot — and as a result, there are many interpretations of the object-oriented
paradigm (Blair 1989, Blair 1991). This debate has been carried out primarily in the context of object-
oriented systems and programming languages in general. However, there is much more agreement on the
main object-oriented (OO) features of an object-oriented database management system (OODBMS), partly
as a result of the way in which database technology has evolved. An OODBMS must be able to provide the
standard functionality of a traditional DBMS, but additionally it should provide enhanced semantics,
behavioural support and an object-based data model. These additional features are considered to be the OO
features of an OODBMS, but enhanced semantics have been supported by data modelling methodologies
and techniques for many years.

Well before the era of OODBMSs, it was realised that a data model representing a network,
hierarchical or relational database does not adequately reflect all the structural semantics of the real world
application on which the model is based. Hence, various data modelling methodologies and techniques
were developed. The ERM (Entity-Relationship Model) approach was probably the first of these to be
widely used; this approach originated from work by Chen (1976) but has subsequently been developed to
embrace a wide range of semantic information. In the 1980s, there was a great deal of research in the area
of semantic data models (SDMs) (Abiteboul, 1987; Hammer, 1981; Hull, 1987; Peckham, 1988).

Enhanced semantics are common to both SDMs and object-oriented programming (OOP) and an
object-based data model has some similarities with the entity-based data models of SDMs; hence, it can be
argued that, in terms of concepts, only the behavioural support is really ‘new’ in a basic OODBMS.
However, there are a number of other features which, though they may not be considered to be essential at
present, will be essential requirements for future OODBMSs. These features are object-based, and support

for them is facilitated by an object-oriented approach.

2 FUNDAMENTAL OBJECT-ORIENTED FEATURES

An OODBMS is obviously a DBMS and must therefore provide standard DBMS facilities which include
persistence, a query facility, and underlying data management facilities such as secondary storage
management, concurrency and recovery. In addition, of the eight mandatory OO features discussed in
Atkinson (1989), five are fundamental and it is generally agreed that they must be supported by a DBMS
before it can be considered to be an OODBMS. The consensus on these features is partly due to their
consistency with traditional DBMS concepts; in fact, similar features are now accepted by the supporters
of traditional approaches (Stonebraker 1990), and relational DBMSs are being enhanced to support them.

The fundamental OO features are:

. the object concept with unique object identity

. the distinction between types and classes

. specialisation (also known as inheritance, ‘is-a” hierarchies, subtyping, subclassing)
. composite objects (also known as part-component or ‘part-of” hierarchies)

. encapsulation of structure and behaviour (complete objects)

These features can be illustrated using the example in figure 1. The various aspects of the example are
explained below and the terms used are consistent with those of the OMG (Object Management Group)
object model (Soley, 1992).1

The diagram in figure 1 represents an instance of a particular object with unique object identity
12345. The object identifier is shown in a dotted ellipse as it is system defined; it is also independent of
the application of which it forms a part in the sense that it does not depend on any of the object’s properties
or characteristics.

The type of an object, which determines its structure and behaviour, is defined by its interface (the
object interface is the collection of signatures of each of the public (externally visible) operations —
Display(), Title(), etc.; the interface does not include the implementation of the methods). Object 12345
belongs to the class of objects of type Library Book which share the same implementation.

This object is specialised in that whereas all books in a library possess publication information, an
accession number and the relevant operations, not all books have a shelf component and participate in an
on-loan relationship with corresponding operations. The library may also have other types of specialised
book, e.g. confined books which are subject to restricted access and reference books which cannot be lent
out and are stored in particular locations in the library.

The library book can also be considered to be a composite object. A composite object is an object
which is built from components which are concrete or abstract objects in their own right but are considered
to be part of the containing object (hence the use of the term ‘part-of hierarchy’). A component is
conceptually or spatially contained within some other object and is generally existence-dependent on that
object. A car is a simple example of a composite object; its components — engine, body, wheels, etc. —
possess a humber of properties of their own and are concrete objects spatially contained within the car.
Returning to the library book, the publication information is an example of an abstract component
conceptually contained within another object. (However, it should be noted that this is not the only way to
model library books with their publication information.)

