
-

-

-

Score Following:

An Artificially Intelligent

Musical Accompanist

Anna Jordanous

T
H

E

U N I V E R S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

2007

Abstract

Score Following is the process by which a musician can be tracked through their perfor-

mance of a piece, for the purpose of accompanying the musician with the appropriate

notes. This tracking is done by following the progress of themusician through the

score (written music) of the piece, using observations of the notes they are playing.

Artificially intelligent musical accompaniment is where a human musician is ac-

companied by a computer musician. The computer musician is able to produce musical

accompaniment that relates musically to the human performance.

Hidden Markov Models (HMMs) are a stochastic modelling toolthat can be used

to represent real-world systems in a variety of domains.

This project discusses how HMMs can be used in the domain of Score Follow-

ing and describes the construction and evaluation of a scorefollowing system that

uses HMMs to implement score following. It explores the hypothesis that using an

HMM to represent a musical score is an efficient and practicalway to implement score

following, and that in particular this method is suitable for providing real-time accom-

paniment to a human performer.

The score followers developed during this project are tested and compared against

other score following systems and against human musicians.The resulting perfor-

mances support the project hypothesis to a large extent.

i

Acknowledgements

I would like to thank my supervisor Alan Smaill, for his guidance and help throughout

this project.

Also, thanks to David Murray-Rust in the School of Informatics, and Kinnell An-

derson, Michael Edwards and Peter Nelson in the Music Department at the University

of Edinburgh, for their advice and practical help.

Christopher Raphael was kind enough to respond to some questions I had when

starting this project and additionally gave me some advice based on his considerable

experience in score following research.

Matt Baker and Michael Wood provided technical assistance which helped me a

great deal in the early stages of development.

Michael Wood, Rosalin Cooper, Adam Apostoli and Mike Thorpe provided valu-

able feedback during the testing phase of this project.

ii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text,and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Anna Jordanous)

iii

Table of Contents

1 Introduction 1
1.1 What is score following . 1

1.1.1 Score following in real-life domains 1
1.1.2 How an artificially intelligent score follower could be useful . 2

1.2 The use of Hidden Markov Models in score following 3
1.3 Project Hypothesis . 4
1.4 Project Aims and Objectives . 4
1.5 What was achieved during this project4
1.6 Terms used in this document . 5
1.7 Outline of this document . 6

2 Background 7
2.1 Dynamic programming and pattern matching 8
2.2 Important developments in score following research during the 1980s

and early 1990s . 9
2.2.1 Real-time scheduling . 9
2.2.2 Probability density functions 9

2.3 Dynamic time warping . 9
2.4 Hidden Markov Models . 10

2.4.1 General theory of Hidden Markov Models 11
2.4.2 Score following using Hidden Markov Models 12
2.4.3 Implementation of score followers using Hidden Markov Models 14

2.5 The current state of research in score following 15
2.6 How this work fits into the research context 15

3 Design 16
3.1 Requirements . 16
3.2 Practical constraints . 16

3.2.1 Time available for this project 16
3.2.2 The type of musical input to be used 17
3.2.3 Hardware resources available for this project 17

3.3 The conceptual design of my score following system 18
3.3.1 RECEIVE INPUT FROM PERFORMER 18
3.3.2 ESTIMATE WHAT HMM STATE THE PERFORMER IS IN, US-

ING THE V ITERBI ALGORITHM 19
3.3.3 PRODUCE THE APPROPRIATE ACCOMPANIMENT 19

iv

3.3.4 DISPLAY STATE TRACKER ON SCREEN FOR INFORMATION. 19
3.4 Major conceptual design decisions 20

3.4.1 Choosing the best features for state representation 20
3.4.2 What to use in the set of possible observations20
3.4.3 Restricting the soloist’s playing to be monophonic 21
3.4.4 Comparison of anticipative and reactive design strategies . . . 22
3.4.5 Adapting the accompaniment when the score follower has iden-

tified a large change in the soloist’s current score location. . 24
3.4.6 Encoding musical knowledge in the HMM probabilities .. . 25
3.4.7 The action to take when more than one state is judged equally

probable by the HMM . 25
3.4.8 Learning the most accurate HMM probabilities throughtraining 26
3.4.9 Representing notes of different lengths using HMM states . . 27
3.4.10 Tempo extraction (beat tracking)28

3.5 Major practical design decisions 30
3.5.1 How MIDI files should be used in the score follower30
3.5.2 Output format for accompaniment 31
3.5.3 The type of pieces used for my score follower32
3.5.4 Which development tools to use 32
3.5.5 Existing HMM packages . 35
3.5.6 Synchronising the start of the soloist and the score follower . 36
3.5.7 Responding to the volume at which the soloist is playing . . . 37

4 Implementation of the Score Followers 38
4.1 Stages of development . 39
4.2 Major sections of the score follower system 43
4.3 Problems encountered during implementation 44

4.3.1 Conceptual/theoretically-related problems 44
4.3.2 Technical problems . 46

4.4 Experimentation with my system during development 47
4.4.1 Fitting an HMM to score following 48
4.4.2 Number of observations used for Viterbi49
4.4.3 Setting a probability thresholds for the estimation of the next

state . 50
4.4.4 Finding the most effective beat tracking parameters 50
4.4.5 Performing the viterbi algorithm off-line, to generate pre-calculated

probabilities for longer scores 52
4.4.6 Reducing latency issues by only examining local states as po-

tential next states . 53

5 Testing and Evaluation of System Performance 55
5.1 Objective testing . 56

5.1.1 Objective testing methodology 56
5.1.2 Results of objective evaluation tests 59
5.1.3 Analysis of objective evaluation test results 61

5.2 Subjective testing . 64
5.2.1 Subjective testing methodology 64

v

5.2.2 Observations arising from Tester 1 65
5.2.3 Observations arising from Tester 2 67
5.2.4 Observations arising from Tester 3 68
5.2.5 Observations arising from Tester 4 72
5.2.6 General conclusions from tester feedback 72

6 Discussion and Conclusions 76
6.1 Capabilities of the score followers developed in this project 76
6.2 Meeting the specified requirements 77

6.2.1 Evaluation of project hypothesis 78
6.3 What could be improved upon or done differently, in hindsight 80
6.4 Suggestions for possible future work 82
6.5 Concluding remarks: What has this work achieved 84

Bibliography 85

Appendices 88

A Repertoire for my score follower 88

B An example of the Hidden Markov Model probabilities: Twink le Twinkle
Little Star 93

C Technical program detail 97

D Test melodies 109

E Glossary of terms used for musical ornamentations and embellishments 113

vi

List of Figures

2.1 Two sequences that DTW treats as very similar 10
2.2 Two sequences that DTW treats as very different 10
2.3 Errors for states . 14

4.1 HMM for Twinkle Twinkle Little Star, with one mistake allowed at a time 39
4.2 HMM for Twinkle Twinkle Little Star, with handling of multiple con-

current mistakes . 41
4.3 Transitions representing the SKIP error (where a scorednote is missed

out) are only necessary for a small number of futurenormalstates . . 48

5.1 Results of objective evaluation tests. 60

A.1 Twinkle Twinkle Little Starextract with simple monophonic bass line
accompaniment . 89

A.2 Twinkle Twinkle Little Starextract with simple chordal accompaniment 89
A.3 All I Ask of Youextract with simple chordal accompaniment 90
A.4 All I Ask of Youextract with more complex chordal accompaniment . 91
A.5 Danse Macabreextract . 92

C.1 Program structure by patcher (function) 100
C.2 My score follower on startup . 101
C.3 Program initialisation patcher .102
C.4 How the score follower processes new input from the soloist 103
C.5 How the score follower determines what the next state should be (part 1)104
C.6 How the score follower determines what the next state should be (part 2)105
C.7 The viterbi algorithm as implemented in the score follower 106
C.8 How the score follower generates accompaniment (part 1) 107
C.9 How the score follower generates accompaniment (part 2) 108

E.1 Acciaccatura . 113
E.2 Appoggiatura . 114
E.3 Grace notes . 114
E.4 Inverted Mordent . 114
E.5 Slide . 114
E.6 Trill . 114
E.7 Turn . 114

vii

List of Tables

5.1 Overall Summary Results . 59

B.1 state transitions.txt : The probabilities associated with transi-
tions from one state to another (A) 94

B.2 emission probabilities.txt The probabilities of seeing each ob-
servation in a state (B) . 95

B.3 initial probs.txt : The probability of starting in each state (π) . . 96

viii

Chapter 1

Introduction

This project addresses what score following is and how it canbe implemented using

Hidden Markov Models. This chapter sets the context for thisproject and outlines

what the project achieves.

1.1 What is score following

In a musical situation, ascoreis the written music that a musician reads when they play

music. Score following is the process where a musician follows another musician’s

playing of a musical piece, by tracking their progress through the score of that piece.

1.1.1 Score following in real-life domains

Real-life score following is best illustrated by an example.

Consider a flautist1 who is performing a solo piece at a concert, with a piano player

providing accompaniment. The piano accompanist listens towhat the flautist is play-

ing, to ensure their accompaniment matches the flautist. Theflautist may occasionally

not perform the piece exactly as it is written in the score. Inthese cases the piano

player must adjust their accompaniment, to synchronise with the flautist.

There are several reasons why the flautist may not perform thepiece exactly as

written.

Changes may be added by mistake:

• A wrong note is played

1flute player

1

Chapter 1. Introduction 2

• Extra notes are added

• Scored notes are missed out

• The flautist loses their place in the music or starts playing from the wrong point

in the score (in particular this is a concern if the flautist isplaying from memory

rather than having the music in front of them)

• The flautist’s tempo2 speeds up or slows down unintentionally

Also changes may be added deliberately, as the flautist adds their own interpreta-

tions to the music:

• The flautist adds embellishments such as trills3, to ‘decorate’ the notes

• The flautist’s tempo speeds up or slows down deliberately, for musical effect

• The piece being played may haverubato4 or free/improvised sections, where the

flautist is free to vary the tempo and notes played according to their own choice.

1.1.2 How an artificially intelligent score follower could b e useful

There are two main application areas where automated score following is useful: in

electronic music and as an aid to human musicians.

1.1.2.1 Electronic music

Many musical performances consist of a soloist playing a melody from a score, with

the given accompaniment provided by another instrumentalist. In the case of some

electronic music, the accompanying parts can be computer-generated5. The accompa-

niment supports the soloist and adds underlying harmonies.

1.1.2.2 As an aid to human musicians

Musicians do not always have access to accompanists for practice purposes. Other

common problems are that their accompanist may not be available when needed for

2speed at which the music is being played
3See Appendix E
4variable and flexible tempo
5For example Pierre Boulez:Repons, or Philippe Manoury:Sonus ex machina

Chapter 1. Introduction 3

performance, or that the accompanist does not have the technical ability necessary to

provide adequate accompaniment.

A possible solution involves the accompaniment to be generated automatically by

a computer or recording, as happens in some electronic music.

Many musicians practise playing over recorded or computer-generated accompa-

niment where the accompaniment is static, i.e. it is fixed andwill not change from one

playing to another. This means, though, that the musician adapts their performance to

match the recording. It is more natural for the musician if the accompaniment adapts to

fit the performer. Raphael (2001b) describes this as moving from “music minus one”

to “music plus one”.

To dynamically synchronise the accompaniment with the performance by the mu-

sician, it would be necessary for the accompanist to track the performer in some way

through the score of the piece as they play.

This may become complicated if the performer makes mistakesthat deviate from

the score: missing some notes out, misplaying others or adding extra notes. The ac-

companiment would need to cope with such mistakes that causethe performer to devi-

ate from the written score.

In addition the performer should have the freedom to add musical embellishments

that do not exist in the original score, as they would be able to with a human accompa-

nist, without this disrupting the accompaniment.

It is very useful for a musician to have access to accompaniment during practice.

The musician can learn how the accompaniment sounds and fromthis they can derive

valuable assistance for future performance. As example, the musician would be aware

of the underlying harmony provided by the accompaniment, and of any musical cues

they could use when learning the timing of each section.

1.2 The use of Hidden Markov Models in score follow-

ing

Hidden Markov Models are a statistical modelling tool that can be used to represent

real-world systems. In the last ten years, score following researchers have looked at

using Hidden Markov Models to implement score following systems (Raphael, 1999;

Cano et al., 1999; Orio and Dechelle, 2001; Orio et al., 2003).

Chapter 1. Introduction 4

1.3 Project Hypothesis

Using an Hidden Markov Model representation of the sequenceof states in a musical

score is an efficient and practical way to implement score following. In particular it

lends well to providing real-time accompaniment to a human performer.

1.4 Project Aims and Objectives

This project investigates how an intelligent artificial music system can follow a human

musician through the performance of a piece, and accompany the musician’s perfor-

mance as a human accompanist would, musically and in real-time.

The project considers a number of different approaches to score following, from

the perspective of constructing a score follower, incorporating what has been learnt

from previous research in the area.

Due to time restraints, the aim of this project was not to compare HMMs to other

implementation approaches, but rather to test how an HMM canbe utilised for score

following, and evaluate how useful HMMs are for this application.

The primary objectives at the start of this project were:

1. Construct a Hidden Markov Model of the piece to be performed

2. Analyse input from the performer in conjunction with thisHidden Markov Model

3. Provide appropriate accompaniment to the performer thatreacts to their inter-

pretation of the piece and keeps in time with the performer.

4. Test system on a range of music to see how it adapts to different pieces.

1.5 What was achieved during this project

During this project, a number of score followers were developed in Max/MSP, using a

Hidden Markov Model as the basis by which the soloist’s progress was tracked through

the score. As a byproduct of this project work, a Hidden Markov Model structure was

implemented in Max/MSP such that the Viterbi algorithm could be carried out on a

sequence of observations.

A number of enhancements were tried out, to enhance the basicscore follower,

such that beat tracking, complex accompaniment and relative score positioning were

all incorporated to some extent in the score follower.

Chapter 1. Introduction 5

Three musical pieces of varying complexity and length were programmed into the

different versions of the score followers. The performanceof each score follower was

evaluated subjectively by testers of varying musical ability and experience. Each score

follower was also tested by objective criteria that was usedto evaluate score followers

at the Music Information Retrieval Evaluation eXchange conference in 2006(MIREX,

2006b); hence some general comparisons could be made between this project’s score

following systems and systems produced by existing score following research groups.

1.6 Terms used in this document

As well as the termsscoreandscore followingdefined above, there are a number of

terms used frequently throughout this document which shallbe defined here, in order

to avoid confusion:

• Performance: In the context of this project, aperformance is defined specif-

ically as the situation where a solo musician(soloist), such as a flute player or

singer, performs a piece of music. The solo musician would beaccompanied by

another musician(accompanist)on an instrument such as piano. This may be

in a concert or similar scenario, performing to an audience,but this condition is

not mandatory. What is important is that thesoloistis making an attempt to play

through the piece in a linear fashion, from start to finish.

• Performer/Soloist: The solo musician who is performing the piece; what they

play is the most important part of the performance for any audience that may be

listening.

• Accompanist: The musician who is playing theaccompaniment; supporting

thesoloist’s performance.

• Melody/Solo melody: The music that is being played by thesoloist.

• Accompaniment: The music which is played by anaccompanist, during the

performance of the soloist. Accompaniment can be thought of background

music which is designed to enhance what thesoloist is playing and support the

soloist’s performance.

• Score follower: A computeraccompanistthat follows thesolo melodythrough

thescoreas it is being played, to produce accompaniment relative to where the

Chapter 1. Introduction 6

soloist is in thescore.

1.7 Outline of this document

This chapter introduces the reader to the project and gives an overview of its aims, the

hypothesis that is being evaluated in this project and achievements.

Chapter 2 gives detail of significant prior research carried out in score following,

describing how research in this field has developed and placing this project in the

context of the current state of research.

Chapter 3 describes the fundamental decisions that were taken during the design of

the score followers, to give the project reasonable scope and to decide which approach

should be taken in various areas of the score follower (wheremore than one approach

was possible).

Chapter 4 details the major stages of implementation of the score followers, includ-

ing a summary of how I dealt with problems encountered and experimentation that was

undertaken to decide how best to implement parts of the scorefollowers.

Chapter 5 reports how the score followers performed in objective and subjective

evaluation tests, and analyse the successes and limitations of the score followers pro-

duced during this research.

Chapter 6 discusses the performance and capabilities of thisscore following system

as a whole, and presents the conclusions reached upon completion of this project.

An overview of the score following program produced in this project can be found

in the appendices, along with more detailed implementationand testing information.

The program is also available online6 for download.

6Available athttp://homepages.inf.ed.ac.uk/s0676484

Chapter 2

Background

Research into score following and computer/human musical interactivity was pio-

neered in 1984 (Vercoe, 1984; Dannenberg, 1984).

Originally dynamic programming algorithms were used to match patterns of notes

expected against the sequence of notes actually played by the soloist.

Probabilistic methods were introduced to score following in the 1990s. Grubb

and Dannenberg (1998) used probability density functions to locate the soloist’s most

probable position in the score.

A research group at the IRCAM institute1 has developed much research into score

following, using approaches derived from biological sequence alignment and from

speech processing. Orio and Schwarz (2001) used dynamic time warping to anal-

yse audio signals and align them to a musical score by detecting peaks in the music

performed and fitting them to prominent events in the score.

Later research at IRCAM (Orio et al., 2003) used a Hidden Markov Model (HMM)

to model the score and possible deviations where a wrong noteis played, a note is

missed out or an extra note is added. The Hidden Markov Model that they use has

transitions modelling the probabilities for each event.

Raphael has carried out very similar work (Raphael, 1999). He too chose HMMs

as the preferred method by which to model and track the score of the piece, although

he has since started to incorporate Bayesian probabilitiesinto his score followers as

well (Raphael, 2001b).

What follows is a discussion of the important developments inscore following

research over the past three decades and a comment on how thisproject fits into the

context of the current state of research.
1http://www.ircam.fr/

7

Chapter 2. Background 8

2.1 Dynamic programming and pattern matching

A dynamic programming approach to score following was the first to be implemented,

in the 1980s. The first automatic accompanists were created through research led by

Barry Vercoe (Vercoe, 1984; Vercoe and Puckette, 1985) and also by Roger Dannen-

berg (Dannenberg, 1984; Bloch and Dannenberg, 1985).

The general methodology of Vercoe and Dannenberg’s work is to compare what

has been played by the soloist with what the score follower expected the soloist to

play (i.e. the music that was written). In this way a recursive algorithm builds up the

optimal path that the soloist would have taken through the score.

Vercoe (1984) emphasises the three-stage process behind score following:

1. Listen

2. Perform

3. Learn

The aim of score following, as Vercoe describes it, is

to recognize the computer’s potential not as a simple amplifier of low-level
switching or acoustic information (keyboards and live audio distortion),
but as an intelligent and musically informed collaborator in live perfor-
mance as human enquiry. (Vercoe, 1984) (p. 199)

In Vercoe and Puckette (1985) the work now includes the ability of the synthetic ac-

companist to learn the accompaniment and to learn the performer’s likely paths through

the piece (rather than merely reacting to the performer during a performance). This

new aspect meant that this research team had to give serious consideration to the form

the score model should take.

The score follower in Bloch and Dannenberg (1985) is constructed of two parts.

The first is aMatchersegment, whose function is to match what the soloist is playing

to a location in the score. It also has anAccompanistsegment which takes information

from the Matcher and produces the corresponding accompaniment.

This score follower deals with situations where it loses track of the soloist’s lo-

cation in the score in the following way: if a long period of time elapses where the

Matcher has not reported a matching event to the Accompanist, the Accompanist as-

sumes the Matcher is unable to locate the soloist in the score. Therefore it stops playing

any accompaniment until a matching event is reported again by the Matcher.

Chapter 2. Background 9

This seems like a sensible approach to take; if the system is lost then any accom-

paniment it produces could well conflict with what the soloist is playing. In such

situations it seems that it would be better to remain silent until the score follower has

located the soloist in the score. This relates to the situation in real life where the ac-

companist does not know where in the score the soloist is, so stops playing until they

have worked out the soloist’s location again.

