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Background in Music Performance and Accompaniment. Musical accompanists may not always be available 
during practice, or the available accompanist may not have the technical ability necessary. As a solution to this 
problem, many musicians practise with pre-recorded accompaniment. Such an accompaniment is fixed and does not 
interact with the musician’s playing: the musician must adapt their performance to match the recording. It is more 
natural for the musician if the accompaniment adapts to fit the performer. To synchronise accompaniment with soloist, 
an accompanist should be able to follow the musician through the score as they play. Complications arise if the 
performer deviates from the score: either intentionally, by adding their own musical interpretation, or accidentally, by 
making performance errors. The accompanist should be able to adjust to such behaviour.  

Background in Computing, mathematics and statistics (in musicology). There are several ways to give 
mathematical models of statistical information associated with discrete linear sequences of observations. Hidden 
Markov Models (HMMs) work by supposing that the observations depend statistically on some hidden states of the 
system, and on the most recent hidden states and observations (Rabiner (1989)). The associated statistical 
information can be learned algorithmically, or estimated otherwise; such a system is then able to generate new 
observation sequences that exhibit the same statistical patterns. This approach has proved effective in capturing local 
properties of sequential data in many areas, e.g. biology (Durbin et al. (1998)), as well as in musicological analysis. 

Aims. This work investigates how an intelligent artificial musical system can follow a human musician through the 
performance of a piece (perform score following) using a Hidden Markov Model of the piece’s musical structure. The 
system interacts with the human musician in real-time and provides appropriate musical accompaniment. 

Main Contribution. Prior research using HMMs in score following has concentrated on modelling note onsets, 
durations and offsets (e.g. Cano et al 1999), or on modelling events in the score: patterns of notes that have been 
selected as significant to look out for (e.g. Orio et al 2003). This work concentrates on modelling the musical structure 
of a piece by using HMM states to represent individual beats of the piece, an approach to score following which to the 
best of the authors’ knowledge has not been tried before. Here we were influenced by recent advances in beat tracking 
(Gouyon and Dixon 2005). Having successfully implemented this representation, the performances of the resulting 
artificial accompanists were evaluated by human testers and by using objective criteria based on that used at the 
Music Information Retrieval and Exchange conference in 2006. Accompaniment accuracy was measured at a total 
precision level of 60.89% and piecewise precision of 54.05%, comparable to systems tested at MIREX 2006. 

Implications. Using HMMs considerably simplified implementation of our artificial accompanists. We did not need to 
consider how the artificial accompanist tracked the soloist through the score, beyond modelling the musical structure 
using an HMM. This compares favourably to other score following methods that have been tried (e.g. Vercoe 1984, 
Dannenberg 1989), where a score following algorithm must be specifically encoded.  

An unforeseen but fascinating result of this experimentation was the observed importance of co-operative feedback 
and communication in the performer/accompanist scenario in real-life. To date, score following research has 
concentrated on the artificial accompanist following the soloist, however our results suggest it would be worthwhile to 
pursue future research that focus more on co-operation between soloist and accompanist.

Consider a flautist who is performing a solo 
piece at a concert, with a pianist providing 
accompaniment. The piano accompanist 
listens to what the flautist is playing, to 
ensure their accompaniment matches the 
flautist. The flautist’s performance may 
occasionally deviate from what is written in 

the score. In these cases the piano player 
adjusts their accompaniment accordingly. 

Score following is the process where a 
musician follows another musician’s playing of 
a musical piece, by tracking their progress 
through the score of that piece. The term is 
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most commonly used in the context of 
computer-generated accompaniment, where 
one or more of the musicians involved are 
artificial rather than human.  

Early attempts to implement score following 
centred around dynamic programming and 
pattern matching (Vercoe (1984), 
Dannenberg (1984)). Probabilistic methods 
were first attempted by Grubb and 
Dannenberg (1998). This work paved the way 
for the use of Hidden Markov Models (HMM), 
a stochastic modelling technique, which has 
emerged as a promising way of implementing 
score following (Orio and Dechelle (2001), 
Raphael (2001), Schwarz et al (2004), Pardo 
and Birmingham (2006)).  

During this research, artificially intelligent 
accompaniment systems were developed. 
These artificial accompanists used a Hidden 
Markov Model representation of the musical 
structure of a piece of music, to follow the 
soloist’s progress through the musical score 
and provide accompaniment in real-time.  