Finally, the example shows the book as a complete object. Its structure (components, relationships,
constraints) and behaviour (operations) are all encapsulated within the object.

All these features are provided to some extent by the main OODBMSs currently available or under
development (e.g. O2 (O.Deux, 1991), Itasca/Orion (Kim, 1990), GemStone (Butterworth, 1991) and many
others).

1 Note: The OMG draws its membership from the computing industry; it aims to provide standard interfaces for inter-
operable software components based on the object-oriented paradigm.

Display()

Title()
Accession—Num()
Recent-Book()

Publication Info

Isbn -
Title
- —123—X
0-99999 3 Another DB Book

Year—Pub Author
1993 . Bloggs, J. Age-of-Book()
Getlsbn() -
Setlshn() Publisher

GetTitle() Bestbooks Ltd Accession—Num
SetTitle() 192837
Shelf
Computing
on—loan
87878

Key:

o = Object = real-world entity (including data, structural and behavioural semantics)

> = Component (may be an Object or Attribute) [= Operations

Lo > = Object identifier <> = Relationship ———=F | = 'Public’ operations

(with another object)

Figure 1 A Library Book Object

Notes:

Attributes may be of various types
(including ‘object’ for components and related objects)

An object of type ‘class’ is generally used
as a container for the specification and implementation,
as a factory for the creation of instances, and
as a container for the instances

Figure 2 The Basic Object Model

The basic object model which supports the features is illustrated in figure 2. As can be seen, it is
quite a simple model. Objects have unique identifiers, at least one method and an optional collection of
attributes. The methods provide access to the attributes, which may be of any standard type (string, integer,
etc.) or of type ‘object’ (reference or pointer to object). All relationships with other objects, including
component relationships (implicit in composite objects), are represented by attributes of type ‘object’,
while specialisation is indicated by specifying the object’s ‘supertype’ (via an ‘is-a’, ‘inherits-from’ or
similar clause in the definition). An object’s type definition is generally specified in a class definition,
which means that class and type are synonymous. Class is therefore an overloaded concept, embracing the
type definition, acting as a ‘factory’ for creating objects belonging to the class, and also representing the
container for all objects belonging to the class.

3 WHY THE FIVE OBJECT-ORIENTED FEATURES ARE IMPORTANT

Unique object identity is essential if an object-based data model is to be supported and it facilitates
enhanced semantics; specialisation and composition are concerned with semantics from a structural
viewpoint; encapsulation is concerned with behavioural support and is fundamental to the OO paradigm;
and the distinction between types and classes provides further semantic richness from a behavioural
viewpoint. These aspects are considered in more detail below.

3.1 The Object Concept with Unique Object Identity

The object concept means that everything is viewed as an object. Each object may represent a concrete or
abstract self-contained thing in which we are interested. In order that an object may be related to and
interact with other objects, it is important that it should be able to be uniquely identified. The object must
be able to exist independently of its properties (attributes, methods, etc.) as these may change over time, so
the object identifier must purely act as a surrogate for the object.

Uniqueness and independence of the object identifier not only makes it easier to support interactions
and relationships between objects, but it is also easier to support complex objects (incorporating both
specialisation and composite object features), different views of, and interfaces to, objects, and evolution of
objects.

3.2 The Distinction between Types and Classes

The specification of the properties belonging to an object (sometimes referred to as the interface to an
object) defines the type of the object. The type of an object is not concerned with implementation, and
hence an object specification should be implementation-independent. The class of an object not only
defines the type of the object but also its implementation. All objects belonging to a particular class
conform to the type associated with the class and have the implementation defined for the class. Two or
more classes may have the same type associated with them but different implementations; hence, two
objects which belong to different classes may conform to the same type but have different implementations.