2.2 Important developments in score following research

during the 1980s and early 1990s

2.2.1 Real-time scheduling

Dannenberg’s score following work developed during the 1980s to include a strong us-

age of timeline-based scheduling (Dannenberg, 1989). A distinction is made between

real timeandvirtual time. Actual physical time periods are referred to asreal time,

whereas the internal measure of time used by Dannenberg’s score followers is referred

to asvirtual time. Dannenberg separates these two concepts as a way of measuring the

soloist’s relative progress through a score.

2.2.2 Probability density functions

In 1989 Dannenberg and his student, Lorin Grubb, wrote abouta new approach to

score following using probability density functions (Grubb and Dannenberg, 1998).

From a given previous position in the score, the score follower continually esti-

mates the distance from that previous position. The score follower then uses the most

recent observations of pitch, spectral peaks, amplitude changes and so on, to locate

where in the score the soloist has now reached.

Although this method was not adopted by other significant researchers, it is worthy

of recognition as the first use of probabilistic methods in score following.

2.3 Dynamic time warping

IRCAM presented two score following research projects at the2001 International

Computer Music Conference: one using dynamic time warping (Orio and Schwarz,

2001) and one using another technique for implementing score following, Hidden

Chapter 2. Background 10

Figure 2.1: Two sequences that DTW treats as very similar

Figure 2.2: Two sequences that DTW treats as very different

Markov Model based techniques (Orio and Dechelle, 2001). There is more detail about

Hidden Markov Model based score following later in this document.

Dynamic Time Warping (DTW) finds the best alignment between two sequences

by analysing similarities between the structure of the audio signals received and those

expected, and by aligning note onset times. So Figure 2.1 shows two sequences which

are treated as very similar, whereas Figure 2.2 shows two sequences which are con-

sidered to be very different from each other, even though this could just be due to a

mistake where the performer has started playing the note at the wrong time:

Durbin et al. (1998) contrast the DTW approach with the Hidden Markov Model

approach to sequence alignment. Orio and Schwarz’s interpretation of this analysis

is that the two techniques seem to be completely interchangeable except that DTW is

more optimal on memory requirements for large files (Orio andSchwarz, 2001) (Sec-

tion 2.3). Later work by IRCAM on score following, however, concentrates completely

on the Hidden Markov Model approach (Orio et al., 2003; Schwarz et al., 2004; Cont

et al., 2004), and there is little mention in later literature of DTW approaches being

used further.

2.4 Hidden Markov Models

Automated musical accompaniment, or score following, can also be implemented us-

ing Hidden Markov Models (HMMs) to track what state a performer is in. This ap-

proach to score following has had some success to date.

Chapter 2. Background 11

2.4.1 General theory of Hidden Markov Models

Hidden Markov Models (HMM) are a stochastic modelling tool,popular in a variety

of domains from speech processing (Rabiner, 1989) to biological sequence matching

(Durbin et al., 1998). Real-world systems that produce somekind of observable signal

can be modelled with HMMs. In particular this includes systems that operate non-

deterministically: systems whose behaviour cannot be predicted exactly by using a set

of algorithmic rules or formulae.

Probabilities are used in the HMM to represent the system’s observable behaviour

and to represent internal (hidden) facets of the system. TheHMM can then be used to

process these observable signals to explain the system’s behaviour and make probability-

based estimates about future behaviour.

As Rabiner describes (Rabiner, 1989), (p. 257),

The underlying assumption of the statistical model is that the signal [pro-
duced by the system at any given time] can be well characterized as a
parametric random process, and that the parameters of the stochastic pro-
cess can be estimated in a precise, well-defined manner.

So we assume there is some underlying pattern which can be picked out to model

the observable outputs of a process (which may include some stochastic or random

influence).

A system modelled with an HMM can be considered to be in one of afinite number

of states at any given time. We can gain information about what state the system is

currently in by examining recent outputs from the system (‘observations’). The actual

states themselves can not be observed, just the sequence of observations that result

from the system passing through those states. The observed output can be interpreted

as being “a probabilistic function of [the system being in] the state” (Rabiner, 1989)

(p. 258).

The relationship between individual states and observations is not a functional rela-

tionship but a many-to-many relationship; one observationmay be produced by many

system states, and in turn there may be more than one possibleobservation should the

system be in a given state. The fundamental difference between Hidden Markov Mod-

els and Markov chains (Durbin et al., 1998) is that you cannotgauge what state the

sequence is in purely from the current observation in isolation. There is not a one-to-

one correlation between states and observations in HMMs although there is in Markov

chains.

Chapter 2. Background 12

Rabiner (1989) cites the example of a sequence of coin tosses, using either a biased

or normal coin. A sequence of coin tosses generates a list of observations such as H T

T H H H H T T H . With prior knowledge of the probabilities associated with starting

with one of the two coins, the probability of changing from one coin to another and

the probability of getting either a ‘head’ or a ‘tail’ with each coin, we can model this

scenario using an HMM. We can use this HMM to make a probabilistic estimate of

which coin is being tossed at any one time.

The components of a Hidden Markov Model are (Rabiner, 1989):

• N = the number of states in the model

• M = the number of distinct observations possible per state

• A = the state transition probability distribution{Ai j} such that:

A jk = P(transition from statesj to sk)
N

∑
k=1

A jk = 1

• B = the probability distribution in each statej, that governs the probability of

seeing each observation m when in that state, such that:

b j(k) = P(vk at t | qt = Sj)

j is one ofN states

k is one ofM observations possible from that state

• π = {πi} whereπi = probability of starting in statei

• V = the set of all observation symbols

2.4.2 Score following using Hidden Markov Models

A musical score is divided up into a sequence of musical events (for example where

one note is considered as one modellable musical event)

The score follower is given a Hidden Markov Model that represents these musical

events, and uses an algorithm such as the Viterbi algorithm to estimate what state the

performer is most likely to be in at that time, i.e. which musical event in the score the

performer is currently playing.

Chapter 2. Background 13

The aim is to find the most probable state sequence that could generate the sequence

of observations produced by hearing the soloist’s playing.

Later chapters of this thesis describe how HMMs were used to implement a number

of score followers. In the score followers developed duringthis project, the Viterbi

algorithm is used to find out which state the soloist is most likely to be in (given the

sequence of observations of what notes the soloist has most recently played).

The Viterbi algorithm can be used to find the most probable path through a set of

HMM states. Given a sequence of the most recent observationsof the soloist’s playing,

the Viterbi algorithm:

finds the state sequence[q1, ...,qt]that most likely generated the complete
sequence of observationsOT (Rabiner, 1989)

Implemented in the traditional fashion, this algorithm finds the globally optimum

path through the Hidden Markov Model states to the most probable current state, us-

ing the history of observations seen. However in score modelling we instead require

a locally optimal path to the current point. This is because we are interested in accu-

racy locally at the expense of a more global accuracy (i.e. the correct accompaniment

playing at the right time, even if the resulting path throughthe music overall is not the

most probable path when the performance is viewed as a whole.

The Design chapter of this document describes how the Viterbi algorithm was

adapted to be locally optimal rather than globally optimal.

In Rabiner (1989) and Pardo and Birmingham (2005), the equations used for find-

ing the current state in a score following model are described in some depth. The

equations that are implemented during the course of this project are a simplified ver-

sion of these equations and are as follows:

Given a sequence of observations{O = o1,o2, . . .on} (2.1)

and given an initial probability distributionσ(sj) (2.2)

The current locationl i = arg max(α(sj ,oi)) (2.3)

α(sj ,oi) = φ(sj ,oi)∑sk∈S(τ(sk,sj)α(sk,oi−1)) (2.4)

α(sj ,o1) = φ(sj ,o1)σ(sj) (2.5)

φ(sj ,ej) = ε(sj ,ei) (2.6)

(2.7)

Chapter 2. Background 14

Figure 2.3: Errors for states

2.4.3 Implementation of score followers using Hidden Markov Mod-

els

The performance of HMM-based score followers has been evaluated favourably against

string-matching/dynamic programming-based score followers (Pardo and Birmingham,

2005). HMM-based score followers significantly outperformed the dynamic program-

ming score followers on the accompaniment of jazz melodies2.

The methodology described in Orio and Dechelle (2001) is that events in the per-

formance (for example rests, notes, trills, chords, and so on) get modelled by Hidden

Markov Model states. These events are modelled in parallel by both ann-stateor

normalstate, and ag-stateor ghoststate.

Orio and Dechelle (2001) identify three classes of probableerrors:

• WRONG: An incorrect note is played in place of the correct note.

• SKIP: A note in the score is missed out altogether.

• EXTRA: An extra, unscored note is added in the performance.

The Hidden Markov Model processes such errors by the soloist, as they happen, by

taking a specific path through thenormalandghoststates. The paths for each class of

error are shown in Figure 2.3

Christoper Raphael has also constructed score followers using HMMs (Raphael,

1999). Raphael’s choice of musical events represented by a HMM state are time-

driven. Each observation is made up of a number of periodic samples taken from the

incoming sound signal. These observations are used to analysed and locate the current

state of the soloist.
2Generally the jazz melodies were of short to medium length, with chords rather than specified

melodies as accompaniment, so the repertoire in this testing was slightly limited in scope

Chapter 2. Background 15

2.5 The current state of research in score following

The research team at IRCAM, Christopher Raphael and Roger Dannenberg are cur-

rently the prominent researchers in score following.

IRCAM are the publishers of the only commercial score follower that I can find

evidence of. Theirsuivi score follower is available commercially3. However many

other research efforts exist. Of these, the work by Christopher Raphael in particular

has an impressive range of repertoire composed for it, with anumber of demonstrations

available online4.

Orio et al. (2003) discuss the unpredictability of performance. Currently when

the IRCAM score follower is used in performance, the score follower needs close

supervision by someone who knows the piece and the performer’s common errors, in

case the score follower makes mistakes during the piece.

Current problem areas in score following that are identified as prevalent in a 2003

review of score following research (Orio et al., 2003) include:

• Sources of mismatch between the performer and the computer

• Working with polyphonic input/ensemble groups of instruments

• Enabling cues (other than those derived directly from the musical performance)

• Reliability of the system in performance

2.6 How this work fits into the research context

My project would adopt the Hidden Markov model (HMM) approach, which has been

successful for previous score following systems such as (Raphael, 1999; Orio and

Dechelle, 2001; Orio et al., 2003). It would be interesting to take advantage of the

new generative and analytical musical software that has become available, such as

Max/MSP.

3At http://forumnet.ircam.fr/357.html?&L=1
4At http://xavier.informatics.indiana.edu/˜craphael/mus ic_plus_one/index.html

Chapter 3

Design

In this chapter the design decisions taken during this project are discussed in depth.

The requirements for the project are discussed and initial constraints on the project

are specified, so that the scope of the project is clear to the reader. Once the exact

requirements of the project has been clarified, the fundamental design decisions on

conceptual issues and on practical issues are described, including comments on the

alternative decisions that were considered and justification of the reasons why each

design choice was made.

3.1 Requirements

My score followers require:

• A way of receiving musical input from the soloist

• A way of processing musical input from the soloist

• A way of implementing an HMM to analyse musical input from thesoloist

• A way of generating musical accompaniment in real-time

3.2 Practical constraints

The scope of this project was initially bound by the following practical constraints:

3.2.1 Time available for this project

The length of time allocated to this project was twelve weeksin total.

16

Chapter 3. Design 17

3.2.2 The type of musical input to be used

Orio and Dechelle (2001) discuss two approaches to score following:

• note approach: It is assumed that the performer’s error is the cause of error, as

the musical input method (e.g. a MIDI file) is assumed to be accurate.

• signal approach: Interpretation of the incoming musical signal isconsidered to

be the source of errors, and any performance errors are disregarded.

At a very early stage in the project, it was decided to focus this project on the note

approach. This was because including signal processing in my work would increase the

amount of implementation time a good deal and would take the focus away from the

simulation of an artificially intelligent accompanist, moving the focus more towards

solving technical music processing problems.

MIDI files lend themselves well to being manipulated computationally to extract

information about note pitches and durations. So MIDI is a particularly useful file for-

mat for musical information processing because the format of the music is described in

such detail numerically in these messages, and can be extracted for calculation efforts

more simply than it could be for an audio signal encoded in other common musical file

formats such as Wave files and MP3. However there is often somesacrifice to be made

in the quality of sound produced, and a common criticism of MIDI music is that the

resulting audio sounds artificial and unrealistic.

Nevertheless, using MIDI rather than signal processing will significantly simplify

note extraction from musical input. My focus will be on the interpretation of what

is played, in an artificially intelligent manner, rather than the acoustics problems ad-

dressed in analysing exactly what has been played in the firstplace. Therefore using a

MIDI representation of notes is preferable to using a signalrepresentation.

3.2.3 Hardware resources available for this project

The setup needed in the development and testing phases of this project includes a

workstation that is capable of sending and receiving MIDI messages, and a way of

communicating between this workstation and a MIDI-enabledkeyboard.

Two separate workstations were set up, so that the project was not reliant on just

one workstation being available. This meant that when one workstation was unavail-

able or not functioning properly, there was an alternative workstation to use.

Chapter 3. Design 18

The Music department at the University of Edinburgh provided a Macintosh com-

puter attached to a Yamaha Clavinova which functioned as a MIDI keyboard. An

alternative hardware setup available during the project was a Windows PC attached to

a MIDI-enabled Casio keyboard.

3.3 The conceptual design of my score following sys-

tem

My score following system utilises thenormalstate/ghoststate Hidden Markov Model

structure described in Orio et al. (2003), with two states per musical event: anormal

state (should the musical event be performed as expected) and aghoststate (should the

soloist deviate from the score at this point).

Each statej is associated with an accompanimentx, such that if the soloist is in that

statej, the accompanimentx will be played. This accompaniment produced is either

the notes that should sound at that specified score location,should the soloist be in a

normalstate, or silence, should the soloist have reached aghoststate (as inspired by

Bloch and Dannenberg (1985).

The general algorithm that my score follower will use is as follows:

1. RECEIVE INPUT FROM PERFORMER

2. ESTIMATE WHAT HMM STATE THE PERFORMER IS IN, USING THE V ITERBI

ALGORITHM

3. PRODUCE THE APPROPRIATE ACCOMPANIMENT

4. DISPLAY STATE TRACKER ON SCREEN FOR INFORMATION

In more detail:

3.3.1 RECEIVE INPUT FROM PERFORMER

For this the system needs to store: the note pitch (C, C# , etc) and the volume that the

note is being played at by the soloist (so that the accompaniment is played at a volume

relative to that of the performer, to match their musical interpretation).

Chapter 3. Design 19

3.3.2 ESTIMATE WHAT HMM STATE THE PERFORMER IS IN , USING THE

VITERBI ALGORITHM

Given that we have a Hidden Markov Modelλ: this part of the score follower uses the

note pitch information obtained during RECEIVE INPUT FROM PERFORMER, along

with previous observations, to carry out the Viterbi algorithm to find the most probable

current state inλ.

At this point the system needs to store the number of the statewhich has been

calculated as being the most probable current state (to generate the appropriate accom-

paniment).

3.3.3 PRODUCE THE APPROPRIATE ACCOMPANIMENT

This section uses acoll (Max/MSP’s array structure) which has been pre-programmed

with the details of what accompaniment to output, given the system is in a particu-

lar statej. Here the system uses the current state number, as calculated in the above

V ITERBI function, to look up the appropriate accompaniment for thatstate. It then pro-

duces MIDI messages that will play this accompaniment (or inthe case of the current

state being aghoststate, MIDI messages are produced such that the accompaniment

falls silent).

3.3.4 DISPLAY STATE TRACKER ON SCREEN FOR INFORMATION

Feedback is a fundamental part of any interactive program. Given the amount of time

available for development, and the extra load on processingspeed that graphics display

places in Max/MSP1, the feedback that the system gives to the user has been kept

simple for the score followers in this project.

The score followers display the current HMM state. They alsodisplay information

on the current score location in terms of the current bar and beat of that bar that the

soloist is adjudged to have arrived at.

1If processing power is given to image processing, this wouldbe at the expense of computational
speed or music production, both of which are of higher priority in the score follower than graphical
display

Chapter 3. Design 20

3.4 Major conceptual design decisions

3.4.1 Choosing the best features for state representation

Many musical features could be potentially be represented by an state, for example:

• A single note

• A single beat

• A fraction of a beat

• A phase of theADSRnote envelope (one ofattack, decay, sustain, release

• A rest

• A sequence of notes

• A cadence

• A phrase

• A MIDI note-on/note-off event

It was necessary to consider how best the score could be modelled: what events

are most useful for the accompanist to know about and recognise. A list of signifi-

cant events may include key changes or tempo changes, modulations and cadences, or

specific sequences of notes. This would be variable depending on what piece is being

played by the score follower.

In initial experimentation, it was enough purely to model a simple tune for which

each note played by the soloist represented a new event. Hence each MIDI note-on

message would be suitable as a new observation. For more complex melodies con-

sidered later, though, it was necessary to change this so that the musical events being

modelled were beats or fractions of beats. This is discussedfurther in the Implemen-

tation chapter.

3.4.2 What to use in the set of possible observations

HMM observations or emissions are, in this domain, the notesplayed by the soloist.

If the score follower had been built to consider the absolutepitch of the incoming

notes from the soloist, then this would mean there are 128 possible observations in each

Chapter 3. Design 21

state (as there are 128 MIDI notes). Even if this is restricted to a smaller keyboard, say

one with five octaves, the score follower would still have 60 possible observations per

state. Computationally this would be expensive.

Instead my score follower ignores octave differences between notes and merely

consider 12 possible observations, the 12 notes in the western musical chromatic scale:

{C, C#, D, Eb, E, F, F#, G, G#, A, Bb, B}

So, for example, Middle C, MIDI note no. 60, would be treated asthe same note as

the C an octave above, MIDI note no. 72. This will mean that thescore follower will

perform considerably less calculations per state, with only a small trade-off in accuracy

of observations for most pieces2.

3.4.3 Restricting the soloist’s playing to be monophonic

If receiving input from a soloist via a keyboard, there are two possibilities for the

incoming information.

The first possibility is that the input can bepolyphonic. This means that the soloist

would play more than one note at the same time, for example if they were playing a

chord, they would press down more than one note on the keyboard at the same time.

This would mean that every individual note in the chord wouldhave to be processed

against the score. It would give more information as to the soloist’s current location,

but would add complexity in the form of error analysis. As there are more notes to play,

there are potentially more errors. It would be necessary to add an extra functionality

to the score follower that compared how well the actual chordthat was played could

match to chords in the score (such as that described in Bloch and Dannenberg (1985)).

The alternative is to restrict the soloist so that they are only allowed to playmono-

phonicmelodies. In other words, they can only press one note on the keyboard at any

one time. This would simplify the score follower to a particular domain of perfor-

mance, i.e. simulating instruments that are only capable ofperforming monophoni-

cally, such as a flute or trumpet3 Therefore this is a reasonable simplification to make

2The only type of piece where this compromise will cause problems are those where patterns of
notes are repeated at different octaves, however it is anticipated that in such circumstances the score
follower would have enough information historically to help in locating the soloist’s correct current
location through these passages

3The sound waves produced when such an instrument is played isactually constructed of subtones of
many notes (known asharmonics) combined together to sound as one note overall. However theeffect
produced is that of hearing one note and a human accompanist would interpret what they are hearing
as one note. The extra complications introduced by these acoustic concerns are far beyond the scope of
this project.

Chapter 3. Design 22

for this project.

In actual fact, even if a soloist plays a chord on a MIDI keyboard, this is generally

interpreted as a string of notes played monophonically, with a very small time-gap

between each one (i.e. a few milliseconds). Sound processing systems require a level

of extra processing to recognise such input as a chord. However this extra processing

is quite simple to implement. So if in future work, my score following system was

adapted to accept polyphonic input as well as monophonic input, then this would not

require major changes to the way my system processes input from the soloist. However

the part of my system that locates the soloist in the score would need to be updated to

deal with chord matching such as described above.

