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Abstract

Score Following is the process by which a musician can b&édthrough their perfor-
mance of a piece, for the purpose of accompanying the muasraith the appropriate
notes. This tracking is done by following the progress of tingsician through the
score (written music) of the piece, using observations efrtbtes they are playing.

Artificially intelligent musical accompaniment is where amhan musician is ac-
companied by a computer musician. The computer musicidrieda produce musical
accompaniment that relates musically to the human perfocsa

Hidden Markov Models (HMMs) are a stochastic modelling tiait can be used
to represent real-world systems in a variety of domains.

This project discusses how HMMs can be used in the domain ofeS€ollow-
ing and describes the construction and evaluation of a dotl®ving system that
uses HMMs to implement score following. It explores the Hjgsis that using an
HMM to represent a musical score is an efficient and praciegl to implement score
following, and that in particular this method is suitable fooviding real-time accom-
paniment to a human performer.

The score followers developed during this project are teated compared against
other score following systems and against human musicidiie resulting perfor-
mances support the project hypothesis to a large extent.
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Chapter 1
Introduction

This project addresses what score following is and how itlmammplemented using
Hidden Markov Models. This chapter sets the context for grgect and outlines
what the project achieves.

1.1 What is score following

In a musical situation, scoreis the written music that a musician reads when they play
music. Score followingis the process where a musician follows another musician’s
playing of a musical piece, by tracking their progress tiglothe score of that piece.

1.1.1 Score following in real-life domains

Real-life score following is best illustrated by an example

Consider a flautidtwho is performing a solo piece at a concert, with a piano playe
providing accompaniment. The piano accompanist listenghiat the flautist is play-
ing, to ensure their accompaniment matches the flautistflabgst may occasionally
not perform the piece exactly as it is written in the score.these cases the piano
player must adjust their accompaniment, to synchroniske thi flautist.

There are several reasons why the flautist may not perfornpigee exactly as
written.

Changes may be added by mistake:

e A wrong note is played

Hlute player
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Extra notes are added

Scored notes are missed out

The flautist loses their place in the music or starts playmgifthe wrong point

in the score (in particular this is a concern if the flautigblsying from memory
rather than having the music in front of them)

The flautist’s temp®speeds up or slows down unintentionally

Also changes may be added deliberately, as the flautist &eédsoiwvn interpreta-
tions to the music:

e The flautist adds embellishments such as &ille ‘decorate’ the notes
e The flautist’'s tempo speeds up or slows down deliberatetyynigsical effect

e The piece being played may hausatd* or free/improvised sections, where the
flautist is free to vary the tempo and notes played accordirigdir own choice.

1.1.2 How an artificially intelligent score follower could b e useful

There are two main application areas where automated sobbogving is useful: in
electronic music and as an aid to human musicians.

1.1.2.1 Electronic music

Many musical performances consist of a soloist playing aoohefrom a score, with

the given accompaniment provided by another instrumesttaln the case of some
electronic music, the accompanying parts can be competesrgteél The accompa-

niment supports the soloist and adds underlying harmonies.

1.1.2.2 As an aid to human musicians

Musicians do not always have access to accompanists fotigggaurposes. Other
common problems are that their accompanist may not be alail@hen needed for

2speed at which the music is being played

3See Appendix E

4variable and flexible tempo

SFor example Pierre BouleReponsor Philippe ManourySonus ex machina
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performance, or that the accompanist does not have theitatkability necessary to
provide adequate accompaniment.

A possible solution involves the accompaniment to be geéedrautomatically by
a computer or recording, as happens in some electronic music

Many musicians practise playing over recorded or compgésrerated accompa-
niment where the accompaniment is static, i.e. it is fixedwitichot change from one
playing to another. This means, though, that the musiciap@dheir performance to
match the recording. Itis more natural for the musiciané #itcompaniment adapts to
fit the performer. Raphael (2001b) describes this as movimg fmusic minus one”
to “music plus one”.

To dynamically synchronise the accompaniment with thegoerénce by the mu-
sician, it would be necessary for the accompanist to traekpgirformer in some way
through the score of the piece as they play.

This may become complicated if the performer makes misttkatsdeviate from
the score: missing some notes out, misplaying others omngdsitra notes. The ac-
companiment would need to cope with such mistakes that ¢hageerformer to devi-
ate from the written score.

In addition the performer should have the freedom to add calisimbellishments
that do not exist in the original score, as they would be abieith a human accompa-
nist, without this disrupting the accompaniment.

It is very useful for a musician to have access to accompantichering practice.
The musician can learn how the accompaniment sounds andlfisrthey can derive
valuable assistance for future performance. As exampéamisician would be aware
of the underlying harmony provided by the accompanimerd, @grany musical cues
they could use when learning the timing of each section.

1.2 The use of Hidden Markov Models in score follow-

ing
Hidden Markov Models are a statistical modelling tool thah e used to represent
real-world systems. In the last ten years, score followegearchers have looked at

using Hidden Markov Models to implement score followingtsyss (Raphael, 1999;
Cano et al., 1999; Orio and Dechelle, 2001; Orio et al., 2003).
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1.3 Project Hypothesis

Using an Hidden Markov Model representation of the sequefistates in a musical
score is an efficient and practical way to implement scor@iohg. In particular it
lends well to providing real-time accompaniment to a humarrfigsmer.

1.4 Project Aims and Objectives

This project investigates how an intelligent artificial nausystem can follow a human
musician through the performance of a piece, and accomganynusician’s perfor-
mance as a human accompanist would, musically and in raal-ti

The project considers a number of different approachesdoesollowing, from
the perspective of constructing a score follower, incoatiog what has been learnt
from previous research in the area.

Due to time restraints, the aim of this project was not to caragpiMMs to other
implementation approaches, but rather to test how an HMMbeautilised for score
following, and evaluate how useful HMMs are for this apptica.

The primary objectives at the start of this project were:

1. Construct a Hidden Markov Model of the piece to be performed
2. Analyse input from the performer in conjunction with thiglden Markov Model

3. Provide appropriate accompaniment to the performerreeatts to their inter-
pretation of the piece and keeps in time with the performer.

4. Test system on a range of music to see how it adapts todfitf@ieces.

1.5 What was achieved during this project

During this project, a number of score followers were depelbin Max/MSP, using a
Hidden Markov Model as the basis by which the soloist’s pesgwas tracked through
the score. As a byproduct of this project work, a Hidden Marktodel structure was
implemented in Max/MSP such that the Viterbi algorithm ebbk carried out on a
sequence of observations.

A number of enhancements were tried out, to enhance the besrie follower,
such that beat tracking, complex accompaniment and relatiere positioning were
all incorporated to some extent in the score follower.
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Three musical pieces of varying complexity and length weogmammed into the
different versions of the score followers. The performaateach score follower was
evaluated subjectively by testers of varying musical gbdnd experience. Each score
follower was also tested by objective criteria that was useglaluate score followers
at the Music Information Retrieval Evaluation eXchangefeoence in 2006(MIREX,
2006b); hence some general comparisons could be made Ietineg@roject’s score
following systems and systems produced by existing scdi@dimg research groups.

1.6 Terms used in this document

As well as the termscoreandscore following defined above, there are a number of
terms used frequently throughout this document which dfetiefined here, in order
to avoid confusion:

e Performance In the context of this project, performance is defined specif-
ically as the situation where a solo musici@oloist), such as a flute player or
singer, performs a piece of music. The solo musician woulddm®mpanied by
another musiciaifaccompanist)on an instrument such as piano. This may be
in a concert or similar scenario, performing to an audiebcé this condition is
not mandatory. What is important is that thaoistis making an attempt to play
through the piece in a linear fashion, from start to finish.

e Performer/Soloist The solo musician who is performing the piece; what they
play is the most important part of the performance for anyienck that may be
listening.

e Accompanist The musician who is playing theccompaniment supporting
thesoloist’s performance

e Melody/Solo melody The music that is being played by theloist

e Accompaniment The music which is played by amccompanist during the
performance of the soloist Accompanimentcan be thought of background
music which is designed to enhance whatsb#istis playing and support the
soloist’s performance

e Score follower. A computeraccompanistthat follows thesolo melodythrough
thescoreas it is being played, to produce accompaniment relativehere/the
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soloistis in thescore

1.7 Outline of this document

This chapter introduces the reader to the project and gnewerview of its aims, the
hypothesis that is being evaluated in this project and a&ehients.

Chapter 2 gives detail of significant prior research carrigtin score following,
describing how research in this field has developed and rgattiis project in the
context of the current state of research.

Chapter 3 describes the fundamental decisions that were thkeng the design of
the score followers, to give the project reasonable scoge@decide which approach
should be taken in various areas of the score follower (wheyee than one approach
was possible).

Chapter 4 details the major stages of implementation of tbeedollowers, includ-
ing a summary of how | dealt with problems encountered ané®xyntation that was
undertaken to decide how best to implement parts of the $obiosvers.

Chapter 5 reports how the score followers performed in objecnd subjective
evaluation tests, and analyse the successes and limgaifdhe score followers pro-
duced during this research.

Chapter 6 discusses the performance and capabilities afdbre following system
as a whole, and presents the conclusions reached upon damnpéthis project.

An overview of the score following program produced in thisjpct can be found
in the appendices, along with more detailed implementadiweh testing information.
The program is also available onlfi&r download.

6Available athttp://homepages.inf.ed.ac.uk/s0676484



Chapter 2
Background

Research into score following and computer/human musitaractivity was pio-
neered in 1984 (Vercoe, 1984; Dannenberg, 1984).

Originally dynamic programming algorithms were used tochgiatterns of notes
expected against the sequence of notes actually playecIsptbist.

Probabilistic methods were introduced to score followingthe 1990s. Grubb
and Dannenberg (1998) used probability density functiorie¢ate the soloist’'s most
probable position in the score.

A research group at the IRCAM institdteas developed much research into score
following, using approaches derived from biological setpesalignment and from
speech processing. Orio and Schwarz (2001) used dynamécMianping to anal-
yse audio signals and align them to a musical score by detepgaks in the music
performed and fitting them to prominent events in the score.

Later research at IRCAM (Orio et al., 2003) used a Hidden MaModel (HMM)
to model the score and possible deviations where a wrongiaqilyed, a note is
missed out or an extra note is added. The Hidden Markov Mddlthey use has
transitions modelling the probabilities for each event.

Raphael has carried out very similar work (Raphael, 1999 .td$ chose HMMs
as the preferred method by which to model and track the sddiee@iece, although
he has since started to incorporate Bayesian probabiiitteshis score followers as
well (Raphael, 2001b).

What follows is a discussion of the important developmentsdare following
research over the past three decades and a comment on hquvdjast fits into the
context of the current state of research.

Lhttp:/www.ircam.fr/
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2.1 Dynamic programming and pattern matching

A dynamic programming approach to score following was tta fo be implemented,
in the 1980s. The first automatic accompanists were crelteddgh research led by
Barry Vercoe (Vercoe, 1984; Vercoe and Puckette, 1985) &sulley Roger Dannen-
berg (Dannenberg, 1984; Bloch and Dannenberg, 1985).

The general methodology of Vercoe and Dannenberg’s work ompare what
has been played by the soloist with what the score followg@eeted the soloist to
play (i.e. the music that was written). In this way a recuesalgorithm builds up the
optimal path that the soloist would have taken through tloeesc

Vercoe (1984) emphasises the three-stage process beliredfgliowing:

1. Listen
2. Perform
3. Learn

The aim of score following, as Vercoe describes it, is

to recognize the computer’s potential not as a simple arapbfilow-level
switching or acoustic information (keyboards and live audistortion),
but as an intelligent and musically informed collaboratoiive perfor-
mance as human enquiry. (Vercoe, 1984) (p. 199)

In Vercoe and Puckette (1985) the work now includes thetgwli the synthetic ac-
companist to learn the accompaniment and to learn the peeics likely paths through
the piece (rather than merely reacting to the performerndua performance). This
new aspect meant that this research team had to give senasgleration to the form
the score model should take.

The score follower in Bloch and Dannenberg (1985) is cowestal of two parts.
The first is aMatchersegment, whose function is to match what the soloist is ptayi
to a location in the score. It also hasAaocompanissegment which takes information
from the Matcher and produces the corresponding accomartim

This score follower deals with situations where it loseghkraf the soloist’s lo-
cation in the score in the following way: if a long period afng elapses where the
Matcher has not reported a matching event to the AccompahistAccompanist as-
sumes the Matcher is unable to locate the soloist in the sGtwerefore it stops playing
any accompaniment until a matching event is reported agathdMatcher.
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This seems like a sensible approach to take; if the systeasighen any accom-
paniment it produces could well conflict with what the sdiags playing. In such
situations it seems that it would be better to remain silertil the score follower has
located the soloist in the score. This relates to the sdnati real life where the ac-
companist does not know where in the score the soloist istops playing until they
have worked out the soloist’s location again.

2.2 Important developments in score following research

during the 1980s and early 1990s

2.2.1 Real-time scheduling

Dannenberg’s score following work developed during the(sd® include a strong us-
age of timeline-based scheduling (Dannenberg, 1989). tindigon is made between
real timeandyvirtual time. Actual physical time periods are referred toraal time
whereas the internal measure of time used by Dannenbeny’s &dlowers is referred
to asvirtual time. Dannenberg separates these two concepts as a way of nmegtbiari
soloist’s relative progress through a score.

2.2.2 Probability density functions

In 1989 Dannenberg and his student, Lorin Grubb, wrote abouew approach to
score following using probability density functions (Gluand Dannenberg, 1998).

From a given previous position in the score, the score falowontinually esti-
mates the distance from that previous position. The scdl@fer then uses the most
recent observations of pitch, spectral peaks, amplitu@gmgés and so on, to locate
where in the score the soloist has now reached.

Although this method was not adopted by other significargaeshers, it is worthy
of recognition as the first use of probabilistic methods ioredollowing.

2.3 Dynamic time warping

IRCAM presented two score following research projects at2861 International
Computer Music Conference: one using dynamic time warpingo(@nd Schwarz,
2001) and one using another technique for implementingestatowing, Hidden
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Figure 2.1: Two sequences that DTW treats as very similar

TN

Figure 2.2: Two sequences that DTW treats as very different

Markov Model based techniques (Orio and Dechelle, 2001¢rd s more detail about
Hidden Markov Model based score following later in this doant.

Dynamic Time Warping (DTW) finds the best alignment betweea $&quences
by analysing similarities between the structure of the asitynals received and those
expected, and by aligning note onset times. So Figure 2\istwo sequences which
are treated as very similar, whereas Figure 2.2 shows twoesegs which are con-
sidered to be very different from each other, even though ¢buld just be due to a
mistake where the performer has started playing the noteeat/tong time:

Durbin et al. (1998) contrast the DTW approach with the Hiddéarkov Model
approach to sequence alignment. Orio and Schwarz’s irg&pon of this analysis
is that the two techniques seem to be completely interctebigexcept that DTW is
more optimal on memory requirements for large files (Orio &stiwarz, 2001) (Sec-
tion 2.3). Later work by IRCAM on score following, howevermentrates completely
on the Hidden Markov Model approach (Orio et al., 2003; Sataved al., 2004; Cont
et al., 2004), and there is little mention in later liter&wf DTW approaches being
used further.

2.4 Hidden Markov Models

Automated musical accompaniment, or score following, daa be implemented us-
ing Hidden Markov Models (HMMs) to track what state a perferns in. This ap-
proach to score following has had some success to date.
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2.4.1 General theory of Hidden Markov Models

Hidden Markov Models (HMM) are a stochastic modelling tqmbpular in a variety
of domains from speech processing (Rabiner, 1989) to bicdbgequence matching
(Durbin et al., 1998). Real-world systems that produce skime of observable signal
can be modelled with HMMs. In particular this includes systethat operate non-
deterministically: systems whose behaviour cannot beigiesaiexactly by using a set
of algorithmic rules or formulae.

Probabilities are used in the HMM to represent the systeilvéevable behaviour
and to represent internal (hidden) facets of the system.HWMM can then be used to
process these observable signals to explain the systehesioeir and make probability-
based estimates about future behaviour.

As Rabiner describes (Rabiner, 1989), (p. 257),

The underlying assumption of the statistical model is thatdignal [pro-
duced by the system at any given time] can be well charaetras a

parametric random process, and that the parameters ofdbleasttic pro-
cess can be estimated in a precise, well-defined manner.

So we assume there is some underlying pattern which can kedpaut to model
the observable outputs of a process (which may include sdoohastic or random
influence).

A system modelled with an HMM can be considered to be in ondiofta number
of states at any given time. We can gain information aboutt\state the system is
currently in by examining recent outputs from the systenbg&rvations’). The actual
states themselves can not be observed, just the sequenbsetations that result
from the system passing through those states. The obsenypdt@an be interpreted
as being “a probabilistic function of [the system being im¢ state” (Rabiner, 1989)
(p. 258).

The relationship between individual states and obsemsai®not a functional rela-
tionship but a many-to-many relationship; one observatiay be produced by many
system states, and in turn there may be more than one poebsdevation should the
system be in a given state. The fundamental difference leetwedden Markov Mod-
els and Markov chains (Durbin et al., 1998) is that you camaatge what state the
sequence is in purely from the current observation in ismhatThere is not a one-to-
one correlation between states and observations in HMMsadih there is in Markov
chains.
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Rabiner (1989) cites the example of a sequence of coin tassieg either a biased
or normal coin. A sequence of coin tosses generates a lisisgfreations suchas H T
THHHHTTH . With prior knowledge of the probabilities assaigd with starting
with one of the two coins, the probability of changing fromeorpin to another and
the probability of getting either a *head’ or a ‘tail’ with ela coin, we can model this
scenario using an HMM. We can use this HMM to make a probaigilesstimate of
which coin is being tossed at any one time.

The components of a Hidden Markov Model are (Rabiner, 1989):

e N =the number of states in the model
e M =the number of distinct observations possible per state

e A = the state transition probability distributidj } such that:

Ajx = P(transition from state; to s¢)

z

Aj =1

k=1

e B = the probability distribution in each stafethat governs the probability of
seeing each observation m when in that state, such that:

bj(k) = P(w att| ot = Sj)
j is one ofN states

k is one ofM observations possible from that state

e 11= {15} whererg = probability of starting in state

¢ V =the set of all observation symbols

2.4.2 Score following using Hidden Markov Models

A musical score is divided up into a sequence of musical evgat example where
one note is considered as one modellable musical event)

The score follower is given a Hidden Markov Model that repres these musical
events, and uses an algorithm such as the Viterbi algorithestimate what state the
performer is most likely to be in at that time, i.e. which nuaievent in the score the
performer is currently playing.
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The aim is to find the most probable state sequence that ceuktgte the sequence
of observations produced by hearing the soloist’s playing.

Later chapters of this thesis describe how HMMs were usedpéament a number
of score followers. In the score followers developed dutiinig project, the Viterbi
algorithm is used to find out which state the soloist is md&lyi to be in (given the
sequence of observations of what notes the soloist has ettty played).

The Viterbi algorithm can be used to find the most probablé gatugh a set of
HMM states. Given a sequence of the most recent observatidhs soloist’s playing,
the Viterbi algorithm:

finds the state sequen{m, ..., g|that most likely generated the complete
sequence of observatio@s (Rabiner, 1989)

Implemented in the traditional fashion, this algorithm 8rtle globally optimum
path through the Hidden Markov Model states to the most gigbeurrent state, us-
ing the history of observations seen. However in score nliodelve instead require
a locally optimal path to the current point. This is becauseane interested in accu-
racy locally at the expense of a more global accuracy (i.e.ctrrect accompaniment
playing at the right time, even if the resulting path throdiga music overall is not the
most probable path when the performance is viewed as a whole.

The Design chapter of this document describes how the Vitdgorithm was
adapted to be locally optimal rather than globally optimal.