We chose to use a slightly different approach 
in fitting Hidden Markov Models to the music 
being performed: modelling the music beat 
by beat, as opposed to identifying significant 
events in the score (e.g. Orio et al 2003), or 
using HMMs to process the incoming audio 
signal (e.g. Cano et al 1999). To the best of 
our knowledge, this use of HMMs to model 
musical structure by beat rather than by note 
or musical event has not been attempted 
before in score following research. 

The more advanced systems developed 
during our research incorporated beat 
tracking, complex accompaniment and 
relative score positioning.  

Three musical pieces of varying complexity 
and length were programmed into the 
different versions of the artificial 
accompanists. Testers of varying musical 
ability and experience evaluated the 
performance of each artificial accompanist 
subjectively. Each artificial accompanist was 
also tested objectively by criteria that was 
used to evaluate artificial accompanists at the 
Music Information Retrieval Evaluation 
eXchange conference in 2006; hence some 
general comparisons could be made between 

this work’s score following systems and 
alternative score following systems.  

The purpose of this work was to test the 
practicality and efficiency of our HMM 
representation of musical structure by beat, 
specifically for an artificially intelligent 
accompaniment system. This paper presents 
our findings, highlighting some interesting 
observations that arose during this research. 

Accompaniment issues for musicians 

Think back to the flautist performing 
alongside a piano accompanist. There are 
several reasons why the flautist may not 
perform the piece exactly as written. They 
may make mistakes: missing some notes out, 
misplaying others or adding extra notes. In 
addition the flautist should have the freedom 
to add musical embellishments that do not 
exist in the original score, without this 
disrupting the accompaniment. The 
accompanist should adjust their playing, 
according to any such deviations from the 
written score by the flautist. Providing 
musical accompaniment, then, is not 
necessarily a straightforward process.  

Outside of performance, it is also useful for a 
musician to have access to accompaniment 
during practice. The musician can learn how 
the accompaniment sounds. From this they 
can derive valuable assistance for future 
performance. As example, the musician would 
be aware of the underlying harmony provided 
by the accompaniment, and of any musical 
cues they could use.  

Accompanists may not always be available 
when needed for practice or performance. A 
related problem is that the accompanists 
available may not have sufficient technical 
ability to provide adequate accompaniment.  

One possible solution to these problems is to 
use accompaniment that has been generated 
automatically by a computer or recording. 
Many musicians practise playing over 
recorded or computer generated 
accompaniment where the accompaniment is 
static, i.e. it will not change from one 
performance to another. This means, though, 
that the musician may need to adapt their 
performance to match the recording.  
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It is more natural for the musician if the 
accompaniment adapts to fit the performer. 
Raphael (2001) describes this as moving from 
“music minus one” to “music plus one”. To 
dynamically synchronise the accompaniment 
with the performance by the musician, it 
would be necessary for the accompanist to 
track the performer in some way through the 
score of the piece as they play. This may 
become complicated if the performer deviates 
from the score.  

Hidden Markov Models 

Hidden Markov Models (HMM) are a stochastic 
modelling tool, popular in a variety of 
domains from speech processing (Rabiner 
(1989) to biological sequence matching 
(Durbin et al, (1998)).  

Real-world systems that produce some kind 
of observable signal can be modelled with 
HMMs. In particular this includes systems that 
operate non-deterministically: systems whose 
behaviour cannot be predicted exactly by 
using algorithmic rules or formulae.  

Probabilities are used in the HMM to represent 
the system's observable behaviour and to 
represent internal (hidden) facets of the 
system. The HMM can then be used to 
process these observable signals to explain 
the system's behaviour and make probability-
based estimates about future behaviour. 

As Rabiner describes in his comprehensive 
tutorial (Rabiner (1989)), a system modelled 
with an HMM can be considered to be in one 
of a finite number of states at any given time. 
We can gain information about what state the 
system is currently in by examining recent 
outputs from the system (`observations'). 
The actual states themselves can not be 
observed, just the sequence of observations 
that result from the system passing through 
those states. The observed output can be 
interpreted as being “a probabilistic function 
of [the system being in] the state” (Rabiner 
(1989), p. 258).  

