
Hopkins, Tim and Slater, John (1994) A Comment on the Eispack Machine
Epsilon Routine. Technical report. University of Kent, Computing Laboratory,
University of Kent, Canterbury, UK

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21181/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21181/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A Comment on the Eispack Machine Epsilon Routine

Tim Hopkins and John Slater
Computing Laboratory

University of Kent
Canterbury, CT2 7NF

Kent, UK.

September 12, 1994

Abstract

We analyze the algorithm used to generate the value for the machine epsilon in the Eispack
suite of routines and show that it can fail on a binary floating-point system. The comments in the
code describing the conditions under which this method will work are not restrictive enough and
we provide a replacement set of assumptions. We conclude by suggesting how the algorithm may
be modified to overcome most of the shortcomings.

1 Introduction

A number of algorithms designed to compute the machine epsilon (the smallest representable number,
�, such that 1 � � � 1 using the machine’s floating-point arithmetic) have appeared over the years
see, for example, [1], [3] and [4]. Perhaps the simplest forms part of the Eispack suite of eigensystem
routines ([2] and [5]). The Fortran code implementing this algorithm is given in figure 1. Comments
which appeared in the original routine claim that the code will function properly on all systems
satisfying the two following assumptions

1. the base used in representing the floating-point numbers is not a power of three,

2. the quantity a in statement 10 is represented to the accuracy used in the floating-point variables
that are stored in memory.

Under these assumptions it is asserted that the following statements should be true

1. a is not exactly equal to four-thirds,

2. b has a zero for its last digit,

3. c is not exactly equal to one,

4. eps measures the separation of 1.0 from the next larger floating point number.

1

double precision function epslon (x)
double precision x

c
c estimate unit roundoff in quantities of size x.
c

double precision a,b,c,eps
c
c this version dated 4/6/83.
c

a = 4.0d0/3.0d0
10 b = a - 1.0d0

c = b + b + b
eps = dabs(c-1.0d0)
if (eps .eq. 0.0d0) go to 10
epslon = eps*dabs(x)
return
end

Figure 1: Fortran code implementing the Eispack machine epsilon algorithm

2 An Example

It is instructive to look in some detail at how this algorithm works. Assume

1. x is unity,

2. the base of the arithmetic is 2,

3. the floating-point mantissa is normalized, (i.e., it is of the form 1�f),

4. The mantissa is represented by an odd number of bits; this may include a hidden bit.

Thus f has an even number of bits and

a � 1�f � 1�01010 � � �0101 � 20

b � a� 1�0 � 0�01010 � � �0101 � 20

� 1�01010 � � �0100 � 2�2

The subtraction of 1.0 preserves the repeated pattern of bits in the mantissa with the exception of the
last bit which is now zero due to the left shift. Whence

b� b � 10�10 � � �1000� 2�2

� 1�010 � � �0100� 2�1

and adding a further b gives
b� b� b � 1�1111 � � �110 � 2�1

Subtracting the result from 1�0 we obtain 0�000 � � �001� 20 which is the machine epsilon as required.
Note that the algorithm works correctly no matter whether the floating-point addition rounds or

truncates.

2

3 A Failure

Assume now that the mantissa stores an even number of bits (i.e., f has an odd number of bits) and
that division truncates, a and b thus have the form

a � 1�f � 1�01010 � � �1010 � 20

b � a� 1�0 � 0�01010 � � �1010 � 20

� 1�01010 � � �1000 � 2�2

whence
b� b� b � 1�1111 � � �1100 � 2�1

and subtracting the result from 1�0 we obtain

eps � 0�000 � � �010� 20

which is a factor of 2 too large. Once again the algorithmwill deliver this result whether the subsequent
arithmetic rounds or truncates. Note that, if a � 1�f is correctly rounded to 1�01010 � � �1011 � 20,
the correct value of � is obtained.

4 The General Case

The above case is not the only one that causes failure. To analyse the algorithm further we first need to
obtain the different forms that the decimal expansion of 1�3 may take for a general base, �. Defining
r � b��3c and s � 2r� 1 there are three cases

1. � mod 3 � 1: �1�3�� � �ṙ,

2. � mod 3 � 2: �1�3�� � �ṙṡ,

3. � mod 3 � 0: �1�3�� � �r

For case 3 we see that assumption 1 is not strong enough to ensure that a is not exactly equal to
four-thirds provided the mantissa is of length at least 2. Running the routine epslon with such a base
arithmetic would result in an infinite loop!

Consider the case � mod3 � 2 and assume that division truncates the result, then, depending on
whether an odd or even number of significant digits are stored, b may take the form

r�srs � � �rs0 � ��1 or r�srs � � �sr0 � ��1

Whence, noting that � � 3r� 2 and 2� � 3s� 1, b� b equals

s�rsr � � �sr0 � ��1 or s�rsr � � �r�s� 1�0 � ��1

and, defining � � � � 1, b� b� b is given by

���� � � ���0� ��1 or ���� � � ���� � 1�0 � ��1

This leads to the correct value for � if an odd number of significant digits are stored and a value of
2 � � if an even number of digits are stored.

3

If the result of a division is correctly rounded to an even number of digits then b is of the form

r�srs � � �s�r � 1�0� ��1

whence b� b� b � 1�00 � � �01 � �0 and the correct value for � is obtained.
The correct value for � is also obtained when � mod 3 � 1.
Without some prior knowledge of � it is not possible to guarantee that the routine will work in the

other cases. However, we note that when � is odd the expansion of �1�2�� is of the form 0�ṫ where
t � b��2c. Substituting the lines

a = 3.0d0/2.0d0
10 b = 1 - 1.0d0

c = b + b

for

a = 4.0d0/3.0d0
10 b = 1 - 1.0d0

c = b + b + b

will then generate the correct value of �. For the case � mod3 � 2, � even and � �� 2 we may obtain
an expansion of the form 0�ṗ by using

�
���� � 1�

�
�

although this does not help with the search for a
general implementation.

5 Conclusion

For the code given in 1 the assumptions given in x1 need modifying to

1. the base used in the representing the floating-point numbers is not a multiple of three,

2. the result of a floating-point division is correctly rounded or, if it is truncated, the mantissa
stores an odd number of digits.

The second assumption may be taken into account if the algorithm is changed to take account of the
possibility that the returned value may be double the required result. This would mean replacing the
line

if (eps .eq. 0.0d0) go to 10

by

if (eps .eq. 0.0d0) then
print *, "Failure: arithmetic base may be a multiple of 3"
stop

else
c eps may be out by a factor of two
eps = eps/2.0d0
if (1.0d0 + eps .eq. 1.0d0) then

eps = 2.0d0 * eps
endif

endif

4

The above code would need to be modified to prevent clever compilers from keeping variables in
extended precision registers or finding ways of subverting the test(1.0d0 + eps .eq. 1.0d0).

The best way of providing a portable means of obtaining the machine epsilon would seem to be
that provided by Fortran 90; the intrinsic function EPSILON returns the required result!

References

[1] W. J. Cody. Algorithm 665. MACHAR: A subroutine to dynamically determine machine param-
eters. ACM Transactions on Mathematical Software, 14(4):303–311, December 1988.

[2] B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler. Matrix Eigensystem Routines:
EISPACK Guide Extensions, volume 51 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, 1977.

[3] W. M. Gentleman and S. B. Marovich. More on algorithms to reveal properties of floating-point
arithmetic unit. Communications of the ACM, 17(5):276–277, May 1974.

[4] M. A. Moler. Algorithms to reveal properties of floating-point arithmetic. Communications of
the ACM, 15(11):949–951, November 1972.

[5] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B. Moler.
Matrix Eigensystem Routines: EISPACK Guide, volume 6 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 1976.

5