In Rabiner (1989) and Pardo and Birmingham (2005), the éopgtsed for find-
ing the current state in a score following model are desdriimesome depth. The
equations that are implemented during the course of thiggrare a simplified ver-
sion of these equations and are as follows:

Given a sequence of observatiof® = 01,0p,...0n} (2.1)
and given an initial probability distributioa(s;) (2.2)
The current locatioly = arg max(a(s;j,0;)) (2.3)
0(Sj,01) = @(Sj,00) ¥ ges(T(Sk, Sj) (S, 0i-1)) (2.4)
a(sj,01) = @(sj,01)0(sj) (2.5)

O(sj,e)) =£(sj, @) (2.6)

2.7)
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Carrect note played Note missed out Wrong note played Extra note added
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Figure 2.3: Errors for states

2.4.3 Implementation of score followers using Hidden Markov Mod-

els

The performance of HMM-based score followers has been atedifavourably against
string-matching/dynamic programming-based score fati@{Pardo and Birmingham,
2005). HMM-based score followers significantly outperfedrthe dynamic program-
ming score followers on the accompaniment of jazz meloglies

The methodology described in Orio and Dechelle (2001) isekiants in the per-
formance (for example rests, notes, trills, chords, andrgaet modelled by Hidden
Markov Model states. These events are modelled in parayldddih ann-stateor
normalstate, and g-stateor ghoststate.

Orio and Dechelle (2001) identify three classes of probabiers:

¢ WRONG: An incorrect note is played in place of the correct note
e SKIP: A note in the score is missed out altogether.
e EXTRA: An extra, unscored note is added in the performance.

The Hidden Markov Model processes such errors by the splsshey happen, by
taking a specific path through tim®rmalandghoststates. The paths for each class of
error are shown in Figure 2.3

Christoper Raphael has also constructed score followersgudsMMs (Raphael,
1999). Raphael’s choice of musical events represented bi& Htate are time-
driven. Each observation is made up of a number of periodigpées taken from the
incoming sound signal. These observations are used tosethnd locate the current
state of the soloist.

2Generally the jazz melodies were of short to medium lengtith whords rather than specified
melodies as accompaniment, so the repertoire in this tegatas slightly limited in scope
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2.5 The current state of research in score following

The research team at IRCAM, Christopher Raphael and Rogerddéeng are cur-
rently the prominent researchers in score following.

IRCAM are the publishers of the only commercial score followeat | can find
evidence of. Theisuivi score follower is available commerciafly However many
other research efforts exist. Of these, the work by Christoftaphael in particular
has an impressive range of repertoire composed for it, witlmaber of demonstrations
available onliné.

Orio et al. (2003) discuss the unpredictability of perforo@. Currently when
the IRCAM score follower is used in performance, the scoréovedr needs close
supervision by someone who knows the piece and the perfarie@nmon errors, in
case the score follower makes mistakes during the piece.

Current problem areas in score following that are identifigghi@valent in a 2003
review of score following research (Orio et al., 2003) irdzu

e Sources of mismatch between the performer and the computer
e Working with polyphonic input/ensemble groups of instrurtse
e Enabling cues (other than those derived directly from theinal performance)

¢ Reliability of the system in performance

2.6  How this work fits into the research context

My project would adopt the Hidden Markov model (HMM) apprbawhich has been
successful for previous score following systems such apl{Ral, 1999; Orio and
Dechelle, 2001; Orio et al., 2003). It would be interestingdke advantage of the
new generative and analytical musical software that hasrbecavailable, such as
Max/MSP.

3At http://forumnet.ircam.fr/357.html?&L=1
4At http://xavier.informatics.indiana.edu/ craphael/mus ic_plus_one/index.html



Chapter 3
Design

In this chapter the design decisions taken during this pt@ee discussed in depth.
The requirements for the project are discussed and inidaktraints on the project
are specified, so that the scope of the project is clear toghder. Once the exact
requirements of the project has been clarified, the fund#amhelesign decisions on
conceptual issues and on practical issues are describgddimg comments on the
alternative decisions that were considered and justiboatif the reasons why each
design choice was made.

3.1 Requirements
My score followers require:
e A way of receiving musical input from the soloist
e A way of processing musical input from the soloist
e A way of implementing an HMM to analyse musical input from Hwodoist

e A way of generating musical accompaniment in real-time

3.2 Practical constraints

The scope of this project was initially bound by the follogyipractical constraints:

3.2.1 Time available for this project

The length of time allocated to this project was twelve weakstal.

16
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3.2.2 The type of musical input to be used

Orio and Dechelle (2001) discuss two approaches to scdmiolg:

e note approach: It is assumed that the performer’s error is theead error, as
the musical input method (e.g. a MIDI file) is assumed to beiate.

e signal approach: Interpretation of the incoming musical signaassidered to
be the source of errors, and any performance errors aregdisted.

At a very early stage in the project, it was decided to focusphoject on the note
approach. This was because including signal processing imark would increase the
amount of implementation time a good deal and would take dbad away from the
simulation of an artificially intelligent accompanist, miog the focus more towards
solving technical music processing problems.

MIDI files lend themselves well to being manipulated compateally to extract
information about note pitches and durations. So MIDI is @ipalarly useful file for-
mat for musical information processing because the formhiteomusic is described in
such detail numerically in these messages, and can be &drae calculation efforts
more simply than it could be for an audio signal encoded ieotommon musical file
formats such as Wave files and MP3. However there is often saerédice to be made
in the quality of sound produced, and a common criticism obMmnusic is that the
resulting audio sounds artificial and unrealistic.

Nevertheless, using MIDI rather than signal processingisiginificantly simplify
note extraction from musical input. My focus will be on theerpretation of what
is played, in an artificially intelligent manner, rather mhéne acoustics problems ad-
dressed in analysing exactly what has been played in theofaseé. Therefore using a
MIDI representation of notes is preferable to using a sigeptesentation.

3.2.3 Hardware resources available for this project

The setup needed in the development and testing phasessqgbrtiject includes a
workstation that is capable of sending and receiving MIDkssagjes, and a way of
communicating between this workstation and a MIDI-enalikeboard.

Two separate workstations were set up, so that the projestwareliant on just
one workstation being available. This meant that when ondkstation was unavail-
able or not functioning properly, there was an alternativekstation to use.
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The Music department at the University of Edinburgh prodideMacintosh com-
puter attached to a Yamaha Clavinova which functioned as al M#yboard. An
alternative hardware setup available during the projec avelVindows PC attached to
a MIDI-enabled Casio keyboard.

3.3 The conceptual design of my score following sys-

tem

My score following system utilises theormalstateghoststate Hidden Markov Model
structure described in Orio et al. (2003), with two statesrpasical event: aormal
state (should the musical event be performed as expectd@gioststate (should the
soloist deviate from the score at this point).

Each statgis associated with an accompanimgrguch that if the soloist is in that
statej, the accompanimentwill be played. This accompaniment produced is either
the notes that should sound at that specified score locaimuld the soloist be in a
normal state, or silence, should the soloist have reachglaststate (as inspired by
Bloch and Dannenberg (1985).

The general algorithm that my score follower will use is dtofos:

1. RECEIVE INPUT FROM PERFORMER

2. ESTIMATE WHAT HMM STATE THE PERFORMER IS INUSING THE VITERBI
ALGORITHM

3. PRODUCE THE APPROPRIATE ACCOMPANIMENT

4. DISPLAY STATE TRACKER ON SCREEN FOR INFORMATION

In more detail;

3.3.1 RECEIVE INPUT FROM PERFORMER

For this the system needs to store: the note pi&hQ#, etc) and the volume that the
note is being played at by the soloist (so that the accompantiia played at a volume
relative to that of the performer, to match their musicagrptetation).
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3.3.2 ESTIMATE WHAT HMM STATE THE PERFORMER IS IN, USING THE

VITERBI ALGORITHM

Given that we have a Hidden Markov Modelthis part of the score follower uses the
note pitch information obtained duringeREIVE INPUT FROM PERFORMERalong
with previous observations, to carry out the Viterbi algfom to find the most probable
current state ir.

At this point the system needs to store the number of the sthieh has been
calculated as being the most probable current state (tagenthe appropriate accom-
paniment).

3.3.3 PRODUCE THE APPROPRIATE ACCOMPANIMENT

This section useseoll (Max/MSP’s array structure) which has been pre-programmed
with the details of what accompaniment to output, given ty&esn is in a particu-

lar statej. Here the system uses the current state number, as cattiutatiee above
VITERBI function, to look up the appropriate accompaniment for statie. It then pro-
duces MIDI messages that will play this accompaniment (¢héncase of the current
state being @hoststate, MIDI messages are produced such that the accompanime
falls silent).

3.3.4 DISPLAY STATE TRACKER ON SCREEN FOR INFORMATION

Feedback is a fundamental part of any interactive prograiver@he amount of time
available for development, and the extra load on procesgirgd that graphics display
places in Max/MSPE, the feedback that the system gives to the user has been kept
simple for the score followers in this project.

The score followers display the current HMM state. They alisplay information
on the current score location in terms of the current bar aat bf that bar that the
soloist is adjudged to have arrived at.

1if processing power is given to image processing, this wdigeldat the expense of computational
speed or music production, both of which are of higher ptyoi the score follower than graphical
display
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3.4 Major conceptual design decisions

3.4.1 Choosing the best features for state representation

Many musical features could be potentially be represenyeathistate, for example:

e A single note

A single beat

A fraction of a beat

A phase of theADSRnote envelope (one @lttack, decay, sustain, release

A rest

A sequence of notes

A cadence

A phrase

A MIDI note-on/note-off event

It was necessary to consider how best the score could be feddeVhat events
are most useful for the accompanist to know about and resegm list of signifi-
cant events may include key changes or tempo changes, niodsland cadences, or
specific sequences of notes. This would be variable depgmuirwhat piece is being
played by the score follower.

In initial experimentation, it was enough purely to modeirage tune for which
each note played by the soloist represented a new event.eHemh MIDI note-on
message would be suitable as a new observation. For moreleomelodies con-
sidered later, though, it was necessary to change this sththanusical events being
modelled were beats or fractions of beats. This is discuigéiter in the Implemen-
tation chapter.

3.4.2 What to use in the set of possible observations

HMM observations or emissions are, in this domain, the npkaged by the soloist.
If the score follower had been built to consider the absaghitieh of the incoming
notes from the soloist, then this would mean there are 128Iplesobservations in each
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state (as there are 128 MIDI notes). Even if this is restlietea smaller keyboard, say
one with five octaves, the score follower would still have @3gible observations per
state. Computationally this would be expensive.

Instead my score follower ignores octave differences betweotes and merely
consider 12 possible observations, the 12 notes in the masigsical chromatic scale:

{C, C#, D, Eb, E, F, F#, G, G#, A, Bb, B}

So, for example, Middle C, MIDI note no. 60, would be treatedhesssame note as
the C an octave above, MIDI note no. 72. This will mean thatsttezre follower will
perform considerably less calculations per state, witly ardmall trade-off in accuracy
of observations for most pieces

3.4.3 Restricting the soloist’s playing to be monophonic

If receiving input from a soloist via a keyboard, there ar® tpossibilities for the
incoming information.

The first possibility is that the input can pelyphonic This means that the soloist
would play more than one note at the same time, for exampleeif tvere playing a
chord, they would press down more than one note on the kegitadahe same time.
This would mean that every individual note in the chord wdudde to be processed
against the score. It would give more information as to tHeists current location,
but would add complexity in the form of error analysis. Asrthare more notes to play,
there are potentially more errors. It would be necessandtbam extra functionality
to the score follower that compared how well the actual clibed was played could
match to chords in the score (such as that described in BlodiDannenberg (1985)).

The alternative is to restrict the soloist so that they ailg altowed to playmono-
phonicmelodies. In other words, they can only press one note ondiledard at any
one time. This would simplify the score follower to a partaudomain of perfor-
mance, i.e. simulating instruments that are only capablgeoforming monophoni-
cally, such as a flute or trumpéfTherefore this is a reasonable simplification to make

2The only type of piece where this compromise will cause prots are those where patterns of
notes are repeated at different octaves, however it isipated that in such circumstances the score
follower would have enough information historically to peh locating the soloist’s correct current
location through these passages

3The sound waves produced when such an instrument is plagetLially constructed of subtones of
many notes (known dsarmonic3 combined together to sound as one note overall. Howevesftaet
produced is that of hearing one note and a human accompamigtiwnterpret what they are hearing
as one note. The extra complications introduced by thesasticaoncerns are far beyond the scope of
this project.
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for this project.

In actual fact, even if a soloist plays a chord on a MIDI keylo#his is generally
interpreted as a string of notes played monophonicallyh witvery small time-gap
between each one (i.e. a few milliseconds). Sound proagsgstems require a level
of extra processing to recognise such input as a chord. Hawibis extra processing
is quite simple to implement. So if in future work, my scordldwing system was
adapted to accept polyphonic input as well as monophoniatjripen this would not
require major changes to the way my system processes irgthre soloist. However
the part of my system that locates the soloist in the scorddvaoeed to be updated to
deal with chord matching such as described above.

3.4.4 Comparison of anticipative and reactive design strat egies

Anticipative design strategies involve making some kingrefdictions of what is about
to be played by the soloist. Reactive design strategieshemther hand, purely re-
spond to the soloist as they play each musical event.

In considering both design strategies, a number of questi@re considered:

e Should the accompanying note(s) start to play a fractionreghe next expected
note, or exactly when the next note is expected, or not umgilsbloist actually
plays the next note?

e Should the score follower play the accompaniment assatiaith the next ex-
pected location in the score until it has worked out the dateat location the
soloist has reached in the score? Or should the score fallphag nothing until
it has worked out where in the score the soloist has reacheler @lternatives
are to play only the expected accompaniment then adjusthgzamoiment in time
for the next input from the soloist.

If a human accompanist hears their soloist deviate slightiy the score, it takes
time for the accompanist to relocate the soloist and adhest playing from the ex-
pected accompaniment to the accompaniment matching toistsol

It would be reasonable to have the computer accompanistreapond to a devi-
ation on the next state after a deviation from the score wastified: replicating the
slight delay that a human accompanist would also have. $ha the assumption that
the states are modelled such that they are close enoughéogetiming for the delay
not to be too noticeable.
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In this project, though, it was decided that the score foowhould make the
change in accompaniment as soon as it has noticed there ¢éras loleviation from the
scored music, rather than delaying any changes in accomgai This way the score
follower is being as accurate as its capabilities allow.cAkhe score follower is not
continuing to play an accompaniment that it has decidedcsriect, but is amending
the accompaniment as soon as it has realised the changessaeg In the same way,
a human accompanist would change their accompaniment asasdbey detected the
need to do so.

An interesting point is made in Dannenberg (1989) about ttieipation that an
accompanist must perform. Latency issues may arise if tbemapanist does not make
the accompaniment sound at the same time that the solast&lss produced. In real-
life a human accompanist prepares to play the expected neatganiment before it
happens, for example positioning their fingers in readitegday the expected next
part of the accompaniment. Dannenberg describes how thgreténtially some la-
tency in his score follower system (while the system is psscgy the information
received by the soloist and locating them in the score). Beeaf this latency, there
Is a need to build a corresponding amount of anticipation ithé playback of the ac-
companiment. The score follower predicts what the nextagamiment will be, early
enough to have produced this accompaniment at the time vilegrekpect the soloist
to play their next note.

Given the advances in computer performance between 198¢hangresent, this
issue has reduced somewhat in importance. Computers cannoo@sg information
considerably quicker than in 1989. But this does not meantthis issue has been
eradicated altogether. In fact the improved computatioesdurces can now be taken
advantage of, so that a greater volume of information isidensed when attempting to
locate the soloist in the score (such as a longer history @itwie soloist has played).
The side effect of this is that latency issues may result.t8@s decided that some
element of prediction of the next accompaniment should berporated into my score
follower, such that the score follower produces some aceomnmpent at the point when
the soloist plays their next note (although the score fadloway then adapt their
accompaniment according to what the soloist has played).
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3.4.5 Adapting the accompaniment when the score follower ha S
identified a large change in the soloist’'s current score loca -
tion

Dannenberg (1989) discusses what strategies to follow ép ke accompaniment
“musical” (p. 257). As an example of this, he mentions oneris&a that the score
follower should follow: if the accompaniment detects ttsbehind the performer in a
moderate amount or less, then the most musically pleasiggava-synchronise with
the performer is, according to Dannenberg, by playing tlemapaniment line more
quickly until it has matched with the performer again.

This is as opposed to ceasing to play the current accompanene passing over
the accompaniment that lies in between that point and th& gaat the performer has
reached, then starting to play the accompaniment &gain

Whilst this approach would mean that a smoother accompanimeuld result
overall, it is not necessarily the approach that would bendky a human accompa-
nist in a real-life situation. In my experience, if a sigrégfit gap (e.g. more than a
few beats) developed in between the performer and the acistpthe accompanist
would be more likely to skip the intervening bars of the acpamment and relocate
to where the performer was in the score, rather than take &#verg’s approach. This
would mean that the accompaniment would match the perfomatrer than poten-
tially causing musical discordanteAlso, from the perspective of designing a score
follower, it would be simpler to implement a jump in accompaent location rather
than to implement a speeding up and slowing down in the acaaisfs play, espe-
cially if this is to be done in a musically acceptable way. 8atlese reasons | believe
that there is little benefit to be had in following the more @icated approach that
Dannenberg advocates (Dannenberg, 1989), therefore riy@esi approach will be
taken here.

4Dannenberg concedes that if the performer and the solasadarge distance away from each
other in the score, then the accompanist could skip parteehtcompaniment that are identified as
less necessary for a musical accompaniment, although herddego into any detail about how this
judgement of musical importance could be performed

5If the gap between the two players’ score positions was najreat, though, then Dannenberg’s
approach seems worthwhile
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3.4.6 Encoding musical knowledge in the HMM probabilities

It would be helpful to have some means of gauging the locahdce from the previ-
ously located position in the score to the estimated newtilmtan order to reposition
the score follower. The larger the distance from the exmecterent position to the
actual current position, the less likely in general it isttthee performer has moved to
that score location. Exceptions to this can be found in cagese the performer has
missed out a bar or a sequence of notes, or where the perférasemisinterpreted
score markings such as repeat signs or Codas (that move tloerper around in the
score in ways other than purely sequentially, bar by bar).

Hidden Markov Models offer a convenient way of encoding ,thig setting the
probabilities associated with state transitions suchttaatitions between states near
to each other should in general be more probable than tramsibetween more distant
states. This does not include the exceptional situatiocls as mentioned in the para-
graph above, where the probability for such state tranmsstimay be increased slightly.

One aspect that deserves consideration is what the pratahieights in the Hid-
den Markov Model actually mean in terms of the operation efgbore follower. The
HMM probabilities influence actions taken by the score foko, by increasing or
decreasing the probability associated with different pdtirough the HMM states.
However this should not be confused with a deterministicgniption of one single
possible path through the HMM states to the soloist’s cur@sation; in actual fact,
more than one path through the HMM may be equally likely, gmdat the soloist has
played. The score follower is estimating the soloist’s ni&sty current location in the
score, rather than knowing this location with full certgino the HMM probabilities
are most effective if set to help to guide the score folloveecdnsider more musically
likely paths (for example, moving through the score smago#md from left to right),
placing less emphasis on musically less likely paths (ssobnas which jump about
in the score with little linearity).

3.4.7 The action to take when more than one state is judged equ ally

probable by the HMM

It may be the case that for a given sequence of observatiamsd=yed, the HMM
finds that more than one state is equally likely to be the curseate. Therefore the
Viterbi algorithm will not return one state as its resultt lnstead a set of possible
states, which are equally probable given what the solosjuet played.
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In this situation, the score follower will know which statehas judged the soloist
to be in, prior to the most recent input from what the soloest played. It can use this
information to choose the next state from the set of possibie states.