The relationship between individual states 
and observations is not a functional 
relationship but a many-to-many relationship; 
one observation may be produced by many 
system states, and in turn there may be more 
than one possible observation should the 

system be in a given state. Durbin (1989) 
highlights the fundamental difference 
between Hidden Markov Models and Markov 
chains: with an HMM, you cannot gauge what 
state the sequence is in purely from the 
current observation in isolation. There is not a 
one-to-one correlation between states and 
observations with HMMs, though there is with 
Markov chains. 

Score Following using HMMs 

A musical score is divided up into a sequence 
of musical events (for example where one 
note is considered as one modellable musical 
event). 

The artificial accompanist is given a Hidden 
Markov Model that represents these musical 
events, and uses an algorithm such as the 
Viterbi algorithm to estimate what state the 
performer is most likely to be in at that time, 
i.e. which musical event in the score the 
performer is currently playing. 

The aim is to find the most probable state 
sequence that generated the given sequence 
of observations (notes played by the soloist). 

This work uses the Viterbi algorithm is used 
to find out which state the soloist is most 
likely to be in (given observations of recent 
notes played by the soloist). 

Implemented in the traditional fashion, this 
algorithm finds the globally optimum path 
through the Hidden Markov Model states to 
the most probable current state, using the 
history of observations seen. However in 
score modelling we instead require a locally 
optimal path to the current point. This is 
because we are interested in the correct 
accompaniment playing at the right time, 
even if the resulting path through the music 
overall is not the most probable path when 
the performance is viewed as a whole. 

To fit an HMM to a piece, events in the 
performance (for example rests, notes, trills, 
chords, and so on) are modelled by HMM 
states. The notes played by the soloist form 
the observations which the Viterbi algorithm 
uses to track the performer's progression 
through the score. 

Whilst the model encapsulates the score of 
the music, it must also allow for cases when 
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the performer deviates from the score. 
Inspired by the approach taken by Orio and 
Dechelle (2001), we model each event in the 
piece in parallel with both a normal state and 
a ghost state. Normal states represent the 
state that the soloist is in if they are playing 
the piece as written in the score. Ghost states 
represent the state reached by the soloist if 
they have deviated from the score at that 
point. Figure 1 represents different types of 
transitions through normal and ghost states, 
corresponding to different performances by 
the soloist. 

 

Figure 1. Transitions between normal and ghost Hidden 
Markov Model states in various performance scenarios. 

A different approach to using HMMs: 
modelling the musical structure by beat 

The work presented here places an emphasis 
on modelling the musical structure of a piece 
by using HMM states to represent individual 
beats of the piece, an approach to score 
following which to the best of the authors’ 
knowledge has not been tried before. Here we 
were influenced by recent advances in beat 
tracking (Gouyon and Dixon 2005).  

If this approach works successfully, then less 
reliance is placed on the programmer to 
identify key events, as in the approach where 
HMM states model important events in the 
score (Orio et al 2003 discuss a number of 
score following systems with this approach).  

Developing artificial accompanists 
The artificial accompanists were developed in 
Max/MSP, a programmable music processing 

environment. MIDI input and output was 
through a Yamaha Clavinova. Using Max/MSP 
means that our system could in future be 
adapted to include signal processing in 
addition to MIDI input/output, if required. 

We had difficulty finding a suitable Max/MSP 
implementation of Hidden Markov Models 
(HMM). Consequently the artificial 
accompanist system incorporated our 
implementation of a standard HMM model 
structure and the use of the Viterbi algorithm 
to analyse musical input from the soloist. 

Extracts from three pieces were selected for 
performance by a human soloist and the 
artificial accompaniment system. These three 
pieces were each modelled by a Hidden 
Markov Model, such that the notes in the 
melody were treated as the observations 
connected to transitions between sequential 
normal states.   

Melody 1 The first, from the traditional 
melody Twinkle Twinkle Little Star, was the 
most simple. It had a completely homophonic 
accompaniment, always moving in parallel 
with the soloist's melody. 

Melody 2 An extract from Andrew Lloyd-
Webber’s All I Ask Of You offered the artificial 
accompanist task more variety of note 
lengths and a longer extract in total.  

Two different accompaniments were arranged 
for this melody: an accompaniment with no 
movement independent of the soloist 
movement, and a second more complex 
accompaniment where the accompaniment 
moved between notes whilst the soloist 
remained holding one note. 

