
Hill, Steve (1994) The Lazy Z-Buffer. Technical report. University of Kent,
Computing Laboratory, University of Kent, Canterbury, UK

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21182/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21182/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

The Lazy Z�Bu�er

Steve Hill

September ��� ����

Abstract

This paper describes a new perspective on a fundamental algorithm

of three�dimensional computer graphics� namely z�bu�ering� An imple�

mentation of the z�bu�er method in a lazy functional language behaves in

a quite di�erent manner to the traditional imperative counterpart� The

main result of this paper is to show that the lazy z�bu�er is a scan�line

method� The e�ective di�erence between scan�line methods and z�bu�ers

is one of order of evaluation� A hybrid algorithm with properties common

to both z�bu�er and scan�line methods is also described�

� Introduction

In section �� we describe the implementation of a simple z�bu�er algorithm in
a functional language ���	 We then
section �� examine its behaviour under
eager and lazy evaluation schemes	 In this section we brie
y describe some of
the background to the work	 Readers familair with computer graphics can skip
Section �	�� and those familiar with lazy evaluation can omit Section �	�	

��� Hidden Surface Elimination

Hidden surface elimination is a form of sorting ���	 For example� one approach
to hidden surface elimination is to sort all the objects in a scene according to
their depth� and then to draw them back to front	 Unfortunately this method
will not work in all cases	 The problem is that the primitives of most graphics
systems cannot always be ordered � they are in general incomparable	 In order
to avoid ambiguous situations� many hidden surface methods adopt a divide and
conquer strategy	 If two primitives are not comparable� then they are divided
into smaller objects� and the resulting objects are tested	 A popular example of
this approach is described by Warnock ���	

The z�bu�er algorithm takes this division to the extreme	 In parallel with
the normal rasterisation calculations� depth values are calculated and shading
calculations performed ����	 In addition to a frame bu�er� a depth or z�bu�er is
maintained	 If a newly rasterised pixel is further away than the value currently

�

in the z�bu�er� then it is discarded	 If� on the other hand� it is nearer� then
both the frame bu�er and z�bu�er must be updated with new values	 One of
the bene�ts of the z�bu�er method is that it is possible to take advantage of the
coherence of objects during the rasterisation process	 Its memory requirement�
though large� is determined by the size of the image� and not by its complexity	

There are two main disadvantages to the technique	 The z�bu�er is large	 If
depths are represented to a reasonable accuracy
say a single precision
oating
point number�� then the z�bu�er will be larger than the frame bu�er	 The second
problem is that redundant shading calculations are often performed	 When a
given pixel is overwritten by a pixel from a nearer object� the calculations for
the colour of the original pixel have been wasted	 When a simple shading
method is employed� for example ���� the overhead is not great	 However� other
methods require a signi�cant amount of calculation	 For example� the method
of ��� requires the interpolation and renormalisation of a vector followed by the
appropriate illumination calculations which might typically involve at least one
trigonometric function and several dot products	 Systems that provide shading
languages ��� can lead to extremely expensive calculations	

There is another class of related algorithms called scan�line methods which
are reviewed in ���	 In these algorithms� scan conversion of all primitives is
executed in parallel one pixel at a time� hence there is no large z�bu�er to
maintain	 All the polygons in a scene must therefore be stored	 Typically a
table is maintained detailing on which scan�line a particular polygon starts and
ends	 A number of optimisations make use of the spatial coherence of polygons
to speed up processing	 Only the shading calculations of the topmost polygon
need be performed	 It is also possible to avoid depth calculations� especially
where there are no polygon intersections	 These methods become impractical
if the number of polygons in a scene is large	 Scan�line methods also require
all polygons to be de�ned before hidden surface processing can begin whereas a
z�bu�er method can be applied incrementally	

��� Lazy Functional Programming

Non�strict functional programming languages such as Miranda ���� Haskell ���
and Gofer ���� exhibit a property known as laziness	 Expressions are always
evaluated in a demand�driven fashion	 At the top level� the demand for results is
driven by the system�s printing function	 Thus� when the result of an expression�
say ��� is requested� the printing function demands a number which forces the
evaluation of the addition	 The printing function can now convert the number
into its textual representation and display it	 In a graphics system the printing
function is replaced by a function which demands the colour of every pixel on
the screen	