It was decided that the state that should be chosen by the $altower in this
situation is the state which satisfies both of the followwwg tonditions:

1. Itis positioned to the right of the current state in theredbence the state which
occurs most immediately after the current state, as we rasgilcal scores from
left to right).

2. It is the closest state to the current state, of thoseiposit in the score in a
location occurring later than the current state.

Should there be no states positioned to the right of the ntgtate, then the score
follower should choose the state which is closest to theeotistate, even if it is posi-
tioned in the score before the current state.

3.4.8 Learning the most accurate HMM probabilities through t rain-
ing

To incorporate some element of learning through experievma@ld be an interesting

element to add to my score follower.

If we were to choose to train the HMM, this would involve gegfithe maximum
probability of being in the correatormal state orghoststate, given a sequence of
observations.

Training algorithms for HMMs exist and have been well docuaied (Rabiner,
1989; Durbin et al., 1998). Orio and Dechelle (2001) and Coal.2004) describe
how to train an HMM in the context of score following.

There are a number of issues when considering the trainiktvi¥s:

e Who would train my score follower if it is being used as a preaitapplication?

The training needs to be completed before performance.iss®hould be un-
likely to want to spend time training up a score follower te ttorrect level. This
is unless the practice sessions were of benefit to the salemsiell, in the same
way that practice with a new human accompanist is benefioighat the two
players can become more familiar with each other’s playiytesand with the
new music. So training would add to the preparation worklimadhe system.
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e Should my score follower be trained for a particular perferimstyle of playing?
Or a particular piece?

Training the HMM can cause it to model a given score more ately, and
target it to perform optimally for a particular style of piag or a specified piece.
However as with all training techniques there is the risk wértraining, which
can overfit the model to a given performer, a given set of ingiiscores or to a
subset of common mistakes.

Musicians with different musical backgrounds may have ipigytyles that are
quite distinct from each other. One example which becomesrapt later in

the project is that there is more than one interpretatiorhefdtaccato style of
playing, where notes are played for a shorter length dumd@gtian marked. Also,
different performances would be heard for a piece which bésto or impro-

vised sections, or in one which has much ornamentation.

¢ Would training make that much difference, if the HMM setsngere allocated
well initially?

IRCAM have previously reported that training an HMM scoreldaler was

found to be less useful than expected (Smaill, 2007), athdhis may be due
to the skills developed by the researchers in fitting the HMaameters to
score following in the first place, rather than a genuine latkeed of train-

ing. Schwarz reports in 2004 that some probabilities aretéggimple in nature
for our case [score following], such that the PDF parametarsbe set by hand”
(Schwarz et al., 2004)

Considering the issues raised in this discussion, the deamsade for this project
was to not implement training of the HMM unless there is tirhtha end of the
project. The extra work involved in implementing trainingiynot have enough
benefit to warrant the time spent on it, in relation to otheksathat could be
carried out in that time.

3.4.9 Representing notes of different lengths using HMM stat es

Initially, the score follower utilised a simple tune for vehi each note in the tune was
of the same length. Hence it was an obvious choice to modhlrezte as an individual
HMM state.
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Once the pieces become more complex however, it is no lomgdistic to model
each note as a new state, and instead the more pertinent &speadel as a state is
each beat, or a fraction of each beat. For such cases, it wassay to consider how
the timing information within the score should be modelleddddition to how the
notes should be modelled).

The two obvious ways to model a note that is held for longen thiae state (i.e.
notes that extend over a beat or more) are:

1. Allow states with self-transitions, so the HMM stays inigeg state while a note
is being held and only moves out of that state when the notdeased.

2. Have a finite number of states representing each note dHahger than one
state, proportional to the length of the note (for exampksith state represents
one beat and a note is three beats long, represent it as tgeerdial states).

The more successful option here seems to be the second @apb@7). This
approach gives the score follower more flexibility to varg tccompaniment and also
gives some information as to the expected length of the nbherefore this was the
approach used for encoding notes of different lengths intdM.

3.4.10 Tempo extraction (beat tracking)

The ideology behind this project is that the soloist musichould be able to play their
melody with their own interpretation, and that the accomgtashould be able to keep
with the soloist while they are playing the melody.

A natural extension of this is that the soloist should be #&blelay the melody at
the tempo of their choice, perhaps varying the tempo for oaliseasons or by mistake.

Beat tracking is the process of working out what tempo or d@epiece of music
is being played at, by analysing the music that is being hedirds a burgeoning
research field in its own right, with much current researdbrespent on improving
beat-tracking capabilities (Dixon, 2001; MIREX, 2006a).

The implementation of beat tracking in this project is varg@e in comparison to
the latest state-of-the-art beat-tracking methods, bukedfairly effectively nonethe-
less.

My score follower measures the time in between notes playeth® soloist. If
the soloist is currently judged to be inghoststate (i.e. they have deviated from the
score), then the last input is not considered as valid formsgpdating the tempo. If
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the soloist is currently judged to be inn@rmal state (i.e. they can be found on the
score), then the score follower works out how long the previoote should have been
and compares this with the actual length of the last note.

The current tempo is based on an average of the recent (t@fhg)o observations.
The largest and smallest tempo observations are ignorec anean is taken of the
remaining tempo observations, to generate an estimate @utrent tempo.

At first my concern was that the score follower was being git@mmuch infor-
mation from my own musical knowledge, rather than lettingeémonstrate its own
musical capabilities. Information about note lengths iéner easily extracted from
MIDI files. It would be a relatively straightforward task taite a program that could
extract this information, as well as HMM probabilities anate information directly
from MIDI files, in the format required by the score followaowever this is more
an algorithmic/computational problem than an Al problem,atention was instead
refocused on the tempo extraction problem.

The issue with using the soloist’s input to calculate theirent tempo is that the
soloist does not necessarily play on every beat, nor cantibeglied upon to always
play correctly and in perfect tife

So the following tactics were implemented:

¢ If the soloist has enteredghoststate, then this means they have made a mistake,
therefore the note they are currently playing should not dresered as very
reliable evidence for tracking their tempo

e If the soloist is currently in a score location where they @b play a new note,
then by definition there will be no new information from thdast as to their
personal tempo

e The only input that can guide the score follower in gaugirggbloist's tempo
Is that where the soloist is expected to play a new note, aed idact play that
note. In these cases, the score follower can record theidarat such note§
and compare the duration to what it expected the duratiohaifriote to be (i.e.
the current tempo, multiplied by the number of beats tha¢ mas to occupy).

The score follower keeps track of discrepancies betweeaxpected note dura-
tion and its actual duration, and adjusts its own metronamgb if necessary.

81f all performers could be relied upon to only play what istten in the score, then there would be
no motivation for projects such as this

"Calculated as the time period between this note and the ot so that if a note is not held for its
full length - a common mistake - then this does not have a niaflarence on the tempo extraction



Chapter 3. Design 30

One particularly important decision made early on in thiagghof development
was to represent the tempo as msec per beat/state, rathéhéraore traditional
tempo measure of number of beats per minute. This made a#itmsg much
simpler and did not affect the clarity of the system too muahdetails of the
tempo measurements were mostly used internally by the dothogver rather
than given out as feedback to the soloist.

3.5 Major practical design decisions

3.5.1 How MIDI files should be used in the score follower

The MIDI musical file format encodes notes in a way which canriverpreted by
the score follower as an accurate source musical input. Mil&4 transmit musical
information in the form of MIDI instructions or messages,igfhcan be one or more
bytes long, depending on the complexity of the informatiemly processed.

MIDI messages encode information such as:

New note events,

The cessation of notes being played,

The channel on which a note should be played,

The tempo at which notes should be played (therefore thedsgewhich the
MIDI file should be processed)

The instrumentation for a given note,

Timing information for sequencing,
e ... etc.

What MIDI files do not include are musical markings such as barkings and
repeat signs. In a similar way, human musicians do not hedwrswsical markings. In
general MIDI files encode what human musicians hear, i.e.t wbis occur at what
times.

A MIDI keyboard generates MIDI code, but does not necesshale any built-in
sound generation. This means that there is an issue thaldshewddressed in how
sound is produced in my score following system. Either a MkByboard that also
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produces sound could be used, or a computer or an exterrthlesyser could generate
the actual sound output that is the accompaniment (and peiilao the solo line, if
necessary).

To improve efficiency of the score follower, there would néede a MIDI pro-
cessing hardware setup that allows direct connectionsdsatvthe computer, MIDI
keyboard and sound generation units (indeed the sound aj@reunits may not be
separate from the computer and/or MIDI keyboard). It woukbae very helpful
to use a programming/control environment that can fatditiirect communication in
MIDI messages.

3.5.2 Output format for accompaniment

The output produced by the accompanist part of the scoresell will be a stream of
MIDI data. This could be either:

e A sequence of musical MIDI events, each triggered by a magtivden the
soloist’s playing and the score

e A continuous playback of a MIDI file with temporal “signpdste guide the
accompanist on which part of the accompaniment to play, soahthe score
follower is sensitive to tempo changes and location chatigesghout the play-
back

So the output associated with each state would either besifotim of MIDI mes-
sages or score location data, respectively.

My decision was to take the first option, as this was a morectlisay of produc-
ing the accompaniment. This option requires more effort asriecessary to code the
MIDI accompaniment directly into the score follower, ratiiean using a MIDI file
for the accompaniment. Hence the score follower would nekttieamore prepara-
tion for a new piece rather than just telling it the locatidrttee MIDI file that holds
the accompaniment. However in real-time accompanimentvleall priority for the
accompanist must be to produce the accompaniment soundsvittie processing de-
lay as possible; hence if the score follower produces MID$sages as a direct output
this would produce sound more quickly than if there was aredetvel of processing
to do before sound could be generated. Timing the accompgamita be accurate in
real-time, and avoiding any unnecessary sources of lateney primary concern in
this project.
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3.5.3 The type of pieces used for my score follower

Specific score-following repertoires have begun to devdlogt take advantage of the
lack of physical restrictions faced by an artificial accomigain comparison to a hu-
man accompanist (such as notes reachable by a human handamoaqr the speed
at which a human hand can play a sequence of notes). Howaseaypie of piece is
not necessarily what my score follower should be able to.dlsstead this project fo-
cused on a more traditional performer/accompaniment teper This decision is due
to the emphasis placed in this project on producing a scdie@nfer that behaves as a
human accompanist would do, rather than investigating howaraficial accompanist
may possibly outperform a human accompanist.

3.5.4 Which development tools to use

Several software packages have recently been developeti wdm generate music and
reduce incoming audio to a computationally analysable foExamples of these are
JMusic® JSyn°, the MIDI toolbox for Matlab'® and Max and its associated programs,
for example Max/MSPB1, jMax 12, PureDatd3.

e Max/MSP, jMax and PureData

Max is a graphical development environment designed fotempnting inter-
active musical performances between human and computepiesdormers. It
has specific functions incorporated in its core program lmainteractive com-
munication through MIDI messages and sound input/outp@PNé an addition
to Max, that focuses on audio signal processing.

Max/MSP is a commercial package, incorporating Max and Mi&R,is widely
used for interactive music and is available to me throughMiasic Department
at Edinburgh University.

There is a free version of Max called jMax, implemented iraJanother freely
available program that is based on very similar principeMax/MSP is Pure-
Data (developed by Miller Puckette, who has also been panteofiax develop-
ment team at IRCAM).

8http://jmusic.ci.qut.edu.au/
Shttp://www.softsynth.com/jsyn/
LOhttp:/mww.jyu. fi/musica/miditoolbox/
Uhttp:/ww.cycling74.com/products/maxmsp/
Phttp:/ffreesoftware.ircam.fr/
Lhitp://crea.ucsd.edu/ msp/software.html
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Of the three variants, PureData is in general more focusesigmal processing
(in fact the signal processing functionality of Max/MSP &skd on PureData).
JMax is slightly more unwieldly to use than Max/MSP. As itasts as a com-
mercially available program befits, Max/MSP is heavily doented (Zicarelli
et al., 2006) and there are many sources of information onsés as well as
much sharing of functions written in Max/MSP. So as acceddds/MSP was
available for this project, Max/MSP would be the preferrgdi@n here from
these three packages.

e MIDI Toolbox and Matlab The MIDI toolbox for Matlab is createand dis-
tributed by the University of Jyvaskala, Finland. It takesMIDI input and
produces MIDI output. There are a large number of analytmalls available in
the toolbox, where the raw data inside the midi file can beyeeal and manip-
ulated.

It has functions for “analysing and visualising” (and playj MIDI files.

The toolbox has:

— Simple manipulation and filtering functions

— Cognitively inspired analytic techniques which enable eghtlependent
musical analysis, e.g. metre finding segmentation.

— A new extension:MIR toolbox. This toolbox extracts musical features

from an audio file.

The MIDI toolbox processes MIDI files by converting them toN#Y note ma-
trix (NMAT). In this way it is very powerful at performing coputational pro-
cessing on MIDI files.

e JMusic, JSync and Java

JMusic is an audio package written in Java which allows tteg tesinput, ma-
nipulate and output various types of audio files.

A similar package is JSyn: a Java interface that allows dgwveént of real-time
interactive musical applications. It has classes spetiifidasigned for functions
such as synchronising audio streams.

e Writing a program in a conventional programming languagbdpthan Java)
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The other option considered was the use of C, Prolog or a sipiitegramming
language. Although this would be a realistic option, the engpecialised tools
considered above have greater capabilities for interactiusic processing and
manipulation, and would simplify implementation consaldy compared to a
language such as C or Prolog

Max/MSP is designed for real-time, dynamic, interactivesimaprocessing. Its
strength is in how it enables interaction between perforamel computer.

Max/MSP is less well set-up for implementing the finer poiotshe theory of
HMM, as coding is done in Max/MSP at a higher level than a pgogning language
such as Java or C++. Hence processing precise mathematicaticags and imple-
menting rigid control structures will be more challengimghis environment.

The MIDI toolbox and Max handle MIDI files more simply than thava pack-
ages. From preliminary investigations, JSyn works beltantJMusic at manipulating
different events of the score and at handling interactib#yween user and computer.
The primary advantage of both of the Java packages over tba tdblbox is that it is
simpler to customise a user-friendly interface to a Javéesys

Unfortunately the MIDI toolbox had to be discounted as anavpéafter consulta-
tion with the MIDI toolbox authors (Toivainen, 2007). The MIitoolbox cannot be
used to process data in real-time, through any way that thelyrow of. Hence it will
not be suitable for implementing a system that by necessiist process real-time in-
coming information (i.e. the soloist’s playing). Theredat could not be considered
further as an option.

Several people were consulted for advice in making thissi@ciwho had ex-
perience in real-time music processing. By far the mostmenended option was
Max/MSP. Although | was not originally familiar with how tose Max/MSP, there
were extensive tutorials and documentation of its cagadsl(Zicarelli et al., 2006).

As acknowledged earlier, it is more complex to use Max/M®R)gared to a con-
ventional programming language, for program control stieess and data structures
14 However the Max/MSP documentation (Zicarelli et al., 208@6monstrated a wide
variety of complex tasks which had been implemented in M&®#vas examples of
Max/MSP’s capabilities.

Upon initial consideration of the project’s practical dema, one that was imme-
diately challenging for me was setting up a processing enwirent that could handle

141 am writing from the perspective of having a background iaggamming and computational cal-
culation
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and process incoming and outgoing sound information. M&®Ms designed with
this as a primary focus, and offers a simple and effective @fdyandling this task.

Therefore Max/MSP was chosen as the best tool with which ¢toes my score
follower.

3.5.5 Existing HMM packages

As HMMs were to be used to implement my score follower, it vibldve saved time
and implementation effort if a readily-available HMM paglkecould be used to encode
the HMM used in the score follower. The following HMM packageere considered:

e HTK: Hidden Markov Model Tool-Kit (University of Cambridgéy

This tool-kit is widely used in HMM applications. It is wréh in C but it is
possible to export C code into Max/MSP. However | encountergreat deal of
difficulty in performing this exporting of the C code into M&ASP. Exporting C
code to Max/MSP (this is referred to as writing a Mexterna) is an advanced
facility of Max/MSP which requires certain extra softwaredd did not have the
advanced knowledge in Max/MSP or access to the extra s@tnacessary to
use the HTK as a Max external.

e UMDHMM: HMM implementation (Tapas Kanungd)

As this is another HMM implementation written in C, it was onglly consid-
ered as an option but again similar practical difficultiesevexperienced when
attempting to use this package in Max/MSP.

e Hidden Markov Model Toolbofor Matlab (Kevin Murphy)t’

Had the MIDI toolbox for Matlab been capable of processimuirdata in real-
time, this HMM toolbox would have been very helpful. Unfaraely, as men-
tioned earlier, this was not the case, so the HMM toolbox fatleb was not a
viable option for this project.

e dishmm Discrete Hidden Markov Model (Paul Kolesnit

This is a Max external, written in C and imported by the autihty a Max/MSP
usable form. Originally this looked a very promising tooluse and | gained

Lhttp://htk.eng.cam.ac.uk/

Lhttp:/ww. kanungo.com/software/software.html
Lhttp:/vww.cs.ubc.ca/ murphyk/Software/HMM/hmm.html
Lhitp://www.music.mcgill.ca/ pkoles/download.html
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much experience in using HMMs in Max/MSP by experimentintihis HMM
package and its examples. However during developmentafaedtal problems
were encountered while using this package in my score fatoviMy experi-
ences with using this package are described in greatel Betaiv.

e hmmm 0.15Hidden Markov Model implementation for Max/MSP (Yon Jason
Visell) 1°

This is an Max/MSP patcher (a Max/MSP program) that implesenbasic
Hidden Markov Model. As it does not include any algorithm tadfithe best
path through the HMM for a given set of observations, its s@e to me was
as an example of how it is possible to implement Hidden Marktndels in

Max/MSP itself, rather than as a C program imported into NW&P. It pro-

vided some inspiration for the belief that such an impleratoih was possible,
however this patcher was not used to any further extent wingtementing my
own Max/MSP Hidden Markov model.

After some consideration of the above options, the KoleBitvkVl implementation
(dishmm emerged as my only realistic option for a readily-avakaHMM package.

3.5.6 Synchronising the start of the soloist and the score fo llower

In performances involving human musicians, the soloistthed human accompanist
both start to play at the same time together, by giving ealcbrahe other musical and
gestural cues such as counting a bar into the start of the pigollowing a conducting
gesture. (This also serves the purpose of setting thelitetiapo that is shared by the
soloist and the accompanist.)

For an artificial accompanist, an option would have beemtuikite such a counting-
in process by input from the soloist, or alternatively thersecfollower could generate
a count-in through the MIDI file to bring in the soloiSt

As the score follower is designed to be reactive to the stdargout, however, this
consideration was deemed unnecessary, as the systemauwilltcethe soloist’s input.
While this may mean a small delay in starting to accompany ¢he@s, this is a short
enough delay that it causes no discernable problems innpeaftce.

Lnttp:/mmww.ph.utexas.edu/yon/soft.html
201t is beyond the scope of this project to incorporate anyugastecognition that could facilitate the
score follower being brought in by conducting gestures.
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3.5.7 Responding to the volume at which the soloist is playin g

When the computer accompaniment produces music, it will tekdow what volume
to play at. There are three possible options here:

e The accompaniment is played at a pre-set volume throughegdydless of the
volume the soloist is playing at

¢ Volume markings are included in the accompaniment that ¢leesfollower is
programmed with, such that it is told what volume to play atttime.

e The score follower plays its accompaniment at a volume iveldb that of the
soloist

My preferred option was the last of the three: to match thewa of the accompa-
niment to the volume that the soloist is playing. It is vemerthat the accompaniment
music should be heard at a louder volume than the soloistsdyeThis is because the
nature of a solo melody is that it is the primary part of the imbging heard, therefore
should be the most prominent sound for any listeners.