Melody 3 Danse Macabre was selected 
specifically as a more challenging solo melody 
to track the soloist through. This is because it 
incorporates much repetition of note 
sequences, and some stylistic variation in 
note lengths  

Evaluating the accompanists 
The overall aim of a competent artificial 
accompanist should be to provide musical and 
accurate accompaniment, interacting with the 
performer in real time. The quality of an 
accompanist’s performance in general is 
judged by how well it fits and enhances the 
playing of the soloist whom they are 
accompanying; the very nature of a good 
accompanist is that the audience is not aware 
of their playing except as an enhancement to 
the soloist’s performance. 



CIM08 - Conference on Interdisciplinary Musicology - Proceedings 

 

 
 

5 

The performances of the artificial 
accompanists produced during this research 
were evaluated both objectively and 
subjectively.  

The system was tested against measurable 
criteria originally constructed in 2006 by 
score following experts to test the latest 
research efforts (Cont and Schwarz, 2006).  

As well as this testing, the artificial 
accompanists were tested and judged by 
musicians of varying musical ability and 
experience, so that they could give their 
opinions on the quality of accompaniment 
provided by the artificial accompanists.  

Several versions of the artificial accompanists 
were tested, from simple versions with no 
beat tracking, to more advanced versions 
with beat tracking, use of more historical 
observations to track the soloist and 
amendments to the system for efficiency. 

Methodology for quantitative evaluation 

Taking testing criteria from the 2006 Music 
Information Retrieval Evaluation eXchange 
(MIREX) conference (Cont and Schwarz, 
2006), our quantitative evaluation measured:  

• Event Count (the number of musical 
events included in the played melody) 

• False Positives (scored notes which are 
only recognised after a delay greater than 
2000 milliseconds) 

• Number of Notes Missed (this statistic is 
also inclusive of False Positive notes) 

• Mean and Standard Deviation Offset (the 
difference between the soloist’s note onset 
and the accompaniment note onset) 

• Mean Latency (the difference between the 
detection time of the note being played by 
the soloist and the time the system has 
processed the audio so that it is ready to 
be matched to the score1) 

• Missed Note Percentage and False Positive 
Percentage 

There were two additional measures we could 
use to compare our work overall with the 
artificial accompanists submitted at MIREX 
2006:  

• Total precision (percentage of correctly 
detected notes overall, i.e. results for all 
pieces, added together).  

• Piecewise precision (mean of the 
percentage of correctly detected score 
notes for each piece by the artificial 
accompanist).  

To make some quantitative measure of 
musicality and fluency of these performances, 
for later reference, in objective testing we 
included a rating, from 0 to 5, of how well we 
judged our artificial accompanist to have 
performed accompaniment during the test2.  

Five tests were carried out on each artificial 
accompanist. For each test, the artificial 
accompanist was presented with a specified 
melody from the soloist. Performance was 
measured using the above criteria.  

1. Play the melody as scored, with no 
mistakes, tempo changes or 
embellishments  

2. Play the melody with selected errors added  

3. Play the melody with selected 
embellishments added  

4. Play the melody as scored but with 
selected tempo adjustments made  

5. Play the melody, making all the deviations 
from the score from tests 2, 3 and 4  

Methodology for qualitative evaluation 

In addition to testing the artificial 
accompanists against objective measurable 
criteria, the artificial accompanists that were 
developed in this work were evaluated by 
human musicians of different levels of musical 
competence and experience.  

Four testers were presented with five versions 
of the artificial accompanist to test, in order 
of increasing complexity of artificial 
accompanist functionality and the piece.  

For each piece, the testers were allowed up to 
five minutes to practice the solo melodies 
before adding the automatic accompaniment. 
This meant that they could pay more 
attention to the performance of the 
accompaniment rather than concentrating 
purely on playing the right note, but still 
made occasional unintended mistakes, 
especially for more complex melodies.  

In each test, the testers were asked first to 
play the melody as correctly as they could, 
then to play it with different variations of 
mistakes, embellishments and tempo 
changes. They were asked to experiment with 
the system as they saw fit, using their 
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musical knowledge and imagination. We 
deliberately did not specify any errors or 
embellishments that the testers should make, 
to avoid influencing them.  

The testers were asked to give comments 
during and after each piece, on how well they 
perceived the system to accompany them, 
focusing on how well it recovers from errors 
and embellishments that they added.  

Results and discussion of evaluation 

A comprehensive list of results and detailed 
discussion can be found in Jordanous (2007); 
here we present a summary.  