As an example of laziness� suppose a function is de�ned thus�

f x y = x

�

an attempt to evaluate the expression�

f 1 huge_calculation

where huge calculation represents something computationally intensive�
will obtain the result 1	 Moreover� because the argument y of f is not required
to determine this result� the huge calculation is never evaluated	

This notion of laziness can be extended to data structures	 Suppose the �rst
element of a pair of data items
written (a, b)� is examined via the function
fst de�ned as�

fst (a,b) = a

Note that fst is a function which has a pair as argument and which returns
the �rst element of the pair	 It is not a function of two arguments as is f above	
Evaluation of the term�

fst (1, big_calculation)

forces only the parts of the expression needed to determine the result� hence the
big calculation is not evaluated	

� The Algorithm

In this section� we present a functional account of the z�bu�er algorithm	 The
algorithmappears little di�erent from the traditional approach	 It is the manner
in which it is evaluated that is signi�cant	 The implementation is based on the
following type�

zbuff == array2 (num, colour)

array2 * == [[*]]

To explain � a z�bu�er is represented as a two dimensional array
list of lists�
of depth�colour pairs	 The representation of colour is not important for the
purposes of this paper� but would probably consist of a triple of stimulus values
such as RGB or HSV ���	

The z�bu�er method can be described by the following composition�

final_image :: [poly] -> [[colour]]

final_image = colours . scan_convert initialzb

where colours projects the colour information from the z�bu�er and is de�ned
as�

�Notice that function application is denoted simply by juxtaposition�

�

colours :: array2 (num, colour) -> array2 colour

colours = map2 snd

map2 :: (* -> **) -> [[*]] -> [[**]]

map2 = map . map

The value initial zb is the initial value of the z�bu�er� and can be de�ned
as�

initial_zb :: zbuff

initial_zb = rep height (rep width (infinity, black))

In a realistic implementation� the raster width and height� background colour

here black� and maximumdepth
here in�nity� would probably be parameters	

The conversion of a list of primitives into an image is performed by the
function scan convert	 It processes each primitive in turn producing an
updated z�bu�er which is then used in processing the next primitive	

scan_convert zb [] = zb
scan_convert zb (p:ps)

= scan_convert (scprim 0 p zb) ps

The function scprim is responsible for processing each primitive	 It processes
the polygon scan�line at a time	 There are two cases � the current scan�line
is either within or outside the bounds of the shape	 The precise details of the
representation of primitives is not important here	 The following functions are
provided to inspect and modify them�

� within y� within x � test if the current scan line� or current pixel
position lie within the primitive respectively	

� step y� step x � update the polygon for the next scan�line or next pixel
respectively	 In particular� this will involve updating the depth of the
polygon	

� depth � returns the depth of the primitive

� shade � returns the colour of the primitive

scprim n p (r:rs)
= scline 0 p row :
scprim (n+1) (step_y p) rows, if within_y p n

= r : scprim (n+1) p rows , otherwise

Each scan�line� is handled by the following function�

�

scline n p (p:ps)
= scpix p pix :
scline (n+1) (step_x p) pixs, if within_x p n

= p : scline (n+1) p pixs , otherwise

The function scpixis the core of the z�bu�er method	 The depth of the current
pixel in the polygon is calculated and compared with the depth already held in
the z�bu�er for this position	 If the current polygon is nearer� then its depth is
placed in the result and a colour for the polygon at this point is calculated	

scpix p (d, c)
= (dp, shade p), if dp < d
= (d, c) , otherwise
where
dp = depth p

As an aside� it is worth noting that an alternative version of the algorithm
can be formulated	 It provides for more separation of the concerns of control
and calculation	 A z�bu�er is represented by�

zbuff == array2 [(num, colour)]

Each cell now holds a list of depth�colour pairs	 The �nal image can now be
calculated as�

final_image = colours . nearest . scan_convert initialzb

This version also simpli�es the de�nition of initialzb which is now�

initialzb = rep height (rep width [])