3.4.4 Comparison of anticipative and reactive design strat egies

Anticipative design strategies involve making some kind ofpredictions of what is about

to be played by the soloist. Reactive design strategies, on the other hand, purely re-

spond to the soloist as they play each musical event.

In considering both design strategies, a number of questions were considered:

• Should the accompanying note(s) start to play a fraction before the next expected

note, or exactly when the next note is expected, or not until the soloist actually

plays the next note?

• Should the score follower play the accompaniment associated with the next ex-

pected location in the score until it has worked out the actual next location the

soloist has reached in the score? Or should the score follower play nothing until

it has worked out where in the score the soloist has reached? Other alternatives

are to play only the expected accompaniment then adjust accompaniment in time

for the next input from the soloist.

If a human accompanist hears their soloist deviate slightlyfrom the score, it takes

time for the accompanist to relocate the soloist and adjust their playing from the ex-

pected accompaniment to the accompaniment matching the soloist.

It would be reasonable to have the computer accompanist onlyrespond to a devi-

ation on the next state after a deviation from the score was identified: replicating the

slight delay that a human accompanist would also have. This is on the assumption that

the states are modelled such that they are close enough together in timing for the delay

not to be too noticeable.

Chapter 3. Design 23

In this project, though, it was decided that the score follower should make the

change in accompaniment as soon as it has noticed there has been a deviation from the

scored music, rather than delaying any changes in accompaniment. This way the score

follower is being as accurate as its capabilities allow. Also, the score follower is not

continuing to play an accompaniment that it has decided is incorrect, but is amending

the accompaniment as soon as it has realised the change is necessary. In the same way,

a human accompanist would change their accompaniment as soon as they detected the

need to do so.

An interesting point is made in Dannenberg (1989) about the anticipation that an

accompanist must perform. Latency issues may arise if the accompanist does not make

the accompaniment sound at the same time that the soloist’s sound is produced. In real-

life a human accompanist prepares to play the expected next accompaniment before it

happens, for example positioning their fingers in readinessto play the expected next

part of the accompaniment. Dannenberg describes how there is potentially some la-

tency in his score follower system (while the system is processing the information

received by the soloist and locating them in the score). Because of this latency, there

is a need to build a corresponding amount of anticipation into the playback of the ac-

companiment. The score follower predicts what the next accompaniment will be, early

enough to have produced this accompaniment at the time when they expect the soloist

to play their next note.

Given the advances in computer performance between 1989 andthe present, this

issue has reduced somewhat in importance. Computers can now process information

considerably quicker than in 1989. But this does not mean that this issue has been

eradicated altogether. In fact the improved computationalresources can now be taken

advantage of, so that a greater volume of information is considered when attempting to

locate the soloist in the score (such as a longer history of what the soloist has played).

The side effect of this is that latency issues may result. So it was decided that some

element of prediction of the next accompaniment should be incorporated into my score

follower, such that the score follower produces some accompaniment at the point when

the soloist plays their next note (although the score follower may then adapt their

accompaniment according to what the soloist has played).

Chapter 3. Design 24

3.4.5 Adapting the accompaniment when the score follower ha s

identified a large change in the soloist’s current score loca -

tion

Dannenberg (1989) discusses what strategies to follow to keep the accompaniment

“musical” (p. 257). As an example of this, he mentions one heuristic that the score

follower should follow: if the accompaniment detects that is behind the performer in a

moderate amount or less, then the most musically pleasing way to re-synchronise with

the performer is, according to Dannenberg, by playing the accompaniment line more

quickly until it has matched with the performer again.

This is as opposed to ceasing to play the current accompaniment and passing over

the accompaniment that lies in between that point and the point that the performer has

reached, then starting to play the accompaniment again4.

Whilst this approach would mean that a smoother accompaniment would result

overall, it is not necessarily the approach that would be taken by a human accompa-

nist in a real-life situation. In my experience, if a significant gap (e.g. more than a

few beats) developed in between the performer and the accompanist, the accompanist

would be more likely to skip the intervening bars of the accompaniment and relocate

to where the performer was in the score, rather than take Dannenberg’s approach. This

would mean that the accompaniment would match the performer, rather than poten-

tially causing musical discordance5. Also, from the perspective of designing a score

follower, it would be simpler to implement a jump in accompaniment location rather

than to implement a speeding up and slowing down in the accompanist’s play, espe-

cially if this is to be done in a musically acceptable way. So for these reasons I believe

that there is little benefit to be had in following the more complicated approach that

Dannenberg advocates (Dannenberg, 1989), therefore the simpler approach will be

taken here.
4Dannenberg concedes that if the performer and the soloist are a large distance away from each

other in the score, then the accompanist could skip parts of the accompaniment that are identified as
less necessary for a musical accompaniment, although he does not go into any detail about how this
judgement of musical importance could be performed

5If the gap between the two players’ score positions was not sogreat, though, then Dannenberg’s
approach seems worthwhile

Chapter 3. Design 25

3.4.6 Encoding musical knowledge in the HMM probabilities

It would be helpful to have some means of gauging the local distance from the previ-

ously located position in the score to the estimated new location, in order to reposition

the score follower. The larger the distance from the expected current position to the

actual current position, the less likely in general it is that the performer has moved to

that score location. Exceptions to this can be found in caseswhere the performer has

missed out a bar or a sequence of notes, or where the performerhas misinterpreted

score markings such as repeat signs or Codas (that move the performer around in the

score in ways other than purely sequentially, bar by bar).

Hidden Markov Models offer a convenient way of encoding this, by setting the

probabilities associated with state transitions such thattransitions between states near

to each other should in general be more probable than transitions between more distant

states. This does not include the exceptional situations such as mentioned in the para-

graph above, where the probability for such state transitions may be increased slightly.

One aspect that deserves consideration is what the probabilistic weights in the Hid-

den Markov Model actually mean in terms of the operation of the score follower. The

HMM probabilities influence actions taken by the score follower, by increasing or

decreasing the probability associated with different paths through the HMM states.

However this should not be confused with a deterministic prescription of one single

possible path through the HMM states to the soloist’s current location; in actual fact,

more than one path through the HMM may be equally likely, given what the soloist has

played. The score follower is estimating the soloist’s mostlikely current location in the

score, rather than knowing this location with full certainty. So the HMM probabilities

are most effective if set to help to guide the score follower to consider more musically

likely paths (for example, moving through the score smoothly and from left to right),

placing less emphasis on musically less likely paths (such as ones which jump about

in the score with little linearity).

3.4.7 The action to take when more than one state is judged equ ally

probable by the HMM

It may be the case that for a given sequence of observations considered, the HMM

finds that more than one state is equally likely to be the current state. Therefore the

Viterbi algorithm will not return one state as its result, but instead a set of possible

states, which are equally probable given what the soloist has just played.

Chapter 3. Design 26

In this situation, the score follower will know which state it has judged the soloist

to be in, prior to the most recent input from what the soloist has played. It can use this

information to choose the next state from the set of possiblenext states.

It was decided that the state that should be chosen by the score follower in this

situation is the state which satisfies both of the following two conditions:

1. It is positioned to the right of the current state in the score (hence the state which

occurs most immediately after the current state, as we read musical scores from

left to right).

2. It is the closest state to the current state, of those positioned in the score in a

location occurring later than the current state.

Should there be no states positioned to the right of the current state, then the score

follower should choose the state which is closest to the current state, even if it is posi-

tioned in the score before the current state.

3.4.8 Learning the most accurate HMM probabilities through t rain-

ing

To incorporate some element of learning through experiencewould be an interesting

element to add to my score follower.

If we were to choose to train the HMM, this would involve getting the maximum

probability of being in the correctnormal state orghoststate, given a sequence of

observations.

Training algorithms for HMMs exist and have been well documented (Rabiner,

1989; Durbin et al., 1998). Orio and Dechelle (2001) and Cont et al. (2004) describe

how to train an HMM in the context of score following.

There are a number of issues when considering the training ofHMMs:

• Who would train my score follower if it is being used as a practical application?

The training needs to be completed before performance. Soloists would be un-

likely to want to spend time training up a score follower to the correct level. This

is unless the practice sessions were of benefit to the soloistas well, in the same

way that practice with a new human accompanist is beneficial so that the two

players can become more familiar with each other’s playing style and with the

new music. So training would add to the preparation workloadfor the system.

Chapter 3. Design 27

• Should my score follower be trained for a particular performer’s style of playing?

Or a particular piece?

Training the HMM can cause it to model a given score more accurately, and

target it to perform optimally for a particular style of playing or a specified piece.

However as with all training techniques there is the risk of overtraining, which

can overfit the model to a given performer, a given set of training scores or to a

subset of common mistakes.

Musicians with different musical backgrounds may have playing styles that are

quite distinct from each other. One example which becomes apparent later in

the project is that there is more than one interpretation of the staccato style of

playing, where notes are played for a shorter length duration than marked. Also,

different performances would be heard for a piece which has rubato or impro-

vised sections, or in one which has much ornamentation.

• Would training make that much difference, if the HMM settings were allocated

well initially?

IRCAM have previously reported that training an HMM score follower was

found to be less useful than expected (Smaill, 2007), although this may be due

to the skills developed by the researchers in fitting the HMM parameters to

score following in the first place, rather than a genuine lackof need of train-

ing. Schwarz reports in 2004 that some probabilities are “quite simple in nature

for our case [score following], such that the PDF parameterscan be set by hand”

(Schwarz et al., 2004)

Considering the issues raised in this discussion, the decision made for this project

was to not implement training of the HMM unless there is time at the end of the

project. The extra work involved in implementing training may not have enough

benefit to warrant the time spent on it, in relation to other tasks that could be

carried out in that time.

3.4.9 Representing notes of different lengths using HMM stat es

Initially, the score follower utilised a simple tune for which each note in the tune was

of the same length. Hence it was an obvious choice to model each note as an individual

HMM state.

Chapter 3. Design 28

Once the pieces become more complex however, it is no longer realistic to model

each note as a new state, and instead the more pertinent aspect to model as a state is

each beat, or a fraction of each beat. For such cases, it was necessary to consider how

the timing information within the score should be modelled (in addition to how the

notes should be modelled).

The two obvious ways to model a note that is held for longer than one state (i.e.

notes that extend over a beat or more) are:

1. Allow states with self-transitions, so the HMM stays in a given state while a note

is being held and only moves out of that state when the note is released.

2. Have a finite number of states representing each note that is longer than one

state, proportional to the length of the note (for example ifeach state represents

one beat and a note is three beats long, represent it as three sequential states).

The more successful option here seems to be the second (Raphael, 2007). This

approach gives the score follower more flexibility to vary the accompaniment and also

gives some information as to the expected length of the note.Therefore this was the

approach used for encoding notes of different lengths into my HMM.

3.4.10 Tempo extraction (beat tracking)

The ideology behind this project is that the soloist musician should be able to play their

melody with their own interpretation, and that the accompanist should be able to keep

with the soloist while they are playing the melody.

A natural extension of this is that the soloist should be ableto play the melody at

the tempo of their choice, perhaps varying the tempo for musical reasons or by mistake.

Beat tracking is the process of working out what tempo or speed a piece of music

is being played at, by analysing the music that is being heard. It is a burgeoning

research field in its own right, with much current research effort spent on improving

beat-tracking capabilities (Dixon, 2001; MIREX, 2006a).

The implementation of beat tracking in this project is very simple in comparison to

the latest state-of-the-art beat-tracking methods, but worked fairly effectively nonethe-

less.

My score follower measures the time in between notes played by the soloist. If

the soloist is currently judged to be in aghoststate (i.e. they have deviated from the

score), then the last input is not considered as valid for usein updating the tempo. If

Chapter 3. Design 29

the soloist is currently judged to be in anormal state (i.e. they can be found on the

score), then the score follower works out how long the previous note should have been

and compares this with the actual length of the last note.

The current tempo is based on an average of the recent (valid)tempo observations.

The largest and smallest tempo observations are ignored anda mean is taken of the

remaining tempo observations, to generate an estimate of the current tempo.

At first my concern was that the score follower was being giventoo much infor-

mation from my own musical knowledge, rather than letting itdemonstrate its own

musical capabilities. Information about note lengths is however easily extracted from

MIDI files. It would be a relatively straightforward task to write a program that could

extract this information, as well as HMM probabilities and note information directly

from MIDI files, in the format required by the score follower.However this is more

an algorithmic/computational problem than an AI problem, so attention was instead

refocused on the tempo extraction problem.

The issue with using the soloist’s input to calculate their current tempo is that the

soloist does not necessarily play on every beat, nor can theybe relied upon to always

play correctly and in perfect time6.

So the following tactics were implemented:

• If the soloist has entered aghoststate, then this means they have made a mistake,

therefore the note they are currently playing should not be considered as very

reliable evidence for tracking their tempo

• If the soloist is currently in a score location where they do not play a new note,

then by definition there will be no new information from the soloist as to their

personal tempo

• The only input that can guide the score follower in gauging the soloist’s tempo

is that where the soloist is expected to play a new note, and does in fact play that

note. In these cases, the score follower can record the duration of such notes7,

and compare the duration to what it expected the duration of that note to be (i.e.

the current tempo, multiplied by the number of beats that note was to occupy).

The score follower keeps track of discrepancies between theexpected note dura-

tion and its actual duration, and adjusts its own metronome tempo if necessary.

6If all performers could be relied upon to only play what is written in the score, then there would be
no motivation for projects such as this

7Calculated as the time period between this note and the next note, so that if a note is not held for its
full length - a common mistake - then this does not have a majorinfluence on the tempo extraction

Chapter 3. Design 30

One particularly important decision made early on in this phase of development

was to represent the tempo as msec per beat/state, rather than the more traditional

tempo measure of number of beats per minute. This made calculations much

simpler and did not affect the clarity of the system too much,as details of the

tempo measurements were mostly used internally by the scorefollower rather

than given out as feedback to the soloist.

3.5 Major practical design decisions

3.5.1 How MIDI files should be used in the score follower

The MIDI musical file format encodes notes in a way which can beinterpreted by

the score follower as an accurate source musical input. MIDIfiles transmit musical

information in the form of MIDI instructions or messages, which can be one or more

bytes long, depending on the complexity of the information being processed.

MIDI messages encode information such as:

• New note events,

• The cessation of notes being played,

• The channel on which a note should be played,

• The tempo at which notes should be played (therefore the speed at which the

MIDI file should be processed)

• The instrumentation for a given note,

• Timing information for sequencing,

• ... etc.

What MIDI files do not include are musical markings such as bar markings and

repeat signs. In a similar way, human musicians do not hear such musical markings. In

general MIDI files encode what human musicians hear, i.e. what notes occur at what

times.

A MIDI keyboard generates MIDI code, but does not necessarily have any built-in

sound generation. This means that there is an issue that should be addressed in how

sound is produced in my score following system. Either a MIDIkeyboard that also

Chapter 3. Design 31

produces sound could be used, or a computer or an external synthesiser could generate

the actual sound output that is the accompaniment (and perhaps also the solo line, if

necessary).

To improve efficiency of the score follower, there would needto be a MIDI pro-

cessing hardware setup that allows direct connections between the computer, MIDI

keyboard and sound generation units (indeed the sound generation units may not be

separate from the computer and/or MIDI keyboard). It would also be very helpful

to use a programming/control environment that can facilitate direct communication in

MIDI messages.

3.5.2 Output format for accompaniment

The output produced by the accompanist part of the score follower will be a stream of

MIDI data. This could be either:

• A sequence of musical MIDI events, each triggered by a match between the

soloist’s playing and the score

• A continuous playback of a MIDI file with temporal “signposts” to guide the

accompanist on which part of the accompaniment to play, suchthat the score

follower is sensitive to tempo changes and location changesthroughout the play-

back

So the output associated with each state would either be in the form of MIDI mes-

sages or score location data, respectively.

My decision was to take the first option, as this was a more direct way of produc-

ing the accompaniment. This option requires more effort as it is necessary to code the

MIDI accompaniment directly into the score follower, rather than using a MIDI file

for the accompaniment. Hence the score follower would need alittle more prepara-

tion for a new piece rather than just telling it the location of the MIDI file that holds

the accompaniment. However in real-time accompaniment theoverall priority for the

accompanist must be to produce the accompaniment sound withas little processing de-

lay as possible; hence if the score follower produces MIDI messages as a direct output

this would produce sound more quickly than if there was an extra level of processing

to do before sound could be generated. Timing the accompaniment to be accurate in

real-time, and avoiding any unnecessary sources of latency, is a primary concern in

this project.

Chapter 3. Design 32

3.5.3 The type of pieces used for my score follower

Specific score-following repertoires have begun to develop, that take advantage of the

lack of physical restrictions faced by an artificial accompanist in comparison to a hu-

man accompanist (such as notes reachable by a human hand on a piano, or the speed

at which a human hand can play a sequence of notes). However this type of piece is

not necessarily what my score follower should be able to play. Instead this project fo-

cused on a more traditional performer/accompaniment repertoire. This decision is due

to the emphasis placed in this project on producing a score follower that behaves as a

human accompanist would do, rather than investigating how an artificial accompanist

may possibly outperform a human accompanist.

3.5.4 Which development tools to use

Several software packages have recently been developed which can generate music and

reduce incoming audio to a computationally analysable form. Examples of these are

JMusic8 JSyn9, the MIDI toolbox for Matlab10 and Max and its associated programs,

for example Max/MSP11, jMax 12, PureData13.

• Max/MSP, jMax and PureData

Max is a graphical development environment designed for implementing inter-

active musical performances between human and computerised performers. It

has specific functions incorporated in its core program to allow interactive com-

munication through MIDI messages and sound input/output. MSP is an addition

to Max, that focuses on audio signal processing.

Max/MSP is a commercial package, incorporating Max and MSP,that is widely

used for interactive music and is available to me through theMusic Department

at Edinburgh University.

There is a free version of Max called jMax, implemented in Java. Another freely

available program that is based on very similar principles to Max/MSP is Pure-

Data (developed by Miller Puckette, who has also been part ofthe Max develop-

ment team at IRCAM).

8http://jmusic.ci.qut.edu.au/
9http://www.softsynth.com/jsyn/

10http://www.jyu.fi/musica/miditoolbox/
11http://www.cycling74.com/products/maxmsp/
12http://freesoftware.ircam.fr/
13http://crca.ucsd.edu/˜msp/software.html

Chapter 3. Design 33

Of the three variants, PureData is in general more focused onsignal processing

(in fact the signal processing functionality of Max/MSP is based on PureData).

jMax is slightly more unwieldly to use than Max/MSP. As its status as a com-

mercially available program befits, Max/MSP is heavily documented (Zicarelli

et al., 2006) and there are many sources of information on itsuse, as well as

much sharing of functions written in Max/MSP. So as access toMax/MSP was

available for this project, Max/MSP would be the preferred option here from

these three packages.

• MIDI Toolbox and Matlab The MIDI toolbox for Matlab is created and dis-

tributed by the University of Jyvaskala, Finland. It takes in MIDI input and

produces MIDI output. There are a large number of analyticaltools available in

the toolbox, where the raw data inside the midi file can be analysed and manip-

ulated.

It has functions for “analysing and visualising” (and playing) MIDI files.

The toolbox has:

– Simple manipulation and filtering functions

– Cognitively inspired analytic techniques which enable context dependent

musical analysis, e.g. metre finding segmentation.

– A new extension:MIR toolbox . This toolbox extracts musical features

from an audio file.

The MIDI toolbox processes MIDI files by converting them to anN*7 note ma-

trix (NMAT). In this way it is very powerful at performing computational pro-

cessing on MIDI files.

• JMusic, JSync and Java

JMusic is an audio package written in Java which allows the user to input, ma-

nipulate and output various types of audio files.

A similar package is JSyn: a Java interface that allows development of real-time

interactive musical applications. It has classes specifically designed for functions

such as synchronising audio streams.

• Writing a program in a conventional programming language (other than Java)

Chapter 3. Design 34

The other option considered was the use of C, Prolog or a similar programming

language. Although this would be a realistic option, the more specialised tools

considered above have greater capabilities for interactive music processing and

manipulation, and would simplify implementation considerably compared to a

language such as C or Prolog

Max/MSP is designed for real-time, dynamic, interactive music processing. Its

strength is in how it enables interaction between performerand computer.