It is pleasing to see in Table 1 that the 
artificial accompanists developed in this 
research compared favourably overall in 
performance to the two artificial accompanists 
analysed at MIREX 2006 (3,4). The weaker 
result on the piecewise precision is affected 
by the poor performances overall from the 
artificial accompanists with Melody 3. These 
comparisons, however, can only be made at a 
very general level, as our artificial 
accompanists were tested on different pieces 
to those presented at MIREX 2006.  

 

Authors Total 
Precision 

Piecewise 
Precision 

Arshia Cont and 
Diemo Schwarz 
(MIREX 2006) 

82.90% 90.06% 

Miller Puckette 
(MIREX 2006) 29.75% 69.74 % 

This work 60.89% 54.04% 

Table 1: Comparison of overall performance 

During comparison, it was interesting to see a 
degree of variance in the accuracy of the 
MIREX 2006 artificial accompanists, 
depending on what piece is being played. This 
was also true for the different pieces that our 
artificial accompanist was tested on.  

As expected, the artificial accompanists 
performed much better in accompanying the 
two simpler melodies than the more complex 
third melody. Both quantitative and 
qualitative testing provided evidence for this 
conclusion. Lower percentages were recorded 
in the Missed Note % and False Positive % 
measurements for the two simpler melodies, 
with average offset figures of 12-542ms as 
opposed to up to 982ms for the third melody. 

Tester feedback was also more positive for 
the first two melodies. Testers judged the 
standard of accompaniment produced for the 
two simpler pieces to be superior to the third, 
with no noticeable latency issues. 

An unsurprising observation was that the 
artificial accompanists incorporating some 
form of beat-tracking had higher latency 
measurements for receiving and processing 
the soloist’s playing than for the simpler 
artificial accompanists (a difference of 
approximately 200ms in general). This is due 
to the extra processing involved. 

In particular the artificial accompanists for 
Melody 1 and Melody 2 performed the 
accompaniment better than anticipated 
during Test 5. (This was the test where all the 
errors from the previous tests were combined 
into one playing.) Occasionally the test 
melody was almost unrecognisable from the 
original tune. A human accompanist would 
have had to apply some skill and 
concentration when accompanying a soloist 
who was making this number of deviations 
from the score. So the attempts made to 
accompany the soloist in Tests 5 were a very 
positive result of testing.   

The artificial accompanist that used a history 
of four observations for the Viterbi algorithm 
gave a very accurate performance in the first 
test for Melody 3 (where the solo melody was 
performed correctly). It was also reasonably 
accurate in the second test (where selected 
errors were included during performance of 
the solo melody). This shows the 
improvements in accuracy possible if more 
information from the soloist is considered.  

A criticism of this particular artificial 
accompanist, though, is that latency 
measurements associated with the more 
detailed calculations were considerably higher 
and this is reflected in the poorer ratings 
overall that the third version received for 
quality of accompaniment. In general, the 
higher the Average Offset or Average Latency 
recorded, the less musically accurate the 
artificial accompanist was judged to be.  

There were very large figures (242 – 982ms) 
for the Average Offset (representing 
processing time) when testing with Melody 3. 
This was reflected in the performance, where 
the accompanist lagged behind the soloist 
(particularly in Tests 3 and 5). 

However the overall accuracy measurements 
(missed notes and false positive) for some 
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tests on this melody were considerably higher 
than expected, given how the accompaniment 
was deemed to have performed by testers. 
The quantitative testing often revealed that 
the artificial accompanist was in fact locating 
the performer at the right point in the score, 
but not quickly enough. As the primary 
objective of a artificial accompanist must be 
to produce musically accurate 
accompaniment, this latency should be 
addressed in future work.  

In evaluation, the testers generally judged 
the artificial accompanists as being able to 
detect changes in tempo rapidly, although 
further work is required to detect the 
magnitude of the change in tempo more 
objectively. This aspect of the artificial 
accompanist is related to the ability to track 
the performer accurately through the piece, 
so as the HMM probabilities are more 
accurately set, this aspect of the artificial 
accompanist works more competently.  

There was however some variance between 
different testers which we believe is due to 
different playing styles. For example, in the 
third melody (which included a high 
proportion of staccato notes), our second 
tester achieved better results than the other 
testers as their interpretation of playing notes 
staccato was the closest to our interpretation 
used during development.  