The score follower being developed in this project shou&tefore not play more
loudly than the soloist at any point. Hence it should intetpine volume of the soloist
and play no louder than this level of volume.

At this point, all major design decisions have been madeh padctical and con-
ceptual. The next chapter describes the actual implementaf the score follower
system.



Chapter 4
Implementation of the Score Followers

This chapter describes the major stages of actual developmecludes a discussion
of any decisions needed during development. Also docurdeimiee are the main
problems encountered during the development process amdhase problems were
dealt with.

My score follower is written in Max/MSP (a real-time musidenaction program-
ming environment). The score follower runs on a Macint@iadra 650 16Mb/6Gb(ext)
computer that is attached to a MIDI keyboard: a keyboard we&ends ands receives
data to/from the computer in the musical format MIDI (numarnessages about the
note pitch, volume etc). In my studio the MIDI input devicesrsYamaha Clavinova
CLP.

My score follower was programmed with three different pgce

1. First seven notes dfwinkle Twinkle Little Sta(Simple melody), first with a
simple monophonfcbass line and then with a polyphodiar chordal accompa-
niment *

2. An extract fromAll | Ask of Youby Andrew Lloyd-Webber, first with a sim-
ple chordal accompaniment and then with a more complex apganment for
which the accompaniment may move from one note to anothdehe soloist
remains in a single state *

3. An extract fromDanse Macabréy Camille Saint-Saens

My program can run in Windows or Macintosh OS, however allitgswas performed on a Mac-
intosh computer

2A maximum of one note sounding at any one time

3potentially more than one note can be sounding at the saree tim

38
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Twin- -kle Twin- —kle lit- ~tle star

Figure 4.1: HMM structure for Twinkle Twinkle Little Star, with one mistake
allowed at a time

All accompaniments for the pieces marked * were composedyseify so that the
accompaniments fitted the requirements specified here.eSdéor each arrangement
of these pieces are included in the appendices sectionsofititiument.

4.1 Stages of development

The score followers in this project were developed in aneneental fashion, starting
from basic versions and gradually adding more complex fonetity.
The various stages of development during this project were:

e Score follower that can recognise a simple short melody.s Version allows
for recovery from one deviation from the score at a time, arulpces a mono-
phonic accompaniment (one note sounding at a time).

This score follower was the foundation of all later versiomsuses a Hidden
Markov Model as depicted in Figure 4.1. Each note in the mel@avinkle
Twinkle Little Star extract)s represented by aormal state and corresponding
ghoststate. Some exemplar probabilities are included in Figute(dlthough
the majority of probabilities are omitted from this diagrafior overall clarity).

e As for the previous score follower, with chordal accompamiadded (so more
than one note is played at the same time by the accompanist).
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This was implemented by altering the data structure usetbte the accompa-
niment, and developing the part of the score follower thaiegated the accom-
paniment, so that both were able to cope with multi-note inpu

e As for the previous score follower, with added functionalithe score follower
plays the accompaniment that is expected to occur nextgh@ayed prior to
the actual score location being estimated

This version implements some anticipation of what is to tzy@t next by the
soloist. To work out what accompaniment it expects to playt,nie system
takes the current state and moves onto the next state sellyeot that type.
So if it has calculated that the soloist is locatechatmal state 3, the system
expects the next state to bermal state 5. Normal states are numbered with
odd numbersghoststates with even numbers.)

If the soloist is currently considered to be inghoststate, for examplghost
state 8, then the current accompaniment would be silenge(ascompaniment
Is produced when located agaoststate). Hence the simplest action here would
be to move to the nexghoststate, for examplghoststate 10. As the score
follower does not yet know how or when the soloist will retwonthe score, in
this scenario the preferable action is to keep the accompentisilenced until
the soloist can be identified as on the score dgain

e As for previous score follower, but allowing more than oneidgon from the
score to be made concurrently

To enable this functionality, the structure of the HMM waseged. Figure 4.2
shows part of the new HMM structure: it shows all the stateditégons that are
possible from the firshormalstate, with associated probabilites

e As for previous score follower, with simple beat-trackimgpglemented to esti-
mate the soloist’s current speed

Beat tracking was implemented, as described above in thgDebkapter. At
this point the score follower is still fairly basic; it reacto each input from

4Here the same effect could have been achieved by staying isaimeghoststate, or indeed any
ghoststate, but as this choice influences nothing except the éinstrisec of producing accompaniment,
| chose the option that was simplest to implement

5By this point, the probabilities had been developed durixgeementation so have been refined
somewhat
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Figure 4.2: HMM structure for Twinkle Twinkle Little Star, with handling of
multiple concurrent mistakes

the soloist, rather than using any notion of tempo to corttreltiming of the
accompaniment that it plays, or to anticipate the solomstist musical event.

e Smoothing of accompaniment, so that held notes in the acapnimgnt can be
played smoothly as intended, rather than being played agidinél new notes
on each state transition.

The heuristic used for this is:

If new note is currently sounding, do not replace it. If nevienis not
currently sounding, make it sound. Any currently-soundioges that
are not included in the set of new notes to be played shouldrbed
off

e Score follower that recognises a substantially longer ancermomplex melody
The new melodyDanse Macabre extractjcorporates notes of different lengths,
repetition of note sequences in different locations in ttegs, and staccato play-
ing.

This was essentially the same as the most advanced of thegsescore follow-

ers (but without beat-tracking implemented at this stage).

The only amendments necessary to the main structure of éwsopis score fol-
lower were the inclusion of the new HMM information and sedigna slight
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change in the interpretation of what was being played by tleis. Previ-
ously the melody being interpreted by the score followeydrad notes of equal
length, and no rests or silences by the soloist, to be irdgedr The new melody
has notes of different lengths. It also has staccato ndteseftect of staccato is
that the note is played more shortly, such that there is estigace added after
the note is played, at the expense of playing the note fouitsl@iration.

Therefore the HMM structure was amended to represent the stightly dif-
ferently. Instead of representing eaabie by anormalstate andjhoststate, the
music score was now represented by modelling daedit (in actual fact each
half-beat) by anormal state andyhoststate. This is because some notes were
now longer than others and so their duration spanned acrosstiman one state.
Hence differing note lengths were modelled using a finitdection of states
such that the number of states is relative to the length ohtie, as advocated
in Christopher Raphael’'s work (Raphael, 1999, 2001b, 2007).

Also the score follower was adapted to recognise when tlestatas not play-
ing a note at a given time, and an extra emission was addeg@resent that the
soloist was silent at that point.

e As for previous score follower, with simple beat-trackimgpglemented to esti-
mate and follow the soloist’s current speed

Beat-tracking was implemented as before.

e Give the score follower a new melody to recognise

The new melodyAll I Ask of You extractyvas chosen because it was slightly
simpler and shorter than f@anse Macabrebut notationally much longer and
more complex than for th&winkle Twinkle Little Staextracts.

The main objective in this stage of development was to sdwistore follower
could recognise a new melody, without needing to make furediah changes
to the score follower program itself. This was achieved;dhly changes to the
score follower system were to give it the new HMM informatitm the new

melody.

e As for previous score follower but with more complex accomipgent that has
notes moving in the accompaniment while the soloist is st#tic in one state
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Here it was necessary to further develop the data strucamdghe part of the
score follower that generated the accompaniment, so tlegt ¢buld include
and use information about the length of time each note in doerapaniment
should be held for (in terms of the number of states, or thetifva of a state,
the note should be sounding for). As a result the score fa@tavould be told
what the more complex accompaniment was and could play tbrs komplex
accompaniment.

4.2 Major sections of the score follower system

get soloistsnext input: Extracts the new information from the soloist, that conres i
from the MIDI keyboard.
determine what_state the_performer _is_in: Runs a series of procedures:

1. Convert the actual pitch of the note into one of 12 possibteovations( if a C
has been played,if a C# has been played, etc) In later development a thirteenth
possible observation was adddd: if nothing is being played, i.e. the soloist is

silent.

2. Adds this observation to the list of observations seemsarfd extracts the three
most recent observations.

3. Performs the Viterbi algorithm with these three obseoret to decode which
HMM state the soloist is in (i.e. where they are in the score).

generateaccompaniment Looks up the HMM state in an attribute-value pair, to
find which notes to play as accompaniment E.g:([48 52 55)) - ‘In state 1, play
MIDI notes 48, 52, 55’ (these MIDI numbers correspond to a Gdviehord)

N.B. | found during development that it was necessary to kbepfunctionality
of each section completely separate, so that for examplgdherateaccompaniment
patcher was the only patcher that could affect the playinfp@&accompaniment. This
encapsulation approach eradicated many small errors witeresection would inter-
fere with the correct operation of another section.
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4.3 Problems encountered during implementation

4.3.1 Conceptual/theoretically-related problems
4.3.1.1 My implementation of an HMM in Max/MSP

As discussed later in this section, no suitable HMM package® found for use in
Max/MSP. Indeed | was advised to program as much of the inrekings of the
system as possible myself, for better control over systemiopeance (Raphael, 2007).

Given the graphical and high-level nature of Max/MSP, a progning task such
as this is more complicated than if implementing an HMM inraglaage such as C or
MatlatP. Due to the time available for development, it was decided dmly a partial
implementation of the HMM architecture should be necessamythe model structure,
parameters and probabilities were all implemented, as wadightly amended ver-
sion of) the Viterbi algorithm, but learning functionalityas not incorporated into my
HMM.

Once the Hidden Markov Model structures and Viterbi aldgorithad been im-
plemented successfully, some adjustments were made tadne ®Ilower’s Viterbi
algorithm, to improve its efficiency. Originally, when wanlgy out the probability of
a particular state being the soloist’s current state, tihvanee many redundant calcula-
tions being performed. This was because in an equation dtine LHS * RHS, if
LHS was equal to 0 then there would be no need to calculatekt® Rs by definition,
anything multiplied by 0 is also 0. However my original implentation of the Viterbi
algorithm worked out values for both LHS and RHS in this diera So to reduce the
computational effort, the algorithm was amended such teftrb working out a RHS,
it would first check to see if the LHS of the product was 0. Ikthias the case then it
would not need to work out RHS, but instead return LHS*RHS = 0.

4.3.1.2 Using a locally optimised version of the Viterbi algo rithm

The Viterbi algorithm (Rabiner, 1989; Pardo and Birmingh&@05) is a recursive
algorithm. The base case for this algorithm relies on theiragsion that the first
observation being considered relates to being iméial state ap.

81t is possible to write a C program and import it into Max/MSHRig is referred to as writing a Max
external), however my knowledge of Max/MSP and C is not adedrenough for this to have been an
option for me
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a(sj,01) = @(sj,01)0(sj) (4.1)
o(sj) = the probability of starting in statg (4.2)

(Pardo and Birmingham, 2005) (p. 3) If using only a subsehefdbservations rather
than all the previous observations, as is the case here thieeviiterbi algorithm re-
guires some amendment. The base case of this algorithm teasdaslightly to calcu-
late a probability for the first state of this sequence thdtrait require this first state
to be an initial state. This was done by using ghiinction to replace the use of the
initial probability table.

G(SJ’,O]_) = (P(Sj,Ol)(P(Sj,Ol) (43)

Henceq(s;j,01) replaceso(sj). So the Viterbi algorithm can now be used on a
locally optimal basis, rather than needing to be based owkitde sequence of obser-
vations so far.

4.3.1.3 Linear movement through the score

For more complex pieces (particulaiDanse Macabrgwhich had a number of similar
sequences repeated through the score), the states idebijfitne score follower did
not always form a linear sequence, even when the soloiseglaya linear fashion.
Such linearity could be derived to some degree with experat®n on setting the
HMM state transition probabilities.

The system was enhanced further after feedback from tesSerse extra weight
was added to the probability of the next expected state @bleen calculated by the
Viterbi algorithm. This had promising results and helped $itore follower to move
through the score more smoothly.

This amendment meant that the HMM settings were being aldan to a certain
degree; however with more accurate HMM probabilities (andsbly with training)
| believe the same effect could be achieved. When assessrefféctiveness of the
HMMs used in score followers in this project, though, it wasessary to bear in mind
this amendment to the HMM probabilities.
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4.3.1.4 How to represent a rest or silence from the soloist

My original set of possible observations was the set of ietefrom0 to 11, represent-
ing the twelve possible pitches in an octa{@& (C#, D, Eb, E, F, F#, G, G#, A, Bb, B}
As mentioned above, when modelling more complex piecestuhtests in the soloist’s
melody or staccato (short) notes, it was necessary to iecuthirteenth possible ob-
servation that represented silence or the lack of note ifipat the soloist.

4.3.2 Technical problems
4.3.2.1 Silencing notes that are currently sounding

A common problem with MIDI is that if a note has been made tanslwsing a MIDI
note-on message, then this note will continue to sound antibrresponding MIDI
note-off message is received for that note.

This caused a problem when needing to silence a previousrg@nament note
or chord, in order to replace it with the next note or chordisTgroblem was solved
by sending all accompaniment through a Max/MSP object ddllesh Using this
object, it is possible to turn off all currently sounding estfor whichflushhas not
yet received a note-off message, by sending a ‘bang’ messdgeflushobject. This
‘bang’ message causes all such notes infllxgh object to cease sounding, to make
way for the new accompaniment to be heard.

4.3.2.2 Using an external HMM package in my score follower

My original plan, as described in the previous chapter, wast the HMM implemen-
tation for Max/MSP written by Paul Kolesnik. Initially thidMM package worked
well, in the early stages of implementation of a score fodawHowever problems
soon emerged.

The Viterbi implementation in Kolesnik's HMM package wasgmed to find the
optimal path through the HMM only after all observations hmn received. As it
was necessary for the Viterbi algorithm to operate at a mocalllevel during the
performance of the piece rather than at just the end of theepleattempted to change
the source code slightly to allow this to be possible. Onaengilation, however, | was
unable to use my new code as | did not have all the necessaryescade files made
available to mé so could not complete the compilation of the new code. Thezd

"Despite some email correspondence with Paul Kolesnik abguise of his code
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could not use the Viterbi algorithm as originally planned.

If this had been the only problem encountered, | could hawkegbaround this, as
the implementation of the HMM was otherwise well written awind in operation.
However | also found that the HMM implementation did not scap a great enough
extent. | was not able to use it for an HMM with 14 states and B2eovations. |
was unable to work out why this was the case, but could find asae that | could
trace in the code other than perhaps it was too large for thé/H#fuctures to handle
(however the settings for the HMM structures were in the seaode files which | did
not have access to.

Having emailed several prominent researchers in scorewolly using HMMs,
as to how they implemented their HMM practically, | receivee response from
Christopher Raphael. His recommendation was to implemerti¥iM structures and
functionality myself. As an HMM implementation suitable fay needs could not be
found, | did in fact code a partial HMM implementation mys@$ described earlier in
this chapter). Although this meant a significant extra impdatation effort and extra
complication in the development stage of this project, #pproach also meant | had
a more thorough overall understanding of the inner workioghe HMM and could
exert more control over the various aspects of the HMM im@etation, to better suit
the needs of the score followers.

4.3.2.3 Terminating the accompaniment gracefully at the end o f the piece

The last chord of the accompaniment did not automaticadip glaying at the end of
the piece as there was no incoming accompaniment notes wiithwo replace the

last accompaniment chord. To solve this problem, refinesmeete made to the part
of the program that processed the soloist’s input. As a tesulas able to monitor

whether or not the soloist had appeared to stop playing awlaluld monitor if an

end state had been reached. The accompaniment was silércedar both of these
conditions were satisfied.

4.4 Experimentation with my system during develop-

ment

Although many design decisions were made prior to impleateari, a number of
decisions were taken during the development of the progidut how various parts
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Figure 4.3: Transitions representing the SKIP error (where a scored note is

missed out) are only necessary for a small number of future normal states

of the score follower would work best. These implementatlenisions were based on
the results of experimentation carried out during the dgwelent phase of this project.

What follows is a brief discussion of the main experimentatiwat was carried out
during development, and the results that were obtained.

4.4.1 Fitting an HMM to score following

My score follower needed to know probabilities associatéti starting in each state
(initial  _prob.txt ), moving from one state to anothestate _transitions.txt )
and the probability of seeing each possible observation fach statesfnission _probabilities.txt
Although training of these probabilities was not expligithcluded in my imple-
mentation, much experimentation was performed with dgfifienvalues for these prob-
abilities. This experimentation could be said to serve awm fof manual training of
the HMM.
The main findings from this experimentation were that:

e A smoother performance was achieved when the transitiondsst sequential
normal states was allocated a much higher probability than thesitian be-
tweennormal states andjhoststates. This was found to encourage the score
follower to take a more linear path through the score of theimu

e Transitions representing that a note had been missed oUKiBPED & were
only necessary for a small number of futurermal states. Figure 4.3 shows an
example of the resulting HMM structure.

8This type of error is discussed in previous chapters and ia @ral. (2003)
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It would be interesting to investigate whether, with somelementation of train-
ing of the HMM, these settings could be improved further.

Experiments were also made with the structure of the HMMpdsoiv the states
modelled the musical score. Each piece of the three piecesnaalelled slightly
differently.

e The Twinkle Twinkle Little Staextract was modelled using a state to represent
each new note of the melody.

e TheAll | Ask of Youextract was modelled using a state to represent each beat of
the melody

e The Danse Macabreextract was modelled using a state to represent each half-
beat of the melody

It was more effective to use beats rather than notes as theahevents to be
represented by states, because more complex melodies lw@utdplemented. (The
HMM for Twinkle Twinkle Little Starelied upon each note of the melody being the
same length.)

Using a full beat as a musical event was more musically ineufor myself, when
constructing the HMM. However the use of a half-beat as a calisvent allowed the
score follower to track the position of the soloist more [Bely.

4.4.2 Number of observations used for Viterbi

| experimented with using different sizes of histories ofetvations (the number of
notes most recently played by the soloist) to locate theistdaurrent position in the

score. The score followers were run with a history of the Zaghe last 3 and then the
last 4 observations being used by the Viterbi algorithm.

My findings were as expected: the more observations that itesbv algorithm
used, the more accurately the score follower was able tmaggi the soloist’'s posi-
tion in the score. This was verified when measuring how ac¢eure score followers
were during later testing (see the Objective Testing disiousin the later chapter on
Testing).

Another significant finding was that the smaller the numbestates, the larger
the number of observations that could be presented to tlebVialgorithm without
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serious latency issues emergingror melodies that were modelled with a large num-
ber of states, the score followers quickly developed latessues if using the Viterbi
algorithm on a larger number of observations (althoughvlas overcome to a certain
degree by calculating the probabilities beforehand, asrdesi below).

Later experiments with restricting the scope of states idened as potential next
state helped to alleviate this latency somewhat. Theseriexpets are discussed later
in this chapter.

4.4.3 Setting a probability thresholds for the estimation o f the next

State

| experimented with setting a probability value as a thrégkalue. The probability of
a possible new state being the current state had to exceethtbshold in order to be
considered as valid for the actual current score location.

This did not have any adverse effect on the score followatégpmance, but it was
later found that the optimum value for this probability \eatiaccording to the piece,
because of differing numbers of states being involved inrnthatiplicative calcula-
tions. Therefore it was simplest to disable the enforcerétiis condition for later
versions of the score followers that used more states. Diggthis did not lead to any
noticeable reduction in performance.

4.4.4 Finding the most effective beat tracking parameters

The beat tracking, or estimation of tempo from what has bédayep by the soloist,
was experimented with in order to find a set of parameterdi@beat tracking which
gave the most accurate measure of the soloist’s speed.