Max/MSP is less well set-up for implementing the finer pointsof the theory of

HMM, as coding is done in Max/MSP at a higher level than a programming language

such as Java or C++. Hence processing precise mathematical equations and imple-

menting rigid control structures will be more challenging in this environment.

The MIDI toolbox and Max handle MIDI files more simply than theJava pack-

ages. From preliminary investigations, JSyn works better than JMusic at manipulating

different events of the score and at handling interactivitybetween user and computer.

The primary advantage of both of the Java packages over the MIDI toolbox is that it is

simpler to customise a user-friendly interface to a Java system.

Unfortunately the MIDI toolbox had to be discounted as an option after consulta-

tion with the MIDI toolbox authors (Toivainen, 2007). The MIDI toolbox cannot be

used to process data in real-time, through any way that they or I know of. Hence it will

not be suitable for implementing a system that by necessity must process real-time in-

coming information (i.e. the soloist’s playing). Therefore it could not be considered

further as an option.

Several people were consulted for advice in making this decision who had ex-

perience in real-time music processing. By far the most recommended option was

Max/MSP. Although I was not originally familiar with how to use Max/MSP, there

were extensive tutorials and documentation of its capabilities (Zicarelli et al., 2006).

As acknowledged earlier, it is more complex to use Max/MSP, compared to a con-

ventional programming language, for program control structures and data structures
14. However the Max/MSP documentation (Zicarelli et al., 2006) demonstrated a wide

variety of complex tasks which had been implemented in Max/MSP as examples of

Max/MSP’s capabilities.

Upon initial consideration of the project’s practical demands, one that was imme-

diately challenging for me was setting up a processing environment that could handle

14I am writing from the perspective of having a background in programming and computational cal-
culation

Chapter 3. Design 35

and process incoming and outgoing sound information. Max/MSP is designed with

this as a primary focus, and offers a simple and effective wayof handling this task.

Therefore Max/MSP was chosen as the best tool with which to encode my score

follower.

3.5.5 Existing HMM packages

As HMMs were to be used to implement my score follower, it would have saved time

and implementation effort if a readily-available HMM package could be used to encode

the HMM used in the score follower. The following HMM packages were considered:

• HTK: Hidden Markov Model Tool-Kit (University of Cambridge)15

This tool-kit is widely used in HMM applications. It is written in C but it is

possible to export C code into Max/MSP. However I encountered a great deal of

difficulty in performing this exporting of the C code into Max/MSP. Exporting C

code to Max/MSP (this is referred to as writing a Maxexternal) is an advanced

facility of Max/MSP which requires certain extra software and I did not have the

advanced knowledge in Max/MSP or access to the extra software necessary to

use the HTK as a Max external.

• UMDHMM: HMM implementation (Tapas Kanungo)16

As this is another HMM implementation written in C, it was originally consid-

ered as an option but again similar practical difficulties were experienced when

attempting to use this package in Max/MSP.

• Hidden Markov Model Toolboxfor Matlab (Kevin Murphy)17

Had the MIDI toolbox for Matlab been capable of processing input data in real-

time, this HMM toolbox would have been very helpful. Unfortunately, as men-

tioned earlier, this was not the case, so the HMM toolbox for Matlab was not a

viable option for this project.

• dishmm: Discrete Hidden Markov Model (Paul Kolesnik)18

This is a Max external, written in C and imported by the authorinto a Max/MSP

usable form. Originally this looked a very promising tool touse and I gained

15http://htk.eng.cam.ac.uk/
16http://www.kanungo.com/software/software.html
17http://www.cs.ubc.ca/˜murphyk/Software/HMM/hmm.html
18http://www.music.mcgill.ca/˜pkoles/download.html

Chapter 3. Design 36

much experience in using HMMs in Max/MSP by experimenting with this HMM

package and its examples. However during development, fundamental problems

were encountered while using this package in my score follower. My experi-

ences with using this package are described in greater detail below.

• hmmm 0.15: Hidden Markov Model implementation for Max/MSP (Yon Jason

Visell) 19

This is an Max/MSP patcher (a Max/MSP program) that implements a basic

Hidden Markov Model. As it does not include any algorithm to find the best

path through the HMM for a given set of observations, its soleuse to me was

as an example of how it is possible to implement Hidden MarkovModels in

Max/MSP itself, rather than as a C program imported into Max/MSP. It pro-

vided some inspiration for the belief that such an implementation was possible,

however this patcher was not used to any further extent when implementing my

own Max/MSP Hidden Markov model.

After some consideration of the above options, the KolesnikHMM implementation

(dishmm) emerged as my only realistic option for a readily-available HMM package.

3.5.6 Synchronising the start of the soloist and the score fo llower

In performances involving human musicians, the soloist andtheir human accompanist

both start to play at the same time together, by giving each other the other musical and

gestural cues such as counting a bar into the start of the piece or following a conducting

gesture. (This also serves the purpose of setting the initial tempo that is shared by the

soloist and the accompanist.)

For an artificial accompanist, an option would have been to simulate such a counting-

in process by input from the soloist, or alternatively the score follower could generate

a count-in through the MIDI file to bring in the soloist20.

As the score follower is designed to be reactive to the soloist’s input, however, this

consideration was deemed unnecessary, as the system will react to the soloist’s input.

While this may mean a small delay in starting to accompany the soloist, this is a short

enough delay that it causes no discernable problems in performance.

19http://www.ph.utexas.edu/˜yon/soft.html
20It is beyond the scope of this project to incorporate any gestural recognition that could facilitate the

score follower being brought in by conducting gestures.

Chapter 3. Design 37

3.5.7 Responding to the volume at which the soloist is playin g

When the computer accompaniment produces music, it will needto know what volume

to play at. There are three possible options here:

• The accompaniment is played at a pre-set volume throughout,regardless of the

volume the soloist is playing at

• Volume markings are included in the accompaniment that the score follower is

programmed with, such that it is told what volume to play at what time.

• The score follower plays its accompaniment at a volume relative to that of the

soloist

My preferred option was the last of the three: to match the volume of the accompa-

niment to the volume that the soloist is playing. It is very rare that the accompaniment

music should be heard at a louder volume than the soloist’s melody. This is because the

nature of a solo melody is that it is the primary part of the music being heard, therefore

should be the most prominent sound for any listeners.

The score follower being developed in this project should therefore not play more

loudly than the soloist at any point. Hence it should interpret the volume of the soloist

and play no louder than this level of volume.

At this point, all major design decisions have been made, both practical and con-

ceptual. The next chapter describes the actual implementation of the score follower

system.

Chapter 4

Implementation of the Score Followers

This chapter describes the major stages of actual development. It includes a discussion

of any decisions needed during development. Also documented here are the main

problems encountered during the development process and how these problems were

dealt with.

My score follower is written in Max/MSP (a real-time music interaction program-

ming environment). The score follower runs on a Macintosh1Quadra 650 16Mb/6Gb(ext)

computer that is attached to a MIDI keyboard: a keyboard which sends ands receives

data to/from the computer in the musical format MIDI (numeric messages about the

note pitch, volume etc). In my studio the MIDI input device was a Yamaha Clavinova

CLP.

My score follower was programmed with three different pieces:

1. First seven notes ofTwinkle Twinkle Little Star(Simple melody), first with a

simple monophonic2 bass line and then with a polyphonic3 or chordal accompa-

niment *

2. An extract fromAll I Ask of Youby Andrew Lloyd-Webber, first with a sim-

ple chordal accompaniment and then with a more complex accompaniment for

which the accompaniment may move from one note to another while the soloist

remains in a single state *

3. An extract fromDanse Macabreby Camille Saint-Saens

1My program can run in Windows or Macintosh OS, however all testing was performed on a Mac-
intosh computer

2A maximum of one note sounding at any one time
3Potentially more than one note can be sounding at the same time

38

Chapter 4. Implementation of the Score Followers 39

Figure 4.1: HMM structure for Twinkle Twinkle Little Star, with one mistake

allowed at a time

All accompaniments for the pieces marked * were composed by myself, so that the

accompaniments fitted the requirements specified here. Scores for each arrangement

of these pieces are included in the appendices section of this document.

4.1 Stages of development

The score followers in this project were developed in an incremental fashion, starting

from basic versions and gradually adding more complex functionality.

The various stages of development during this project were:

• Score follower that can recognise a simple short melody. This version allows

for recovery from one deviation from the score at a time, and produces a mono-

phonic accompaniment (one note sounding at a time).

This score follower was the foundation of all later versions. It uses a Hidden

Markov Model as depicted in Figure 4.1. Each note in the melody (Twinkle

Twinkle Little Star extract)is represented by anormal state and corresponding

ghoststate. Some exemplar probabilities are included in Figure 4.1 (although

the majority of probabilities are omitted from this diagram, for overall clarity).

• As for the previous score follower, with chordal accompaniment added (so more

than one note is played at the same time by the accompanist).

Chapter 4. Implementation of the Score Followers 40

This was implemented by altering the data structure used to store the accompa-

niment, and developing the part of the score follower that generated the accom-

paniment, so that both were able to cope with multi-note input.

• As for the previous score follower, with added functionality: the score follower

plays the accompaniment that is expected to occur next, being played prior to

the actual score location being estimated

This version implements some anticipation of what is to be played next by the

soloist. To work out what accompaniment it expects to play next, the system

takes the current state and moves onto the next state sequentially of that type.

So if it has calculated that the soloist is located atnormal state 3, the system

expects the next state to benormal state 5. (Normal states are numbered with

odd numbers,ghoststates with even numbers.)

If the soloist is currently considered to be in aghoststate, for exampleghost

state 8, then the current accompaniment would be silence (asno accompaniment

is produced when located at aghoststate). Hence the simplest action here would

be to move to the nextghoststate, for exampleghoststate 10. As the score

follower does not yet know how or when the soloist will returnto the score, in

this scenario the preferable action is to keep the accompaniment silenced until

the soloist can be identified as on the score again4.

• As for previous score follower, but allowing more than one deviation from the

score to be made concurrently

To enable this functionality, the structure of the HMM was changed. Figure 4.2

shows part of the new HMM structure: it shows all the state transitions that are

possible from the firstnormalstate, with associated probabilities5.

• As for previous score follower, with simple beat-tracking implemented to esti-

mate the soloist’s current speed

Beat tracking was implemented, as described above in the Design chapter. At

this point the score follower is still fairly basic; it reacts to each input from

4Here the same effect could have been achieved by staying in the sameghoststate, or indeed any
ghoststate, but as this choice influences nothing except the first few msec of producing accompaniment,
I chose the option that was simplest to implement

5By this point, the probabilities had been developed during experimentation so have been refined
somewhat

Chapter 4. Implementation of the Score Followers 41

Figure 4.2: HMM structure for Twinkle Twinkle Little Star, with handling of

multiple concurrent mistakes

the soloist, rather than using any notion of tempo to controlthe timing of the

accompaniment that it plays, or to anticipate the soloist’snext musical event.

• Smoothing of accompaniment, so that held notes in the accompaniment can be

played smoothly as intended, rather than being played as individual new notes

on each state transition.

The heuristic used for this is:

If new note is currently sounding, do not replace it. If new note is not
currently sounding, make it sound. Any currently-soundingnotes that
are not included in the set of new notes to be played should be turned
off

• Score follower that recognises a substantially longer and more complex melody

The new melody(Danse Macabre extract)incorporates notes of different lengths,

repetition of note sequences in different locations in the score, and staccato play-

ing.

This was essentially the same as the most advanced of the previous score follow-

ers (but without beat-tracking implemented at this stage).

The only amendments necessary to the main structure of the previous score fol-

lower were the inclusion of the new HMM information and secondly, a slight

Chapter 4. Implementation of the Score Followers 42

change in the interpretation of what was being played by the soloist. Previ-

ously the melody being interpreted by the score follower only had notes of equal

length, and no rests or silences by the soloist, to be interpreted. The new melody

has notes of different lengths. It also has staccato notes: the effect of staccato is

that the note is played more shortly, such that there is extrasilence added after

the note is played, at the expense of playing the note for its full duration.

Therefore the HMM structure was amended to represent the score slightly dif-

ferently. Instead of representing eachnoteby anormalstate andghoststate, the

music score was now represented by modelling eachbeat (in actual fact each

half-beat) by anormal state andghoststate. This is because some notes were

now longer than others and so their duration spanned across more than one state.

Hence differing note lengths were modelled using a finite collection of states

such that the number of states is relative to the length of thenote, as advocated

in Christopher Raphael’s work (Raphael, 1999, 2001b, 2007).

Also the score follower was adapted to recognise when the soloist was not play-

ing a note at a given time, and an extra emission was added to represent that the

soloist was silent at that point.

• As for previous score follower, with simple beat-tracking implemented to esti-

mate and follow the soloist’s current speed

Beat-tracking was implemented as before.

• Give the score follower a new melody to recognise

The new melody(All I Ask of You extract)was chosen because it was slightly

simpler and shorter than forDanse Macabre, but notationally much longer and

more complex than for theTwinkle Twinkle Little Starextracts.

The main objective in this stage of development was to see if the score follower

could recognise a new melody, without needing to make fundamental changes

to the score follower program itself. This was achieved; theonly changes to the

score follower system were to give it the new HMM informationfor the new

melody.

• As for previous score follower but with more complex accompaniment that has

notes moving in the accompaniment while the soloist is stillstatic in one state

Chapter 4. Implementation of the Score Followers 43

Here it was necessary to further develop the data structuresand the part of the

score follower that generated the accompaniment, so that they could include

and use information about the length of time each note in the accompaniment

should be held for (in terms of the number of states, or the fraction of a state,

the note should be sounding for). As a result the score follower could be told

what the more complex accompaniment was and could play this more complex

accompaniment.

4.2 Major sections of the score follower system

get soloistsnext input : Extracts the new information from the soloist, that comes in

from the MIDI keyboard.

determine what state the performer is in: Runs a series of procedures:

1. Convert the actual pitch of the note into one of 12 possible observations (0 if a C

has been played,1 if a C# has been played, etc) In later development a thirteenth

possible observation was added:12 if nothing is being played, i.e. the soloist is

silent.

2. Adds this observation to the list of observations seen so far and extracts the three

most recent observations.

3. Performs the Viterbi algorithm with these three observations to decode which

HMM state the soloist is in (i.e. where they are in the score).

generateaccompaniment: Looks up the HMM state in an attribute-value pair, to

find which notes to play as accompaniment E.g: 1,〈[48,52,55]〉 - ‘In state 1, play

MIDI notes 48, 52, 55’ (these MIDI numbers correspond to a C Major chord)

N.B. I found during development that it was necessary to keepthe functionality

of each section completely separate, so that for example thegenerateaccompaniment

patcher was the only patcher that could affect the playing ofthe accompaniment. This

encapsulation approach eradicated many small errors whereone section would inter-

fere with the correct operation of another section.

Chapter 4. Implementation of the Score Followers 44

4.3 Problems encountered during implementation

4.3.1 Conceptual/theoretically-related problems

4.3.1.1 My implementation of an HMM in Max/MSP

As discussed later in this section, no suitable HMM packageswere found for use in

Max/MSP. Indeed I was advised to program as much of the inner workings of the

system as possible myself, for better control over system performance (Raphael, 2007).

Given the graphical and high-level nature of Max/MSP, a programming task such

as this is more complicated than if implementing an HMM in a language such as C or

Matlab6. Due to the time available for development, it was decided that only a partial

implementation of the HMM architecture should be necessary. So the model structure,

parameters and probabilities were all implemented, as was (a slightly amended ver-

sion of) the Viterbi algorithm, but learning functionalitywas not incorporated into my

HMM.

Once the Hidden Markov Model structures and Viterbi algorithm had been im-

plemented successfully, some adjustments were made to the score follower’s Viterbi

algorithm, to improve its efficiency. Originally, when working out the probability of

a particular state being the soloist’s current state, therewere many redundant calcula-

tions being performed. This was because in an equation of theform LHS * RHS, if

LHS was equal to 0 then there would be no need to calculate the RHS, as by definition,

anything multiplied by 0 is also 0. However my original implementation of the Viterbi

algorithm worked out values for both LHS and RHS in this situation. So to reduce the

computational effort, the algorithm was amended such that before working out a RHS,

it would first check to see if the LHS of the product was 0. If this was the case then it

would not need to work out RHS, but instead return LHS*RHS = 0.

4.3.1.2 Using a locally optimised version of the Viterbi algo rithm

The Viterbi algorithm (Rabiner, 1989; Pardo and Birmingham, 2005) is a recursive

algorithm. The base case for this algorithm relies on the assumption that the first

observation being considered relates to being in aninitial state a0.

6It is possible to write a C program and import it into Max/MSP (this is referred to as writing a Max
external), however my knowledge of Max/MSP and C is not advanced enough for this to have been an
option for me

Chapter 4. Implementation of the Score Followers 45

α(sj ,o1) = φ(sj ,o1)σ(sj) (4.1)

σ(sj) = the probability of starting in statesj (4.2)

(Pardo and Birmingham, 2005) (p. 3) If using only a subset of the observations rather

than all the previous observations, as is the case here, thenthe Viterbi algorithm re-

quires some amendment. The base case of this algorithm was altered slightly to calcu-

late a probability for the first state of this sequence that did not require this first state

to be an initial state. This was done by using theφ function to replace the use of the

initial probability table.

α(sj ,o1) = φ(sj ,o1)φ(sj ,o1) (4.3)

Henceφ(sj ,o1) replacesσ(sj). So the Viterbi algorithm can now be used on a

locally optimal basis, rather than needing to be based on thewhole sequence of obser-

vations so far.

4.3.1.3 Linear movement through the score

For more complex pieces (particularlyDanse Macabre, which had a number of similar

sequences repeated through the score), the states identified by the score follower did

not always form a linear sequence, even when the soloist played in a linear fashion.

Such linearity could be derived to some degree with experimentation on setting the

HMM state transition probabilities.

The system was enhanced further after feedback from testers. Some extra weight

was added to the probability of the next expected state that had been calculated by the

Viterbi algorithm. This had promising results and helped the score follower to move

through the score more smoothly.

This amendment meant that the HMM settings were being overridden to a certain

degree; however with more accurate HMM probabilities (and possibly with training)

I believe the same effect could be achieved. When assessing the effectiveness of the

HMMs used in score followers in this project, though, it was necessary to bear in mind

this amendment to the HMM probabilities.

Chapter 4. Implementation of the Score Followers 46

4.3.1.4 How to represent a rest or silence from the soloist

My original set of possible observations was the set of integers from0 to 11, represent-

ing the twelve possible pitches in an octave ({C, C#, D, Eb, E, F, F#, G, G#, A, Bb, B}).

As mentioned above, when modelling more complex pieces thathad rests in the soloist’s

melody or staccato (short) notes, it was necessary to include a thirteenth possible ob-

servation that represented silence or the lack of note inputfrom the soloist.

4.3.2 Technical problems

4.3.2.1 Silencing notes that are currently sounding

A common problem with MIDI is that if a note has been made to sound using a MIDI

note-on message, then this note will continue to sound untila corresponding MIDI

note-off message is received for that note.

This caused a problem when needing to silence a previous accompaniment note

or chord, in order to replace it with the next note or chord. This problem was solved

by sending all accompaniment through a Max/MSP object called flush. Using this

object, it is possible to turn off all currently sounding notes for whichflushhas not

yet received a note-off message, by sending a ‘bang’ messageto theflushobject. This

‘bang’ message causes all such notes in theflushobject to cease sounding, to make

way for the new accompaniment to be heard.

4.3.2.2 Using an external HMM package in my score follower

My original plan, as described in the previous chapter, was to use the HMM implemen-

tation for Max/MSP written by Paul Kolesnik. Initially thisHMM package worked

well, in the early stages of implementation of a score follower. However problems

soon emerged.

The Viterbi implementation in Kolesnik’s HMM package was designed to find the

optimal path through the HMM only after all observations hadbeen received. As it

was necessary for the Viterbi algorithm to operate at a more local level during the

performance of the piece rather than at just the end of the piece, I attempted to change

the source code slightly to allow this to be possible. On re-compilation, however, I was

unable to use my new code as I did not have all the necessary source code files made

available to me7, so could not complete the compilation of the new code. Therefore I

7Despite some email correspondence with Paul Kolesnik aboutmy use of his code

Chapter 4. Implementation of the Score Followers 47

could not use the Viterbi algorithm as originally planned.

If this had been the only problem encountered, I could have worked around this, as

the implementation of the HMM was otherwise well written andsound in operation.

However I also found that the HMM implementation did not scale up a great enough

extent. I was not able to use it for an HMM with 14 states and 12 observations. I

was unable to work out why this was the case, but could find no reason that I could

trace in the code other than perhaps it was too large for the HMM structures to handle

(however the settings for the HMM structures were in the source code files which I did

not have access to.

Having emailed several prominent researchers in score following using HMMs,

as to how they implemented their HMM practically, I receivedone response from

Christopher Raphael. His recommendation was to implement the HMM structures and

functionality myself. As an HMM implementation suitable for my needs could not be

found, I did in fact code a partial HMM implementation myself(as described earlier in

this chapter). Although this meant a significant extra implementation effort and extra

complication in the development stage of this project, thisapproach also meant I had

a more thorough overall understanding of the inner workingsof the HMM and could

exert more control over the various aspects of the HMM implementation, to better suit

the needs of the score followers.

4.3.2.3 Terminating the accompaniment gracefully at the end o f the piece

The last chord of the accompaniment did not automatically stop playing at the end of

the piece as there was no incoming accompaniment notes with which to replace the

last accompaniment chord. To solve this problem, refinements were made to the part

of the program that processed the soloist’s input. As a result it was able to monitor

whether or not the soloist had appeared to stop playing and also could monitor if an

end state had been reached. The accompaniment was silenced if one or both of these

conditions were satisfied.

4.4 Experimentation with my system during develop-

ment

Although many design decisions were made prior to implementation, a number of

decisions were taken during the development of the project,about how various parts

Chapter 4. Implementation of the Score Followers 48

Figure 4.3: Transitions representing the SKIP error (where a scored note is

missed out) are only necessary for a small number of future normal states

of the score follower would work best. These implementationdecisions were based on

the results of experimentation carried out during the development phase of this project.

What follows is a brief discussion of the main experimentation that was carried out

during development, and the results that were obtained.

4.4.1 Fitting an HMM to score following

My score follower needed to know probabilities associated with starting in each state

(initial prob.txt), moving from one state to another (state transitions.txt)

and the probability of seeing each possible observation from each state (emission probabilities.txt

Although training of these probabilities was not explicitly included in my imple-

mentation, much experimentation was performed with different values for these prob-

abilities. This experimentation could be said to serve as a form of manual training of

the HMM.

The main findings from this experimentation were that:

• A smoother performance was achieved when the transition between sequential

normal states was allocated a much higher probability than the transition be-

tweennormal states andghoststates. This was found to encourage the score

follower to take a more linear path through the score of the music.

• Transitions representing that a note had been missed out or SKIPPED 8 were

only necessary for a small number of futurenormalstates. Figure 4.3 shows an

example of the resulting HMM structure.

8This type of error is discussed in previous chapters and in Orio et al. (2003)

Chapter 4. Implementation of the Score Followers 49

It would be interesting to investigate whether, with some implementation of train-

ing of the HMM, these settings could be improved further.

Experiments were also made with the structure of the HMM, as to how the states

modelled the musical score. Each piece of the three pieces was modelled slightly

differently.

• TheTwinkle Twinkle Little Starextract was modelled using a state to represent

each new note of the melody.

• TheAll I Ask of Youextract was modelled using a state to represent each beat of

the melody

• TheDanse Macabreextract was modelled using a state to represent each half-

beat of the melody

It was more effective to use beats rather than notes as the musical events to be

represented by states, because more complex melodies couldbe implemented. (The

HMM for Twinkle Twinkle Little Starrelied upon each note of the melody being the

same length.)

Using a full beat as a musical event was more musically intuitive for myself, when

constructing the HMM. However the use of a half-beat as a musical event allowed the

score follower to track the position of the soloist more precisely.

4.4.2 Number of observations used for Viterbi

I experimented with using different sizes of histories of observations (the number of

notes most recently played by the soloist) to locate the soloist’s current position in the

score. The score followers were run with a history of the last2, the last 3 and then the

last 4 observations being used by the Viterbi algorithm.

My findings were as expected: the more observations that the Viterbi algorithm

used, the more accurately the score follower was able to estimate the soloist’s posi-

tion in the score. This was verified when measuring how accurate the score followers

were during later testing (see the Objective Testing discussion in the later chapter on

Testing).

Another significant finding was that the smaller the number ofstates, the larger

the number of observations that could be presented to the Viterbi algorithm without

Chapter 4. Implementation of the Score Followers 50

serious latency issues emerging9. For melodies that were modelled with a large num-

ber of states, the score followers quickly developed latency issues if using the Viterbi

algorithm on a larger number of observations (although thiswas overcome to a certain

degree by calculating the probabilities beforehand, as described below).

Later experiments with restricting the scope of states considered as potential next

state helped to alleviate this latency somewhat. These experiments are discussed later

in this chapter.

4.4.3 Setting a probability thresholds for the estimation o f the next

state

I experimented with setting a probability value as a threshold value. The probability of

a possible new state being the current state had to exceed this threshold in order to be

considered as valid for the actual current score location.

This did not have any adverse effect on the score follower’s performance, but it was

later found that the optimum value for this probability varied according to the piece,

because of differing numbers of states being involved in themultiplicative calcula-

tions. Therefore it was simplest to disable the enforcementof this condition for later

versions of the score followers that used more states. Disabling this did not lead to any

noticeable reduction in performance.

4.4.4 Finding the most effective beat tracking parameters

The beat tracking, or estimation of tempo from what has been played by the soloist,

was experimented with in order to find a set of parameters for the beat tracking which

gave the most accurate measure of the soloist’s speed.

Some of the explorations made in this area included:

• Only considering tempo observations once there have been three or more tempo

observations

Therefore the first three notes are not used initially for tempo alignment. The

soloist should have dictated the tempo to the system before starting to play (al-

though there are default values set for the tempo of each piece in case this does

not happen). It is worth remembering that if the soloist had not given their tempo

9By latency I refer to the speed with which the accompaniment was played in response to each note
played by the soloist

Chapter 4. Implementation of the Score Followers 51

to the accompanist in a real-life situation, then it would take a human accompa-

nist a few notes to gauge the soloist’s tempo as well.

• Taking the last eight tempo observations and finding the average of these obser-

vations

I experimented with the number of tempo observations that should be considered

and found that eight was a good number to use. This meant that extreme values

that distorted the average would eventually be “forgotten”by the score follower,

but that the score follower still had an adequate history of tempo observations

from which to estimate the soloist’s current tempo10.

• Disregarding the most extreme large and small values in the list of tempo ob-

servations, so if there are any inaccurately timed notes then they do not have a

disruptive influence over the tempo calculations

I experimented with removing the largest and smallest elements from the list

of tempo observations (so it was ignoring two elements in total). This worked

more accurately than if all elements from the list of tempo observations were

considered.

In the next experiment the top and bottom two elements were removed from the

list (so the score follower was ignoring four elements in total). This was too

unresponsive to changes in tempo and did not adapt its estimated tempo quickly

enough to match the soloist’s tempo. So the final decision wasto only disregard

the largest and smallest tempo observations when estimating the soloist’s current

tempo.

• Changing the system slightly so that the internal metronome is restarted on a

new beat, when new input comes in from the soloist.

If the soloist is slightly off-beat for one note, then this mistake will be corrected

over time.

If the soloist is speeding up, then the current beat is started earlier than it should

start, which is intuitively correct: if the soloist’s tempospeeds up then their beats

occur earlier than expected.

10This suggests the possibility of being able to use HMMs to implement beat tracking, such that the
tempo observations could be used as a guide to the soloist’s underlying tempo. However this is much
out of the scope of this project and will not be considered further in this document

Chapter 4. Implementation of the Score Followers 52

If the soloist is gradually slowing down, then the expected metronome click

comes before the actual metronome click. Initially I had concerns that this would

cause a problem where the score follower would start the nextbeat before the

soloist does, so would start to work out the next state that the soloist has (in

theory) changed to,beforethe soloist has actually changed state. However this

proved to be less of a problem than anticipated. This was because any calcula-

tions of a new state were overridden when the soloist does change state.

4.4.5 Performing the viterbi algorithm off-line, to genera te pre-calculated

probabilities for longer scores

Originally, latency issues had a large impact on the performance of the score follower

for the Danse Macabreextract. Because of the large number of states in the HMM

for this piece (201 states), the score follower could not keep track of the soloist to

any recognisable degree, due to the amount of time that Viterbi algorithm computa-

tions were taking. This was not so much of a problem when only using the two most

recent observations with which to track the soloist, but wassignificantly affecting per-

formance when using a history of three observations or more.

For each new note played by the soloist, and using a history ofthree observations,

the score follower is carrying outN3 calculations. For an observation sequence ofM

musical events, with a history ofX observations, the score follower will have to carry

outMxNX calculations. This is a high computational load and the score follower could

not cope with this computational burden and still produce real-time accompaniment.

To reduce the computational load, one version of the score follower used a table

of probabilities that had been calculated off-line, prior to the soloist starting to play.

During runtime, it would then use the most recent observations from the soloist as a

key to look up what the most probable next state would be.

This approach involved a large calculation effort when constructing the table of

probabilities (MX ∗NX calculations total whereN = no of states,M = no of possible

observations, and a history ofX observations is used)11. However during the time the

system is online and running, the time saving is considerable. Instead of carrying out

11There is likely to be a more efficient way of calculating this table, but I chose to use a simple and
direct way by taking each combination of observations in turn. On my system setup this took 24 minutes
to run for a 201 state/13 emissions HMM with a history of threeobservations. I estimated that using a
history of four observations would take approximately five hours to produce a table of probabilities for
this setup. Unfortunately, certain time restraints I had onaccess to resources meant that I was not able
to produce and test this probabilities table

Chapter 4. Implementation of the Score Followers 53

intensive calculations for each observation (as outlined above), it is only necessary

to look up a single value in a table for each musical event played by the soloist. So

implementing this meant that the score follower a piece witha larger HMM structure

(in this case theDanse Macabreextract) could be tested on a live basis.

4.4.6 Reducing latency issues by only examining local state s as

potential next states

In the research literature, many HMM-based score followershave been produced which

can cope with longer pieces (Raphael, 2001b; Orio et al., 2003; Pardo and Birming-

ham, 2005), without resorting to offline calculation of probabilities.

To reduce the computational burden, the options were to either change the way the

soloist’s position in the score was estimated or to reduce the number of calculations

being performed. The latter option was taken in this project, in order to reuse the basic

structure of the previous score followers.

Instead of considering all states in the HMM as possibilities for the soloist’s current

location in the score, the score follower now only considered awindowof states, cen-

tred around the state that had been estimated as the previousstate. The default window

size was large enough to consider approximately a bar and a half worth of states.

This experimentation was developed further, by expanding the number of states

considered by the score follower as potential next states, if the system is not able

to estimate the current location of the soloist successfully, and is “lost”. The score

follower was deemed to be “lost” if it has estimated the current state to be the same as

one of the previous two states; in other words if it has becomestuck in a particular set

of states.

At some point the score follower would find the soloist’s position in the score

again, so would have chosen a suitable state such that it was no longer considered to

be “lost”. Upon reaching this point, the number of local states being considered would

be reduced back to the default window size.

Now my score follower could perform the Viterbi algorithm online. The score

follower was more robust than expected, in terms of how well it performed when the

soloist’s position in the score moved larger distances in the score than usual. However

this robustness could be improved in the future, given further work.

Chapter 4. Implementation of the Score Followers 54

At this stage in the project, a number of versions of a score follower have now been

fully implemented. This chapter has discussed the major implementation stages that

occurred during this stage of the project, describing the main decisions taken during

implementation and how several problems were dealt with during this time.

Chapter 5

Testing and Evaluation of System

Performance

The performances of the score followers produced during this project were evaluated

both objectively and subjectively. The system was tested against measurable criteria

originally constructed in 2006 by score following experts to test the latest research

efforts (Cont and Schwarz, 2006).

As well as this testing, the score followers were tested and judged by musicians of

varying musical ability and experience, so that they could give their opinions on the

quality of accompaniment provided by the score followers.

Several versions of the score followers were tested. As the objective testing was

carried out at a later time than for the subjective testing, the Danse Macabrescore

followers had been updated slightly. Two versions were tested during objective testing

that carried out a localised rather than global search for the next state, in order to

be able to perform the Viterbi algorithm online (while the soloist was playing) rather

than having to calculate probabilities beforehand. All other versions were tested both

subjectively and objectively.

The score followers were tested in a thorough and structuredmanner and the re-

sults from each testing stage were evaluated. The differentscore followers in this

project were compared against each other, against other score followers in the research

domain, and against a human accompanist.

55

Chapter 5. Testing and Evaluation of System Performance 56

5.1 Objective testing

5.1.1 Objective testing methodology

My score followers were tested using criteria that was used to test score following

systems in the 2006 Music Information Retrieval EvaluationeXchange (MIREX) con-

ference, and which will be used again in the 2007 MIREX conference.

This testing criteria is the result of much discussion between experts in score fol-

lowing (Raphael et al., 2006). On the MIREX conference website 1 there are results

published from the evaluation of two separate score following systems in the 2006

conference (MIREX, 2006b). So this criteria has been devised with some careful con-

sideration. It is also possible to perform some general comparison between my score

follower and other score following systems (although this will be limited as my score

follower will have been tested using different pieces and therefore different challenges

to the score follower, and will also have been tested under different conditions).

The objective testing criteria from MIREX (Cont and Schwarz,2006) is as follows:

• Event Count: The number of musical events included in the played melody (i.e.

the number of musical events for which the score follower hasto estimate a state)

• Number of Notes Missed: Scored notes that the score follower does not recog-

nise at all, or which are recognised but with an offset of greater than 2000 mil-

liseconds. This is tracked by seeing which states the score follower goes into

during accompaniment, and when each state is entered

• False Positive (FP): Scored notes that the score follower only recognises after

a delay of greater than 2000 milliseconds (this is also included in the above

statisticNumber of Notes Missed)

• Average Offset: The mean of the recorded Offset measurements between the

note onset (note being played by the soloist) and the accompaniment being

played

• Standard Deviation Offset: The standard deviation of the above Offset mea-

surements
1http://www.music-ir.org/mirexwiki/index.php/Main_Pa ge

Chapter 5. Testing and Evaluation of System Performance 57

• Average Latency: The mean of the recorded Latency measurements between

the detection time of the note being played by the soloist andthe time the system

has processed the audio so that it is ready to be matched to thescore2

• Missed Note %: The percentage of missed notes (Numbero f NotesMissed
EventCount). The

inclusion of missed notes in this criteria is to convey how accurate the score

follower is at tracking the soloist’s exact position in the score.

• False Positive %: The percentage of False Positive notes (Numbero f FalsePositives
EventCount)

Additionally there are two overall measures with which to compare my work over-

all with each score follower submitted at MIREX 2006:

• Total precision: The percentage of correctly detected notes overall (i.e. all score

followers’ results added together)

• Piecewise precision: The mean of the percentage of correctly detected score

notesby each score follower

As well as this, I included a subjective measure of how well I judged my score

follower to have performed during the test:

• 5
5: Flawless accompaniment, indistinguishable from or better than the accompa-

niment that an expert human accompanist would play

• 4
5: Very good accompaniment, with almost no errors

• 3
5: Good accompaniment, with some flaws but generally accurateand musical

• 2
5: Some accompaniment performed accurately but with many errors and unmu-

sical moments

• 1
5: Poor accompaniment with very few moments where the accompaniment was

played accurately

• 0
5: Where the accompaniment played bears no resemblance whatsoever to what

should have been played

2The definition of this in (Cont and Schwarz, 2006) is slightlymisleading: “Difference between
detection time and the time the system sees the audio” but my interpretation of the latency measure is
as described in the main text

Chapter 5. Testing and Evaluation of System Performance 58

All the measurements described above were used as objectivemeasurements to

evaluate my score followers.

The score followers tested were:

1. Twinkle Twinkle Little Star, with beat tracking enabled such that the soloist’s

tempo is extracted - but as this score follower is purely reactive, it only plays

accompaniment when it receives a soloist’s input. So the beattracking is enabled

but does not affect the playing of the accompaniment.

2. All I Ask of You, with a set metronome tempo for the tester to follow.

3. All I Ask of You, with beat tracking enabled so that the score follower should

follow the tester’s tempo.

4. Danse Macabre, with beat tracking enabled, using the probabilities calculated

offline by the Viterbi algorithm

5. Danse Macabre, with beat tracking enabled, performing the Viterbi algorithm

online and using a history of the last three observations from the soloist

6. Danse Macabre, with beat tracking enabled, performing the Viterbi algorithm

online and using a history of the last four observations fromthe soloist

Five tests were carried out on each score follower. For each test, the score follower

was presented with a specified melody from the soloist. During each test, the score

follower’s performance was judged against the objective criteria outlined above. The

five tests were:

1. Play the melody as scored, with no mistakes, tempo changesor embellishments

2. Play the melody with selected errors added

3. Play the melody with selected embellishments added

4. Play the melody as scored but with selected tempo adjustments made

5. Play the melody, making all the deviations from the score from tests 2, 3 and 4

Details of the specific alterations made to each melody are included in Appendix

D.

Where there is more than one version of the score follower for aparticular piece:

the five evaluation versions of the melody were kept the same for the testing of each

Chapter 5. Testing and Evaluation of System Performance 59

Score Following System Authors Total Precision Piecewise Precision

Arshia Cont and Diemo Schwarz (MIREX 2006) 82.90% 90.06%

Miller Puckette (MIREX 2006) 29.75% 69.74 %

Anna Jordanous (this project) 60.89% 54.04%

Table 5.1: Overall Summary Results

score follower for that piece, so that one version could easily be compared against the

others.

It was necessary to make some adjustments to my score followers so that evaluation

information could be collected. These adjustments made no difference to the actual

workings of the program but had the sole function of depositing information at various

stages of the program’s runtime.

Where possible, the MIDI input was provided automatically via another Max/MSP

patcher3, so that inconsistencies in a human’s playing would not adversely affect the

results too much. Instead the new Max/MSP patcher played theprescribed test melody

at a specified tempo (which could be altered at any point during play).

Latency measures were taken using a patcher from the online Max/MSP docu-

mentation. This patcher,cpuclock, took measurements of the CPU clocktime elapsing

between receiving MIDI input from the soloist and playing first the expected accom-

paniment and then the calculated accompaniment.

5.1.2 Results of objective evaluation tests

• Results table: See Figure 5.1

• Overall Summary Resultsas for MIREX (2006b): See Table 5.1.

3In Max/MSP, the termpatcheris used to refer to individual programs and/or functions

Chapter 5. Testing and Evaluation of System Performance 60

Figure 5.1: Results of objective evaluation tests

Chapter 5. Testing and Evaluation of System Performance 61

5.1.3 Analysis of objective evaluation test results

It is pleasing to see in table 5.1 that despite the differing development times concerned,

the score followers developed in this project compared favourably overall in perfor-

mance to the two score followers analysed at MIREX 2006 (submissions by Cont and

Schwarz4 and by Puckette5). The weaker result on the piecewise precision is affected

by the poor performances overall from theDanse Macabrescore followers.

These comparisons, however, can only be made at a very general level, if at all. It

is difficult to justify comparing this project’s score followers with the MIREX score

followers, as the score followers were tested on different pieces.

The MIREX 2006 test repertoire included a Boulez flute piece,a Bach violin

sonata, Mozart clarinet concerto and Mozart vocal piece. These pieces were of consid-

erably longer duration than my test repertoire, with on average 2239 events per piece,

as opposed to my average of 49 events per piece. It is interesting, though, to note

that there is a similar degree of variance in the success of the score followers tested

in MIREX 2006 (MIREX, 2006b) as there is in the results shown for this project (in

Figure 5.1). This indicates that there is a degree of variance in the accuracy of the

MIREX 2006 score followers, depending on what piece is beingplayed. This was also

true for the different pieces that my score follower was accompanying.

In interpreting the results, theAverage latencycolumn shows how long the sys-

tem took to receive the input from the soloist and process it ready for using in the

HMM (for example by storing it in internal variables). TheAverage offsetcolumn

shows a measure of the time it takes to estimate the most likely state and produce the

corresponding accompaniment.

Recording the number ofFalse Positivenotes in addition to theNumber of Notes

Missed overall for that melodywas useful; a high percentage of False Positive notes

relative to Missed Notes overall indicates situations where the score follower has not

located the exact position of the soloist in the score, but where it is following the soloist

through the score at roughly the right position. Although this is unlikely to produce

correct sounding accompaniment, it is better to know that the system is tracking the

soloist to some degree, rather than having completely lost track of where the soloist is

in the score.
4An HMM-based note/signal score follower, described athttp://www.music-ir.org/

evaluation/MIREX/2006_abstracts/SF_cont.pdf
5A dynamic programming-based note score follower based on Dannenberg (1984), described at

http://www.music-ir.org/evaluation/MIREX/2006_abstr acts/SF_puckette.pdf

Chapter 5. Testing and Evaluation of System Performance 62

As expected, when the score followers incorporated some form of beat-tracking,

the latency associated with receiving and processing the soloist’s playing was higher

than for the simpler score followers. This is because there was an extra layer of pro-

cessing involved for each input from the soloist (checking to see if the tempo needed

to be updated).

In general, the score followers that were rated highly on theaccompaniment they

produced had low scores in theMissed Note %andFalse Positive %columns. This

is an obvious conclusion to make: if the score follower finds the correct location of the

soloist, then it will know exactly what accompaniment to play.

A less obvious addition to this conclusion can also be made. If the score follower

performs badly in the percentage of notes missed, but the percentage of notes identified

after some delay (False Positive notes) is higher than average, then the score follower

was usually rated as performing well. For example in Test 2 ofthe first version ofAll

I Ask of You, the performance of the score follower was rated at4
5. This is despite

over 50% of the notes played by the soloist not being matched to the soloist’s location

in the score. Unlike, for example, Test 1 on the second version of Danse Macabre,

which was similarly poor at finding the soloist’s location, but rated at only2
5, 25% of

the notes missed were identified after some delay (were FalsePositive notes). This

meant that the score follower for Test 2 ofAll I Ask of You, version 1, had some idea

of where the soloist was located in the score, so as a consequence was able to produce

an accompaniment that flowed more smoothly and musically, compared to the other

performance.

As expected, the simpler melodies performed much better in general than theDanse

Macabrescore followers. In particular the score followers forTwinkle Twinkle Little

StarandAll I Ask of Youperformed the accompaniment better than anticipated during

Test 5. This was the test where all the errors from the previous tests were combined

into one playing. For this test there were many bars of the derived melody which

were almost unrecognisable from the original tune. On many occasions, in evaluating

the results, there was some ambiguity in exactly which statethe soloist was in at a

number of points, with a number of equally plausible optionsto explain the series of

deviations that had been made from the score. A human accompanist would have had

to apply some skill and concentration when accompanying a soloist who was making

this number of deviations from the score. So the attempts made to accompany the

soloist in Tests 5 (particularly for version 1 ofAll I Ask of You) were a positive result

of testing.

Chapter 5. Testing and Evaluation of System Performance 63

Some of the results for theDanse Macabrescore followers are particularly poor.

Poorer performances came from the score follower that considered all states as possible

candidates for the next state, rather than a local selection. This score follower very

rarely found the correct next state and was also poor at estimating the next state to be

one that was

Generally, if there is a smaller number of potential next states from which to choose

from, then the score follower will be likely to make a better attempt at locating the

soloist. As there are fewer options to consider, numerically there is a higher probability

of estimating the next state correctly or nearly correctly,even if no HMM probabilities

were to be considered.

The second and third versions ofDanse Macabrescore follower rely on the soloist

playing through the score in a roughly linear fashion, with no large jumps. There is

some increasing of the number of states considered, should the score follower not be

able to locate the soloist in the score on first parse. Howeverit is much easier for these

versions of the score follower to lose track of the soloist, should the soloist make large

jumps in the score. Tests 2 and 5 included a jump of two bars backwards by the soloist,

and one bar forward. Both these tests were handled relatively well by the version two

score follower. The third version of the score follower coped well with these score

relocations in Test 2, however the delays in note processingthat was involved in Test

5 caused much interference in the score follower’s performance, such that no useful

conclusions could be drawn from this test.

The Danse Macabrescore follower that used a history of four observations for

the Viterbi algorithm (version 3) gave a very accurate performance in the first test

(where the solo melody was performed correctly). It was alsoreasonably accurate

in the second test (where selected errors were included during performance of the

solo melody). This shows the greater level of accuracy that can be achieved if more

information from the soloist is considered.

A criticism of this particular score follower, though, is that latency measurements

associated with the more detailed calculations were considerably higher and this is

reflected in the poorer ratings overall that the third version received for quality of ac-

companiment. In general, the higher the Average Offset or Average Latency recorded,

the less musically and accurately the score follower was judged to have performed.

There were very large figures for the Average Offset for version 3 of theDanse

Macabrescore follower. This was reflected in the performance, wherethe accompa-

nist lagged behind the soloist, especially in Tests 3 and 5. However the overall accuracy

Chapter 5. Testing and Evaluation of System Performance 64

measurements for some of the tests on this version were considerably higher than ex-

pected, given how the accompaniment was performed. The score follower was finding

the next states, but not quickly enough to perform the accompaniment well. Without

the objective testing, this would probably not have been noticed. As the primary ob-

jective of a score follower must be to produce musically accurate and well-performed

accompaniment, though, this delay in the system should be a main consideration in

any further work6.

5.2 Subjective testing

5.2.1 Subjective testing methodology

In addition to testing the score followers against objective measurable criteria, the score

followers that were developed in this project were evaluated by human musicians of

different levels of musical competence and experience.

The overall aim of a competent score follower should be to provide musical and

accurate accompaniment. The quality of an accompanist’s performance in general

is judged by how well it fits and enhances the playing of the soloist whom they are

accompanying. In fact the very nature of a good accompanist is that the listener is not

aware of their playing except as an enhancement to the soloist, whose playing should

be attracting all the listener’s attention.

Testers were presented with 5 versions of the score followerto test, in order of

increasing complexity of the score follower and the piece:

1. Twinkle Twinkle Little Star, with beat tracking enabled such that the soloist’s

tempo is extracted - but as this score follower is purely reactive, it only plays

accompaniment when it receives a soloist’s input. So the beattracking is enabled

but does not affect the playing of the accompaniment.

2. All I Ask of You, with a set metronome tempo for the tester to follow.

3. All I Ask of You, with beat tracking enabled so that the score follower should

follow the testers’s tempo.

4. Danse Macabre, with a set metronome tempo

6Perhaps by using different algorithms to calculate the mostprobable path, for example the Forward-
Backward algorithm (Rabiner, 1989)

Chapter 5. Testing and Evaluation of System Performance 65

5. Danse Macabre, with beat tracking enabled

For the more complicated pieces, I gave the testers a couple of minutes to practice

the solo melodies before adding the accompaniment. This meant that they could pay

more attention to the performance of the accompaniment rather than concentrating

purely on playing the right note, but that they were still inclined to make the occasional

mistake themselves, especially for theDanse Macabreextract.

For each score follower, the testers were asked first to play the melody as correctly

as they could, then to play it with different variations of mistakes, embellishments

and tempo changes. I deliberately did not specify any errorsor embellishments that

the testers should make, so as to avoid influencing them in their choice of what to

play. This meant that some of the testers tried errors or embellishments that I had not

considered trying, which was useful to me in evaluating the score follower.

The testers gave their opinion on how well they perceive the system does at accom-

panying them, and how well it recovers from errors and embellishments that the testers

add.

5.2.2 Observations arising from Tester 1

Tester number one is a bass guitar and double bass player of medium to high musical

ability. He is experienced in accompanying other musicians. In particular he is used to

playing jazz music, where the accompanist must always be aware of any improvisation

or free playing that the soloist might want to include.

1. Twinkle Twinkle Little Star

The score follower performed well in accompanying the tester. He commented

that it kept better track of his exact position in the melody than he would have

expected.

When the tester tried polyphonic input (playing the melody using both hands,

in different octaves at the same time), he felt that it still accompanied him rel-

atively well, although there was a noticeable consistent error in the parts of the

melody that include repeated notes. This is understandableas although we hear

polyphonic input as a number of notes occurring exactly at the same time, pro-

grams such as the score follower would treat the polyphonic input as a sequence

of notes received one after another in very quick succession. Unless the score

follower was specifically designed to treat such sequences of notes as chords

Chapter 5. Testing and Evaluation of System Performance 66

(as discussed in Bloch and Dannenberg (1985) and in the Design chapter of this

document), then it would interpret each note in the chord as anew event, rather

than treating each chord as one event.

A point made by this tester was that if he played the melody andthen repeated

back to the beginning, the score follower did not actually recognise that he had

repeated back to the beginning, for a couple of notes. He saidthat if the soloist

was to go back to the start of the piece and repeat it again, then the score follower

should be able to recognise the repetition. I had not thoughtof this possibility

when setting the HMM probabilities as I had originally designed the score fol-

lower to move through the melody once only per run. This possibility would

however be enabled quite easily, by increasing the probability of moving from

the finalnormalstate (in this case state 13) back to the firstnormalstate (state

1).

2. All I Ask of You, with a set metronome tempo

The tester noticed that the score follower was more likely tolose track of his

score position at certain points, but that it finds his score position again fairly

well.

He commented that in general, the score follower performed better as an ac-

companist when he made errors, rather than when he played themusic perfectly.

This would probably be due to the HMM probabilities and therefore correctable,

given a little more time spent in setting the probabilities more accurately, es-

pecially at the points that the tester highlighted the scorefollower had some

difficulties with.

3. All I Ask of You, with beat tracking enabled

The score follower was judged to have made a passable attemptat accompanying

the tester in this test.

An interesting effect that I observed while the tester was playing this was that the

tester adjusted their playing to fit with the accompaniment,and attempted to give

the score follower musical cues to assist the accompanist inproducing a musical

performance. For example he emphasised the first beat of the bar by playing it

with a more pronounced manner. Unfortunately I had not implemented any way

in which the score follower could use such cues, but such musical knowledge

could be added to the system in the future.

Chapter 5. Testing and Evaluation of System Performance 67

4. Danse Macabre, with a set metronome tempo, and

5. Danse Macabre, with beat tracking enabled

Unfortunately neither version of theDanse Macabrescore follower performed

well in accompanying this tester.

They made a considerably less musical attempt at accompanying this tester than

they had done during my playing, in development. The main difference between

the tester’s interpretation of the solo line and my own was that the tester played

the many staccato notes in the piece for a shorter duration than I had tended to

do during development, so there was a larger proportion of silence in the piece

compared to when I played it. Also, he played the tune with a very careful

observation of a correct tempo, even when playing the occasional wrong note.

6. Further comments

5.2.3 Observations arising from Tester 2

Tester number two is a classical woodwind player and pianistof medium musical abil-

ity. Unlike tester number one, she identifies more with beingthe soloist who is accom-

panied rather than the accompanist.

1. Twinkle Twinkle Little Star

The tester was impressed with the way in which the system accompanied her

for this extract. She commented that “it was almost as if the system was being

perceptive”, in working out where she was in the score and producing the right

accompaniment.

2. All I Ask of You, with a set metronome tempo

Again the tester was impressed with the accompaniment that the score follower

produced, particularly noting the slide of notes in the lastbar of the more com-

plex accompaniment, and how the last note of the accompaniment was being

played even when she tried to confuse the system by playing the last couple of

bars incorrectly.

The tester also mentioned that this score follower responded well to embellish-

ments she made to the tune, accompanying her as she would haveexpected a

human accompanist to do.

Chapter 5. Testing and Evaluation of System Performance 68

3. All I Ask of You, with beat tracking enabled

This score follower in general kept with the solo performance line well, the tester

commented. However there were obvious points where she feltthe accompani-

ment was not catching up to her change in tempo quickly enough. She was

happy with an experiment she did where she made a rapid changein tempo for

a few notes then returned to her original tempo. As she would have expected a

human accompanist to do, the score follower ignored the few notes played at the

different tempo and instead continued to play at her original tempo, but made

some attempt at synchronising to the few notes played more rapidly during that

short period of time.

4. Danse Macabre, with a set metronome tempo, and

5. Danse Macabre, with beat tracking enabled

Unlike the previous tester, the score follower was able to keep playing some

accompaniment for the tester, although it did not perform aswell as for the other

tunes and the tester was less impressed by this version.

This tester’s interpretation of the staccato notes was moresimilar to my inter-

pretation, in that she intentionally played staccato notesfor half their normal

duration rather than making each staccato note equally short, and as short as

possible.

Her performance of the correct version ofDanse Macabresolo line was differ-

ent to the first tester’s, in that when she made a mistake, she generally paused,

and played that section again, correcting her mistake, thencontinuing, rather

than carrying on and ignoring the mistake. This occasionally confused the score

follower but in general it coped fairly well with this approach.

6. Further comments

5.2.4 Observations arising from Tester 3

Tester number three is a classical vocalist and pianist of high musical ability, who

specialises in Baroque and Classical period music. He is alsoa Music Technology

student with a particular interest in Acoustics.

This tester is equally knowledgeable about being the accompanist and being the

Chapter 5. Testing and Evaluation of System Performance 69

soloist in a real-life performance environment. He is also particularly influenced to-

wards adding embellishments to notes, in a Baroque style7.

1. Twinkle Twinkle Little Star

One point made by this tester was that when he added a trill8, the accompanist

should play one held chord underneath the note for the duration of the trill. In-

stead, it tried to follow the trill notes as individual notesof the melody, quickly

repeated, so the accompaniment was disjointed and uneven. This is because this

version of the score follower uses no information on the length of notes, but in-

stead treats each new incoming note as a new state. The testerfound that this was

less of a problem in the later versions, although the trills still caused difficulties

for the score followers which had beat tracking enabled.

The tester tried playing the melody backwards and the score follower responded

by roughly tracking where he was but by playing the accompaniment in a for-

ward direction where there was a choice. He was happy with this response as

he felt this is what a human accompanist would do until it had worked out what

the soloist was doing. He felt that the score follower shouldeventually be able

to spot this pattern, however. If any learning had been implemented in my score

follower, then I would agree that this pattern should be detectable by the learning

part of the score follower.

A significant question from the third tester was about the purpose of this score

follower. His question was whether the score follower was designed to be a

“practice model” or a “performance model”. The difference here is that with a

practice model, the score follower would more freely allow (and in fact expect)

different sections to be repeated, varying levels of accuracy and more variance

in tempo, and so on. This is how the third tester had interpreted the purpose of

this project. The score followers had actually been designed as a performance

model, though, so that the score follower was expecting a single run through of

the piece, with an emphasis on getting from one end of the piece to another. The

distinction between the two models is subtle but important enough to have some

bearing on the probabilities that would be associated with each part of the HMM.

7His playing style shows a particular tendency to decorate notes following a set of prescribed rules,
and he has a high degree of expectation about the style in which a musically competent accompanist
should react to these note decorations

8a succession of quickly repeated notes that alternate the written note with the note directly above,
for decoration of the written note

Chapter 5. Testing and Evaluation of System Performance 70

2. All I Ask of You, with a set metronome tempo

In this version, the tester was more satisfied with how the accompanist responded

to the trills and other embellishments he added. This score follower worked

more as expected by the tester because it ignored any input played by the soloist

except that which occurred on each beat (when information istaken for the new

state). Though it is not ideal that the system ignores any information from the

soloist, in this particular situation it is actually a useful function of the score

follower. The only embellishment that the score follower did not respond well

to was appoggiaturas9. These were treated as incorrect notes. The tester rightly

pointed out that the accompaniment should not become silentunderneath these

notes, but should perhaps carry on playing the accompaniment as expected for a

few states while it tries to match the soloist back to a location on the score.

Again, a noticeable effect was that the tester adjusted to the accompaniment, so

again I observed how the tester attempted to synchronise with the accompanist

and to assist the accompanist in producing a musical performance. The tester

commented that playing music is a co-operative process. Thecomputer player

has to be a proficient player already and cannot just react to the human player.

The human player will instinctively react to the computer’splaying.

The tester tried omitting playing some bars, singing them instead then starting to

play again. He commented that missing a few notes out did not confuse the score

follower, however missing a whole bar did, and suggested that the score follower

should continue to play the accompaniment while it waited for the soloist to start

playing, even if just for a bar or two. Speaking from the pointof view of a vocal

performer, he said it was a fairly common occurrence that singers may miss a

bar or two during performance for various reasons. The accompanist would be

expected to continue playing while the singer readied themselves to continue

their performance again.

The tester noticed the increase in complexity of the accompaniment compared

to the previous score follower, and was impressed by the smoothness of the

accompaniment in the sections where it followed his performance closely, and

the manner in which it recovered from errors.

A last comment on this version was that the metronome sound which had been
9grace notes or additional notes, which are played before theactual written note, such that the grace

note is played on the beat and the actual written note is played shortly after the beat

Chapter 5. Testing and Evaluation of System Performance 71

added to help synchronise the soloist and accompanist should be turned off, as it

became irritating after a while: a fair comment.

3. All I Ask of You, with beat tracking enabled

The tester was critical of the speed in which this score follower adapted to his

playing, saying it should adjust much more rapidly to his playing.

Also he stated his belief that the score follower should onlyrecognise correctly

played notes for tempo adjustments, because the correctness of the notes is a

sign that you are playing correctly at that point. The score follower does indeed

work this way, and it was interesting to hear the tester advocate this without any

mention of its inner workings from myself.

4. Danse Macabre, with a set metronome tempo, and

5. Danse Macabre, with beat tracking enabled

Unfortunately neither version ofDanse Macabreworked during this test session.

The tester summed up the success of this score follower by saying “I can play it

when there’s no accompaniment!”

One useful observation did arise from this test session, however. The tester con-

sistently misread a bar in the first section of the music, eachtime he played it.

Even though this was sight-reading for the tester rather than a performance, this

observation showed that even very gifted musicians can makemistakes without

realising. Hence the need for a responsive accompanist is important even at a

high level of performance.

6. Further comments

The tester made some general remarks about the user interface. He mentioned

that if estimated tempos were to be displayed, then they should be displayed in

the more musically conventional beats per minute format, rather than in msec

per beat. He thought the interface could be more user-friendly and that it could

include a display of the score on screen so that the performerdid not need a

separate copy of the music. This copy of the score could incorporate a marker

of where the score follower thought the soloist currently was in the score, and

mentioned that he thought a package calledjitter could be used to facilitate this

in Max/MSP.

Chapter 5. Testing and Evaluation of System Performance 72

5.2.5 Observations arising from Tester 4

Tester number four has lower musical ability than the other testers. He was only able

to test the first score follower with the simple melody extract from Twinkle Twinkle

Little Star, and not the other two pieces.

Though he was not able to test the system fully, his use of the system provided

particular insights into how the score follower worked thatwere not forthcoming from

the other testers, due to the higher error rates that occurred in his playing.

1. Twinkle Twinkle Little StarWhat was noticeable about this tester’s playing, in

contrast to the other testers was his uncertain tempo, a higher number of wrong

notes played, and a tendency to go back and repeat sequences of a few notes, to

get them right. Therefore the majority of his deviations from score were to play

extra notes, or to play wrong notes.

In this case, monitoring how the score follower tracked the soloist’s tempo was

not very worthwhile, as the tester’s tempo was too inconsistent to be measured

accurately as one rate.

It was interesting to see how theTwinkle Twinkle Little Starscore follower could

cope with the repeated jumps that the tester made between different parts of the

melody. Although the score follower had not been specifically programmed to be

able to track backwards through a melody or to cope with sections being repeated

a number of times with varying accuracy, the tester reportedthat the system was

(in general) able to accompany him in a way that matched what accompaniment

he was expecting to hear. From watching the states selected by the score follower

while the tester was playing, I would agree with that conclusion.

5.2.6 General conclusions from tester feedback

Much of the feedback from my testers hints at the wider conclusion that it may in fact

be worth implementing some form of learning of the HMM probabilities, despite the

initial impression gained during preliminary research.

The score followers performed best when played by the testerwith the most sim-

ilarity to my own playing (the second player). When exposed todifferent styles of

playing, the score followers needed a few adjustments in order to perform correctly, in

some cases. These adjustments are detailed later in this section.

Chapter 5. Testing and Evaluation of System Performance 73

If several musicians were asked to train the HMM, the score follower is more likely

to be exposed to different situations as a result rather thanif just one musician trained

it. This would be beneficial even if the training were to take place just for a certain

initial period.

An unforeseen but fascinating result of the testers’ experimentation with my score

follower system was the emerging of the co-operative natureof this domain in real-life,

and the importance of feedback and communication between two musicians. Roger

Dannenberg has commented on a similar finding whilst testinghis score follower in an

ensemble situation (Dannenberg, 2000) (p. 3):

Early on, Lorin [Grubb] and I were playing trios with the computer, mak-
ing intentional errors to test the system. We found that if wedeliberately
diverged so as to be playing in two different places, the computer could
not decide who to follow. Even if one of us played normally andthe other
made an abrupt departure from the normal tempo, the computerwouldnot
always follow the “normal” player. In a moment of inspiration, we realized
that the computer did not consider itself to be a member of theensemble.
We changed that, and then the computer performed much more reasonably.
Here is why this worked: When the computer became a first-classmem-
ber of the ensemble and one of us diverged, there were still two members
playing together normally, e.g. Lorin and the computer. Thecomputer,
hearing two members performing together, would ignore the third.

While the emphasis found in previous research, and in this project, has been on the

artificial accompanist following the soloist, I believe that a design with more focus on

co-operation between soloist and accompanist would be worth further investigation,

although as of the time of writing, little reference to this approach can be found in the

literature beyond Dannenberg’s work.

Reflecting on why the score followers forDanse Macabrefailed in some tests and

performed slightly better in others, the difference is likely to be due to the playing style

of the performer. Problems with different ways of playing notes have been reported

in previous score following research (for example Orio and Schwarz (2001) reported

problems with legato). So I was anticipating that there might be some difference in

interpretation between legato melodies such as that forAll I Ask of Youand melodies

with much staccato, such asDanse Macabre. The staccato played notes in theDanse

Macabreextract, when played in a very short style, did not result in accurate state

matching by the score follower. The score follower performed better when the staccato

notes were played for a slightly longer duration (as Tester 2did).

Different testers had different interpretations of playing staccato and I had not re-

Chapter 5. Testing and Evaluation of System Performance 74

alised the effect that this would have had on the performanceof the score follower.

Again this highlights the usefulness of having several musicians’ influence on the de-

velopment of the musicality of the score follower (as is the case in real life; a human

musician will usually benefit from a number of different influences rather than learning

with just one teacher).

A change that was made as a result of this poor performance in testing was to

change how the score follower dealt with incoming input fromthe soloist. Previously

if the soloist had stopped playing a note, the input from the soloist was changed to be

the emission ‘12’, representing silence from the soloist. For theDanse Macabrescore

followers, this was removed from the score follower so that it no longer recognised

when the soloist was not playing. This meant that the differences in staccato playing

were less of an issue and hence the score follower performed better overall in accom-

panying this piece. (I was only able to get the first tester to re-test this version, but he

reported an improvement in performance).

A notable side-effect was that the system could no longer usethe observation of

silence to signify the end of the piece, so the emission probabilities for the score fol-

lower had to be altered for the end states before the score follower could adequately

locate the end of the piece again.

Although this change removed much of the problems with staccato notes, it would

mean that the score follower could not be used for a piece withrests (silences) in the

solo melody. So future work could include a search for a better way to cope with rests,

or with staccato notes.

Another change made after testing was the addition of a localised search for the

next state, rather than a global search. This is described inmore detail in the Imple-

mentation chapter. This new version was unfortunately not ready in time for the testers

to try.

As a final observation, my score followers in general performed better with musi-

cians of lower rather than higher ability. They responded better to inconsistent tempos

and errors, rather than correct playing and decorative embellishments. This is prob-

ably partly due to a slight bias in the way I have set the HMM probabilities, where I

have approached this more from the point of view of recovering from errors rather than

dealing with note decorations and embellishments. It is pleasing, however, to see that

most of the score followers generally performed well in responding to tester errors of

different types, and coped with note embellishments to a certain degree.

Chapter 5. Testing and Evaluation of System Performance 75

The score followers in this project were tested with varyinglevels of success being

reported during subjective and objective testing. The overall results are that the score

followers achieved some notable successes in accompanyingthe soloists, particularly

for simpler or shorter melodies, and that the . Nevertheless, there is much potential for

further work on setting the HMM probabilities to improve themusicality and accuracy

of accompaniment, especially for more complex melodies.

Chapter 6

Discussion and Conclusions

During this project, a number of score followers with varying levels of functionality

have been designed, implemented and tested. This chapter reflects on the capabilities

of the score followers produced during this project and in particular whether the score

followers have met the requirements specified at the start ofthe project. Comments

are made on how the implementation of the score followers could have been improved,

from the perspective afforded by hindsight. Suggestions are also made for future work

that could be carried out to develop the score followers withmore advanced function-

ality.

The project hypothesis, testing the suitability of using Hidden Markov Models for

score following, can now be evaluated in the light of the evidence gathered during

development and testing of the above score followers.

The thesis ends with a concluding summary of what has been achieved during this

twelve-week research project.

6.1 Capabilities of the score followers developed in this

project

My score follower uses an HMM to follow a musical soloist through the score of a

piece, and produce musically acceptable accompaniment, even if the soloist’s perfor-

mance is occasionally inaccurate or embellished. Evidencefor this can be found in the

previous chapters of this document.

Currently versions exist that are programmed to recognise extracts from the tradi-

tional melody ofTwinkle Twinkle Little Starand from Andrew Lloyd-Webber’sAll I

76

Chapter 6. Discussion and Conclusions 77

Ask of You. The last version of theDanse Macabrescore follower makes a reason-

able at attempt at tracing the progress of the soloist through the course of the extract

from Danse Macabre, although latency issues prevent it from producing a musically

acceptable accompaniment.

It matches the performer’s interpretation in terms of the volume the soloist is play-

ing at, and the various score followers make a reasonable attempt at gauging the tempo

at which the soloist is playing at. They are good at detectingchanges in tempo al-

though further work is required to detect the magnitude of the change in tempo more

accurately. This aspect of the score follower is related to the ability to track the per-

former accurately through the piece, so as the HMM probabilities are more accurately

set, this aspect of the score follower works more competently.

Each score follower is able to produce chordal accompaniment, such that more than

one note is sounding at a time. The accompaniment moves in a smooth fashion with

legato (slurred together) notes played where necessary. Inmore advanced versions,

the score follower can cope with producing accompaniment that moves independently

of the soloist: so for a given state that the soloist is in, theaccompanist can produce

accompaniment that changes during the time the soloist stays in that state. This al-

lows for much more complex accompaniment to be produceable and also gives more

flexibility in what can be chosen as representative by each HMM state.

As discussed in the previous chapter, the systems evaluate to be comparable in

performance to other score followers evaluated during MIREX (2006b), although they

do not perform as well as the best system presented in this conference, by Arshia Cont

and Diemo Schwarz at IRCAM.

The standard of accompaniment produced by my score following systems for the

two simpler pieces was judged by human musicians to be comparable to that of human

accompanists, although as pieces became more complex the score followers struggled

to maintain this standard of performance.

6.2 Meeting the specified requirements

It was specified earlier in this document that the score follower would require:

• A way of receiving musical input from the soloist

• A way of processing musical input from the soloist

• A way of implementing an HMM to analyse musical input from thesoloist

Chapter 6. Discussion and Conclusions 78

• A way of generating musical accompaniment in real-time

The resulting score followers do indeed satisfy all of theserequirements.

6.2.1 Evaluation of project hypothesis

To evaluate my hypothesis that:

Using an HMM representation of the sequence of states in a musical score
is an efficient and practical way to implement score following. In partic-
ular it lends well to providing real-time accompaniment to ahuman per-
former

I considered the subjective evaluation from human testers and the statistics achieved

based on how well the system does at score following. I also considered my practical

experiences in implementing the score followers.

From the results obtained and the feedback from other testers, I conclude that the

HMM-based score followers can provide real-time accompaniment to a human per-

former. The performance was better in some cases than others, although the HMM

probabilities and exact implementations of the score couldprobably be set more accu-

rately in the cases where the score follower did not produce such a good implementa-

tion.

The use of an HMM considerably simplified the implementationof the score fol-

lowing part of my systems. I did not have to give strong consideration to how the

score follower tracked the soloist through the score, beyond implementing the HMM

and the associated probabilities. So the performance of theresulting score followers is

pleasing, and I feel that the HMM representation of the domain was very suitable, as

my hypothesis states. With further experimentation as to the most appropriate settings

for the HMM probabilities, and perhaps implementation of some automatic training

for individual pieces or individual performance styles, better results should be possible

for the score followers that did not perform so well.

It is necessary to acknowledge here that the score follower performed more accu-

rately for HMMs with a large number of states when it had received some assistance in

addition to the estimated probabilities returned by the Viterbi algorithm. As described

in the Implementation chapter, my score follower gave more weight to to the proba-

bility associated with the state located next to the currentstate in the score, in order to

encourage the score follower to work in a more linear and smooth fashion. This meant

that the HMM probabilities were overridden to some extent. However as discussed

Chapter 6. Discussion and Conclusions 79

previously, I believe that this is a simplification of the effect that more accurate HMM

probabilities would have, had there been more time to experiment with probabilities or

to implement training of the HMM probabilities.

One test carried out by testers that had not been anticipatedwas to see how the

score follower would deal with the soloist moving in the wrong direction in the score1.

To play a musical score from right to left is a rare mistake in my musical experience;

indeed it is slightly counter-intuitive for Western musicians as we are used to reading

from left to right, whether it be music or written text. It is more common, though, to

repeat small sequences of notes during practice, or to move backwards in the score by

jumping to a previous location by mistake, or by performing arepeat section. This was

included in the controlled testing that was carried out.

State transitions that dealt with backwards movements in the score were not ex-

plicitly included in this project (being guided in this respect by the work in Orio et al.

(2003)). The HMM structure coped well with this situation during testing, though.

Here the score follower was able to estimate the current location correctly in most

cases, by analysing the soloist’s recent playing. This was abenefit derived from the

use of an HMM that had not originally been anticipated.

A part of my hypothesis that needs further investigation is in the efficiency of my

score followers. The more complex score followers in this project demonstrate how

latency issues can severely disrupt the performance of the accompaniment by the score

follower. Careful consideration needs to be made as to how to overcome the large cal-

culation effort involved in larger scale score models (perhaps by using an alternative to

the Viterbi algorithm or by adjusting it further with more efficiency optimisations). I

note here that the concern with efficiency is not with the general use of an HMM struc-

ture, but specifically with the extraction of information from the HMM by calculations

with the HMM probabilities.

So the findings of this research project are that the project hypothesis has been

proven to some extent, and that an HMM is a good way to implement score following,

but that the HMM probabilities need to be carefully chosen. Also there are concerns

about the efficiency of using the Viterbi algorithm to track the soloist through the score.

Raphael (2001a) now prefers to use Bayesian networks as the statistical tool by

which he implements score following, although IRCAM’ssuivi (a commercial score

follower for Max/MSP) is still based on their work in using HMMs for score following

1My testers were deliberately not restricted as to what errors or embellishments they were asked
to include; instead they were asked merely to experiment with the system as they saw fit, using their
musical knowledge and imagination

Chapter 6. Discussion and Conclusions 80

(Orio and Dechelle, 2001; Orio et al., 2003).

6.3 What could be improved upon or done differently,

in hindsight

• Locating the soloist’s current state exactly, for more complex, long or repetitive

melodies.

Danse Macabrewas selected specifically to test my piece as a more challenging

solo melody to track the soloist through. This is because it incorporates much

repetition of note sequences, and some stylistic variationfrom the other scored

piecesTwinkle Twinkle Little StarandAll I Ask of You.

Finding the right state inDanse Macabrewhen it is played correctly is a chal-

lenge for earlier versions of the score follower, as is dealing with mistakes

and other situations where the HMMghoststates are used. More success was

achieved in later versions of theDanse Macabrescore follower, where a greater

degree of accuracy was reported during objective testing (as is discussed in more

detail in the Testing Chapter). These more advanced score followers restricted

the states considered by the score follower as potential next states to a set of

states, local to the current position. These were better at tracking the soloist

through the score when the soloist played in a generally linear fashion through

the piece. Some extra work here would enable the score followers to deal better

with situations where the soloist moved to a location far away from the previous

location. Such situations would include the scenario wheretwo pages in the mu-

sic were turned over at the same time and hence a page was missed out, or if the

soloist skipped to a different location in the score by mistake.

• Latency issues and efficiency of calculation

A more efficient way of finding the current state is needed, to implement real-

time accompaniment more successfully.

Pardo and Birmingham (2005) found that implementing the Forwards-Backwards

algorithm gave a similar level of performance to the Viterbialgorithm, and in

some cases the Viterbi algorithm outperformed the Forwards-Backwards algo-

rithm.

Chapter 6. Discussion and Conclusions 81

Orio and Dechelle (2001) describe how decoding is a quicker and more error-free

method than Viterbi, with a similar computational cost. I found, though, that the

computational cost for Viterbi was high for larger scores with more states. This

was due to the high computational cost2 associated with the calculations that

were necessary for the Viterbi algorithm, rather than my choice of state model.

Nevertheless there may be a decoding technique that is more computationally

efficient technique, and research into this would be worthwhile.

• Ornamentation and Embellishments

Although the score followers in this project were reasonably capable of detecting

and recovering from errors in the soloist’s playing, in general they did not per-

form accompaniment particularly well underneath ornamented notes and added

embellishments. This was especially noticeable on theTwinkle Twinkle Little

Star score follower, but was one of the improvements noticed in the more ad-

vanced score followers such as those forAll I Ask of You.

It is to be acknowledged that in my design of the HMM probabilities and during

development, I concentrated more on error handling rather than dealing with mu-

sical embellishments. The way in which musical embellishments are interpreted

by a score follower is worthy of consideration separate fromerror-handling, but

at the time of development this had not been seen as necessary. With more ex-

perimentation and testing in this area, the probabilities in the HMM could be

adapted to better cope with musical embellishments. The state representation

could also be altered to recognise trills, turns and other embellishments as a

single musical event rather than as a sequence of many musical events.

• Measuring the current tempo when the HMM is not finding the soloist’s current

location correctly

These score followers used a simple implementation of beat tracking. In testing,

the beat tracking appeared to work quite well for the simple melodies, however

there was a problem with more complex melodies. This was because of the re-

liance on the state to be located correctly in order to gauge note lengths, and

therefore the expected distance between observations. An alternative implemen-

tation of beat tracking that could have been tried was to include the use of the

previous tempo to work out roughly how many beats had passed between two

2Of the order ofNM, where N is the number of states in the HMM and M is the number ofpossible
observations

Chapter 6. Discussion and Conclusions 82

note inputs, as opposed to relying on the HMM to have estimated the next state

correctly in all occasions.

6.4 Suggestions for possible future work

The following extensions could be feasibly added to the score following systems cre-

ated in this project:

• Automatically extracting (learning) of the score and HMM structure from a

MIDI file. (The score and HMM structure are currently programmed in by hand.)

It would be simple to add this as an extension to the current score followers, as

this information is encoded in separate text files which the score followers read

in when the program is started. All that would be needed is a way of generating

the content of these text automatically, which could be donein Max/MSP or

alternatively in another program such as Matlab.

During the development phase, some initial experimentation with this was car-

ried out in Matlab, using the MIDI toolbox for Matlab (described in Chapter 2).

Some text files were generated for the HMM structure from MIDIfiles although

they contained a number of errors, due to errors in my Matlab code. With a little

further work, though, this should definitely be possible to implement fully.

• Update the system to be able to receive musical input from instruments rather

than just from a MIDI keyboard (for example by playing a flute into a micro-

phone)

The processing of an audio musical signal is part of the MSP part of the Max/MSP

program, so again it is reasonable to consider adding this tothe score followers

developed in this project.

This project deliberately did not address how to implement this signal process-

ing, but instead considered purely MIDI input, for reasons of project scope given

the time constraints.

A number of research efforts have attempted to implement signal processing

(for example Raphael (2001b); Orio et al. (2003); Orio and Schwarz (2001)),

but it is acknowledged in a summary of score following research (Orio et al.,

2003) that this adds an extra degree of complexity to the implementation of the

Chapter 6. Discussion and Conclusions 83

score follower. The details published in the literature would, though, be a useful

starting guide if adding this functionality to my score followers.

• See if machine learning techniques could help the score follower to learn a par-

ticular performer’s common embellishments and/or mistakes (by training the

HMM)

HMMs can be trained such that the HMM probabilities are refined, using algo-

rithms such as theBaum-Welchalgorithm (Durbin et al., 1998; Rabiner, 1989).

With some additional implementation effort, HMM training can be added to the

score followers developed in this project, in a similar manner to how the HMM

structures and use of Viterbi algorithm were implemented.

Although applying traditional HMM training methods to the domain of score

following has been considered to be less useful than anticipated (Schwarz et al.,

2004; Smaill, 2007), there has been recent research at IRCAM into new HMM

training methods specifically for the domain of score following (Cont et al.,

2004). It would be interesting to see HMM training could improve my score

followers. Effective training could improve the accuracy of the probabilities for

the HMM and, as a consequence, also improve the quality of performance for

this project’s score follower.

• Add knowledge to the score follower that allows it to respondto musical cues

and feedback from the soloist, to co-operate with the soloist and achieve a joint

performance

This arose from observations of how my testers were attempting to interact with

the score followers and give them musical cues. It would be possible to extend

my system to interpret such musical cues, but would require aconcerted research

effort into how and when musicians use such cues.

• Extend the project further to be helpful for teaching purposes by adding a “tutor”

that gives feedback to the performer on how they deviated from the score (to

learn from mistakes)

For example the student could be accompanied by the system during a practice

performance. The system could be adapted to produce feedback to the student

after a practice performance. This feedback would tell themwhere their per-

formance deviated from the ideal model of the score (e.g. “Atpoint S1 in the

score the tempo of your performance sped up”, “At points S2, S3 and S4, the

Chapter 6. Discussion and Conclusions 84

notes were not held for their full note value”, etc). This would help the student

learn from mistakes that they may not otherwise have noticed. If the system is

developed to the point that it can be trained for a specific performer, then this

error recognition would help identify common mistakes made.

This should be relatively feasible and could be implementedby a feedback mech-

anism that is triggered whenever the HMM enters aghoststate. The system

would record the fact that thisghoststate had been entered and would record

what the next state transition was (which would help describe the type of error

that was made).

6.5 Concluding remarks: What has this work achieved

This project has examined the effectiveness of Hidden Markov Models for score fol-

lowing and concluded that they are a useful tool with which toimplement score fol-

lowing systems.

During the lifetime of this project, HMM-based score followers have been de-

veloped in the interactive real-time music processing environment Max/MSP. These

score followers incorporate various enhancements such as beat tracking, the handling

of longer scores and the ability to produce complex accompaniment that changes whilst

the soloist remains in a particular state.

During development, a Hidden Markov Model structure was partially implemented

in Max/MSP to model the scores and to carry out the Viterbi algorithm.

My score followers are able to determine which HMM state the soloist is currently

in, by analysing what the soloist has just played against a specified score. They can

then play the appropriate accompaniment for that state.

Performances by each score follower have been evaluated subjectively by testers of

varying musical ability and experience, and also by the objective criteria that was used

to evaluate score followers at the Music Information Retrieval Evaluation eXchange

conference of 2006. Overall the score followers have been able to produce real-time

accompaniment to a human soloist, playing one of three different pieces, of varying

complexity. In most cases the accompaniment was musically appropriate throughout

the performance of the piece, even when the soloist performer deviated from the score

by making errors or adding embellishments to the music performed.

Bibliography

Bloch, J. and Dannenberg, R. B. (1985) Real-Time Accompaniment of Polyphonic
Keyboard Performance.Proceedings of the 1985 International Computer Music
Conference, pp. 279–290.

Cano, P., Loscos, A. and Bonada, J. (1999) Score Performance Matching using HMMs.
Proceedings of the 1999 International Computer Music Conference.

Cont, A. and Schwarz, D. (2006) Score Following Proposal.http://www.music-ir.
org/mirex2006/index.php/Score_Following_Proposal .

Cont, A., Schwarz, D. and Schnell, N. (2004) Training IRCAMs Score Follower.AAAI
Fall Symposium on Style and Meaning in Art, Language and Music.

Dannenberg, R. B. (1984) An On-line Algorithm for Real-timeAccompaniment.Pro-
ceedings of the 1984 International Computer Music Conference.

Dannenberg, R. B. (1989) Real-time Scheduling and Computer Accompaniment.MIT
Press Series in System Development Foundation Benchmark, pp. 225–261.

Dannenberg, R. B. (2000) Artificial Intelligence, Machine Learning, and Music Un-
derstanding.Proceedings of the 2000 Brazilian Symposium on Computer Music:
Arquivos do Simpsio Brasileiro de Computao Musical (SBCM).

Dixon, S. (2001) Automatic Extraction of Tempo and Beat FromExpressive Perfor-
mances.Journal of New Music Research, vol. 30(1):pp. 39–58.

Durbin, R., Eddy, S., Krogh, A. and Mitchison, G. (1998)Biological Sequence Analy-
sis: Probabilistic models of proteins and nucleic acids. Cambridge University Press.

Grubb, L. and Dannenberg, R. B. (1998) Enhanced Vocal Performance Tracking Using
Multiple Information Sources.Proceedings of the 1998 International Computer
Music Conference, pp. 37–44.

MIREX (2006a) Audio Beat Tracking.http://www.music-ir.org/mirex2006/
index.php/Audio_Beat_Tracking .

MIREX (2006b) Score Following Results.http://www.music-ir.org/mirex2006/
index.php/Score_Following_Results .

Orio, N. and Dechelle, F. (2001) Score Following Using Spectral Analysis and Hidden
Markov Models. Proceedings of the 2001 International Computer Music Confer-
ence.

85

Bibliography 86

Orio, N., Lemouton, S., Schwarz, D. and Schnell, N. (2003) Score Following: State of
the Art and New Developments.New Interfaces for Musical Expression, Montreal.

Orio, N. and Schwarz, D. (2001) Alignment of Monophonic and Polyphonic Music to
a Score.Proceedings of the 2001 International Computer Music Conference.

Pardo, B. and Birmingham, W. (2005) Modeling Form for On-line Following of Mu-
sical Performances.Proceedings of the Twentieth National Conference on Artificial
Intelligence, Pittsburgh, Pennsylvania.

Rabiner, L. R. (1989) A Tutorial on Hidden Markov Models and Selected Applications
in Speech Recognition.Proceedings of the IEEE, vol. 77(2):pp. 257–286.

Raphael, C. (1999) Automatic Segmentation of Acoustic Musical Signals Using Hid-
den Markov Models. IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 21(4):pp. 360–370.

Raphael, C. (2001a) A Bayesian Network for Real-Time MusicalAccompaniment.
Neural Information Processing Systems.

Raphael, C. (2001b) Music Plus One: A System for Flexible and Expressive Musical
Accompaniment.In Proceedings of the 2001 International Computer Music Con-
ference.

Raphael, C. (2007) Personal email correspondence.

Raphael, C., Cont, A., Schwarz, D., Litterst, G., West, K., VanSchuetterhoef, A.,
Good, M. and Downie, S. (2006) Score Following (Discussion). http://www.
music-ir.org/mirex2006/index.php?title=Score_Follow ing .

Schwarz, D., Orio, N. and Schnell, N. (2004) Robust Polyphonic Midi Score Following
with Hidden Markov Models. Proceedings of the 2004 International Computer
Music Conference.

Smaill, A. (2007) Personal communication regarding an IRCAMpresentation on score
following, attended circa 2002.

Toivainen, P. (2007) Personal email correspondence.

Vercoe, B. L. (1984) The Synthetic Performer in the Context ofLive Performance.
Proceedings of the 1984 International Computer Music Conference.

Vercoe, B. L. and Puckette, M. S. (1985) Synthetic Rehearsal: Training the Synthetic
Performer.Proceedings of the 1985 International Computer Music Conference.

Zicarelli, D., Taylor, G., Bernstein, J., Schabtach, A., Dudas, R. and DuBois, R. L.
(2006) Max/MSP v4.6 Tutorials and Documentation. Available fromhttp://www.
cycling74.com/download/maxmsp463doc.zip .

Appendices

87

Appendix A

Repertoire for my score follower

1. Twinkle Twinkle Little Starextract with simple monophonic bass line accompa-

niment

2. Twinkle Twinkle Little Starextract with simple chordal accompaniment

3. All I Ask of Youextract with simple chordal accompaniment

4. All I Ask of Youextract with more complex chordal accompaniment

5. Danse Macabreextract

88

Appendix A. Repertoire for my score follower 89

Figure A.1: Twinkle Twinkle Little Star extract with simple monophonic bass line ac-

companiment

Figure A.2: Twinkle Twinkle Little Star extract with simple chordal accompaniment

Appendix A. Repertoire for my score follower 90

Figure A.3: All I Ask of You extract with simple chordal accompaniment

Appendix A. Repertoire for my score follower 91

Figure A.4: All I Ask of You extract with more complex chordal accompaniment

Appendix A. Repertoire for my score follower 92

Figure A.5: Danse Macabre extract

Appendix B

An example of the Hidden Markov

Model probabilities: Twinkle Twinkle

Little Star

N.B. N, M, A, B,π andV refer to the abbreviations used in Rabiner (1989) for each

part of the HMM settings described in Chapter 2, such thatλ = {N,M,A,B,π,V}

N = no of states= 15

M = no of possible observations= 12

A = state transition probabilities= (see B.1)

B = observation probabilities= (see B.2)

π = initial probabilities = (see B.3)

V = possible observations= {0,1,2,3,4,5,6,7,8,9,10,11}

93

Appendix B. An example of the Hidden Markov Model probabilities: Twinkle Twinkle Little Star94

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0.0 0.45 0.1 0.45 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 0.0 0.0 0.1 0.81 0.0 0.05 0.0 0.01 0.0 0.01 0.0 0.01 0.0 0.01 0.0

2 0.0 0.0 0.0 0.45 0.1 0.45 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.0 0.1 0.82 0.0 0.05 0.0 0.01 0.0 0.01 0.0 0.01 0.0

4 0.0 0.0 0.0 0.0 0.0 0.45 0.1 0.45 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.83 0.0 0.05 0.0 0.01 0.0 0.01 0.0

6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.45 0.1 0.45 0.0 0.0 0.0 0.0 0.0

7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.84 0.0 0.05 0.0 0.01 0.0

8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.45 0.1 0.45 0.0 0.0 0.0

9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.85 0.0 0.05 0.0

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.45 0.1 0.45 0.0

11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.9

12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5

13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

Table B.1: state transitions.txt : The probabilities associated with transitions from

one state to another (A)

Appendix B. An example of the Hidden Markov Model probabilities: Twinkle Twinkle Little Star95

Emission: 0 1 2 3 4 5 6 7 8 9 10 11

0 0.0 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.09

1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.0 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.09

3 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.0 0.091 0.091 0.091 0.09

5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

6 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.0 0.091 0.091 0.091 0.09

7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

8 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.0 0.091 0.09

9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

10 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.0 0.091 0.09

11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

12 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.0 0.091 0.091 0.091 0.09

13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

14 0.08330.08330.08330.08330.08330.08330.08330.08330.08340.08340.08340.0834

Table B.2: emission probabilities.txt The probabilities of seeing each observa-

tion in a state (B)

Appendix B. An example of the Hidden Markov Model probabilities: Twinkle Twinkle Little Star96

State Probability

0 0.1

1 0.75

2 0.0

3 0.05

4 0.0

5 0.04

6 0.0

7 0.03

8 0.0

9 0.02

10 0.0

11 0.007

12 0.0

13 0.003

14 0.0

Table B.3: initial probs.txt : The probability of starting in each state (π)

Appendix C

Technical program detail

My score follower system is written in Max/MSP. This is an interactive music-processing

environment that runs in real-time.

Rather than program code, in Max/MSP the program is carried out by passing infor-

mation throughout the program, to variouspatcher objects. These patcher objects are

analogous to procedures or functions in more conventional programming languages.

This appendix shows screenshots from the main score follower program windows.

These screenshots express the workings of the score follower program as a code listing

would do for a Java program or similar.

The screenshots included below show how the fundamental parts of the program

have been programmed.

To interpret how each patcher in the program works: where there is a choice of two

or more information flows to choose, by default Max/MSP passes on the right-most

information first, then works right-to-left. It operates a depth-first strategy, meaning

that all information flow possible is carried out in one particular branch before the

program moves onto the next branch.

In these screenshots, each window is an individual patcher.Each patcher is pictured

with its sub-patchers (patchers that are called during the operation of that patcher).

In general, information flows from theinlet at the top of the patcher, through the

patch cords(black lines connecting each box in the patcher). Each box that the infor-

mation reaches does some processing on that information.

At the bottom of the patcher is usually anoutlet that passes information onto the

next patcher (unless this patcher does not send out information to another patcher).

The other main ways of getting information in and out of thesepatchers are:

• notein and noteout objects pick up MIDI note messages from the MIDI keyboard

97

Appendix C. Technical program detail 98

and send MIDI note messages to the keyboard, respectively.

• send and receive objects exchange information between eachother. They have

global scope, across the program.

• value objects are the Max/MSP variable. Values are available globally. Infor-

mation stored in a value is retrieved by sending a ’bang’ message to a value

object.

• coll objects are the Max/MSP array structure. As for values,coll data is available

globally.

Notes on how Max/MSP works

• Max/MSP documents are called Patchers.

• A Patcher is a collection of Objects that have Input/Output inlets/outlets.

• Functionally, a Patcher can be thought of as performing a task or procedure

• There are a large number of Objects available with specific functions e.g. midi-

out generates MIDI output.

• Objects pass messages to each other through their inlets/outlets. This is how

information flows through the Patcher.

• Messages can take the form of numbers, words (called Symbolsin Max/MSP),

a list of numbers e.g. 1 5 85 12, or a combination of numbers andwords.

• One message which is particularly useful is thebangmessage. This tells the

receiving object to immediately carry out the function thatthat object is designed

to do. So thebangmessage is useful for, among other things, triggering off sound

generation after having made the appropriate observation.

• Objects can take arguments (for some objects this is necessary for it to operate).

• A Patcher can be used inside another Patcher by calling it by name within that

Patcher.

Max/MSP does in fact have a very simple score follower objectavailable for use.

Thefollow object is able to process an incoming stream of notes and makesome com-

parisons against a pre-programmed sequence of expected notes. However this object is

Appendix C. Technical program detail 99

limited in its applications, as acknowledged in the Max/MSPdocumentation (Zicarelli

et al., 2006) (Tutorial 35) and it is considered to perform poorly as score following

scenarios (Raphael, 2007). Also, if I had used this object, Iwould not be able to test

my hypothesis about the suitability of Hidden Markov Modelsfor performing score

following. So whilst I acknowledge that this object is available, I did not feel it was

necessary to make use of it in this project.

The files that make up my score followers can be downloaded from http://

homepages.inf.ed.ac.uk/s0676484 .

Extensive Max/MSP documentation and tutorials (Zicarelliet al., 2006), as well as

a trial version of the Max/MSP software (for Windows or Mac OS), can be downloaded

from http://www.cycling74.com .

Appendix C. Technical program detail 100

Figure C.1: Program structure by patcher (function)

Appendix C. Technical program detail 101

Figure C.2: My score follower on startup

Appendix C. Technical program detail 102

Figure C.3: Program initialisation patcher

Appendix C. Technical program detail 103

Figure C.4: How the score follower processes new input from the soloist

Appendix C. Technical program detail 104

Figure C.5: How the score follower determines what the next state should be(part 1)

Appendix C. Technical program detail 105

Figure C.6: How the score follower determines what the next state should be(part 2)

Appendix C. Technical program detail 106

Figure C.7: The viterbi algorithm as implemented in the score follower

Appendix C. Technical program detail 107

Figure C.8: How the score follower generates accompaniment (part 1)

Appendix C. Technical program detail 108

Figure C.9: How the score follower generates accompaniment (part 2)

Appendix D

Test melodies

During the objective testing process, the score followers were tested five times, with

specific amendments being made to the melodies. Details of these amendments are as

follows.

For Twinkle Twinkle Little Star, the following adaptations were made for testing

purposes:

• Selected errors added to melody:

– An extra note (E) added between the secondC of bar 1 and the firstGof bar

2

– The wrong note played on bar 2 beat 2 (aG# instead of aG)

– Skipping out theA at bar 3 beat 2

• Selected embellishments added to melody:

– An acciaccatura(Definition E.1)rapidly played note added just before the

scored note, played on the beat is added to theC at bar 1 beat 2

– A trill (Definition E.6) is added to theGat bar 2 beat 2

– A turn (Definition E.7) is added between the secondA of bar 3 and theG in

bar 4

• Selected tempo adjustments made whilst playing the melody:

– The system was told that the soloist would be playing at 500 milliseconds

per beat (ms/beat), but the soloist actually played at 600 ms/beat.

– At the start of bar 3 the soloist’s tempo changes suddenly to 400 ms/beat.

109

Appendix D. Test melodies 110

For All I Ask of You, the following adaptations were made for testing purposes:

• Selected errors added to melody:

– Skipping out theC at bar 1 beat 2

– The wrong note played on bar 2 beat 2 (aB natural instead of aBb)

– Bars 3 to 4 repeated (play bar 3, then bar 4, then bar 3, then bar4)

– During the first repeat of bars 3-4, the rhythm in bar three is played incor-

rectly: a dotted minim (3 beats) followed by a crotchet (1 beat) rather than

two minims (2 beats each)

– Wrong notes played in bar 6. TheF (beat 2) becomes aD, theBb becomes

a C and theD becomes anE natural .

– Skipping out the first two notes of bar 7 (so that that part of the bar is missed

out entirely and only two beats of bar 7 are actually played, hence theF on

bar 7 beat 3 is held for 6 beats, as scored)

– TheBb is held for a beat too long before being released (so it is still being

played during the first beat of the next bar)

• Selected embellishments added to melody:

– A turn is added between the secondC of bar 1 and theC at bar 2 beat 1

– Two grace notes(Definition E.3) (Eb andF) are added before the firstG in

bar 3

– An appoggiatura(Definition E.2)A is added before theG in bar 4

– An inverted mordent(Definition E.4) is added before theA in bar 5

– A slideof notes (Definition E.5) is played from theF at bar 6 beat 2 down

to theBb on beat 3

– A trill is added to the lastF, starting on bar 8 beat 1

• Selected tempo adjustments made whilst playing the melody:

– The system was told that the soloist would be playing at 500 milliseconds

per beat (ms/beat), and the soloist does start playing at that speed.

– The soloist speeds up gradually and consistently during bars 1 to 4, reach-

ing a final speed of 300 ms/beat at the start of bar 5

Appendix D. Test melodies 111

– At the start of bar 6 the soloist’s tempo drops suddenly to 600ms/beat (as

if they had realised they were speeding up and overcompensating)

– On the third beat of bar 7, the soloist’s tempo returns to the original speed

of 500 ms/beat, and remains at that speed for the rest of the piece

For Danse Macabre, the following adaptations were made for testing purposes:

• Selected errors added to melody:

– Skipping out theBb at bar 3 beat 3 (such that this whole beat is missed out)

– An extraBb crotchet is added in between beats 2 and 3 of bar 5 (so this bar

now has 4 beats instead of 3)

– At bar 7, the notes at beats 2 and 3 (theEb and the secondBb) are missed

out. (This mistake is inspired by a mistake that was consistently made by

one of the testers during the subjective evaluation).

– A wrong note is played on the lastquaver of bar 9 (theEb is played as aC)

– Bars 11 and 12 are repeated (so bar 11 is played, then bar 12, then bar 11,

then bar 12)

– TheEb on beat 1 of bar 13 is played as anE natural (then the secondEb,

on beat 2 of this bar, is played correctly as anEb)

– An extra quaver is played in bar 14 (AnEb quaver is added in between the

Gon beat 1 and theF on beat 2)

– Several notes are skipped in bars 15-16. The run of notesEb G Eb F G

from bar 15 beat 2 to bar 16 beat 1 are omitted entirely.

– The lastEb in bar 16 (the second half of beat 3 of this bar) is played as an

E natural .

– The rest on beat 3 of bar 17 is replaced by the playing of a staccato crotchet

D

• Selected embellishments added to melody:

– A slideof notes is added between the secondBb in bar 3 (beat 3) and the

first Eb in bar 4 (beat 1)

– Grace notesBb andC are added just before theD on beat 1 of bar 9

– Grace notesEb andF are added just before theEb on beat 1 of bar 11

Appendix D. Test melodies 112

–

• Selected tempo adjustments made whilst playing the melody:

– The system was told that the soloist would be playing at 200 milliseconds

per beat (ms/beat), and the soloist does start playing at that speed

– At the start of bar 3, the soloist changes tempo so they are playing at 150

ms/beat

– This tempo is maintained until bar 9, beat 2, where the soloist’s tempo

changes to 175 ms/beat

– At bar 11, beat 1, the soloist’s tempo slows to 200 ms/beat

– At bar 13, beat 1, the soloist’s tempo slows further to 300 ms/beat (these

continual decreases in tempo are representative of a typical reaction to

harder passages, which is to slow down for these harder partsof the piece)

– At bar 15, the soloist’s tempo picks up to 200 ms/beat (representing that

they are getting more comfortable with playing this part of the piece)

– The last bar is played at a slightly faster tempo of 150 ms/beat (representing

how the soloist might rush the last bar as they have reached the end of the

piece).

Appendix E

Glossary of terms used for musical

ornamentations and embellishments

The following diagrams are taken fromhttp://www.gc-music.com/Ornament.htm

(except for the grace note and slide diagrams which are more modern interpretations

of embellishment than is covered in this list).

In choosing which musical ornamentation to use during testing, I aimed to choose

embellishments which I felt matched the style of the piece ineach case (though I

acknowledge that this is a subjective process).

For further details on different types of ornamentation andembellishments of notes,

http://www.gc-music.com/Ornament.htm andhttp://en.wikipedia.org/wiki/

Ornament_(music) both give good descriptions and examples of common musical

embellishments.

Figure E.1: Acciaccatura: a rapidly played note added just before the scored note,

played on the beat

113

Appendix E. Glossary of terms used for musical ornamentations and embellishments114

Figure E.2: Appoggiatura: A short note added just before the scored note, played on

the beat and sharing half the duration of the scored note

Figure E.3: Grace notes: Quickly played note(s) added just before the scored note,

played just before the beat

Figure E.4: Inverted Mordent: Two quick notes, the note above the scored note and

then the scored note, played sequentially and added just after the scored note, played

just after the beat

Figure E.5: Slide: a scalar run of notes moving gradually up or down, in quick succes-

sion

Figure E.6: Trill : a repeated playing of two notes one after another: the scored note

and the pitch just above it

Figure E.7: Turn: a sequence of a few notes in a pattern of up-down-up movement,

added between two scored notes and played off the beat