The only other change to the program is in scpix which becomes�

scpix p l
= (depth p, shade p) : l

This approach is more versatile� since criteria for the selection of pixels may
be imposed from outside by substituting di�erent versions of the nearest
function	

� Behaviour

The behaviour of the algorithm we have described� when executed under lazy
evaluation� is quite surprising	 It has the following properties�

� only those shading calculations which are required for the �nal image are
performed	

�

Initial Z−Buffer

Final Z−Buffer

p2

p1

p3

p2

p1

p3

Figure �� Lazy Z�Bu�er

� memory requirement is constant and proportional to the number of prim�
itives	 Caveat � this is true only when coherency is not used in shading
calculations� see Section �	

These are not the properties of a z�bu�er algorithm� rather they are typical of
a scan�line method	 Why is this� The answer lays in the way in which the
z�bu�er is calculated	 A partial evaluation of an image is given by�

final_image [p1, .. , pn]
= colours (scan_convert initialzb [p1, .. pn])
= colours (scprim 0 pn ... (scprim 0 p1 initialzb) ...)

Demand for the colour of a pixel propagates down this expression to the ini-
tialzb	 An initial pixel value is passed to the �rst primitive which calculates
its colour and depth at the current position	 Note that the colour is not actu�
ally evaluated since it has not yet been demanded	 The depth is needed since it
is compared with the previous depth value	 The updated depth�colour pair is
passed to the next primitive� and so�on until �nally the nearest pair is passed
to the colours function which strips the depth information and passes the
shade to the printer	 Only at this point is the shade calculated	 In �gure � the
evaluation is depicted as a pipeline of processes	 The entire pipeline proceeds
from one pixel to the next	

Under eager evaluation things are very di�erent	 The properties of the al�
gorithm become�

�

Initial Z−Buffer

Final Z−Buffer

p2

p1

p3

Figure �� Eager Z�Bu�er

� memory requirement is constant and proportional to the size of the image

� the number of shading calculations is usually greater than the number of
visible� shaded pixels in the �nal image	

These features are typical of a traditional z�bu�er algorithm	 The evaluation
proceeds by evaluating the initialzb which is passed to the �rst primitive	
This is rendered to create an updated version of the z�bu�er which is in turn
passed to the next primitive and so�on	 Finally the colours function projects
the colour information from the z�bu�er	 As in the lazy scheme� the algorithm
can be described as a pipeline� see �gure �	 However� in this case the entire
z�bu�er is processed at each stage before being sent to the next	

We conclude that the essential di�erence between a scan�line and traditional
z�bu�er method is merely that of order of evaluation	 Laziness leads to a scan�
line method� and eagerness to a traditional z�bu�er	

Many optimisations to scan�line methods employing a number of coherences
are described in the literature ���	 The lazily evaluated z�bu�er described here
cannot compete with these methods	 They take advantage of a global knowledge
unavailable to each process in the lazy z�bu�er	 For example it is not possible�
without major upheaval� to avoid depth calculations	

�

� Variations

It is worth examining in more detail the behaviour of the lazy version of the z�
bu�er algorithm	 When scan�converting a polygon it is usually the case that the
shade of a particular pixel is related to the shade of its neighbour	 This coher�
ence is exploited to accelerate the shading calculations	 If this technique is used
in the lazy z�bu�er� the e�ect is to increase the storage requirements	 Each
primitive scan�conversion process may retain a chain of unevaluated shading
calculations which are only forced when a pixel is found to be visible	 Alterna�
tively� they may be garbage�collected if none of the polygon is visible	 The size
of the suspended calculation is likely to be proportional to the perimeter of the
polygon� so could represent a fairly large storage overhead� particularly if there
are many primitives	

The calculations could be performed eagerly� but this would risk performing
many more calculations than are actually required	 The risk of not performing
them is that memory will be needlessly exhausted	 If the evaluator were able to
recognise low memory situations and convert to an eager evaluationmethod then
it might be possible to get the best of both worlds	 For this to work e�ectively�
the programmer would have to annotate expressions that are candidates for ea�
ger evaluation in such situations	 Ordinary strictness annotations can introduce
non�termination� but in this case the program would have exhausted its memory
space and would have terminated with an error anyway	 The annotations would
serve merely as an escape route for the desperate evaluator	