Some of the explorations made in this area included:

e Only considering tempo observations once there have beea tin more tempo
observations

Therefore the first three notes are not used initially forgemalignment. The
soloist should have dictated the tempo to the system befaréng to play (al-

though there are default values set for the tempo of eacle precase this does
not happen). Itis worth remembering that if the soloist hatdgiven their tempo

9By latency | refer to the speed with which the accompanimeas played in response to each note
played by the soloist
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to the accompanist in a real-life situation, then it woulkkta human accompa-
nist a few notes to gauge the soloist’s tempo as well.

e Taking the last eight tempo observations and finding theaaeof these obser-
vations

| experimented with the number of tempo observations thatkshbe considered
and found that eight was a good number to use. This meantittrahee values
that distorted the average would eventually be “forgotteynthe score follower,
but that the score follower still had an adequate historyeaifgo observations
from which to estimate the soloist’s current terhpo

e Disregarding the most extreme large and small values inishef tempo ob-
servations, so if there are any inaccurately timed notes they do not have a
disruptive influence over the tempo calculations

| experimented with removing the largest and smallest etesnfom the list
of tempo observations (so it was ignoring two elements ial}otThis worked
more accurately than if all elements from the list of tempseaations were
considered.

In the next experiment the top and bottom two elements weneved from the
list (so the score follower was ignoring four elements imatpt This was too
unresponsive to changes in tempo and did not adapt its estinempo quickly
enough to match the soloist’'s tempo. So the final decisiontavasly disregard
the largest and smallest tempo observations when estigisoloist’s current
tempo.

e Changing the system slightly so that the internal metronsmestarted on a
new beat, when new input comes in from the soloist.

If the soloist is slightly off-beat for one note, then thisstaike will be corrected
over time.

If the soloist is speeding up, then the current beat is stagelier than it should
start, which is intuitively correct: if the soloist’s temgpeeds up then their beats
occur earlier than expected.

10This suggests the possibility of being able to use HMMs tolément beat tracking, such that the
tempo observations could be used as a guide to the solomstsrlying tempo. However this is much
out of the scope of this project and will not be considerethierin this document
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If the soloist is gradually slowing down, then the expecteetronome click
comes before the actual metronome click. Initially I hadans that this would
cause a problem where the score follower would start the beat before the
soloist does, so would start to work out the next state thatsthloist has (in
theory) changed tdyeforethe soloist has actually changed state. However this
proved to be less of a problem than anticipated. This wasusecany calcula-
tions of a new state were overridden when the soloist doesgehstate.

4.4.5 Performing the viterbi algorithm off-line, to genera te pre-calculated

probabilities for longer scores

Originally, latency issues had a large impact on the peréoroe of the score follower
for the Danse Macabreextract. Because of the large number of states in the HMM
for this piece (201 states), the score follower could notpkack of the soloist to
any recognisable degree, due to the amount of time thatbvigdgorithm computa-
tions were taking. This was not so much of a problem when osiggithe two most
recent observations with which to track the soloist, but sigsificantly affecting per-
formance when using a history of three observations or more.

For each new note played by the soloist, and using a histottyreé observations,
the score follower is carrying olN® calculations. For an observation sequenc#lof
musical events, with a history &f observations, the score follower will have to carry
outMxNX calculations. This is a high computational load and theestmtower could
not cope with this computational burden and still produ@d-tene accompaniment.

To reduce the computational load, one version of the scdlener used a table
of probabilities that had been calculated off-line, priorthe soloist starting to play.
During runtime, it would then use the most recent obsemativom the soloist as a
key to look up what the most probable next state would be.

This approach involved a large calculation effort when t¢atding the table of
probabilities X « N* calculations total wherdl = no of statesM = no of possible
observations, and a history ¥fobservations is usetfi However during the time the
system is online and running, the time saving is considerdbistead of carrying out

UThere is likely to be a more efficient way of calculating thable, but | chose to use a simple and
direct way by taking each combination of observations int@n my system setup this took 24 minutes
to run for a 201 state/13 emissions HMM with a history of thobservations. | estimated that using a
history of four observations would take approximately fivaits to produce a table of probabilities for
this setup. Unfortunately, certain time restraints | hachooess to resources meant that | was not able
to produce and test this probabilities table



Chapter 4. Implementation of the Score Followers 53

intensive calculations for each observation (as outlingolva), it is only necessary
to look up a single value in a table for each musical eventgadyy the soloist. So
implementing this meant that the score follower a piece aitarger HMM structure

(in this case th®anse Macabrextract) could be tested on a live basis.

4.4.6 Reducing latency issues by only examining local state s as

potential next states

In the research literature, many HMM-based score followeakse been produced which
can cope with longer pieces (Raphael, 2001b; Orio et al.32P@rdo and Birming-
ham, 2005), without resorting to offline calculation of pabldities.

To reduce the computational burden, the options were teredhange the way the
soloist’s position in the score was estimated or to redueentimber of calculations
being performed. The latter option was taken in this proj@obrder to reuse the basic
structure of the previous score followers.

Instead of considering all states in the HMM as possibdife the soloist’s current
location in the score, the score follower now only consideaagvindowof states, cen-
tred around the state that had been estimated as the pretédesThe default window
size was large enough to consider approximately a bar antt ewtwdh of states.

This experimentation was developed further, by expandmgnumber of states
considered by the score follower as potential next statethei system is not able
to estimate the current location of the soloist successfalhd is “lost”. The score
follower was deemed to be “lost” if it has estimated the corstate to be the same as
one of the previous two states; in other words if it has becstuek in a particular set
of states.

At some point the score follower would find the soloist’s piosi in the score
again, so would have chosen a suitable state such that it evemger considered to
be “lost”. Upon reaching this point, the number of local etabeing considered would
be reduced back to the default window size.

Now my score follower could perform the Viterbi algorithmlme. The score
follower was more robust than expected, in terms of how welerformed when the
soloist’s position in the score moved larger distances ésitore than usual. However
this robustness could be improved in the future, given frthork.
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At this stage in the project, a number of versions of a scdtevier have now been
fully implemented. This chapter has discussed the majotdmpntation stages that
occurred during this stage of the project, describing thenrdacisions taken during
implementation and how several problems were dealt witinduthis time.



Chapter 5

Testing and Evaluation of System

Performance

The performances of the score followers produced during pihbject were evaluated
both objectively and subjectively. The system was testedinag measurable criteria
originally constructed in 2006 by score following expertstést the latest research
efforts (Cont and Schwarz, 2006).

As well as this testing, the score followers were tested addgd by musicians of
varying musical ability and experience, so that they cow@ gheir opinions on the
quality of accompaniment provided by the score followers.

Several versions of the score followers were tested. As Hjective testing was
carried out at a later time than for the subjective testihg @anse Macabrescore
followers had been updated slightly. Two versions werestéguring objective testing
that carried out a localised rather than global search ferrtext state, in order to
be able to perform the Viterbi algorithm online (while thdast was playing) rather
than having to calculate probabilities beforehand. Allestiersions were tested both
subjectively and objectively.

The score followers were tested in a thorough and structoradner and the re-
sults from each testing stage were evaluated. The diffesente followers in this
project were compared against each other, against othex fdtmwers in the research
domain, and against a human accompanist.

55
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5.1 Objective testing

5.1.1 Objective testing methodology

My score followers were tested using criteria that was usetest score following
systems in the 2006 Music Information Retrieval Evaluagdichange (MIREX) con-
ference, and which will be used again in the 2007 MIREX caatiee.

This testing criteria is the result of much discussion betvexperts in score fol-
lowing (Raphael et al., 2006). On the MIREX conference websthere are results
published from the evaluation of two separate score folhgunsystems in the 2006
conference (MIREX, 2006b). So this criteria has been dewgigh some careful con-
sideration. It is also possible to perform some general @igpn between my score
follower and other score following systems (although thik e limited as my score
follower will have been tested using different pieces aredefore different challenges
to the score follower, and will also have been tested undgardint conditions).

The objective testing criteria from MIREX (Cont and Schw&@06) is as follows:

e Event Count: The number of musical events included in the played melody (
the number of musical events for which the score followertha&stimate a state)

e Number of Notes Missed Scored notes that the score follower does not recog-
nise at all, or which are recognised but with an offset of tgethan 2000 mil-
liseconds. This is tracked by seeing which states the sodi@ver goes into
during accompaniment, and when each state is entered

e False Positive (FP) Scored notes that the score follower only recognises after
a delay of greater than 2000 milliseconds (this is also uhetlin the above
statisticNumber of Notes Missed

e Average Offset The mean of the recorded Offset measurements between the
note onset (note being played by the soloist) and the accoimeat being
played

e Standard Deviation Offset The standard deviation of the above Offset mea-
surements

Lhttp://www.music-ir.org/mirexwiki/index.php/Main_Pa ge
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e Average Latency The mean of the recorded Latency measurements between
the detection time of the note being played by the soloistthadime the system
has processed the audio so that it is ready to be matched $odhe?

; . ; NumberofNotesMissgd
e Missed Note % The percentage of missed noteS~—r cricount 5¢ The

inclusion of missed notes in this criteria is to convey howuaate the score
follower is at tracking the soloist’s exact position in tleoee.

itive 9 i Numbero f FalsePositivgs
e False Positive % The percentage of False Positive NoteS{—¢ sricount §

Additionally there are two overall measures with which tongare my work over-
all with each score follower submitted at MIREX 2006:

e Total precision: The percentage of correctly detected notes overall (ilscare
followers’ results added together)

e Piecewise precision The mean of the percentage of correctly detected score
notesby each score follower

As well as this, | included a subjective measure of how welldged my score
follower to have performed during the test:

. g: Flawless accompaniment, indistinguishable from or Ib¢ittan the accompa-
niment that an expert human accompanist would play

: Very good accompaniment, with almost no errors

[ ]
gl

: Good accompaniment, with some flaws but generally accaradenusical

[
glw

[ ]
ainy

: Some accompaniment performed accurately but with mamysand unmu-
sical moments

° %: Poor accompaniment with very few moments where the accomysant was
played accurately

. g: Where the accompaniment played bears no resemblance wheaitgo what
should have been played

2The definition of this in (Cont and Schwarz, 2006) is slightljsleading: “Difference between
detection time and the time the system sees the audio” buhtaypretation of the latency measure is
as described in the main text
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All the measurements described above were used as objecgasurements to
evaluate my score followers.
The score followers tested were:

1. Twinkle Twinkle Little Star, with beat tracking enabled suchttthe soloist’'s
tempo is extracted - but as this score follower is purely rneactit only plays
accompaniment when it receives a soloist’s input. So thetkezking is enabled
but does not affect the playing of the accompaniment.

2. All'l Ask of You, with a set metronome tempo for the tester tovol

3. All I Ask of You, with beat tracking enabled so that the scolevier should
follow the tester’s tempo.

4. Danse Macabre, with beat tracking enabled, using the prdlieds calculated
offline by the Viterbi algorithm

5. Danse Macabre, with beat tracking enabled, performing tterbi algorithm
online and using a history of the last three observationmftbe soloist

6. Danse Macabre, with beat tracking enabled, performing therki algorithm
online and using a history of the last four observations ftbesoloist

Five tests were carried out on each score follower. For ezgththe score follower
was presented with a specified melody from the soloist. @ueach test, the score
follower’s performance was judged against the objectiviega outlined above. The
five tests were:

1. Play the melody as scored, with no mistakes, tempo charggsbellishments
2. Play the melody with selected errors added

3. Play the melody with selected embellishments added

4. Play the melody as scored but with selected tempo adjumésmeade

5. Play the melody, making all the deviations from the scoyenftests 2, 3 and 4

Details of the specific alterations made to each melody aledied in Appendix
D.

Where there is more than one version of the score follower foargicular piece:
the five evaluation versions of the melody were kept the saméhe testing of each
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Score Following System Authors Total Precision Piecewise Precisio
Arshia Cont and Diemo Schwarz (MIREX 2006) 82.90% 90.06%
Miller Puckette (MIREX 2006) 29.75% 69.74 %
Anna Jordanous (this project) 60.89% 54.04%

Table 5.1: Overall Summary Results

score follower for that piece, so that one version couldlgé&& compared against the
others.

It was necessary to make some adjustments to my score foi@wghat evaluation
information could be collected. These adjustments madeifferehce to the actual
workings of the program but had the sole function of depogiihnformation at various
stages of the program’s runtime.

Where possible, the MIDI input was provided automatically another Max/MSP
patche?, so that inconsistencies in a human’s playing would not essbe affect the
results too much. Instead the new Max/MSP patcher playeprdseribed test melody
at a specified tempo (which could be altered at any point dupiay).

Latency measures were taken using a patcher from the onlieeNVSP docu-
mentation. This patchecpuclock took measurements of the CPU clocktime elapsing
between receiving MIDI input from the soloist and playingfithe expected accom-
paniment and then the calculated accompaniment.

5.1.2 Results of objective evaluation tests

e Results table See Figure 5.1

e Overall Summary Resultsas for MIREX (2006b): See Table 5.1.

3In Max/MSP, the ternpatcheris used to refer to individual programs and/or functions
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Mo.
Event Notes |False |Ave Std Ave Missed |False Rating
Piece Count missed |Pos |offset |offset Latenci Mote % |Pos % -1
1Twinkle 7 4] g 20.95 3.99 0.0 0.00% 0.00% 5
2Twinkle 7 9| g 12.81 8.04 0.08 0.00% 0.00% 5
ATwinkle 7 1 0f 52.08 70.91 0.08 14.29% 0.00% 3
ATwinkle 7 d 0 95.03 14954 0.11 0©.00% 0.00% 5
STwinkle 7 9| 0] 131.14 180.78 0.07 0.00% 0.00% 3
- |
1Al 1 ask v.1 4 i 0] 532.15 1028.59 0.0 2.50% 0.00% 5
2A0 T azk v.1 Rt 24 11 487 984.42 0.09 54.55% 25.00% 4
AT ask vl 40 28 29 504.99 1033.88 0.0 70.00% &65.00% 23
Aall T ask v.1 n/a
SAIT ask v.1 elel 38 27 504.43 1034.023 0.473 86.36% 61.36% 3
|
Hall I ask v. 2 40 3 0| 505.01 490,98 247.74 Z7.50% 0.00% 3
28l ask v, 2 4 11 2| 433.99 354 239.5§ 25.00% 4.55% 2
Al ask v, 2 40 & O 790.79 555.08 212.33 15.00% 0.00% 2
Al T ask v, 2 40 13 1] 473.63 615.65 158.3 32.50% 2.50% 23
&l ask v, 2 L 145 2| 840.33 547.21 237.3§ 36.368% 4.55% 2
|
1Al 1 ask v.3 40 1 0] 542.83 896.04 g.18 2.50% 0.00% 4
28l 1 ask v.2 e 23 11 499.74 860.74 0.1 52.27% 25.00% 3
AT ask v.3 40 18 2| 3B4.13 691.49 0.75 45.00% 5.00% 2
Al 1 ask v.2 n/a
Slal I ask v.= e 33 13 371.43 681.79 0.84 75.00% 29.55% 2
|
1Al 1 ask v.4 4{ 3 0| 452.11 458.27 221.5 7.50% 0.00% 2
2a1 T ask v.4 Lt 15 A 374,68 312,95 224,47 34.09% 9.09% 2
Al T ask v.4 40 10 O 417.98 365.59 303,54 25.00% 0.00% 2
Aall 1 ask v.4 4 15 2l 379.09 44373 184.66 37.50% 5.00% 3
Slall T aszk v.4 Rt 20 4 358.38 392.61 215.13 45.45% 9.09% 2

1Danse Macabre v.1 104 95 # 11 269.68 518.02 204.53 95.00% 11.00% 2
2|Danse Macabre .1 113 108 # 15 283.13 524.4 301.38 95.58% 13.27% 2
3|Danse Macabre v.1 104 95 # 11 319.7 539.61 209.86 95.00% 11.00% 2
4 Danze Macabre v.1 104 95 # 13 271.83F 547.69 182.42 95.00% 13.00% 3
S|Danse Marcabre w. 1 113 108 ¥ 13 263,93 552.29 265,39 95.58% 11.50% 1

1Danse Macabre v.2 109 53 4 242.63 53.04 86.97 53.00% 4.00% 2
2|Danze Macabre v.2 113 98 3| 250.8§ B1.8 98.63 86.73% 2.65% 1
3Danse Macabre v.2 1040 40 6 267.67 95.34 102.2 40.00% 6.00% 2
4iDanse Macabra v.2 100 64 4 240.08 52.09 81.34 64.00% 4.00% 23
S|Danse Macabre v, 2 113 77 3 254.45 44,72 153.43 68.14% 2.65% 1

1Danze Macabre v.3 104 4 0 S12.41 283.54 62.4 4.00% 0.00% 3
2|Danze Macabre v.3 113 39 1] 961.57 369.91 58.79 34.51% 0.88% 2
3Danse Marabre w.3 100 87 5| 962.88 366.25 7667 87.00% 500% 4§
4Danse Macabre v.3 104 79 14 969.97 312.31 95.08 79.00% 17.00% 2
S|Danze Macabre v. 3 113 105 0 982.43 386.88 101.94 92.92% 0.00% &

* The missed note counts for this score follower are estimated, due to the high performance inaccuracy

Figure 5.1: Results of objective evaluation tests
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5.1.3 Analysis of objective evaluation test results

Itis pleasing to see in table 5.1 that despite the differiegetbpment times concerned,
the score followers developed in this project compared deably overall in perfor-
mance to the two score followers analysed at MIREX 2006 (ss&ions by Cont and
SchwarZ and by Pucketfd. The weaker result on the piecewise precision is affected
by the poor performances overall from tbanse Macabrecore followers.

These comparisons, however, can only be made at a very démestaif at all. It
is difficult to justify comparing this project’'s score follers with the MIREX score
followers, as the score followers were tested on differeeces.

The MIREX 2006 test repertoire included a Boulez flute piemeBach violin
sonata, Mozart clarinet concerto and Mozart vocal piecesélpieces were of consid-
erably longer duration than my test repertoire, with on ager2239 events per piece,
as opposed to my average of 49 events per piece. It is intggeshough, to note
that there is a similar degree of variance in the successeotbre followers tested
in MIREX 2006 (MIREX, 2006b) as there is in the results shownthis project (in
Figure 5.1). This indicates that there is a degree of vaganahe accuracy of the
MIREX 2006 score followers, depending on what piece is belaged. This was also
true for the different pieces that my score follower was agpanying.

In interpreting the results, th&verage latencycolumn shows how long the sys-
tem took to receive the input from the soloist and processeatly for using in the
HMM (for example by storing it in internal variables). Theerage offsetcolumn
shows a measure of the time it takes to estimate the mosy ltate and produce the
corresponding accompaniment.

Recording the number d¢false Positivenotes in addition to th&lumber of Notes
Missed overall for that melody was useful; a high percentage of False Positive notes
relative to Missed Notes overall indicates situations \elée score follower has not
located the exact position of the soloist in the score, bigreft is following the soloist
through the score at roughly the right position. Althougts tis unlikely to produce
correct sounding accompaniment, it is better to know thatsystem is tracking the
soloist to some degree, rather than having completely lasktof where the soloist is
in the score.

4An HMM-based note/signal score follower, described Ilattp://www.music-ir.org/
evaluation/MIREX/2006_abstracts/SF_cont.pdf

5A dynamic programming-based note score follower based omBraberg (1984), described at
http://www.music-ir.org/evaluation/MIREX/2006_abstr acts/SF_puckette.pdf
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As expected, when the score followers incorporated sonma furbeat-tracking,
the latency associated with receiving and processing tloesss playing was higher
than for the simpler score followers. This is because theas an extra layer of pro-
cessing involved for each input from the soloist (checkimgée if the tempo needed
to be updated).