As mentioned above, the class concept is an overloaded concept. In some systems/languages (e.g.
C++), it is used for type/interface specification (e.g. C++ headers) as well as implementation definition.
Apart from these two functions associated with class (the first of which should really be associated with
type), a class may perform other functions. It commonly acts as a ‘factory’ for creating objects (c.f. C++
constructors), but this function need not be associated with the class concept - it could be treated as a
separate function. In an OODB environment, a class also performs the function of representing the
collection (set) of objects belonging to the class (i.e. having the same type and implementation); it is the
OO equivalent of a relation in relational DBMSs.

If type and class are intimately connected (as in C++ and many existing OODBMSSs), object base
design flexibility is limited, a class being the only construct generally provided as a building block for
complex objects and collections of objects. Due to the fact that the new applications requiring data
management facilities often consist of more complex objects than those of the traditional data management
applications, the extra flexibility offered by distinguishing between type and class is particularly useful.

3.3 Specialisation

Specialisation enables variations between otherwise fairly similar objects to be catered for, and hence
provides more sophisticated classification of objects. Objects of a particular generalised type may possess
specialised features which are significant in the context of an application. For example, some employees
may be salespersons possessing a commission property in addition to the properties possessed by all
employees; other employees may be managers, secretaries, accountants, etc.

In traditional systems, employees, salespersons, managers, etc. would be treated as though they were
different entity sets (being represented by different relation or record type descriptions). Hence, a particular
salesperson, for example, would appear as two separate ‘entities’ in the database; to create that person as a
single entity, the separate records would need to be combined by the user. In an OODBMS, on the other
hand, a single entity would be represented logically by a single object.

3.4 Composite Objects

Composite objects occur naturally in the real world. Many objects are built from other objects or,
conversely, are part of other objects. In traditional systems, the conceptual or spatial containment implied
by composite objects cannot be represented explicitly. The component objects must be modelled as
separate objects, with the composite object being related to the component objects.

3.5 Encapsulation of Structure and Behaviour

The most important aspect of encapsulation from an OODBMS viewpoint is that it enables objects to be
completely defined. Traditional DBMSs only support the data aspects of entities, although recent
enhancements to some systems provide some support for functional aspects (the ability to define
procedures associated with the entities in a database). The advantages of OO encapsulation are many.

Firstly, the integration of the data (structural) and functional (behavioural) properties of an object is
an aid to application design. When traditional methodologies are used, it is not uncommon for separate
teams to work on the data and functional aspects, and it is also not uncommon for there to be problems
when trying to integrate the results. The entities and their data properties which are identified in the data
modelling and database design stages are defined in the database; the functional aspects which are
identified in the functional analysis and design stages are defined in the application program, but it is
unlikely that the functions/procedures can be associated one-to-one with the entities in the database. This
mis-match can give rise to problems in maintaining the database and applications, as well as in their
integration during implementation.

A second advantage of encapsulation is that the resulting ‘complete’ objects more closely reflect our
own view of the real-world equivalents. Hence, an object-oriented approach should provide a better basis
for end-user communication and involvement in the analysis and design processes.

A third advantage is that it offers great potential for the development of diagrammatic techniques and
notations for use in graphical user interfaces (GUIs). This is of benefit not only to application designers but
also to end-users. In traditional analysis and design methodologies, different techniques and diagrammatic
notations apply to the data and functional aspects, and these are database- and program-oriented rather than
being real-world oriented. Although the object-oriented analysis and design techniques which have so far
been developed tend not to be particularly well-integrated and user-friendly, the potential exists with the
object-oriented approach.

4 WHAT'SNEW?

Most of the object-oriented features mentioned above are recognisable as semantic data model (SDM)
features — entities with unique identifiers, classification (though without the distinction between class and
type), specialisation and composition. SDMs were an important area of research in the 1980’s; they
provided enhanced modelling facilities but did not ‘take off’ as implemented systems. What OODBMSs
can offer is the ability to implement the SDM features directly, providing a close mapping between data
model design and database implementation.