This highlights the usefulness of having 
several musicians’ influence on the 
development of the musicality of the artificial 
accompanist (as is the case in real life; a 
human musician will usually benefit from a 
variety of different influences).  

Our artificial accompanists in general 
performed better with musicians of lower 
rather than higher ability. They responded 
better to inconsistent tempos and errors, as 
opposed to decorative embellishments. This is 
probably partly due to a slight bias in the way 
we have set the HMM probabilities, towards 
recovering from errors rather than dealing 
with decorations and embellishments.  

It is pleasing, however, to see that most of 
the artificial accompanists generally 
performed well in responding to tester errors 
of different types, and coped with note 
embellishments to a certain degree.  

An unforeseen but fascinating result of the 
testers’ experimentation with our artificial 
accompanist system was the emerging of the 
co-operative nature of this domain in real-life, 

and the importance of feedback and 
communication between two musicians. 
Roger Dannenberg has commented on a 
similar finding in an ensemble situation 
(Dannenberg, 2000):  

“Early on, Lorin [Grubb] and I were playing 
trios with the computer, making intentional 
errors to test the system. We found that if we 
deliberately diverged so as to be playing in 
two different places, the computer could not 
decide who to follow. Even if one of us played 
normally and the other made an abrupt 
departure from the normal tempo, the 
computer would not always follow the 
“normal” player. In a moment of inspiration, 
we realized that the computer did not 
consider itself to be a member of the 
ensemble. We changed that, and then the 
computer performed much more reasonably. 
Here is why this worked: When the computer 
became a first-class member of the ensemble 
and one of us diverged, there were still two 
members playing together normally, e.g. 
Lorin and the computer. The computer, 
hearing two members performing together, 
would ignore the third. “  

While the emphasis found in previous 
research, and in this work, has been on the 
artificial accompanist following the soloist, we 
believe that a design with more focus on co-
operation between soloist and accompanist 
would be worth further investigation, having 
been neglected in score following research to 
date. 

Achievements of this work 
The artificial accompanists use an HMM 
representation of musical structure of a piece 
by beat, to follow a soloist through the 
performance of that piece.  

As a result the artificial accompaniment 
system can produce musically acceptable 
accompaniment, even if the soloist’s 
performance is occasionally inaccurate or 
embellished. The systems match the 
performer’s interpretation in terms of the 
volume the soloist is playing at and have 
been judged as reasonably accurate in 
matching the performer's tempo.  

The use of an HMM considerably simplified 
our implementation of score following. We did 
not have to give strong consideration to how 
the artificial accompanist tracked the soloist 
through the score, beyond implementing the 
HMM. So the performance of the resulting 
artificial accompanists is pleasing, and we feel 



CIM08 - Conference on Interdisciplinary Musicology - Proceedings 

 

 
 

8 

that the chosen HMM representation of the 
domain was justified.  

With further experimentation as to the most 
appropriate settings for the HMM 
probabilities, and perhaps implementation of 
some automatic training for individual pieces 
or individual performance styles, better 
results should be possible for the artificial 
accompanists that did not perform so well.  

These artificial accompanists used a simple 
implementation of beat tracking. This was 
made considerably more simple to implement 
due to our use of HMM states to represent 
beat structure, rather than notes in the score. 
The ease with which we could incorporate 
beat tracking in the accompanist proved the 
worth of our decision to use this novel 
approach in representing the musical 
structure, rather than following the 
representations described in previous work 
(e.g. Orio et al 2003, Cano et al 1999).  

In testing, the beat tracking appeared to work 
quite well for the simple melodies, however 
there was a problem with more complex 
melodies. This was because of the reliance on 
the state to be located correctly in order to 
gauge note lengths, and therefore the 
expected distance between observations. An 
alternative implementation of beat tracking 
that could have been tried was to include the 
use of the previous tempo to work out 
roughly how many beats had passed between 
two note inputs, as opposed to relying on the 
HMM to have estimated the next state 
correctly in all occasions. 

One area that needs further investigation is in 
the efficiency of the artificial accompanists. 
The more complex artificial accompanists in 
this research demonstrate how latency issues 
can severely disrupt the performance of the 
accompaniment by the artificial accompanist. 
Careful consideration needs to be made as to 
how to overcome the large calculation effort 
involved in larger scale score models 
(perhaps by using an alternative to the Viterbi 
algorithm or by optimising it further).  

We note here that the concern with efficiency 
is not with the general use of an HMM 
structure, but specifically with the extraction 
of information from the HMM by calculations 
with the HMM probabilities.  

So the findings of this research project are 
that an HMM is a good way to implement 
score following, but that the HMM 
probabilities need to be set carefully. Also 

there are concerns about the efficiency of 
using the Viterbi algorithm to track the soloist 
through the score.  

Future work 
The following suggestions could all feasibly be 
added to our artificial accompanists5.  

• Update the system to be able to process 
audio input/output as well as MIDI  

• Automatically extracting the score and 
HMM structure (currently programmed by 
hand).  

• See if machine learning techniques could 
help the artificial accompanist to learn a 
particular performer’s common 
performances (by training the HMM)  

• For assistance in teaching purposes: add a 
“tutor” that gives feedback to the 
performer on how they deviated from the 
score  

• Add knowledge to the artificial accompanist 
that allows it to respond to musical cues 
and feedback from the soloist, to co-
operate with the soloist in performance  

The last of these suggestions is possibly the 
most intriguing. Our testers remarked on how 
the accompanist seemed to follow the tester 
too closely. In contrast, they would expect a 
human accompanist to be less reliant on the 
performer, playing the accompaniment as 
expected until they had received more 
significant evidence that the accompanist had 
deviated from the score.  

The initial findings in this work form the basis 
for a fruitful avenue for further investigation 
that could make significant contributions to 
the interdisciplinary area of computer/human 
musical interaction. This area has been 
neglected thus far in score following research 
but that must be addressed if the 
accompaniment produced is to be judged 
musically acceptable by human musicians. 
The work on entrainment (synchronisation) 
by Clayton et al (2005) looks to be highly 
relevant here and worthy of further 
investigation in this context, as does the 
discussion of interaction between jazz 
performers by Schögler (2003).   

Concluding Remarks 
This research has examined the effectiveness 
of Hidden Markov Models for score following 
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and concluded that they are a useful tool with 
which to implement score following systems.  

During the lifetime of this work, HMM-based 
artificial accompanists have been developed 
in the interactive real-time music processing 
environment Max/MSP. These artificial 
accompanists incorporate various 
enhancements such as beat tracking, the 
handling of longer scores and the ability to 
produce complex accompaniment that 
changes whilst the soloist remains in a 
particular state.  

During development, a Hidden Markov Model 
structure was partially implemented in 
Max/MSP to model the scores and to carry 
out the Viterbi algorithm.  

These artificial accompanists are able to 
determine which HMM state the soloist is 
currently in, by analysing what the soloist has 
just played against a specified score. They 
can then play the appropriate accompaniment 
for that state.  

Performances by each artificial accompanist 
have been evaluated subjectively by testers 
of varying musical ability and experience, and 
also by the objective criteria that was used to 
evaluate artificial accompanists at the Music 
Information Retrieval Evaluation eXchange 
conference of 2006.  

Overall the artificial accompanists have been 
able to produce real-time accompaniment to 
a human soloist, playing one of three 
different pieces, of varying complexity. In 
most cases the accompaniment was musically 
appropriate throughout the performance of 
the piece, even when the soloist performer 
deviated from the score by making errors or 
adding embellishments to the music 
performed. An important avenue for further 
work has been highlighted as a result of this 
work: the need to reflect on the interaction 
between soloist and accompanist in 
performance, for optimum musicality. 
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1  The definition of this in Cont and Schwarz 
(2006) is slightly confusing: “Difference between 
detection time and the time the system sees the audio” 
but our interpretation of the latency measure is as 
described in the main text  

2  This rating system rated from 0/5 (the 
accompaniment played bears no resemblance whatsoever 
to what should have been played) to 5/5 (flawless 
accompaniment, indistinguishable from or better than the 
accompaniment that an expert human accompanist 
would play) 

3  HMM-based note/signal artificial accompanist, 
described at http://www.music-ir.org/ 
evaluation/MIREX/2006_abstracts/SF_cont.pdf  

4  Dynamic programming-based note artificial 
accompanist based on Dannenberg (1984), described at 
http://www.music-
ir.org/evaluation/MIREX/2006_abstracts/SF_puckette.pdf  

5  Details of how these extensions could be 
implemented can be found in Jordanous (2007). 