In general, the score followers that were rated highly onabeompaniment they
produced had low scores in thdissed Note % andFalse Positive %columns. This
is an obvious conclusion to make: if the score follower firftts¢orrect location of the
soloist, then it will know exactly what accompaniment toypla

A less obvious addition to this conclusion can also be madéelscore follower
performs badly in the percentage of notes missed, but tleeeptage of notes identified
after some delay (False Positive notes) is higher than geethen the score follower
was usually rated as performing well. For example in Test theffirst version ofAll
I Ask of You the performance of the score follower was ratecgatThis is despite
over 50% of the notes played by the soloist not being matobéukt soloist’s location
in the score. Unlike, for example, Test 1 on the second versidanse Macabre
which was similarly poor at finding the soloist’s locatiomitlated at only2, 25% of
the notes missed were identified after some delay (were Ras#ive notes). This
meant that the score follower for Test 2 Al | Ask of Yoy version 1, had some idea
of where the soloist was located in the score, so as a consegjwas able to produce
an accompaniment that flowed more smoothly and musicalippewed to the other
performance.

As expected, the simpler melodies performed much bettegmernl than th®anse
Macabrescore followers. In particular the score followers fiwinkle Twinkle Little
StarandAll | Ask of Youperformed the accompaniment better than anticipated gurin
Test 5. This was the test where all the errors from the previests were combined
into one playing. For this test there were many bars of thévelérmelody which
were almost unrecognisable from the original tune. On mamasions, in evaluating
the results, there was some ambiguity in exactly which dtaesoloist was in at a
number of points, with a number of equally plausible optitmexplain the series of
deviations that had been made from the score. A human aceostpaould have had
to apply some skill and concentration when accompanyindastavho was making
this number of deviations from the score. So the attemptsemadaiccompany the
soloist in Tests 5 (particularly for version 1 ail | Ask of Yo) were a positive result
of testing.
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Some of the results for thBanse Macabrescore followers are particularly poor.
Poorer performances came from the score follower that densd all states as possible
candidates for the next state, rather than a local selecilts score follower very
rarely found the correct next state and was also poor at astigithe next state to be
one that was

Generally, if there is a smaller number of potential nextestdrom which to choose
from, then the score follower will be likely to make a bettéteapt at locating the
soloist. As there are fewer options to consider, numegdakre is a higher probability
of estimating the next state correctly or nearly correalen if no HMM probabilities
were to be considered.

The second and third versionsibanse Macabreacore follower rely on the soloist
playing through the score in a roughly linear fashion, withlarge jumps. There is
some increasing of the number of states considered, shioalglcore follower not be
able to locate the soloist in the score on first parse. Howieimuch easier for these
versions of the score follower to lose track of the soloisgdd the soloist make large
jumps in the score. Tests 2 and 5 included a jump of two barsimacls by the soloist,
and one bar forward. Both these tests were handled rekativell by the version two
score follower. The third version of the score follower cdpeell with these score
relocations in Test 2, however the delays in note procegbiaigwas involved in Test
5 caused much interference in the score follower’s perfaireasuch that no useful
conclusions could be drawn from this test.

The Danse Macabrescore follower that used a history of four observations for
the Viterbi algorithm (version 3) gave a very accurate pen@ance in the first test
(where the solo melody was performed correctly). It was aésssonably accurate
in the second test (where selected errors were includedglyerformance of the
solo melody). This shows the greater level of accuracy thatlee achieved if more
information from the soloist is considered.

A criticism of this particular score follower, though, isathlatency measurements
associated with the more detailed calculations were ceraindy higher and this is
reflected in the poorer ratings overall that the third vergieceived for quality of ac-
companiment. In general, the higher the Average Offset @rdge Latency recorded,
the less musically and accurately the score follower waggddo have performed.

There were very large figures for the Average Offset for \@rs3 of theDanse
Macabrescore follower. This was reflected in the performance, wlleeeaccompa-
nist lagged behind the soloist, especially in Tests 3 anddsveier the overall accuracy
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measurements for some of the tests on this version weredsrasly higher than ex-
pected, given how the accompaniment was performed. The &albower was finding
the next states, but not quickly enough to perform the aceminpent well. Without
the objective testing, this would probably not have beeicedt As the primary ob-
jective of a score follower must be to produce musically aatiand well-performed
accompaniment, though, this delay in the system should baia consideration in
any further worl&.

5.2 Subjective testing

5.2.1 Subjective testing methodology

In addition to testing the score followers against objexitheasurable criteria, the score
followers that were developed in this project were evalddig human musicians of
different levels of musical competence and experience.

The overall aim of a competent score follower should be tovipie musical and
accurate accompaniment. The quality of an accompanisti®mpeance in general
is judged by how well it fits and enhances the playing of th@isblwhom they are
accompanying. In fact the very nature of a good accompaibait the listener is not
aware of their playing except as an enhancement to the soMisse playing should
be attracting all the listener’s attention.

Testers were presented with 5 versions of the score folldweest, in order of
increasing complexity of the score follower and the piece:

1. Twinkle Twinkle Little Star, with beat tracking enabled sucéatttihe soloist’s
tempo is extracted - but as this score follower is purely neactit only plays
accompaniment when it receives a soloist’s input. So thetkszing is enabled
but does not affect the playing of the accompaniment.

2. All I Ask of You, with a set metronome tempo for the tester toviol

3. All I Ask of You, with beat tracking enabled so that the scolevier should
follow the testers’s tempo.

4. Danse Macabre, with a set metronome tempo

8perhaps by using different algorithms to calculate the rpastiable path, for example the Forward-
Backward algorithm (Rabiner, 1989)
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5. Danse Macabre, with beat tracking enabled

For the more complicated pieces, | gave the testers a cofipiénates to practice
the solo melodies before adding the accompaniment. Thisinteat they could pay
more attention to the performance of the accompanimenerdttan concentrating
purely on playing the right note, but that they were stilllined to make the occasional
mistake themselves, especially for thanse Macabrextract.

For each score follower, the testers were asked first to playrtelody as correctly
as they could, then to play it with different variations ofstaikes, embellishments
and tempo changes. | deliberately did not specify any ewoembellishments that
the testers should make, so as to avoid influencing them in ¢heice of what to
play. This meant that some of the testers tried errors or #disto@ents that | had not
considered trying, which was useful to me in evaluating tteres follower.

The testers gave their opinion on how well they perceive yiséesn does at accom-
panying them, and how well it recovers from errors and endjethents that the testers
add.

5.2.2 Observations arising from Tester 1

Tester number one is a bass guitar and double bass playerdifiméo high musical

ability. He is experienced in accompanying other musicigmgarticular he is used to
playing jazz music, where the accompanist must always besasiany improvisation

or free playing that the soloist might want to include.

1. Twinkle Twinkle Little Star

The score follower performed well in accompanying the tedtee commented
that it kept better track of his exact position in the melodsrt he would have
expected.

When the tester tried polyphonic input (playing the meloding$oth hands,
in different octaves at the same time), he felt that it stt@nmpanied him rel-
atively well, although there was a noticeable consistemtren the parts of the
melody that include repeated notes. This is understandesddthough we hear
polyphonic input as a number of notes occurring exactly atsdume time, pro-
grams such as the score follower would treat the polyphampatias a sequence
of notes received one after another in very quick succesdibiiess the score
follower was specifically designed to treat such sequente®tes as chords
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(as discussed in Bloch and Dannenberg (1985) and in the Dekapter of this
document), then it would interpret each note in the chord mevaevent, rather
than treating each chord as one event.

A point made by this tester was that if he played the melodythad repeated
back to the beginning, the score follower did not actuallyogmise that he had
repeated back to the beginning, for a couple of notes. Hetkatdf the soloist
was to go back to the start of the piece and repeat it again ttigescore follower
should be able to recognise the repetition. | had not thoagtttis possibility
when setting the HMM probabilities as | had originally desd the score fol-
lower to move through the melody once only per run. This gobisi would
however be enabled quite easily, by increasing the proibabil moving from
the finalnormal state (in this case state 13) back to the firstmal state (state
1).

2. All I Ask of You, with a set metronome tempo

The tester noticed that the score follower was more likelyoge track of his
score position at certain points, but that it finds his scarsitpn again fairly
well.

He commented that in general, the score follower performetteb as an ac-
companist when he made errors, rather than when he playadubie perfectly.

This would probably be due to the HMM probabilities and there correctable,
given a little more time spent in setting the probabilitiesrenaccurately, es-
pecially at the points that the tester highlighted the sdollewer had some
difficulties with.

3. All' I Ask of You, with beat tracking enabled

The score follower was judged to have made a passable at&mptompanying
the tester in this test.

An interesting effect that | observed while the tester wagyiplg this was that the
tester adjusted their playing to fit with the accompanimand] attempted to give
the score follower musical cues to assist the accompanpsbithucing a musical
performance. For example he emphasised the first beat ofathieybplaying it
with a more pronounced manner. Unfortunately | had not iigleted any way
in which the score follower could use such cues, but such cal&nowledge
could be added to the system in the future.
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4. Danse Macabre, with a set metronome tempo, and

5. Danse Macabre, with beat tracking enabled

Unfortunately neither version of thBanse Macabrescore follower performed
well in accompanying this tester.

They made a considerably less musical attempt at acconmuatiyis tester than
they had done during my playing, in development. The maiecihce between
the tester’s interpretation of the solo line and my own was the tester played
the many staccato notes in the piece for a shorter duratemm lthad tended to
do during development, so there was a larger proportionlehse in the piece
compared to when | played it. Also, he played the tune with i wareful
observation of a correct tempo, even when playing the oonasivrong note.

6. Further comments

5.2.3 Observations arising from Tester 2

Tester number two is a classical woodwind player and piarfistedium musical abil-
ity. Unlike tester number one, she identifies more with béh®gsoloist who is accom-
panied rather than the accompanist.

1. Twinkle Twinkle Little Star

The tester was impressed with the way in which the systemnapanied her
for this extract. She commented that “it was almost as if §fste3n was being
perceptive”, in working out where she was in the score andycing the right
accompaniment.

2. All I Ask of You, with a set metronome tempo

Again the tester was impressed with the accompanimenthieatdore follower
produced, particularly noting the slide of notes in the Izt of the more com-
plex accompaniment, and how the last note of the accompamimas being
played even when she tried to confuse the system by playaéagt couple of
bars incorrectly.

The tester also mentioned that this score follower respdmasl to embellish-
ments she made to the tune, accompanying her as she wouldekpweted a
human accompanist to do.
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3. All I Ask of You, with beat tracking enabled

This score follower in general kept with the solo performahige well, the tester
commented. However there were obvious points where shéhiliccompani-
ment was not catching up to her change in tempo quickly enougjire was
happy with an experiment she did where she made a rapid chanegepo for
a few notes then returned to her original tempo. As she woale lexpected a
human accompanist to do, the score follower ignored the f@e&splayed at the
different tempo and instead continued to play at her origi@apo, but made
some attempt at synchronising to the few notes played meidlyaduring that
short period of time.

4. Danse Macabre, with a set metronome tempo, and

5. Danse Macabre, with beat tracking enabled

Unlike the previous tester, the score follower was able tepkplaying some
accompaniment for the tester, although it did not perforrwel as for the other
tunes and the tester was less impressed by this version.

This tester’s interpretation of the staccato notes was rawndar to my inter-
pretation, in that she intentionally played staccato nésedalf their normal
duration rather than making each staccato note equallyt,shod as short as
possible.

Her performance of the correct versionBanse Macabresolo line was differ-

ent to the first tester’s, in that when she made a mistake, sherglly paused,
and played that section again, correcting her mistake, togrninuing, rather
than carrying on and ignoring the mistake. This occasigraihfused the score
follower but in general it coped fairly well with this apprcia

6. Further comments

5.2.4 Observations arising from Tester 3

Tester number three is a classical vocalist and pianist @i Imusical ability, who
specialises in Baroque and Classical period music. He isalBlusic Technology
student with a particular interest in Acoustics.

This tester is equally knowledgeable about being the acemmpand being the
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soloist in a real-life performance environment. He is alagtipularly influenced to-
wards adding embellishments to notes, in a Baroque‘style

1. Twinkle Twinkle Little Star

One point made by this tester was that when he added % th# accompanist
should play one held chord underneath the note for the durati the trill. In-
stead, it tried to follow the trill notes as individual notalsthe melody, quickly
repeated, so the accompaniment was disjointed and unelienisbecause this
version of the score follower uses no information on the tergj notes, but in-
stead treats each new incoming note as a new state. Theftestdithat this was
less of a problem in the later versions, although the trtilscaused difficulties
for the score followers which had beat tracking enabled.

The tester tried playing the melody backwards and the satierfer responded
by roughly tracking where he was but by playing the accompant in a for-
ward direction where there was a choice. He was happy withrégponse as
he felt this is what a human accompanist would do until it hadked out what
the soloist was doing. He felt that the score follower shadntually be able
to spot this pattern, however. If any learning had been impleted in my score
follower, then | would agree that this pattern should be ctetae by the learning
part of the score follower.

A significant question from the third tester was about theppse of this score
follower. His question was whether the score follower wasigieed to be a
“practice model” or a “performance model”. The differencardénis that with a

practice model, the score follower would more freely allamd in fact expect)
different sections to be repeated, varying levels of aayueand more variance
in tempo, and so on. This is how the third tester had integoréhe purpose of
this project. The score followers had actually been desligrsea performance
model, though, so that the score follower was expecting gesirun through of

the piece, with an emphasis on getting from one end of theegeeanother. The
distinction between the two models is subtle but importaiugh to have some
bearing on the probabilities that would be associated vatthgart of the HMM.

His playing style shows a particular tendency to decoratesifollowing a set of prescribed rules,
and he has a high degree of expectation about the style irhvehiausically competent accompanist
should react to these note decorations

8a succession of quickly repeated notes that alternate titeemnote with the note directly above,
for decoration of the written note
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2. All I Ask of You, with a set metronome tempo

In this version, the tester was more satisfied with how themganist responded
to the trills and other embellishments he added. This scoliewer worked
more as expected by the tester because it ignored any ingyegby the soloist
except that which occurred on each beat (when informatidgkisn for the new
state). Though it is not ideal that the system ignores argyrimétion from the
soloist, in this particular situation it is actually a usefunction of the score
follower. The only embellishment that the score followed dot respond well
to was appoggiaturds These were treated as incorrect notes. The tester rightly
pointed out that the accompaniment should not become siletgrneath these
notes, but should perhaps carry on playing the accompaniasegxpected for a
few states while it tries to match the soloist back to a laratn the score.

Again, a noticeable effect was that the tester adjustede@ticompaniment, so
again | observed how the tester attempted to synchronidetingt accompanist
and to assist the accompanist in producing a musical pediocen The tester
commented that playing music is a co-operative process.coheguter player
has to be a proficient player already and cannot just reattetdntiman player.
The human player will instinctively react to the computgafaying.

The tester tried omitting playing some bars, singing thesteiad then starting to
play again. He commented that missing a few notes out didorduse the score
follower, however missing a whole bar did, and suggestettiigascore follower
should continue to play the accompaniment while it waitedHe soloist to start
playing, even if just for a bar or two. Speaking from the paftiew of a vocal
performer, he said it was a fairly common occurrence thajesis may miss a
bar or two during performance for various reasons. The apeomst would be
expected to continue playing while the singer readied tledwves to continue
their performance again.

The tester noticed the increase in complexity of the accamnpent compared
to the previous score follower, and was impressed by the #mess of the
accompaniment in the sections where it followed his pertoroe closely, and
the manner in which it recovered from errors.

A last comment on this version was that the metronome sounchwiad been

9grace notes or additional notes, which are played beforat¢heal written note, such that the grace
note is played on the beat and the actual written note is dlakertly after the beat
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added to help synchronise the soloist and accompanistagbettlrned off, as it
became irritating after a while: a fair comment.

3. All' I Ask of You, with beat tracking enabled

The tester was critical of the speed in which this score ¥edloadapted to his
playing, saying it should adjust much more rapidly to his/pig.

Also he stated his belief that the score follower should aayognise correctly
played notes for tempo adjustments, because the corrgctridhe notes is a
sign that you are playing correctly at that point. The scotkiver does indeed
work this way, and it was interesting to hear the tester adtethis without any
mention of its inner workings from myself.

4. Danse Macabre, with a set metronome tempo, and

5. Danse Macabre, with beat tracking enabled

Unfortunately neither version @anse Macabrevorked during this test session.
The tester summed up the success of this score follower bggaycan play it
when there’s no accompaniment!”

One useful observation did arise from this test sessionghiew The tester con-
sistently misread a bar in the first section of the music, d@swé he played it.

Even though this was sight-reading for the tester rather thperformance, this
observation showed that even very gifted musicians can nmagiakes without

realising. Hence the need for a responsive accompanistgertamt even at a
high level of performance.

6. Further comments

The tester made some general remarks about the user itetficmentioned
that if estimated tempos were to be displayed, then theyldhmmudisplayed in

the more musically conventional beats per minute formdherathan in msec
per beat. He thought the interface could be more user-fiyesnad that it could

include a display of the score on screen so that the perfodigenot need a
separate copy of the music. This copy of the score could purate a marker
of where the score follower thought the soloist currentlyswathe score, and
mentioned that he thought a package cajitter could be used to facilitate this
in Max/MSP.
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5.2.5 Observations arising from Tester 4

Tester number four has lower musical ability than the othsters. He was only able
to test the first score follower with the simple melody extrixom Twinkle Twinkle
Little Star, and not the other two pieces.

Though he was not able to test the system fully, his use of yees provided
particular insights into how the score follower worked tinare not forthcoming from
the other testers, due to the higher error rates that oatimrieis playing.

1. Twinkle Twinkle Little StakVhat was noticeable about this tester’s playing, in
contrast to the other testers was his uncertain tempo, &himgimber of wrong
notes played, and a tendency to go back and repeat sequdracksionotes, to
get them right. Therefore the majority of his deviationgiirecore were to play
extra notes, or to play wrong notes.

In this case, monitoring how the score follower tracked thieist’'s tempo was
not very worthwhile, as the tester's tempo was too incoaasisto be measured
accurately as one rate.

It was interesting to see how tfAgvinkle Twinkle Little Stascore follower could
cope with the repeated jumps that the tester made betweenedif parts of the
melody. Although the score follower had not been specififgaibgrammed to be
able to track backwards through a melody or to cope with sestbeing repeated
a number of times with varying accuracy, the tester repdttatithe system was
(in general) able to accompany him in a way that matched wéw@irapaniment
he was expecting to hear. From watching the states selegtheé lscore follower
while the tester was playing, | would agree with that coniclns

5.2.6 General conclusions from tester feedback

Much of the feedback from my testers hints at the wider caiotuthat it may in fact
be worth implementing some form of learning of the HMM protitiibs, despite the
initial impression gained during preliminary research.

The score followers performed best when played by the tegtarthe most sim-
ilarity to my own playing (the second player). When exposediifferent styles of
playing, the score followers needed a few adjustments iardadperform correctly, in
some cases. These adjustments are detailed later in thisrsec
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If several musicians were asked to train the HMM, the scdtevi@r is more likely
to be exposed to different situations as a result ratherifijast one musician trained
it. This would be beneficial even if the training were to takace just for a certain
initial period.

An unforeseen but fascinating result of the testers’ expentation with my score
follower system was the emerging of the co-operative naititieis domain in real-life,
and the importance of feedback and communication betweemtusicians. Roger
Dannenberg has commented on a similar finding whilst testimgcore follower in an
ensemble situation (Dannenberg, 2000) (p. 3):

Early on, Lorin [Grubb] and | were playing trios with the contpr, mak-
ing intentional errors to test the system. We found that ifdeéberately
diverged so as to be playing in two different places, the astempcould
not decide who to follow. Even if one of us played normally dinel other
made an abrupt departure from the normal tempo, the commatgid not

always follow the “normal” player. In a moment of inspiratiove realized
that the computer did not consider itself to be a member ottieemble.
We changed that, and then the computer performed much masemably.
Here is why this worked: When the computer became a first-cless-

ber of the ensemble and one of us diverged, there were stilhtembers

playing together normally, e.g. Lorin and the computer. Tbeputer,
hearing two members performing together, would ignore hinel t

While the emphasis found in previous research, and in thigetohas been on the
artificial accompanist following the soloist, | believe tl@gadesign with more focus on
co-operation between soloist and accompanist would behwiarther investigation,
although as of the time of writing, little reference to thigpaoach can be found in the
literature beyond Dannenberg’s work.

Reflecting on why the score followers fBranse Macabrdailed in some tests and
performed slightly better in others, the difference isljki® be due to the playing style
of the performer. Problems with different ways of playingemhave been reported
in previous score following research (for example Orio awctiiéarz (2001) reported
problems with legato). So | was anticipating that there rhlgg some difference in
interpretation between legato melodies such as thatfidrAsk of Youand melodies
with much staccato, such &anse MacabreThe staccato played notes in thanse
Macabreextract, when played in a very short style, did not result éousate state
matching by the score follower. The score follower perfodrbetter when the staccato
notes were played for a slightly longer duration (as Testid2.

Different testers had different interpretations of playstaccato and | had not re-
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alised the effect that this would have had on the performafidhe score follower.
Again this highlights the usefulness of having several ciass’ influence on the de-
velopment of the musicality of the score follower (as is thsecin real life; a human
musician will usually benefit from a number of different irdhces rather than learning
with just one teacher).

A change that was made as a result of this poor performancesting was to
change how the score follower dealt with incoming input frthra soloist. Previously
if the soloist had stopped playing a note, the input from thleist was changed to be
the emission ‘12’, representing silence from the soloist. theDanse Macabrecore
followers, this was removed from the score follower so thatd longer recognised
when the soloist was not playing. This meant that the diffees in staccato playing
were less of an issue and hence the score follower performgertoverall in accom-
panying this piece. (I was only able to get the first testeettest this version, but he
reported an improvement in performance).

A notable side-effect was that the system could no longeths@bservation of
silence to signify the end of the piece, so the emission fimtibas for the score fol-
lower had to be altered for the end states before the scdmvel could adequately
locate the end of the piece again.

Although this change removed much of the problems with sti@cootes, it would
mean that the score follower could not be used for a piece mggts (silences) in the
solo melody. So future work could include a search for a bettgy to cope with rests,
or with staccato notes.

Another change made after testing was the addition of aikethlsearch for the
next state, rather than a global search. This is describetbie detail in the Imple-
mentation chapter. This new version was unfortunately @ady in time for the testers
to try.

As a final observation, my score followers in general peredrbetter with musi-
cians of lower rather than higher ability. They respondeitido¢o inconsistent tempos
and errors, rather than correct playing and decorative disibments. This is prob-
ably partly due to a slight bias in the way | have set the HMMbgatuilities, where |
have approached this more from the point of view of recowgfiiam errors rather than
dealing with note decorations and embellishments. It iagle, however, to see that
most of the score followers generally performed well in @sging to tester errors of
different types, and coped with note embellishments to tacedegree.
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The score followers in this project were tested with vaniexgls of success being
reported during subjective and objective testing. The aleesults are that the score
followers achieved some notable successes in accompatngreploists, particularly
for simpler or shorter melodies, and that the . Neverthekbagse is much potential for
further work on setting the HMM probabilities to improve timisicality and accuracy
of accompaniment, especially for more complex melodies.



Chapter 6
Discussion and Conclusions

During this project, a number of score followers with varyilevels of functionality
have been designed, implemented and tested. This chafjéstseon the capabilities
of the score followers produced during this project and irtipalar whether the score
followers have met the requirements specified at the stattteproject. Comments
are made on how the implementation of the score follower&doave been improved,
from the perspective afforded by hindsight. Suggestiorsaéso made for future work
that could be carried out to develop the score followers witire advanced function-
ality.

The project hypothesis, testing the suitability of usinglééén Markov Models for
score following, can now be evaluated in the light of the ewick gathered during
development and testing of the above score followers.

The thesis ends with a concluding summary of what has beaawachduring this
twelve-week research project.

6.1 Capabilities of the score followers developed in this
project

My score follower uses an HMM to follow a musical soloist thgh the score of a
piece, and produce musically acceptable accompanimesn, i€the soloist’'s perfor-
mance is occasionally inaccurate or embellished. Evidérdhis can be found in the
previous chapters of this document.

Currently versions exist that are programmed to recognis@aets from the tradi-
tional melody ofTwinkle Twinkle Little Staand from Andrew Lloyd-Webber'all |
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Ask of You The last version of th®anse Macabrescore follower makes a reason-
able at attempt at tracing the progress of the soloist thrdbg course of the extract
from Danse Macabrgalthough latency issues prevent it from producing a mulgica
acceptable accompaniment.

It matches the performer’s interpretation in terms of thiugee the soloist is play-
ing at, and the various score followers make a reasonal@mpttat gauging the tempo
at which the soloist is playing at. They are good at detectingnges in tempo al-
though further work is required to detect the magnitude ef¢hange in tempo more
accurately. This aspect of the score follower is relatecheoability to track the per-
former accurately through the piece, so as the HMM proh#sliare more accurately
set, this aspect of the score follower works more competent!

Each score follower is able to produce chordal accompaninsanh that more than
one note is sounding at a time. The accompaniment moves iroatbrfashion with
legato (slurred together) notes played where necessaryohe advanced versions,
the score follower can cope with producing accompanimeattritioves independently
of the soloist: so for a given state that the soloist is in,dbeompanist can produce
accompaniment that changes during the time the soloiss stathat state. This al-
lows for much more complex accompaniment to be produceatdeatso gives more
flexibility in what can be chosen as representative by eaclvitate.

As discussed in the previous chapter, the systems evalodie tomparable in
performance to other score followers evaluated during MXREDO6b), although they
do not perform as well as the best system presented in thfsi@te, by Arshia Cont
and Diemo Schwarz at IRCAM.

The standard of accompaniment produced by my score follpsystems for the
two simpler pieces was judged by human musicians to be cahfgato that of human
accompanists, although as pieces became more complexateefeowers struggled
to maintain this standard of performance.

6.2 Meeting the specified requirements

It was specified earlier in this document that the score Wadlowould require:
e A way of receiving musical input from the soloist
e A way of processing musical input from the soloist

e A way of implementing an HMM to analyse musical input from Hwdoist
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e A way of generating musical accompaniment in real-time

The resulting score followers do indeed satisfy all of thespiirements.

6.2.1 Evaluation of project hypothesis

To evaluate my hypothesis that:

Using an HMM representation of the sequence of states in &alissore
is an efficient and practical way to implement score follogvitin partic-
ular it lends well to providing real-time accompaniment tbwaman per-
former

| considered the subjective evaluation from human testedstlae statistics achieved
based on how well the system does at score following. | alssidered my practical
experiences in implementing the score followers.

From the results obtained and the feedback from other tgedteonclude that the
HMM-based score followers can provide real-time accompanit to a human per-
former. The performance was better in some cases than ptidrsugh the HMM
probabilities and exact implementations of the score cpubthably be set more accu-
rately in the cases where the score follower did not producé s good implementa-
tion.

The use of an HMM considerably simplified the implementatibthe score fol-
lowing part of my systems. | did not have to give strong coesation to how the
score follower tracked the soloist through the score, bdyiorplementing the HMM
and the associated probabilities. So the performance aethéting score followers is
pleasing, and | feel that the HMM representation of the domeas very suitable, as
my hypothesis states. With further experimentation aseéatiost appropriate settings
for the HMM probabilities, and perhaps implementation omgoautomatic training
for individual pieces or individual performance stylesttberesults should be possible
for the score followers that did not perform so well.

It is necessary to acknowledge here that the score followdopned more accu-
rately for HMMs with a large number of states when it had reegisome assistance in
addition to the estimated probabilities returned by theNit algorithm. As described
in the Implementation chapter, my score follower gave moeggt to to the proba-
bility associated with the state located next to the cursgatie in the score, in order to
encourage the score follower to work in a more linear and smfashion. This meant
that the HMM probabilities were overridden to some extenbwidver as discussed
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previously, | believe that this is a simplification of theeaft that more accurate HMM
probabilities would have, had there been more time to erpat with probabilities or
to implement training of the HMM probabilities.

One test carried out by testers that had not been anticipedsdio see how the
score follower would deal with the soloist moving in the wgadiirection in the score
To play a musical score from right to left is a rare mistake ynmusical experience;
indeed it is slightly counter-intuitive for Western musins as we are used to reading
from left to right, whether it be music or written text. It isare common, though, to
repeat small sequences of notes during practice, or to maslenards in the score by
jumping to a previous location by mistake, or by performingpeat section. This was
included in the controlled testing that was carried out.

State transitions that dealt with backwards movementsenstiore were not ex-
plicitly included in this project (being guided in this resq by the work in Orio et al.
(2003)). The HMM structure coped well with this situationrithg testing, though.
Here the score follower was able to estimate the currenttimcaorrectly in most
cases, by analysing the soloist’s recent playing. This whsrefit derived from the
use of an HMM that had not originally been anticipated.

A part of my hypothesis that needs further investigatiomighie efficiency of my
score followers. The more complex score followers in thigjgct demonstrate how
latency issues can severely disrupt the performance ofdt@napaniment by the score
follower. Careful consideration needs to be made as to howdccome the large cal-
culation effort involved in larger scale score models (pghby using an alternative to
the Viterbi algorithm or by adjusting it further with morefigiency optimisations). |
note here that the concern with efficiency is not with the gainese of an HMM struc-
ture, but specifically with the extraction of informatiomfn the HMM by calculations
with the HMM probabilities.

So the findings of this research project are that the projgpbthesis has been
proven to some extent, and that an HMM is a good way to implésere following,
but that the HMM probabilities need to be carefully chosettso&Ahere are concerns
about the efficiency of using the Viterbi algorithm to trabk soloist through the score.

Raphael (2001a) now prefers to use Bayesian networks agdtstisal tool by
which he implements score following, although IRCAMsIvi (a commercial score
follower for Max/MSP) is still based on their work in using HW& for score following

IMy testers were deliberately not restricted as to what srmrembellishments they were asked
to include; instead they were asked merely to experimertt thié system as they saw fit, using their
musical knowledge and imagination
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(Orio and Dechelle, 2001; Orio et al., 2003).

6.3 What could be improved upon or done differently,
in hindsight

e Locating the soloist’s current state exactly, for more ctemplong or repetitive
melodies.

Danse Macabravas selected specifically to test my piece as a more chatigngi
solo melody to track the soloist through. This is becausedbiporates much
repetition of note sequences, and some stylistic varidtimm the other scored
piecesTwinkle Twinkle Little StaandAll I Ask of You

Finding the right state ilbanse Macabrevhen it is played correctly is a chal-
lenge for earlier versions of the score follower, as is dwplith mistakes
and other situations where the HMyhoststates are used. More success was
achieved in later versions of tlizanse Macabrecore follower, where a greater
degree of accuracy was reported during objective testisgs(discussed in more
detail in the Testing Chapter). These more advanced scdoeviais restricted
the states considered by the score follower as potential states to a set of
states, local to the current position. These were betteraaking the soloist
through the score when the soloist played in a generalhatifi@shion through
the piece. Some extra work here would enable the score fetoto deal better
with situations where the soloist moved to a location faryafam the previous
location. Such situations would include the scenario wh&oepages in the mu-
sic were turned over at the same time and hence a page waslroisser if the
soloist skipped to a different location in the score by nkista

e Latency issues and efficiency of calculation

A more efficient way of finding the current state is needednplement real-
time accompaniment more successfully.

Pardo and Birmingham (2005) found that implementing thevaods-Backwards
algorithm gave a similar level of performance to the Vitealgorithm, and in

some cases the Viterbi algorithm outperformed the Forw&alskwards algo-
rithm.
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Orio and Dechelle (2001) describe how decoding is a quiakénaore error-free
method than Viterbi, with a similar computational cost. Wifal, though, that the
computational cost for Viterbi was high for larger scoreshwnore states. This
was due to the high computational cosissociated with the calculations that
were necessary for the Viterbi algorithm, rather than myichof state model.
Nevertheless there may be a decoding technique that is noonpwtationally
efficient technique, and research into this would be worilevh

e Ornamentation and Embellishments

Although the score followers in this project were reasopahlpable of detecting
and recovering from errors in the soloist’s playing, in geéhey did not per-
form accompaniment particularly well underneath ornareémotes and added
embellishments. This was especially noticeable onTihekle Twinkle Little
Star score follower, but was one of the improvements noticed erttore ad-
vanced score followers such as thoseAdrl Ask of You

It is to be acknowledged that in my design of the HMM probaileti and during
development, | concentrated more on error handling ratteer tlealing with mu-
sical embellishments. The way in which musical embellishimare interpreted
by a score follower is worthy of consideration separate femnor-handling, but
at the time of development this had not been seen as nece¥giinymore ex-
perimentation and testing in this area, the probabiliteshe HMM could be
adapted to better cope with musical embellishments. The sé@presentation
could also be altered to recognise trills, turns and othebadiishments as a
single musical event rather than as a sequence of many rhageras.

e Measuring the current tempo when the HMM is not finding theistks current
location correctly

These score followers used a simple implementation of baeilting. In testing,
the beat tracking appeared to work quite well for the simpédadies, however
there was a problem with more complex melodies. This wasusecaf the re-
liance on the state to be located correctly in order to gaue lengths, and
therefore the expected distance between observationslt&native implemen-
tation of beat tracking that could have been tried was tauthelthe use of the
previous tempo to work out roughly how many beats had passedeen two

20f the order ofNM, where N is the number of states in the HMM and M is the numbgosskible
observations
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note inputs, as opposed to relying on the HMM to have estidhéie next state
correctly in all occasions.

6.4 Suggestions for possible future work

The following extensions could be feasibly added to theeséolfowing systems cre-
ated in this project:

e Automatically extracting (learning) of the score and HMMusture from a
MIDI file. (The score and HMM structure are currently prograed in by hand.)

It would be simple to add this as an extension to the curremresiollowers, as
this information is encoded in separate text files which ttwesfollowers read
in when the program is started. All that would be needed isyaf@enerating
the content of these text automatically, which could be donklax/MSP or
alternatively in another program such as Matlab.

During the development phase, some initial experimematiith this was car-
ried out in Matlab, using the MIDI toolbox for Matlab (dedweid in Chapter 2).
Some text files were generated for the HMM structure from Mil2k although
they contained a number of errors, due to errors in my Mattadec With a little

further work, though, this should definitely be possiblertgpliement fully.

e Update the system to be able to receive musical input fromnuments rather
than just from a MIDI keyboard (for example by playing a flutéoi a micro-
phone)

The processing of an audio musical signal is part of the MSRypthe Max/MSP
program, so again it is reasonable to consider adding thisetgcore followers
developed in this project.

This project deliberately did not address how to implemarg signal process-
ing, but instead considered purely MIDI input, for reasofgroject scope given
the time constraints.

A number of research efforts have attempted to implementasigrocessing
(for example Raphael (2001b); Orio et al. (2003); Orio antvarz (2001)),
but it is acknowledged in a summary of score following reskgOrio et al.,
2003) that this adds an extra degree of complexity to theemphtation of the
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score follower. The details published in the literature \@othough, be a useful
starting guide if adding this functionality to my score tilers.

e See if machine learning techniques could help the scorevielt to learn a par-
ticular performer's common embellishments and/or missaldgy training the
HMM)

HMMs can be trained such that the HMM probabilities are refjnesing algo-
rithms such as thBaum-Welch algorithm (Durbin et al., 1998; Rabiner, 1989).
With some additional implementation effort, HMM trainingrcbe added to the
score followers developed in this project, in a similar manto how the HMM
structures and use of Viterbi algorithm were implemented.

Although applying traditional HMM training methods to therdain of score
following has been considered to be less useful than aateth(Schwarz et al.,
2004; Smaill, 2007), there has been recent research at IRGrdvnew HMM
training methods specifically for the domain of score folilogv (Cont et al.,
2004). It would be interesting to see HMM training could ioype my score
followers. Effective training could improve the accuradytlte probabilities for
the HMM and, as a consequence, also improve the quality dbymeance for
this project’s score follower.

e Add knowledge to the score follower that allows it to respamanusical cues
and feedback from the soloist, to co-operate with the sbéoid achieve a joint
performance

This arose from observations of how my testers were attergdi interact with
the score followers and give them musical cues. It would Issibde to extend
my system to interpret such musical cues, but would requinaerted research
effort into how and when musicians use such cues.

e Extend the project further to be helpful for teaching pugxby adding a “tutor”
that gives feedback to the performer on how they deviatenh filoe score (to
learn from mistakes)

For example the student could be accompanied by the systangadupractice
performance. The system could be adapted to produce feledibdice student
after a practice performance. This feedback would tell tiveinere their per-
formance deviated from the ideal model of the score (e.g.p@int S1 in the
score the tempo of your performance sped up”, “At points S2a8d S4, the
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notes were not held for their full note value”, etc). This Wwbhbelp the student
learn from mistakes that they may not otherwise have notitetthe system is
developed to the point that it can be trained for a specifiéopeer, then this
error recognition would help identify common mistakes made

This should be relatively feasible and could be implemehbtea feedback mech-
anism that is triggered whenever the HMM entergleststate. The system
would record the fact that thighoststate had been entered and would record
what the next state transition was (which would help desctiie type of error
that was made).

6.5 Concluding remarks: What has this work achieved

This project has examined the effectiveness of Hidden MaModels for score fol-
lowing and concluded that they are a useful tool with whiclntplement score fol-
lowing systems.

During the lifetime of this project, HMM-based score follerg have been de-
veloped in the interactive real-time music processing remment Max/MSP. These
score followers incorporate various enhancements suckeasttacking, the handling
of longer scores and the ability to produce complex accomnpeamnt that changes whilst
the soloist remains in a particular state.

During development, a Hidden Markov Model structure wasially implemented
in Max/MSP to model the scores and to carry out the Viterboatgm.

My score followers are able to determine which HMM state thleist is currently
in, by analysing what the soloist has just played againsteaiBpd score. They can
then play the appropriate accompaniment for that state.

Performances by each score follower have been evaluatgetsiubly by testers of
varying musical ability and experience, and also by the abje criteria that was used
to evaluate score followers at the Music Information RetaieEvaluation eXchange
conference of 2006. Overall the score followers have bedéntalproduce real-time
accompaniment to a human soloist, playing one of threerdiftepieces, of varying
complexity. In most cases the accompaniment was musicpflyopriate throughout
the performance of the piece, even when the soloist perfodevated from the score
by making errors or adding embellishments to the music peréal.



Bibliography

Bloch, J. and Dannenberg, R. B. (1985) Real-Time Accompaninof Polyphonic
Keyboard PerformanceProceedings of the 1985 International Computer Music
Conferencepp. 279-290.

Cano, P., Loscos, A. and Bonada, J. (1999) Score Performaathig using HMMs.
Proceedings of the 1999 International Computer Music Comigze

Cont, A. and Schwarz, D. (2006) Score Following Propolsil://www.music-ir.
org/mirex2006/index.php/Score_Following_Proposal .

Cont, A., Schwarz, D. and Schnell, N. (2004) Training IRCAMs@&d-ollower.AAAI
Fall Symposium on Style and Meaning in Art, Language and &/usi

Dannenberg, R. B. (1984) An On-line Algorithm for Real-tilkecompanimentPro-
ceedings of the 1984 International Computer Music Conference

Dannenberg, R. B. (1989) Real-time Scheduling and ComputeodpanimentMIT
Press Series in System Development Foundation BenchpmarR25-261.

Dannenberg, R. B. (2000) Atrtificial Intelligence, Machinedtning, and Music Un-
derstanding. Proceedings of the 2000 Brazilian Symposium on Computerdviusi
Arquivos do Simpsio Brasileiro de Computao Musical (SBCM)

Dixon, S. (2001) Automatic Extraction of Tempo and Beat Friérpressive Perfor-
mancesJournal of New Music Researctol. 30(1):pp. 39-58.

Durbin, R., Eddy, S., Krogh, A. and Mitchison, G. (19®blogical Sequence Analy-
sis: Probabilistic models of proteins and nucleic aci@ambridge University Press.

Grubb, L. and Dannenberg, R. B. (1998) Enhanced Vocal Ragnce Tracking Using
Multiple Information Sources.Proceedings of the 1998 International Computer
Music Conferencepp. 37-44.

MIREX (2006a) Audio Beat Tracking.http://www.music-ir.org/mirex2006/
index.php/Audio_Beat_Tracking

MIREX (2006b) Score Following Resultisttp://www.music-ir.org/mirex2006/
index.php/Score_Following_Results

Orio, N. and Dechelle, F. (2001) Score Following Using Sg&nalysis and Hidden
Markov Models. Proceedings of the 2001 International Computer Music Confer-
ence

85



Bibliography 86

Orio, N., Lemouton, S., Schwarz, D. and Schnell, N. (2003)r8¢ollowing: State of
the Art and New Developmentdlew Interfaces for Musical Expression, Montreal

Orio, N. and Schwarz, D. (2001) Alignment of Monophonic amdyphonic Music to
a Score.Proceedings of the 2001 International Computer Music Comigge

Pardo, B. and Birmingham, W. (2005) Modeling Form for Orelifollowing of Mu-
sical Performanced?roceedings of the Twentieth National Conference on Artificia
Intelligence, Pittsburgh, Pennsylvania

Rabiner, L. R. (1989) A Tutorial on Hidden Markov Models arelegted Applications
in Speech RecognitiorRroceedings of the IEERoI. 77(2):pp. 257-286.

Raphael, C. (1999) Automatic Segmentation of Acoustic Malstignals Using Hid-
den Markov Models. IEEE Trans. Pattern Analysis and Machine Intelligence
vol. 21(4):pp. 360-370.

Raphael, C. (2001a) A Bayesian Network for Real-Time Musfkatompaniment.
Neural Information Processing Systems

Raphael, C. (2001b) Music Plus One: A System for Flexible axugt€ssive Musical
Accompaniment.In Proceedings of the 2001 International Computer Music Con-
ference

Raphael, C. (2007) Personal email correspondence.

Raphael, C., Cont, A., Schwarz, D., Litterst, G., West, K., \@&huetterhoef, A.,
Good, M. and Downie, S. (2006) Score Following (Discussiohjtp://www.
music-ir.org/mirex2006/index.php?title=Score_Follow ing .

Schwarz, D., Orio, N. and Schnell, N. (2004) Robust Polyphbftidi Score Following
with Hidden Markov Models. Proceedings of the 2004 International Computer
Music Conference

Smaill, A. (2007) Personal communication regarding an IRCpelsentation on score
following, attended circa 2002.

Toivainen, P. (2007) Personal email correspondence.

Vercoe, B. L. (1984) The Synthetic Performer in the Contextive Performance.
Proceedings of the 1984 International Computer Music Comnieze

Vercoe, B. L. and Puckette, M. S. (1985) Synthetic Reheafsalning the Synthetic
Performer.Proceedings of the 1985 International Computer Music Conieze

Zicarelli, D., Taylor, G., Bernstein, J., Schabtach, A.,d2g, R. and DuBois, R. L.
(2006) Max/MSP v4.6 Tutorials and Documentation. Avaiatobm http://www.
cycling74.com/download/maxmsp463doc.zip



Appendices

87



Appendix A
Repertoire for my score follower

. Twinkle Twinkle Little Staextract with simple monophonic bass line accompa-
niment

. Twinkle Twinkle Little Staextract with simple chordal accompaniment
. All I Ask of Youextract with simple chordal accompaniment
. All'l Ask of Youextract with more complex chordal accompaniment

. Danse Macabrextract
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Twinkle Twinkle Little Star
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Figure A.1: Twinkle Twinkle Little Star extract with simple monophonicdblase ac-
companiment

Twinkle Twinkle Little Star
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Figure A.2: Twinkle Twinkle Little Star extract with simple chordal acc@njment
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All T ask of you
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Figure A.3: All I Ask of You extract with simple chordal accompaniment
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All T ask of you

Aodrew Lloyd -Webber

= = -
Ao — — — = o ) . !
1 I » f f I
F B 1 A I I I I
| e T L W] I I 1 1 1 Far
K [ T
Fiano
T t | J— ] t *
L T — —1 — e I
7 — N I 1 - -
| =— 1 vl [ |
—=] | | - |
no £ . ., I
§ i a - S <¥
F T — I i i . i B Fy
| I T | T | T T T |
A T T ! T ! T
'] I
. B
| p— | fF_'F‘ — 1
o Cm = e i - 1
= = S C— ===
——tar L =4 '
| e I
[+
T
F ;Y —
| . T
o
o
T T e |
F.d h 1 o e Tnumy |
B* =

Figure A.4: All | Ask of You extract with more complex chordal accompanime



=

92
Saint Saens

&

|
.

=
L
.

1.5

=4

Danse macabre

L)1

JF b oF

]}

Fally T

Recarder
Piano

Pno.
Rec.

Appendix A. Repertoire for my score follower
Rec.

Figure A.5: Danse Macabre extract

-k
]

Pnao.



Appendix B

An example of the Hidden Markov

Model probabilities: Twinkle Twinkle

Little Star

N.B. N, M, A, B,itandV refer to the abbreviations used in Rabiner (1989) for each
part of the HMM settings described in Chapter 2, such zhat{N,M,A B,V }

< 4 w » < =z

no of states= 15

no of possible observations 12

state transition probabilities- (see B.1)
observation probabilities= (see B.2)
initial probabilities = (see B.3)

possible observations- {0,1,2,3,4,5,6,7,8,9,10,11}
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0

1

2

3

5

6

7

8

9

10

11

12

13

14

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

© 0O N OO 0ol A W N P+, O

el el =
w N Rk O

=
IS

0.45
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.1
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.45

0.81

0.45
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.1
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.05
0.45
0.82
0.45

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0
0.0
0.0
0.0
0.1
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.01
0.0
0.05
0.45
0.83
0.45
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.01
0.0
0.01
0.0
0.05
0.45
0.84
0.45
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.1
0.0
0.0
0.0
0.0
0.0

0.0
0.01
0.0
0.01
0.0
0.01
0.0
0.05
0.45
0.85
0.45
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0

0.0
0.01
0.0
0.01
0.0
0.01
0.0
0.01
0.0
0.05
0.45
0.1
0.5
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.9
0.5
1.0
1.0

Table B.1: state

one state to another (A)

_transitions.txt

: The probabilities associated with transitions from
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Emission:| O

1

2

3

4

5

6

7

8

9

10

11

0.0
1.0
0.0
1.0
0.091
0.0
0.091
0.0
0.091
0.0
0.091
0.0
0.091
0.0
0.0834

© 0O N OO 0ol A W N P+, O

el el =
w N Rk O

=
IS

0.091
0.0
0.091
0.0
0.091
0.0
0.091
0.0
0.091
0.0
0.091
0.0
0.091
0.0

.083:

0.091
0.0
0.091
0.0
0.091
0.0
0.091
0.0
0.091
0.0
0.091
0.0
0.091
0.0

0.091
0.0
0.091
0.0
0.091
0.0
0.091
0.0
0.091
0.0
0.091
0.0
0.091
0.0

$.0833.0831

0.091/0.091

0.0

0.0

0.091/0.091

0.0

0.0

0.091/0.091

0.0

0.0

0.091/0.091

0.0

0.0

0.091/0.091

0.0

0.0

0.091/0.091

0.0

0.0

0.091 0.091

0.0

©.0831

0.0

0.091
0.0
0.091
0.0
0.091
0.0
0.091
0.0
0.091
0.0
0.091
0.0
0.091
0.0

$.083%.0831

0.091
0.0
0.091
0.0
0.0
1.0
0.0
1.0
0.091
0.0
0.091
0.0
0.0
1.0

.083:

0.091]
0.0
0.091
0.0
0.091
0.0
0.091
0.0
0.091
0.0
0.091
0.0
0.091
0.0

©.0834

0.091
0.0
0.091
0.0
0.091
0.0
0.091
0.0
0.0
1.0
0.0
1.0
0.091
0.0

D.0834

0.0

0.0

0.0

0.0

0.091] 0.09

0.0

0.091] 0.09

0.0

0.091] 0.09

0.0

0.091 0.09

0.0

0.091] 0.09

0.0

0.0

0.091 0.09

0.0

0.0

0.0

0.091 0.09

0.0

D.0834.0834

Table B.2: emission _probabilities.txt

tion in a state (B)

The probabilities of seeing each observa-
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State|| Probability
0.1
0.75
0.0
0.05
0.0
0.04
0.0
0.03
0.0
0.02
0.0
0.007
0.0
0.003
0.0

© 0O N OO ol W N P+, O

L e e i =
D W DN R O

Table B.3: initial ~ _probs.txt  : The probability of starting in each state (1)



Appendix C
Technical program detalil

My score follower system is written in Max/MSP. This is arargctive music-processing
environment that runs in real-time.

Rather than program code, in Max/MSP the program is cartigtppassing infor-
mation throughout the program, to variopatcher objectsThese patcher objects are
analogous to procedures or functions in more conventiorm@rpamming languages.

This appendix shows screenshots from the main score fotlpregram windows.
These screenshots express the workings of the score folfmegram as a code listing
would do for a Java program or similar.

The screenshots included below show how the fundamenttd pathe program
have been programmed.

To interpret how each patcher in the program works: whereettsea choice of two
or more information flows to choose, by default Max/MSP pagsse the right-most
information first, then works right-to-left. It operates apih-first strategy, meaning
that all information flow possible is carried out in one peutar branch before the
program moves onto the next branch.

In these screenshots, each window is an individual pat&aah patcher is pictured
with its sub-patchers (patchers that are called during gezation of that patcher).

In general, information flows from thialet at the top of the patcher, through the
patch cordgblack lines connecting each box in the patcher). Each baixttte infor-
mation reaches does some processing on that information.

At the bottom of the patcher is usually antletthat passes information onto the
next patcher (unless this patcher does not send out infamit another patcher).

The other main ways of getting information in and out of theathers are:

e notein and noteout objects pick up MIDI note messages frenMi| keyboard

97



Appendix C. Technical program detalil 98

and send MIDI note messages to the keyboard, respectively.

e send and receive objects exchange information betweenatheh They have
global scope, across the program.

e value objects are the Max/MSP variable. Values are availghlibally. Infor-
mation stored in a value is retrieved by sending a 'bang’ mgsdo a value
object.

e coll objects are the Max/MSP array structure. As for valwe#,data is available
globally.

Notes on how Max/MSP works

e Max/MSP documents are called Patchers.

e A Patcher is a collection of Objects that have Input/Outplgts/outlets.

e Functionally, a Patcher can be thought of as performingladaprocedure

e There are a large number of Objects available with specifictions e.g. midi-
out generates MIDI output.

e Objects pass messages to each other through their inlgé&tgouThis is how
information flows through the Patcher.

e Messages can take the form of numbers, words (called SynmbMsx/MSP),
a list of numbers e.g. 1 585 12, or a combination of numberssards.

e One message which is particularly useful is thengmessage. This tells the
receiving object to immediately carry out the function ttet object is designed
to do. So thdbangmessage is useful for, among other things, triggering afhsio
generation after having made the appropriate observation.

e Objects can take arguments (for some objects this is neydssat to operate).

e A Patcher can be used inside another Patcher by calling ialbyenwithin that
Patcher.

Max/MSP does in fact have a very simple score follower obgeetlable for use.
Thefollow object is able to process an incoming stream of notes and stake com-
parisons against a pre-programmed sequence of expectesl idwever this object is
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limited in its applications, as acknowledged in the Max/Mffeumentation (Zicarelli
et al., 2006) (Tutorial 35) and it is considered to perfornofiy as score following
scenarios (Raphael, 2007). Also, if I had used this objeetuld not be able to test
my hypothesis about the suitability of Hidden Markov Modfgls performing score
following. So whilst | acknowledge that this object is awadile, | did not feel it was
necessary to make use of it in this project.

The files that make up my score followers can be downloadewh frtp:/
homepages.inf.ed.ac.uk/s0676484

Extensive Max/MSP documentation and tutorials (Zicasglil., 2006), as well as
a trial version of the Max/MSP software (for Windows or Mac)&n be downloaded
from http://www.cycling74.com
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Figure C.8: How the score follower generates accompaniment (part 1)
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Figure C.9: How the score follower generates accompaniment (part 2)



Appendix D
Test melodies

During the objective testing process, the score followeesewested five times, with
specific amendments being made to the melodies. Detaileséthmendments are as

follows.
For Twinkle Twinkle Little Starthe following adaptations were made for testing

purposes:
e Selected errors added to melody:

— An extra note ) added between the seco@df bar 1 and the firsG of bar
2
— The wrong note played on bar 2 beat Z3éinstead of &)

— Skipping out theA at bar 3 beat 2
e Selected embellishments added to melody:

— An acciaccatura(Definition E.1)rapidly played note added just before the
scored note, played on the beat is added tcCthebar 1 beat 2

— A trill (Definition E.6) is added to theat bar 2 beat 2

— A turn (Definition E.7) is added between the secémf bar 3 and thé&in
bar 4

e Selected tempo adjustments made whilst playing the melody:

— The system was told that the soloist would be playing at 50bseconds
per beat (ms/beat), but the soloist actually played at 600eas.

— At the start of bar 3 the soloist’s tempo changes suddenlp@ms/beat.
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For All I Ask of Yoy the following adaptations were made for testing purposes:
e Selected errors added to melody:

— Skipping out theC at bar 1 beat 2
— The wrong note played on bar 2 beat B(aatural instead of &b)
— Bars 3 to 4 repeated (play bar 3, then bar 4, then bar 3, thes)bar

— During the first repeat of bars 3-4, the rhythm in bar thredayed incor-
rectly: a dotted minim (3 beats) followed by a crotchet (1thesther than
two minims (2 beats each)

— Wrong notes played in bar 6. The(beat 2) becomes theBb becomes
aCand theD becomes ai natural

— Skipping out the first two notes of bar 7 (so that that part eftiar is missed
out entirely and only two beats of bar 7 are actually playemde the- on
bar 7 beat 3 is held for 6 beats, as scored)

— TheBb is held for a beat too long before being released (so it isksihg
played during the first beat of the next bar)

e Selected embellishments added to melody:

— A turnis added between the secoddf bar 1 and the& at bar 2 beat 1

— Two grace notegDefinition E.3) Eb andF) are added before the fir6tin
bar 3

— An appoggiaturaDefinition E.2)A is added before théin bar 4
— An inverted morden(Definition E.4) is added before thein bar 5

— A slideof notes (Definition E.5) is played from theat bar 6 beat 2 down
to theBb on beat 3

— A trill is added to the lagt, starting on bar 8 beat 1
e Selected tempo adjustments made whilst playing the melody:

— The system was told that the soloist would be playing at 50@seconds
per beat (ms/beat), and the soloist does start playing aspeed.

— The soloist speeds up gradually and consistently during bao 4, reach-
ing a final speed of 300 ms/beat at the start of bar 5
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— At the start of bar 6 the soloist’s tempo drops suddenly to ®@{beat (as
if they had realised they were speeding up and overcompgagsat

— On the third beat of bar 7, the soloist’s tempo returns to tigiral speed
of 500 ms/beat, and remains at that speed for the rest of doe pi
For Danse Macabrgthe following adaptations were made for testing purposes:

e Selected errors added to melody:

— Skipping out theBb at bar 3 beat 3 (such that this whole beat is missed out)

— An extraBb crotchet is added in between beats 2 and 3 of bar 5 (so this bar
now has 4 beats instead of 3)

— At bar 7, the notes at beats 2 and 3 (Ebeand the seconfb) are missed
out. (This mistake is inspired by a mistake that was condilytenade by
one of the testers during the subjective evaluation).

— A wrong note is played on the lagtiaver of bar 9 (theEb is played as &)

— Bars 11 and 12 are repeated (so bar 11 is played, then bareiPb#r 11,
then bar 12)

— TheEb on beat 1 of bar 13 is played as Bmatural  (then the seconHb,
on beat 2 of this bar, is played correctly askn

— An extra quaver is played in bar 14 (&b quaver is added in between the
Gon beat 1 and thE on beat 2)

— Several notes are skipped in bars 15-16. The run of nelte& Eb F G
from bar 15 beat 2 to bar 16 beat 1 are omitted entirely.

— The lastEb in bar 16 (the second half of beat 3 of this bar) is played as an
E natural

— Therest on beat 3 of bar 17 is replaced by the playing of aataarotchet
D
e Selected embellishments added to melody:
— A slide of notes is added between the sec&hdn bar 3 (beat 3) and the
firstEb in bar 4 (beat 1)
— Grace note8b andC are added just before tlieon beat 1 of bar 9

— Grace noteshb andF are added just before tti#h on beat 1 of bar 11
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e Selected tempo adjustments made whilst playing the melody:

— The system was told that the soloist would be playing at 2Q0seonds
per beat (ms/beat), and the soloist does start playing tspleed

— At the start of bar 3, the soloist changes tempo so they agengjaat 150
ms/beat

— This tempo is maintained until bar 9, beat 2, where the stdoismpo
changes to 175 ms/beat

— Atbar 11, beat 1, the soloist’s tempo slows to 200 ms/beat

— At bar 13, beat 1, the soloist’s tempo slows further to 300beat (these
continual decreases in tempo are representative of a typeation to
harder passages, which is to slow down for these harder plathe piece)

— At bar 15, the soloist’'s tempo picks up to 200 ms/beat (reprisg that
they are getting more comfortable with playing this parthad piece)

— The last bar is played at a slightly faster tempo of 150 ms/sepresenting
how the soloist might rush the last bar as they have reacleedriti of the
piece).



Appendix E

Glossary of terms used for musical

ornamentations and embellishments

The following diagrams are taken frohttp://www.gc-music.com/Ornament.htm
(except for the grace note and slide diagrams which are moxem interpretations
of embellishment than is covered in this list).

In choosing which musical ornamentation to use duringrigsti aimed to choose
embellishments which | felt matched the style of the pieceach case (though |
acknowledge that this is a subjective process).

For further details on different types of ornamentation ambellishments of notes,
http://www.gc-music.com/Ornament.htm andhttp://en.wikipedia.org/wiki/
Ornament_(music)  both give good descriptions and examples of common musical
embellishments.

D>
'

Figure E.1: Acciaccatura a rapidly played note added just before the scored note,
played on the beat
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Figure E.2: Appoggiatura A short note added just before the scored note, played on

the beat and sharing half the duration of the scored note

AN A = '_\F

’_J [ [

Figure E.3: Grace notes Quickly played note(s) added just before the scored note,
played just before the beat
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Figure E.4: Inverted Mordent Two quick notes, the note above the scored note and
then the scored note, played sequentially and added just after the scored note, played

just after the beat
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Figure E.5: Slide a scalar run of notes moving gradually up or down, in quick succes-

sion

Figure E.6: Trill: a repeated playing of two notes one after another: the scored note

and the pitch just above it
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Figure E.7: Turn: a sequence of a few notes in a pattern of up-down-up movement,

added between two scored notes and played off the beat