The object-oriented feature which is really ‘new’ (as far as DBMSs are concerned) is encapsulation.
From the viewpoint of a single object, encapsulation means that the object can be designed to be complete
in terms of structure and behaviour. However, although this is new, it is not really revolutionary; it can be
considered as a further enhancement to database (DB) concepts which are already familiar to DB
specialists. (As an aside, object-oriented analysis and design can be considered to be more revolutionary,
but that is a topic for discussion in its own right and beyond the scope of this paper.)

5 WHAT MORE DO WE NEED?

Object technology can offer much more than just the commonly-accepted features discussed above. The
object concept is the key to much greater flexibility. The notion that an object represents a concrete or
abstract thing (i.e. a real-world entity or concept) suggests that object technology ought to enable some
more aspects of reality to be reflected in the OODB. Oxborrow (1992) identified some important additional
facilities which should be provided as standard in future OODBMSs. Support for the full semantics of
relationships, for the evolution of objects in terms of different versions, for arbitrary collections of objects,
and for multimedia objects was considered to be essential; these additional features which need to be
supported are all specifically object-oriented in nature. Enhancements to traditional DBMS mechanisms
for access control, concurrency control and secondary storage mechanisms were also identified as being
necessary, and the importance of extensible and reusable systems was also stressed. The remainder of this
paper takes a look at the additional OO features in the context of two example applications, and then
considers the solution to the problem of how to support them which was explored in the recently-completed
Zenith research project.

5.1 A Building Plot Example

The first example application represents part of an application which includes a fairly complex object. It is
by no means an unusual application and such complex objects could (and do) occur in many other
applications. It should be stressed that this is not a complete example — no operations are shown, and only
a few relationships are given; to avoid cluttering up the diagram, the example includes only those aspects
which are needed for illustrative purposes. Figure 3 represents the application, which involves plots of land
owned by a builder and illustrates the information requirements needed for drawing up plans, getting
planning permission, and everything else through to the actual building. On each plot of land, a number of
houses can be built, so there is a plot plan and the builder has to obtain planning permission for the plot.
Each house is architect designed and the house plan includes plans for each room. Related to each plot of
land is the planning authority which is responsible for approving/rejecting the planning application, and
associated with each house design is the architect who provides the sketch and plans for the house.

Not all of the components which are objects in their own right are expanded in detail. For example
the Planning Information component of Plot is only shown in outline; if expanded, it would be complex
like the House component. This example highlights the need for versioning and multimedia support.

5.1.1 \ersioning

Many of the components of the Plot object may be modified over time with a requirement to retain old
versions. For example, the Plot Plan may be changed if a planning application is rejected, but the old
version of the Plan must be kept for reference purposes, together with the old version of the planning
application. Furthermore, the architect may modify the design of one or more of the houses. In fact, if he
reuses designs he may have a number of variants of a particular design and use different variants for
different houses and possibly on different plots as well.

This example illustrates the need for the management of complex version trees, with the potential for
a number of default versions depending on the context (e.g. the specific design associated with an actual
house which is being built) and on the user (e.g. the architect may be working on a particular variant of a
design and so his default version will be different from the builder’s default for a particular house on the
plot).

Version management is required in all design environments (software design, engineering design,
etc.). Efficient support for version management, though, offers the possibility of making versioning

available in areas where it has been required in the past but could not feasibly be used. Hospital DBs are an
example in which chronological versions are required for patients’ records. Special-purpose functionality
has to be built into such applications at present, due to lack of support by traditional DBMSs. Local
authority DBs provide another example; from the planning viewpoint, plots of land exist in different
versions over time as houses are built/extended, shops change use, etc.; from the council housing
viewpoint, the history of different versions of houses are needed to reflect their maintenance/modernisation;
from the social services viewpoint, the status and other aspects of those claiming benefit change over time.
Some of these changes require simple chronological version trees, while others (e.g. planning) may require
more complex version trees.

Planning

Location

Design

House Plan

Planning
Authority

>
>

Architect

Qiame>
>
)

Key:

O Object (or Component Object)

O Set of Objects

Relationship

Figure 3 A Building Plot Object

5.1.2 Multimedia

Some of the components in the Plot object will be in non-standard media. The sketches may be originally
hand-drawn and inserted into the database by means of a scanner. The plans could be computer-produced
using a CAD tool. There may also be photographs of the plot taken at various stages during the building
process.

5.2 An Art Gallery Example

The other example application illustrated in figure 4 relates to an art gallery which maintains a catalogue of
artists and paintings; some of the paintings are displayed in the gallery in rooms supervised by members of
staff, some of whom have expert knowledge of artists in the catalogue and are responsible for maintaining
the relevant parts of the catalogue. Although not fully developed, this example illustrates how a complete
application can be modelled in terms of objects; it includes objects which provide a service or perform
management or control functions — the Enquiry Server, Acquisition Server and Supervision Scheduler. It
clearly shows how applications consist of interacting and interrelated objects and highlights the need for
full support for relationships and arbitrary collections of objects.

5.2.1 Relationships

A number of relationships are shown with their full semantics. For example, the relationship between
Avrtist and Painting shows that an artist must have painted at least one painting and may have painted many,
while a painting must be painted by exactly one artist. On the other hand, the relationship between Artist
and Staff Member is completely optional indicating that there may be no staff who are experts on a
particular artist and staff do not need to be experts on any artist.

Note that interacting objects do not need to be related. For example, on the assumption that the
Catalogue object has an EnterArtist() function, a Staff Member object can pass a message to the catalogue
to enter a new artist, without that staff member being logically related to it in any way.

The explicit representation of relationships is important for ensuring that the integrity of the database
is not violated. It is not sufficient merely to know that two objects are related, as is the general case in
OODBs in which relationships are represented by attributes of type ‘object’. It has already been indicated
that this mechanism does not enable one to distinguish between component relationships and general
conceptual relationships, but it also does not enable the cardinality and mandatory/optional existence of
relationships to be represented and hence such constraints cannot automatically be checked.

Without full support for relationships, it will be difficult to integrate application design and
implementation. Design diagrams explicitly represent different types of relationship and relationship
semantics. Graphical user interfaces to applications must also enable these to be represented and hence the
object model underlying the database must include the appropriate concepts.

5.2.2 Object collections

How should the Catalogue be represented? In figure 4, it is represented as a collection. This is a single
object which contains (is a collection of) all the artists and paintings in the gallery’s catalogue, together
with their interrelationships. The ‘class’ concept is well-suited to collections of objects all of the same type
and with the same implementation, but it is not so well suited to arbitrary collections of objects (e.g. the
Catalogue in figure 4, in-trays and committees in an Office Information System (OIS), configurations in a
software database, etc.). Although many systems do provide limited (generalised) facilities for arbitrary
collections (e.g. sets, bags), different types of collection in an application may have specific semantics
associated with them — semantics which identify the nature of the collection and determine the constraints
on membership (e.g. which objects can or must be members of a collection, whether they can be a member
of more than one, etc.). It is important for such application semantics to be able to be explicitly specified.

Collections differ from composite objects (‘part-of’ hierarchies) in which the components are
logically part of the containing object and can, in general, only be “part-of” one containing object at a time;
in collections, the components (or members of the collection) are logically independent. In figure 4, for
example, the objects representing artists and paintings are complete in themselves without the catalogue,
whereas in figure 3, the room plans are not meaningful on their own — they are only relevant in the context
of the house plan. Also, in the case of a company database, an employee can obviously exist as an

independent object, as well as being able to be a member of a committee and other types of collection
(grouping) in the company.

- ~
/,// Catalogue \\\\\
- ~
- ~
s ~
s N
7/ \\
/7
/ has—painted = 1:n \\
// Artist \
/ 1:1 = painted-by
/
|
|
\
\
\
\
\
\
Query() Acquisition

Server

Enquiry
Server

ChangeDisplay()
FindSpace()

EnterAurtist()

Purchaser
Staff Member

Enquirer

Supervision

Key: Scheduler

Manager
O Object (or Component Object)

© Set of Objects

Relationship
- Interaction

(—\ Collection Object
—

Figure 4 An Art Gallery Example

- 1U -

An object may be a member of many different collections or groupings, and may be just a transient
member (as in the case of objects in an in-tray) or a (semi-)permanent member (as in the case of artists and
paintings in the art gallery catalogue). Figure 5 shows part of the art gallery example with the catalogue
collection and an alternative representation for the display of paintings. In this example, paintings are not
only members of the catalogue collection but may also be members of one of the display collections. Each
display collection is an object which represents the collection of paintings displayed in a room. A further
example to illustrate the relevance of different types of collection is a company in which committees,
project teams, working parties, etc. (all of which are collections of employees) may exist or be created
from time-to-time.

Obviously, the choice of construct to use in modelling a particular application depends on the
modeller’s view of that application, but there is a need for a generalised ‘collection’ concept to enable real-
world complexities to be more appropriately modelled. As mentioned before, class is an overloaded
(multivalued) concept; one aspect of it — the container for objects conforming to the type and
implementation of the class - is just a special case of a collection.

Artist

Key:
) . \ /
O Object (or Component Object) \ /
O Set of Objects \\ Displa /
N play //
Relationship N ~ P
) NS -
- Interaction ~_N———
\/ —/\ Collection Object

Figure 5 Part of the an Art Gallery Example
Alternative representation for the Display of Paintings

- 11"

6 FLEXIBLE OBJECT MANAGEMENT SUPPORT FOR A VARIETY OF APPLICATIONS

The problem of how to support the object management requirements of a range of applications from
different environments was addressed by the Zenith project (Kemp, 1992), a collaborative project carried
out jointly by the Universities of Kent and Lancaster between October 1989 and September 1992 (funded
by the SERC under grant nos. GR/F37610 and GR/F37627, and ‘uncled’ by BT Labs.). The most
important feature of Zenith in the context of this paper is the object model. The basic object model of
figure 2 was found to be inadequate, and an enhanced model was designed to support a variety of different
requirements.

Figure 6 illustrates the main characteristics of the Zenith object model from the viewpoint of the
specifier or ‘user’ of the object (as distinct from the implementer of the object). The model includes a
unique object identifier as in the basic model. It also includes methods, but only the interface information
which determines the type of the object (the implementation is not of relevance to specifiers and general
users). The main differences between this and the basic model concern the treatment of attributes and the
class concept. The Zenith object model can provide all the facilities needed to support the traditional class
concept but does not explicitly possess a class construct. Instead it is sufficiently flexible to enable different
types of collection (including class) to be defined by a user of the model.

e - Methods

(public interfaces only)

Object Component Grammar Structural Components
Relationship Constraints Conceptual Relationships

Figure 6 The Zenith Object Model

One feature which aids flexibility is the ability to distinguish between components and relationships
at the conceptual level. Components and relationships replace attributes in the basic model. Components
may be implemented as simple attributes, may be calculated from the stored internal state of the object, or
may be objects in their own right. To the user, the implementation is not important; what is of importance
is that methods exist which provide access to them. Components are related to the containing object but in
a special way. General conceptual relationships with independent objects are separately identified in the
model (and accessible via appropriate methods).

Associated with the actual components of an object is an object component grammar which defines
the permitted component types and their semantics. Associated with the actual relationships between an
object and other objects are the relationship constraints which define the permitted relationships in which
this object may participate and their semantics. The object component grammar and relationship
constraints are part of the type (specification) of the object. They are logically part of the object but may be
physically separated and shared by other objects.

-1 -

Using the Zenith object model, the additional features mentioned earlier in the paper can easily be
supported. Relationships form part of the model. Composite objects and different kinds of collection are
supported by specifying particular component semantics in the object component grammar. For example,
components of a composite object which cannot exist independently are associated with delete-propagation
semantics; the components of a configuration can exist independently and must not automatically be
deleted when a configuration is deleted; the components of an office in-tray may have a priority ordering in
the in-tray according to the type of component (letter, telephone message, etc.); and, a ‘class’ object must
contain all the objects which conform to its particular type and implementation.

The versioning feature can be supported with the aid of relationships. In the Zenith project, a
prototype object management system was developed. It was designed in terms of Zenith objects and
version management was easily added to the basic system by defining version manager objects and
relationships with special version management semantics to enable version trees to be built and the
different versions and variants to be linked together.

The Zenith object model not only enabled an extensible prototype to be developed but was also
sufficiently flexible to enable distributed and multimedia facilities to be incorporated, and fine granularity
access mechanisms to be provided (down to the single-method level).

7 CONCLUSION

Key object-oriented concepts include the object concept with unique identity, classification, specialisation,
composition and encapsulation. These are ‘enabling’ concepts and are necessary but not sufficient in the
context of the wide-ranging applications which require object management support today. It has been
shown that the following are also of importance: distinction between the components and relationships of
an object (in order to provide a higher level of semantic support for applications than is possible with
conventional attributes), versioning of objects (to enable the inherent immutability of objects to be
represented), and object collections (to enable more general groupings of objects to be represented than is
possible by means of the class concept); furthermore, multimedia support is essential.

In conclusion, a flexible model and extensible facilities are the keys to the success of future DBMSs.
The object-oriented approach appears to be sufficiently flexible and extensible to enable the current and
future requirements of a wide range of applications to be supported. More research and development is
needed, but it is suggested that OODBMSs will have an important role to play in the future. However, their
successful use for major application development will depend to a certain extent on the object-oriented
analysis and design expertise of the OODB designers. Only when a truly object-oriented approach to
design is adopted, will it be possible to effectively and efficiently integrate analysis, design and
implementation, and hence fully exploit the potential of object-oriented database technology.

REFERENCES

Abiteboul, S. and Hull, R. (1987) IFO: A formal semantic database model. ACM Transactions on
Database Systems, 12 (4), pp.525-565.

Atkinson, M. et al. (1989) The object-oriented database system manifesto, in Proceedings of the
Conference on Deductive and Object-Oriented Systems (DOODS-89).

Blair, G. et al. (eds) (1991) Object-Oriented Languages, Systems and Applications, Pitman.

Blair, G., Gallagher, J.J. and Malik, J. (1989) Genericity vs Inheritance vs Delegation vs Conformance vs ...
Journal of Object-Oriented Programming (JOOP), 2 (3).

Butterworth, P., Otis, A. and Stein, S. (1991) The GemStone Object Database Management.
Communications of the ACM, 34 (10), pp.64-77.

Chen, P.P-S. (1976) The Entity-Relationship Model - toward a unified view of data. ACM Transactions on
Database Systems, 1 (1), pp.9-36.

Hammer, M. and McLeod D. (1981) Database description with SDM: a Semantic Data Model. ACM
Transactions on Database Systems, 6 (3), pp.351-386.

=19 -

Hull, R. and King, R. (1987) Semantic database modeling: survey, applications and research issues. ACM
Computing Surveys, 19 (3), pp.201-260.

Kemp, Z.P. et al. (1992) Zenith system for object management in distributed multimedia design
environments. Information and Software Technology, 34 (7), pp.427-436.

Kim, W. (1990) Introduction to Object-Oriented Databases, MIT Press.
O.Deux et al. (1991) The O2 System. Communications of the ACM, 34 (10), pp.34-49.

Oxborrow, E. (1992) What should go into an OODBMS project (and why there is no simple answer!), in
Object Management, (eds R. Tagg and J. Mabon), pp.37-46.

Peckham, J. and Maryanski, F. (1988) Semantic data models. ACM Computing Surveys, 20 (3),
pp.153-189.

Soley, R.M. (ed) (1992) Object Management Architecture Guide, 2nd edn, Object Management Group Inc.

Stonebraker, M. et al. (1990) Third-generation database system manifesto, in Object-Oriented Databases:
Analysis, Design and Construction, (eds Meersman, Kent and Khosla), North-Holland.