The use of coherence in shading calculation is intended to accelerate calcu�
lations	 However� in situations where only a few pixels of a polygon are visible
in the �nal image� using coherence may in fact be performing more calculation
than would a direct shading calculation	 In this case� the length of the chain
of suspensions will be a measure of the complexity of the calculations required	
If the relative cost of the direct and incremental calculations was known� then
an evaluator could switch between the two equivalent formulations according to
the problem size	 However� a programmer would need a detailed knowledge of
the performance characteristics of the underlying architecture in order to make
the most of this approach	

It is possible� by mixing modes of evaluation� to devise hybrid versions of
the z�bu�er algorithm	 For example� evaluating the spines of the z�bu�er data
structure eagerly gives a two�dimensional structure with the elements uneval�
uated	 In this scheme� shading calculations will be suspended until they are
required
if at all�� but scan�conversion can proceed as soon as a primitive is
available	 When scan�converted� the primitive will construct a suspension of
the shading calculation required at each pixel of the object	 Figure � shows a
representation of how the suspensions might look after two primitives have been
processed	 This hybrid method has the following properties�

� only those shading calculations which are required for the �nal image are

�

Primitive 1

Primitive 2

Figure �� Suspended Shading Calculations

performed	

� memory requirement is large� being proportional to the sum of the size of
the image and the perimeter of the primitives	

In this scheme� the processes of scan�conversion and shading calculation have
been de�coupled	 In the traditional method the two proceed in parallel	 There
is scope in this scheme to change evaluation mode here also	 When memory
becomes low
and given the memory usage of this method this is quite likely��
eagerly evaluate all shading calculations to obtain a fully evaluated z�bu�er	
The method can then revert to lazy evaluation	 The e�ect is that the method
defers shading calculations for as long as possible within its memory constraints�
but if necessary they are performed prematurely	 This entails the risk that some
calculations may be performed unnecessarily	

� Conclusions

Most accounts for hidden surface removal present z�bu�er and scan�line methods
as quite di�erent	 When viewed from the functional perspective� it is plain that
they are but two extreme aspects of a single algorithm	 Since the task they
perform is identical� perhaps this should not be such a surprise	 Evaluation
schemes that mix laziness and eagerness can be used to produce a hybrid version

�

of the z�bu�er algorithm which may be of use where shading calculations are
expensive� but a scan�line method is not applicable	

References

��� J	D	 Foley� A	 van Dam� S	K	 Feiner� and J	F	 Hughes	 Computer Graphics�

Principles and Practice	 Addison Wesley� ����	

��� H	 Gouraud	 Continuous shading of curved surfaces	 IEEE Transactions

on Computers� ��
����������� June ����	

��� P	 Hudak� S	 Peyton Jones� and P	L Wadler
editors�	 Report on the func�
tional programming language Haskell� a non�strict purely functional lan�
guage
version �	��	 ACM SIGPLAN Notices� ��
��� May ����	

��� Warnock J	 A hidden�surface algorithm for computer generated half�tone
pictures	 Technical Report TR ����� University of Utah� Computer Science
Dept	� ����	 NTIS AD���� ���	

��� Mark P	 Jones	 Introduction to Gofer ����� ����	 Available via ftp from
nebula�cs�yale�edu	

��� Phong Bui�Tuong	 Illumination for computer generated pictures	 Commu�

nications of the ACM� ��
��� June ����	

��� I	E	 Sutherland� R	F	 Sproul� and Schumacker R	A	 A characterization of
ten hidden�surface algorithms	 Computing Surveys� �
�������� March ����	

��� D	 A	 Turner	 An overview of Miranda	 SIGPLAN Notices� December ����	

��� S	 Upstill	 The RenderMan Companion	 Addison Wesley� ����	 RenderMan
is a registered trademark of Pixar	

���� Alan Watt and Mark Watt	 Advanced Animation and Rendering Tech�

niques	 Addison Wesley� ����	

��

