
Ireland, Tim and Garnier, Simon (2018) Architecture, Space and Information 
in Constructions Built by Humans and Social Insects: a Conceptual Review. 
 Philosophical Transactions B: Biological Sciences, 373 (1753). ISSN 0962-8436. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/67403/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1098/rstb.2017.0244

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/67403/
https://doi.org/10.1098/rstb.2017.0244
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


For Review Only

 

 

 

 

 

 

Architecture, Space and Information in Constructions Built 

by Humans and Social Insects: a Conceptual Review 
 

 

Journal: Philosophical Transactions B 

Manuscript ID RSTB-2017-0244.R1 

Article Type: Review 

Date Submitted by the Author: n/a 

Complete List of Authors: Ireland, Tim; University Of Kent, School of Architecture 
Garnier, Simon; New Jersey Institute of Technology, Department of 
Biological Sciences 

Issue Code (this should have 
already been entered but 

please contact the Editorial 

Office if it is not present): 

ARCHITECTURE 

Subject: Behaviour < BIOLOGY, Ecology < BIOLOGY 

Keywords: 
space, information, architecture, perception, social systems, 
interdisciplinarity 

  

 

 

http://mc.manuscriptcentral.com/issue-ptrsb

Submitted to Phil. Trans. R. Soc. B - Issue



For Review Only

Architecture, Space and Information in 

Constructions Built by Humans and Social 

Insects: a Conceptual Review 
 

Keywords 

Space, Information, Architecture, Perception, Social Systems. 

 

Abstract 
The similarities between the structures built by social insects and by humans have led to a 

convergence of interests between biologists and architects. This new, de facto interdisciplinary 

community of scholars needs a common terminology and theoretical framework in which to ground 

its work. In this conceptually oriented review paper, we review the terms “information”, “space” and 

“architecture” to provide definitions that span biology and architecture. A framework is proposed on 

which interdisciplinary exchange may be better served, with the view that this will aid better cross 

fertilisation between disciplines, working in the areas of collective behaviour and analysis of the 

structures and edifices constructed by non-humans; and to facilitate how this area of study may 

better contribute to the field of architecture. We then use these definitions to discuss the 

informational content of constructions built by organisms and the influence these have on 

behaviour, and vice versa. We review how spatial constraints inform and influence interaction 

between an organism and its environment, and examine the reciprocity of space and information on 

construction and the behaviour of humans and social insects. 

1. Introduction 

Living systems are both constructions and constructors [1,2]. At the fundamental level, organic 

molecules self-assemble into organic compounds (e.g. proteins, DNA) that build organelles and cells 

[1]. Cells in turn can assemble themselves into tissues, organs, and ultimately fully functional 

organisms [3–8]. Organisms modify their environment to build functional structures that will protect 

them (e.g. bird nests) and help them acquire the resources that they need for their development, 

survival and reproduction (e.g. spider web) [9–11]. Finally, organisms in societies can combine their 

building efforts to achieve constructions that no single individual could produce on its own, as is 

exemplified by termite mounds and human skyscrapers, which can be several hundreds - or even 

thousands - times larger than the individuals that build them [11,12].  

Social insects in particular have long fascinated biologists by their ability to mold their environment 

to their needs [13–16]. Some species of ants are known to clear debris and vegetation to form large 

trail networks the size of a football field, connecting their multiple nests to various resources [17–

19]. Others have mastered the art of tunneling to build underground networks of galleries 

connecting chambers housing their workforce, brood, food stockpiles, and even subterranean 

fungus garden [20–25]. Many species of ants, termites, bees and wasps build structures by 
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accumulating material (e.g. wax, saliva-imbibed soil or vegetable fibers) that will form walls, pillars, 

floors and ceilings [14,26–35]. Finally, some ants and bees use their own bodies as construction 

material, attaching to each other and creating dynamical structures such as bridges, ladders, holds 

and temporary nests [12,36–49].  

The complexity and diversity of structures built by social insects is reminiscent of that of human 

beings [50]. Their construction rules are however radically different. Unlike human-made 

constructions that are most often composed of inert and standardized units assembled in a precise 

order, social insect constructions are built from more plastic and irregular components, and their 

assemblage results from distributed processes of self-organization with little to no supervision 

[13,51,52]. As a result, their structures are less standardized, but more capable of adjusting their 

conformation in response to changes in the conditions in which they are placed [12,37,38,53,54].  

The parallels and divergences between the structures built by social insects and by humans have 

sparked a lot of interest in the architectural community [55–60]. The natural world has been an 

inspiration for architects since antiquity, with biology becoming a key influence on design thinking at 

the turn of the C19th; when the analogical influence turned to interest in how biological systems 

develop and evolve (see Mertins, 2007; Steadman, 1983) [61,62]. Coupled with the computational 

capacity to simulate natural systems architects are today exploring the self-organising and emergent 

morphologies of biological phenomena to rethink how buildings and cities are designed [63–71]. The 

emergent, adaptable and situated structures built by social insects offer intriguing insights in 

particular for architects to re-evaluate not only the sustainable aspects of the human built 

environment but to question the distinction between cognitive phases of human architecture (i.e., 

between design, construction, and occupancy stages) and to think about these as continuous. (see 

Soar, 2016) [72]. 

Recently, biologists and architects have starting coming together to form a new community, 

interested in understanding the construction mechanisms used by social insects and their potential 

applications in human-made structures [55,73]. As is to be expected between two disciplines that 

have existed in parallel with little interaction, terminology has quickly become the first obstacle to 

creating a theoretical framework in which to ground the emerging field. During discussions 

preceding the writing of this manuscript, the authors have identified three concepts in particular 

that rendered their mutual understanding difficult: architecture, space, and information. In what 

follows, we will first try to reconcile the somewhat liberal use by biologists of the concept of 

architecture with the more institutional definition that architects have of it. We will then discuss the 

concept of space in architecture and biology, and how social systems use space both as a source of 

information and a mean to encode social information. Finally, we will discuss the idea of information 

itself and the effects of architecture on information flow and processing in social systems.  

2. Scope of the review 

One of the problems with interdisciplinary work is language, and is what may be termed the baggage 

individual disciplines bring to the table. Essentially, terminology can be a barrier for interdisciplinary 

exchange. Key terms, such as architecture, space and information have long conceptual histories, 

such that even their everyday use is awkward. Closer inspection only muddies the water further 

because of the way different disciplines claim the high ground with regards their specific outlook. 

“Space” for example is from one side an enclosure (i.e. it has boundaries) and the other the void (i.e. 

the volume contained within these boundaries). Our capacity to mathematically articulate spatial 
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scenarios gives the impression “space” is something we have generally mastered conceptually, but 

the fact that a concise definition evades us implies otherwise.  

Another case in point is the title of this paper, which is loaded with conceptual connotations. 

“Architecture”, for example, is principally concerned with the human built environment. It is the 

practice of designing buildings and articulating how to build the design; not forgetting how to 

explain the rationale behind the design to demonstrate why that design should be built. Professional 

architectural societies, such as the Royal Institute of British Architects (founded to facilitate and 

promote the advancement of architecture) guard the term specifically as referring to buildings 

designed by architects, and the Architects Registration Board (ARB), the statutory body for the 

registration of architects in the United Kingdom, protect the term in law. Yet these terms 

(architecture; architect) are often borrowed to refer to complicated structures and artefacts, such as 

software applications and circuit boards, recognised as products of intentional design. This trend is 

particularly apparent within the frame of this special issue, which is concerned with constructions 

built, particularly, by social insects and comparisons that may be drawn between such structures and 

the human built environment.  

The authors, a biologist and an architect, brought together through their interest in the natural 

world and specifically the structures creatures (other than humans) construct, have sought to 

establish a ground on which interdisciplinary exchange may be better served by discussing 

definitions of fundamental terms that span biology and architecture. Our primary goal is to aid 

better cross fertilisation between disciplines, working in the areas of collective behaviour and 

analysis of the structures and edifices constructed by non-humans; and to facilitate how this area of 

study may better contribute to the field of architecture. 

3. Toward an interdisciplinary framework  

3.1. Are social insects architects?  

Architecture has many meanings. For instance Steven Holl said, during his acceptance speech for the 

2012 American Institute of Architects Gold Medal, that “architecture is an art bridging the 

humanities and sciences” [74]. Thomas Mayne, at his Pritzker Prize acceptance speech, said that 

“architecture is a way of seeing, thinking and questioning our world and our place it” [75]. Claiming 

social responsibility as its most definitive attribute Samuel Mockbee asserts “architecture is a social 

art. And as a social art, it is our social responsibility to make sure we are delivering architecture that 

meets not only functional and creature comforts, but also spiritual comfort” [76]. Diebedo Francis 

Kere echoes Mockbee: “architecture is not just about building. It's a means of improving people's 

quality of life” [77].  

One thing that is, however, common to all these quotes is that architecture is something other than 

just a building. Architecture, claimed Jay A. Pritzker “is intended to transcend the simple need for 

shelter and security by becoming an expression of artistry” [78]. In this context, a building is 

considered as no more than the sum of its parts. Architecture, however, is other than that. The 

whole takes on an independent existence from the parts it is made of, as an observer will perceive it 

as a distinct object from the objects it is composed of. If this is what the architects claim then how 

does the term, and mindset, transfer to edifices formed by non-humans? If architects and biologists 

are indeed concerned with developing interdisciplinary collaborations (to study, for example, ant 

nests), we need to dispel the notion of architecture being exclusive to humans and consider it from a 

non-anthropocentric perspective.   
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Vitruvius (c.80-70 BC - c.15 BC), author of De Architectura libri decem (commonly referred to as “The 

Ten Books on Architecture”) [79], regarded as the first book on architectural theory, and often 

referred to as the first architect, asserted architecture to have three qualities: Firmitas, Utilitas and 

Venustas. Henry Wotton, a C17th translator, interpreted these terms as “firmness” (well 

constructed) and “commodity” (functional) for the first two, with Venustas being less well defined 

and often interpreted as “beauty” or “delight”. We take on the latter version on the premise that it 

implies something ephemeral and other than the sum of the parts, whilst beauty has connotations 

of the beholders eye and is tied to subjective concerns of taste and style. The first two concepts are 

unlikely to cause controversy between architects and biologists; both disciplines actually expresses 

them in similar terms as we will discuss below. Delight, however, will require more consideration on 

our part. Indeed aesthetics - which makes the whole “other” than the sum of its parts - is a concept 

difficult to operationalize in the scientific study of animal behavior, and we will attempt to find a 

middle-ground on which biologists and architects can build upon.  

3.1.1. Firmness 

Vitrivius’ “firmness” is understood as the physical properties of a construction that guarantee its 

structural soundness, at the very least for the time the building is needed. These properties depend 

on trade-offs between many factors including construction material and methods, technological 

advances, substrate composition, environmental conditions, and costs. Architects use tools from 

physics, engineering and economics to balance these different factors and plan accordingly the 

construction process. Biologists use a similar set of tools to measure biological structures, 

characterize their construction process, and ultimately determine the balance of constraints made 

by the animals.  

Architects and biologists are, for instance, equally interested in measuring the physical properties of 

construction material. Weight, density, strength and deformability are all determining factors in 

choosing construction material for buildings. Animals themselves are sensitive to the physical 

properties of the construction material. Termites, for example, preferentially dig through non-load-

bearing over load-bearing wood, and build thicker load-bearing clay walls when attacking loaded 

wood [32]. Architects rely on tools from materials science and engineering to select materials with 

desirable physical properties, and from applied physics for combining these materials in a 

structurally sound manner. Software tools like Oasys’ GSA Building enables detailed analysis of 

structural solutions providing accurate prediction of material performance, how a structure interacts 

with the ground and the impact of footfall on irregular structures [80]. Autodesk’s Insight 360 

platform permits architects to simulate and analyse building energy and environmental performance 

so they can approach the design process with understanding of factors leading to better building 

performance outcomes throughout the building lifecycle [81]. Biologists rely on similar tools to 

quantify the physical properties of animal constructions. For instance, Cole et al. (2001) conducted a 

comparative study of the physical properties of nest paper in three species of wasps, showing that 

the fibre composition of the paper might explain differences in thickness and tensile strength 

between nests [26]. In termite mounds, King et al. (2015, 2017) used structural (e.g. mound 

geometry) and dynamic (e.g. air flow) measurements to demonstrate that a “simple combination of 

geometry, heterogeneous thermal mass, and porosity allows the mounds to use diurnal ambient 

temperature oscillations for ventilation” [82,83]. Finally, and somewhat bridging architecture and 

biology, the physical qualities of termite mound soil have inspired researchers to evaluate their use 

in human-made constructions, such as in compressed earth bricks [84] and pavement material [85].  
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This commonality of tools and approaches provides opportunities for direct interactions between 

biology and architecture. Indeed, the standardized language of physics and engineering is 

particularly useful to transfer “technology” between the two disciplines. Case in point, the passive 

ventilation system of termite mounds has inspired the design of several buildings [86], such as the 

Eastgate Centre in Harara, Zimbabwe for instance [87]. The study of the physical and mechanical 

properties of social insect constructions may therefore be the most obvious starting point for 

collaborations between architects and biologists, and the one that is most likely to generate direct 

applications of the building principles of natural systems.  

3.1.2. Commodity 

Vitrivius’ “commodity” refers to the efficient organization of spaces and systems that support the 

functions of the construction. It determines how the different parts of the building are used by its 

occupants and the benefits that they receive from it, relative to other possible organizations of the 

building. This concept is critical to both human-constructions and biological structures, as it links 

form and function with each other. Unlike “firmness” which is studied with tools from physics and 

engineering mainly, “commodity” in architecture and biology is more often characterized with 

methods from behavior and psychology, with a particular interest in the interaction between the 

organization of the structure and the distribution of behaviors within.  

A first concern of both architects and biologists is the spatial separation of functions that might have 

an adverse effect on each other. An obvious example is the spatial segregation of feeding locations 

from excretory areas in order to reduce the spread of infections. In human-made buildings, this 

segregation is achieved by the physical separation of food storage, cooking and consumption areas 

from the lavatories. Segregation of function can also be enforced by social conventions and 

regulations that makes certain behaviors acceptable in some locations only (e.g. smoking bans inside 

publicly accessible buildings). Similarly the spatial separation of functions is also present in 

structures built by social insects (see Section 3.2.2).  

Another common interest of architects and biologists is in determining how efficiently a structure is 

used, and how its organization balances different, often contradictory uses. In architecture, this can 

have important implications in terms of, for instance, building safety (e.g. during an evacuation) [88], 

economic consequences (e.g. time spent by customers in store aisles) [89], and access (e.g. to favor 

space use by certain categories of users). In social insect constructions, researchers more often look 

at issues of resource accessibility [17], information flow [90], and nest defensibility [91]. In any case, 

biologists and architects use here again similar tools to measure and predict the efficiency of a 

structure relative to one or more of these objectives. For instance, researchers and practitioners in 

both disciplines regularly employ agent-based model to determine how the spatial organization of a 

structure affects the distribution of individuals, be they ants in a network of galleries [92] or humans 

in an art gallery [63]. Fitting such models to data from human and non-human systems allows for 

direct comparison between them, as has been done multiple times in studies of building evacuation 

for instance [93–97].  

Finally, tools from graph theory can be used to measure the efficiency of a structure in terms of 

connectivity between its different parts. It has been used to characterize structures built by social 

insects such as ant and termite nests [23,91], and ant foraging trails [17,18], but also human-made 

constructions such as urban settlements [71,98], communication networks [99], water distribution 

systems [100,101], and transportation networks [102]. More specifically graph theory has been 

applied in architectural design as a method of describing building form and a way of automatically 

generating plan arrangements [62,103]. For instance Space Syntax theory describes how connectivity 
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and integration of areas within buildings and cities epitomises human social relations, and through 

mapping the heterogeneity within architectural forms correlates topological relations between 

building and settlement configurations and people (see Hillier, 1996; Hillier & Hanson, 1986) 

[104,105]. Such approaches also allows for direct comparisons between human-made and insect-

made networks that can be indicative of common building principles. For instance, Buhl et al. (2006) 

showed that street networks in non-planned settlements have similar cost-efficiency trade-offs as 

the emergent structure of ant tunnelling networks [98]. As in the previous section on “firmness” this 

commonality of tools and analysis language should allow for more frequent collaborations between 

architects and biologists.  

3.1.3. Delight 

Finally, Vitrivius’ “Delight” is generally understood as an aesthetic quality, defined in terms of style, 

proportion or visual beauty, and is symptomatic of how architecture is a visually dominant discipline. 

That architecture is dominated by a concern for the visual is long held [106], and the visual sense has 

played a significant role in our evolution as a species. This emphasis has driven cultural and 

technological development; which has in turn reinforced the prominence of our visual sense (see 

Cairns 2017) [107]. But “delight” is not specifically attuned to the visual and there is a growing sense 

that architects should account for a wider sensorial domain in the artefacts they create [108,109]. 

Indeed “delight” infers something of pleasure or joy, which is open to all sensation and sources of 

stimulation, and thus encompasses all senses. 

If we follow the definition professed by Frederick Kiesler, that architecture is emotional, what 

distinguishes architecture from building is that the former evokes emotion [110]. Such a definition 

sidesteps the moral high ground of architectural practice and schools, because it states simply that 

architecture affects and causes emotion. Understanding architecture as such allows one (1) to 

transcend boundaries, because it relates to the sensing emotive capacity of the observer, and (2) to 

consider architecture a product of perceptual systems that perceive stimuli (see Gibson, 1966) [111]. 

So, whether a construction, built by social insects or humans, can be considered architecture or not 

is open to interpretation. As such we are faced instead with philosophical traditions and how one 

sees the world, and thus one’s place amongst those things they share it with. We must ask then, if 

we are to accept the term “social insect architecture” whether ants, for example, have aesthetically-

triggered emotions? We cannot sidestep this question.  

While it is obvious that the nests of social insects have specialised functional dimensions [112–114], 

the question of whether they are also built aesthetically is difficult to address scientifically. There are 

no doubt that in the eyes of a human observer, social insect nests are beautiful objects [16]. 

However, whether they are in the eyes of an ant or a honeybee is more complicated to answer. 

Social insects can react and associate meaning to a wide variety of stimuli [115–119], but whether 

they derive emotions from these stimuli is unknown - or at least undiscussed in the litterature. Some 

species of social insects seem to be decorating their nests with artifacts which function is not 

immediately evident (e.g. the pebbles and twigs on meat ant nests [120]). But are these true 

aesthetic artifacts built with the intention of triggering emotions, or more simply construction 

patterns resulting from the evolutionary history of the organism, for instance as a mechanism for 

nest recognition? [120] And if the latter, doesn’t it apply as well to human artifacts? After all, our 

senses and cognitive processes are also the products of our evolutionary history, therefore our 

aesthetic experiences should be as well [121].  
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Taking a non-anthropocentric view we need to relinquish the idea that aesthetics is an intellectual 

pursuit, and that it may be a judgement (or act) based on the assignment of value to something. The 

concept of aesthetics was originally coined by the philosopher Alexander von Baumgarten (1741-

1762), who argued aesthetics is the study of the plenitude and complexity of sensations [122] (also, 

cf. Gibson, 1966) [111]. When Kant took up the concept he drained it of its sensory plenitude, 

revising its significance to contemplation and judgement of beauty (see Howes and Classen 2013) 

[123]. If we take a step back (to Baumgarten) we may consider the edifices built by social insects, 

from the organism's perspective as having some aesthetic quality - whatever that might be. We may 

conclude then that architecture (in its widest sense) is a product of behaviours that support and 

enhance physiological and social needs. On the one side, to provide protection and shelter. On the 

other, to shape and manage activity. The former applies to all constructions by humans and animals. 

The latter to social organisms in particular (humans and most typically social insects), which use their 

constructions as a form of enabling device to organise actions and define social conditions [113,124].  

Therefore we propose that what truly separates construction from architecture is that the reaction 

of an organism to the former cannot be distinguished from its reaction to a similar artifact resulting 

from extraneous processes (that is processes foreign to that organism). Architecture, on the 

contrary, carries a social information that has the potential of affecting the behavior of organisms 

beyond the simple physical constraints imposed by the organization of the structure on them. A 

builder assembles a construction, but makes it architecture by embedding messages in it - be they 

intentional to prompt or provoke behaviour or unintentional in which case they may be a by-product 

of the builders behaviour or happenstance. 

3.2. Construction as a way to shape space 

One of the main outcomes of construction is - arguably - the organization of spatial relationships 

between individuals, their activities and their environment. Through construction organisms - be 

they humans or social insects - partition their environment into distinct zones that can support 

different functions (e.g. feeding vs excreting) and separate different habitats (e.g. outdoors vs 

indoors) or different populations (e.g. employees vs customers). This partitioning necessarily creates 

spatial relationships between the separated elements. This may seem obvious to the reader, yet the 

idea of space only appeared in architectural discourse in the late 19th Century, when it became 

important in two ways: first as the embodiment of human activity inside the architectural form [125] 

and second when it became aligned to aesthetic ideas in an attempt to define beauty [126]. The 

issue of space thereafter became a central topic in architecture, initially in terms of sensorial 

engagement with the environment [127]. (See van de Ven, 1987 for a concise history of how the 

idea of space has developed in architectural theory) [128].  

The issue of space is also central to biology at all levels of biological organization. From the 

partitioning of biochemical reactions within cells [129] to the influence of large-scale environmental 

patterns on species distribution [130], measuring spatial relationships is critical to understanding life 

in general. In the context of this review, we are more specifically interested in how organisms 

reshape their environment through their building behaviour, and how in return the resulting 

constructions impose spatial constraints that direct further behaviours. These two questions apply 

similarly to humans and social insects, and the main goal of this section is therefore to identify 

research themes common to biologists and architects and to draw comparisons between their 

respective approaches. 
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For this purpose, we propose here that the spatial character of built constructions can be 

approached from three complementary and non-mutually exclusive angles. By no means do we 

claim that these angles are the only possible, but we think that they should encompass most of the 

research issues related to space and construction:  

1. First, we will consider that constructions almost always separate an outside from an inside 

world, most often for reasons linked to protecting the organisms from some aspects of their 

environment.  

2. We will also discuss the role of the spatial organization of the construction and its 

interaction with behaviour in segregating functions within a population and in channeling 

the individuals’ activities. 

3. Finally, we will examine how the spatial configuration of the construction can itself generate 

functions that benefit the organisms without necessarily requiring their active participation.  

3.2.1. Constructions provide protection 

The primary function of construction is arguably to provide shelter to organisms from adverse 

conditions in their environment. An enclosed, insulated space will for instance be less subject to 

climatic variations such as changes in temperature and humidity levels, thereby facilitating an 

organism’s homeostatic regulation. Walls and ceilings also offer barriers that can shield - for a time 

at least - an organism from any physical threat, such as falling objects or predators. Therefore one of 

construction’s most important purpose is to create a separation between an outside, often unsafe 

and unpredictable world, and an inside, more stable and less dangerous one.  

Social insects are masters at building fortresses to protect their colonies from intruders. Their nests 

range from simple holes in the ground or in vegetation [131,132], to vast underground complexes of 

chambers interconnected by tunnels and housing sometimes several millions of individuals 

[133,134]. Like human strongholds, the nests of social insects are organized to limit outside access, 

with only a small number of entrances (often a single one). In many species, specialized workers - 

often called soldiers and morphologically distincts from the other workers - are found guarding 

these entrances against intruders [135,136]. In some species of ants and termites, these ‘guards’ 

have even evolved morphological and/or behavioral adaptations allowing them to plug the 

entrances with their own bodies, quickly preventing access to the inside of the nest when under 

attack [12,131,132,137,138]. Outside the fortress, several species of social insects also build 

protected passages that connect the nest to resources sometimes hundreds of meters away. These 

passages can be underground tunnels as in leaf-cutting ants and some termite species [133,139–

141], mud tunnels (shelter tubes) built by termites along tree trunks [142,143], or even ‘living’ walls 

that Dorylus ants form along their trails out of their own bodies [144].   

The nests of social insects are not built to resist physical threats only. Indeed many social insects 

species regulate the micro-climate within their nests in order to maintain stable living conditions, 

independent from variations of the outside environment [145]. Termite mounds are arguably the 

most striking examples of constructions by social insects capable of shielding the colony from 

changes in the external weather conditions [82,83,145–148]. The structure itself of the mound 

creates temperature gradients that in turn generates air currents, balancing the temperature within 

the nest and ensuring stable gas exchanges [82,83]. A similar phenomenon can be found in some 

leaf-cutting ant nests, which regulate the oxygen / carbon dioxide balance through passive air 

movements [35,149–152]. Social insects also regulate the internal conditions of the nest in a more 

active fashion. Bees, for instance, aggregate at the entrance of their hive on hot days and use their 
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wings to move hot air outside the hive and cooler air inside [153–155]. Army ants, which form 

temporary nests called bivouacs out of their own bodies, increase or decrease the spacing between 

each other to regulate the internal temperature of the colony [156,157]. Finally, in many ant species 

digging nests into the ground, the workers relocate regularly their brood away or toward the surface 

as it heats up or cools down, in order to maintain the brood near their optimal development 

temperature [158,159].  

Protection from the outside world comes at a cost for the colony. Evidently, the constant upkeep 

and remodeling of the nest structure takes away workers from other essential tasks such as foraging 

or taking care of the brood. A balance must therefore be found between maintaining the nests 

integrity and carrying on the other activities of the colony. It is evident that some species invest a lot 

of time and energy in building and maintaining their nests (e.g. African and Australian termite 

mounds; the vast underground nests of Atta ants) while others barely improve the pre-existing 

cavities in which they nest (e.g. rock ants and turtle ants). Do complex - and therefore costly to build 

and maintain - nests evolve only in species with a strong need for protection - against predators or 

the environment -, or is nest complexity secondary to evolving efficient behaviors to accomplish the 

other tasks necessary for the survival of the colony? To our knowledge, there has been no 

systematic study of this trade-off.  

Like the ants, humans have long built structures for defence and protection from the climate. Both 

functions are fundamental form-generating forces in human architecture, but as architects have 

embraced advancements in technology the influence climate has on human construction has 

lessened. Similar to the strategies of ants described above, humans have occupied hollows in the 

ground, carved out underground buildings and networks, and capitalised on features of the 

landscape to regulate the micro-climate within dwellings and maintain stable living conditions. 

Dwellings built in the ground, such as the Matmata houses in the Sahara and the Opal miner’s 

houses in Australia use a layer of earth as coolant, and Réso, a network of underground tunnels in 

Montreal provide protection during the long winter. In Naours, France, an underground settlement 

includes a bakery and chapel. In southern China the circular Tulou buildings are designed to offer 

protection from the monsoon rain, and in Normandy aerodynamic roofs provide protection from 

harsh Atlantic winds (See Piesik, 2017 for a review) [160]. 

Whilst societies have long constructed buildings using local materials and inherited construction 

techniques (vernacular architecture) to provide protection, innovation in the use of materials means 

the result is not simply a consequence of assembling gathered materials in a rudimentary way, but 

creatively transforming them. Ashanti huts, for example, have a wooden frame with a roof of 

branches on top, on which a layer of beaten mud is supported. Contrary to what you might expect 

the thick heavy walls don’t support the roof, so structurally they act as curtain walls. This may be 

due to cultural influence, but it is also likely a result of climatic reasoning. An advantage of this 

construction is the phasing, providing shelter quickly while the walls are erected (see Rapoport, 

1969) [161]. 

Glass, is perhaps one the most important innovations in modern building, and has changed the way 

we perceive the difference between inside and outside space. It blurs the lines between the two by 

providing physical protection but visual connection. In turn this changes the way we behave and 

how we think about space. It is interesting to look back at how the issue of space arose in 

architectural discourse and came to inform the modernist ideal of how space is deemed to flow from 

one area to another. The conflation of inside and outside was central to the architectural ideology of 

Leberecht Migge (1881-1935), who promoted the interpenetration of architecture and landscape 

through rational geometric lines with extensive use of glass to connect the two. Glazed doors and 
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windows formed the Zwischenglieder (interstices) between inside and outside to provide connection 

with nature, and greenhouses encircling houses providing thermal protection in winter (see Haney, 

2011) [162]. Migge’s interstitial notion of space does not compartmentalise and it does not follow 

the general tendency to categorise the world into discrete units: between internal and external, and 

for example rooms by function. This controlled and ordered categorisation transfers to how we 

perceive and consequently organise space. We will come back to this in the next section. 

3.2.2. Organization  

Division of labor is a landmark of social life. Most social insects species are characterized by a strong 

behavioral, and also often physical differentiation between groups of individuals specialized in 

performing different tasks (e.g. foraging, brood tending, etc) inside the colony [163–166]. In many 

species, this division of labor is also characterized by the spatial segregation of tasks within the nest, 

with specialized areas dedicated to specific activities [163,167,168]. A typical example of this spatial 

organization of activities is the nest of leaf cutter Atta ants [20,133,134,169]. They are composed of 

a network of tunnels connecting chambers that are all dedicated to a specific task. Some chambers 

house fungus gardens that serve as primary food source for the colony. Others contain the brood at 

different stages of development. Finally, rubbish dumps are created inside and outside the nest, 

isolating the colony from the waste material it produces [170,171].  

The spatial segregation of tasks has important consequences on the organization of the colony. 

Indeed, it has been shown that interactions are much more frequent between ants performing 

similar tasks [168], and that interaction rates are important regulatory signals for activating and 

inhibiting workers to perform particular tasks [172–175]. Because activities are segregated within 

the nest, workers specializing on a particular set of tasks are therefore more likely to interact with 

other workers with a similar behavioral profile, increasing their ability to share relevant information 

about their preferred tasks. Moreover, as workers transition toward other behavioral profiles as 

they age, they might relocate progressively within the nest toward areas better suited to their new 

preferences, possibly helped by the rate of interactions with workers of the same or of different 

behavioral profiles.  

It is interesting to note here that the spatial segregation of tasks is not necessarily accompanied by 

the building of barriers to physically separate them. In ants and honeybees for instance, the brood is 

often grouped by type (e.g. workers vs drones) or developmental stage within a single space, 

without walls separating them [30,176,177]. Similarly, the content of honeybee comb cells is often 

organized spatially, with brood-containing cells grouped together in the center of the comb, 

surrounded by a band of pollen-containing cells, and then a larger peripheral region of honey-

containing cells, but again with no physical barrier between these different areas [30,178].  

The existence of a spatial segregation of tasks without physical barriers is understood a the result of 

simple self-organizing processes of differential aggregation [177,179–181]. This suggests that 

different areas within a nest - with or without physical separation - might specialize in a particular 

type of task not because of their intrinsic characteristics, but because of social feedback loops 

between the workers: the more a task is performed at a location, the more likely it will be 

performed again at that location. For instance in a recent study, Czaczkes et al. (2015) showed that 

Lasius ants will preferentially drop their feces at specific locations within their nest (usually a specific 

corner of a specific chamber) [112], separate from other waste materials that are gathered in piles 

outside the nest (the ‘trash’) [112]. This behavior is most likely driven by social signals contained in 

the feces (e.g. pheromones) that stimulate ants to leave their feces where other ants have done it, 
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leading to the creation of - effectively - toilets. This self-organized spatial segregation of tasks  [182–

186] is at odd with the way it is achieved in human constructions. Indeed, buildings built by humans 

are planned ahead and each room is pre-assigned a type of task, and then fitted with all the required 

features for users to accomplish these tasks.  

The basic purpose of any building is to satisfy the physiological and social needs of the organism. On 

the one side, to provide protection and shelter; as discussed above. On the other, to shape and 

manage activity. The former transmits to all constructions: human and animal. The latter to social 

organisms (humans and most typically social insects), which build structures that act as a form of 

enabling device to organise activity and define social conditions. Scrutinizing built structures enables 

us to consider space retrospectively, as a system of social relations from which rules, or patterns, of 

inhabitation may be extrapolated. For instance, Bill Hillier and Julienne analysed the organization of 

built forms and illustrated how the configuration of space changes when specified from the 

perspective of each distinct area constituting planned arrangements [104]. Identifying the 

heterogeneity of built forms they revealed buildings to be systems of activity defined by the 

dynamics of social and cultural goings-on. Similarly, analysis of social insect nest structures illustrates 

intricate spatial arrangements and the social structure of the colony  [91,187]. 

Working out the organization of a building is one of the most important and taxing aspects of 

architectural design. The task of organising the numerous criteria of a building programme was 

identified by Horst Rittel and Melvin M. Weber as “wicked”, because planning problems tend to be 

combinatorially hard [188]. The typical approach to organising a building is to flatten the problem, so 

that the activities to be housed can be planned. This has led some, like Paul Coates (2010), to claim 

the way architects traditionally organise a building is most unnatural [66,189]. Inspired by the way 

natural systems are understood as pattern making and problem solving, architects are today looking 

to the replication of phenomena in biology and computer science (such as flocking [190], stigmergy 

[190–193], branching systems [193], food foraging and nest construction [194], replication 

[195,196], and so forth) as an alternative approach to modelling form and structure that evades the 

traditional top-down centralised decision making process of configuration. This has opened up a 

whole new way of thinking about configuration in architecture, which is bottom-up and generative, 

and reminds us of Migge’s interstitial notion of space whereby internal and external domains are 

conflated and flow into one another (see previous section). 

The architect Frederick Kiesler (1890-1965), who was strongly influenced by biology [61,197], 

promoted a notion of space extending Migge. He considered space to be continuous, or endless. Not 

in sense of the void but in terms of a line for which both ends meet. This notion of space, which is 

evident in both the organisation and materiality of his work (see Bognar 2003) [198], was informed 

but what he saw as a fundamental distinction between how humans construct and what he 

observed in nature. “Nature [,he says,] builds by cell division towards continuity whilst man can only 

build by joining together into a unique structure without continuity” [199]. His point being, humans 

construct through brute force (connecting parts together to form a whole: we bolt, glue and force 

elements together). In non-human constructions parts merge, overlap and conjoin one another as a 

consequence of self-organising and emergent processes. The concept of stigmergy describing social 

insect nest construction is a case in point, which we will come back to in Section 3.3.2. Kiesler sought 

to emphasise how we organise space and devise the arrangement of matter is tied to how we 

comprehend space and distinguish spatial relations. 
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3.2.3. Function building 

An organism's fitness is not determined by its personal morphological, physiological and behavioral 

phenotypes only. It is also influenced by phenomena that result from its activity, but are not a 

physical part of its being [200]. This ‘extended phenotype’ includes structures built by the organism 

and that provide it with services increasing its survival and reproductive success. The nests of social 

insects colonies are exemplars of extended phenotypes that have played a critical role in their 

evolutionary history [201,202]. Besides providing protection (as discussed in Section 3.2.1) and a 

mean to organize the colony’s activity (as discussed in Section 3.2.2), the architecture of the nest 

itself can generate other complex emergent functions for the benefit of the colony.  

Perhaps the most well known example of a function that it ‘outsourced’ to the nest architecture by 

social insects is that of ventilation, permitting the regulation of temperature, humidity and 

respiratory gas composition within the nest [35,82,83,146,151,203–206]. This is a common 

occurrence in large ant and termite nests, which depth - and therefore insulation - could render air 

exchanges with the surface difficult in the absence of dedicated ventilation mechanisms. While 

ventilation can be actively performed by some social insects (e.g. in bees [145,153,155]), it is often 

achieved passively by nest structures that can harvest naturally-occurring physical phenomena. For 

instance, it was shown that the interaction between wind and nest structure - and in particular the 

orientation of nest openings relative to wind direction - was responsible for ventilation in the large 

nests of the leaf-cutting ant Atta vollenweideri [35,151,206]. A similar mechanism was found to be 

responsible for nest ventilation in the termite Macrotermes michaelseni [204]. In termites, the 

mound that covers the nest can also be built so that daily temperature fluctuations caused by the 

sun heating part of the mound generate convective flow driving the ventilation of the nest [82,83].  

In all the examples above, the structure of the nest itself performs the function, independently from 

the behavior of the organisms that built it. In many cases however, the function of the structure only 

becomes apparent when in interaction with the behavior of the organism. For instance, topological 

and geometrical features of ants and termites networks of foraging trails and nest tunnels have been 

shown to guide the movement behavior of the workers [19,23,91,92,207–212], for instance 

facilitating the collective selection of the most efficient route within the network. In this case, the 

structure does not have a function by itself, but one is created when interacting with the behavior of 

the organisms.  

Similarly, the structure of human constructions perform functions independently to provide and 

maintain suitable living conditions and support physiological and social needs. A classic example of 

the former is passive ventilation; termed “natural ventilation” to emphasise the lack of mechanical 

equipment to provide air exchange. The Eastgate Centre, mentioned earlier, is one example. 

Another is the Palace of Westminster's historic ventilation system designed in the 1840’s by 

physician David Boswell Reid to serve the House of Commons and the House of Lords. These two 

debating chambers are internal spaces that have no external walls of their own. Reid’s elaborate 

scheme includes more than 2,000 vertical shafts, smoke flues and ventilation channels, some up to 

200m long, providing fresh air collected from towers and led through an intricate network to the 

basement of the building, where it was heated during winter, and released though outlets in the 

chambers. This included outlets placed in the seating, so fresh air was delivered directly to 

occupants [213].   

More recently, Mesiniagra tower, designed by Ken Yeang, is a bio-climatic skyscraper in Malaysia, 

where the sun is a prime factor in design. Louvres provide protection from the sun, but Yeangs 

design was informed by the path of the sun, so the buildings form also acts as a shading device 
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reducing solar gain [214]. The form and shape of buildings can also act as a device to distribute 

people and control the flow of movement. Crowd disasters are a prevailing issue [65,215,216] which 

has led to extensive data collection to investigate the dynamics of crowd behaviour [217,218]. Serial 

incidents at the Hajj, Mecca, has resulted in the reorganisation of the Hajj, and specifically a new 

design for the Jamarat bridge. Different levels serve pilgrims coming from different areas and 

directions to reduce crowding on the Jamarat plaza. 

Control is a fundamental factor of institutional buildings, which is clearly evident in Jeremy 

Bentham’s Panopticon. His design is a system of control allowing observation of prison inmates by a 

single watchman,  without the inmates being able to tell whether or not they are being watched. The 

building acts as a device to prevent, or reduce, the likelihood of undesirable behaviour [214,219]. On 

a grander scale, Haussmann’s plan for Paris remodeled the city to modernise it and also provide 

physical control of the population. He replaced many narrow streets, which allowed the 

revolutionaries’ to establish barricades, with broad boulevards and avenues. Less obviously, the 

wider streets function as a form of psychological crowd control – a mob may be less likely to revolt 

due to the expanse making them feel less powerful [220]. 

3.3. Constructions as a way to shape information 

All living systems communicate in some shape or form, be it through chemical emission (e.g. scent, 

pheromone), visual display (e.g. form, colour, movement), sound production (e.g. vocalisation, 

vibration) or electric currents, to inform others of their own state (e.g. mating status) or of the state 

of their environment (e.g. incoming danger) [221,222]. As hinted at in the previous section, 

communication can also be achieved through building. Indeed, each construction act, by modifying 

the content or configuration of the environment, has the potential of constraining or guiding future 

behaviours. In Batesonian epistemology, it is “a difference which makes a difference”, that is an 

“elementary unit of information” [223]. If we accept that each feature of a construction potentially 

holds information - or even is information -, then we need to discuss the meaning of this concept in 

biology and architecture. In particular in this section, we will attempt to identify possible points of 

agreement and disagreement between the two fields in order to facilitate communication - no pun 

intended - and collaboration between researchers across the aisle.  

The concept of information is rather proteiform in both the scientific and philosophical literature 

[224]. Scholars in all disciplines have already proposed an uncountable number of definitions of 

information. With this manuscript, it is neither our intent to introduce a new one, nor to discuss the 

relative merits of each existing definition. However in the following sections, we will often refer 

explicitly and implicitly to two of the most prominent definitions of information - that of Claude 

Shannon and that of Gregory Bateson - and we think it necessary to briefly describe and contrast 

them here.  

Claude Shannon’s idea of information [225] is motivated by the need to measure and 

mathematically describe information in order to quantify differences between messages (e.g. to 

detect transmission errors) and degrees of dependence between different signals (e.g. to detect 

phase synchronization between separate sources of information). Rooted in statistics and probability 

theory, Shannon’s information has been hugely influential in many disciplines in science and 

engineering because of the analytical tools it provides for measuring and comparing the information 

content of random variables independently of their meaning. As Gibson points out, Shannon’s 

information excludes the meaning of a stimulus to focus on the quality of message transmission 

from source to receiver [111]. 
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Gregory Bateson’s ecological view of information is rooted in the cybernetic idea of communication 

and organisation. The elementary unit of information, he claims, is a difference that makes a 

difference. He states, a difference that makes a difference is an idea. It is a ‘bit’, a “unit” of 

information [223]. This somewhat paradoxical statement deserves unpacking. Whilst Shannon’s 

concept of information is about reduction of uncertainty Bateson implies a process of distinction. 

Both imply an observer, making choices, but Bateson infers a system classifying inputs or sensations 

subsequent to the ability to discriminate, initially between self and other, between things [226]. He 

describes a referencing system that perceives and thereby distinguishes [227,228], and accounts for 

how entities, be they cells, organisms or agents in a computer model, engage with their world. 

Bateson’s unit of information is thereby also a unit of survival, whereby a difference is a matter of 

trial and error through which habits emerge. His concept of information is the basis for a theory of 

learning. 

With these two approaches of information in mind, we will examine three general areas concerned 

with construction and information:  

1. First, we will examine biological communication and information, and in particular the 

concepts of cues and signals and how they provide some evolutionary context to the present 

discussion. 

2. We will then consider the concept of stigmergy and how construction can shape social 

systems by embedding information in the environment.  

3. Finally, we will discuss the importance of explicitness in the perception of information and 

how this might help explain fundamental differences between constructions in humans and 

social insects.  

3.3.1. Cues, signals, and biological information 

In the behavioural sciences, information generated by an organism is traditionally separated in two 

categories: cues and signals [221,222,229]. Signals are any information transferring features that 

have evolved specifically to convey information about the signaller or its environment to receivers. It 

is generally understood as resulting from the coevolution of emitting and receiving apparatuses, as 

well as associated behavioral responses. Signals are also often - though not always - associated with 

the notion of intentionality, that is the organism controls when and where to broadcast the signal.  

On the other hand cues are features that can be used by an organism to guide its behaviour, but that 

were not evolved specifically to convey information between a signaller and receivers. Think for 

instance of a predator following the scent of a prey animal. The prey animal has not evolved its scent 

nor does it intentionally release it to inform the predator, yet the predator can evolve an apparatus 

to perceive the scent, as well as associated behavioral responses. If a cue provides an evolutionary 

advantage to the emitting organism (e.g. if it attracts potential mates), it can then be selected for 

and become a signal. However, while signals are intrinsically biological in nature (i.e. a product of 

evolution), cues can also be obtained from nonliving entities, like the position of the stars in the sky 

or the direction of the wind.  

Cues and signals play an integral role in the construction behavior of social insects. For instance, the 

construction behavior of some ant and termite species have been shown to depend on 

environmental cues such as the strength and direction of air currents or the presence of physical 

heterogeneities in the landscape (see for instance Jost et al, 2007) [230]. These cues can influence 

both the initiation of the construction process (e.g. environmental heterogeneities serving as anchor 

points of constructions in ants, termites and wasps) [14,29,231] and the final result of the building 
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activity (e.g. walls aligned along the direction of air currents in ants and termites) [230]. Signals, on 

the other hand, are more often associated with coordinating the actions of the individuals in the 

colony. For instance, the addition of pheromones to the construction material in ants and termites 

has arguably evolved to encourage individuals to add to structures built by nestmates rather than to 

random environmental heterogeneities [14]. It could also represent the freshness of the material, 

therefore indicating structures under construction requiring additional actions by workers.   

Similarly, environmental and contextual cues are fundamental factors influencing the building and 

formation of human constructions. Vernacular architecture perhaps best illustrates how 

determinants such as climate, availability of local construction materials, and the influence of local 

traditions has informed the design of human constructions. One of the most significant determinants 

is the climate (See section 3.2.1). Buildings in cold climates typically have few openings, windows are 

small or non-existent to prevent heat loss, and have high thermal mass or significant amounts of 

insulation. Conversely buildings in warm climates tend to be constructed of light materials to allow 

cross-ventilation through openings in the fabric of the building. The different aspects of human 

behaviour and environment has led to different building forms, evident in the variable contexts and 

cultures around the world [160,161,232]. Despite these variations all buildings are subject to the 

same laws of physics and hence demonstrate significant similarities, which are evident also in social 

insect constructions: see section 3.1.1. 

However human constructions differ from that of insects in that they are also the product of socio-

cultural factors that escape largely natural selection. As technology has advanced and human socio-

culture has progressed with it, methods of construction have become more sophisticated and the 

form of buildings have evolved. Innovation and technological advancement allows architects to 

overcome constraints, such as those determining vernacular architecture. For example, the Gothic 

flying buttress was an innovation transferring gravitational forces to ground in a way that allowed 

walls to become lighter, which permitted greater expanses of glass and thereby daylight to flood a 

buildings interior. Applied to churches and cathedrals this technique of building provided a means to 

denote divinity and promote the authority of the church. So, human construction is not only 

informed by environmental/contextual information - like in social insects - but also enables cultural 

signs to be embedded in the construction itself. These signs develop through a process typically 

referred to as ‘cultural evolution’ [233–237], whereby knowledge, beliefs, languages, etc., are 

passed on from generation to generation (inheritance), modified over time, and may enter in 

competition with each other, leading to selection pressures not unlike that underlying natural 

selection.  

3.3.2. Stigmergy and spatial embedding of information 

The notion discussed above that construction - whether by humans or insects - embeds information, 

that is can influence future actions of the builders or the users is reminiscent of the concept of 

stigmergy in biology. This idea was first introduced by Pierre-Paul Grassé in 1959 to describe the 

construction behavior of termites [191,238]. Grassé explains that the organization of the building 

activity does not depend on direct coordination between the workers, but rather on indirect 

coordination achieved through the modification of the structure under construction. Each time a 

termite worker adds or remove material from the structure, it changes the configuration of the local 

environment around it. This change will influence subsequent building activities at or around its 

location, either by the same worker or other workers in the colony. Coordination at the colony level 

emerges from the repetition of such stigmergic processes, giving the impression that the colony is 

following some sort of well-defined plan.  
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Since Grassé’s original insight, stigmergic coordination has been found to play a role in most 

constructions built by social insects. For instance, the primitively eusocial wasp Polistes builds its 

nest out of paper it produces by mixing its saliva with plant fibers [26]. This paper is then turned into 

walls that will ultimately form a comb of hexagonal cells. During the building of the comb, cells are 

not added randomly to the structure under construction: wasps a more likely to add new cells where 

existing cells already form three or more adjacent walls [13,239]. As a consequence of this 

preference, multiple wasps can coordinate their building activity and will first complete existing rows 

of cells in the comb before starting a new one. The result of this indirect coordination is a round 

shaped comb with approximately one hundred and fifty cells and, more importantly, without holes. 

Other examples of social insect construction relying on stigmergic coordination include internal and 

external structures of nests in ants and honey bees [14,178], trail networks in ants and termites 

[240–242], and cemeteries and refuse piles in ants [114,230].  

While it can be argued that stigmergy is a dominant organizational force in social insects 

construction, they also rely on other modes of coordination during building. In particular, 

environmental and social templates play an important role - often in combination with stigmergy - in 

determining the final shape of the construction [13,51]. For instance, Macrotermes termites adjust 

the size of their queen’s chamber to match her size as she grows [243,244]. Similarly, rock ants 

(Temnothorax albipennis) adjust the size of their nest to the quantity of their brood [245–247]. In 

both cases, it is believed that volatile pheromones produced by the queen and the brood establish a 

chemical gradient around them that can be used as a template by the workers to determine the size 

of the construction. Environmental heterogeneities and gradients can also be used as templates by 

social insects, determining for instance the location at which a construction is initiated or its final 

orientation. Finally, social insects can use direct coordination to organize their building activity. This 

is the case for instance of the self-assemblages built by some species of ants (e.g. temporary nests, 

bridges, ladders) and bees (e.g. swarms, festoons) by attaching to each other [12,37,38,47,49]. While 

limited to a few species, these - quite literally - living architectures built through direct coordination 

have the advantage over stigmergic structures of being extremely plastic and reactive, sometimes 

assembling and disassembling in a matter of minutes or even seconds.  

As a concept to describe the coordinated building activity of social insects the concept of stigmergy 

does not, on first inspection, easily transfer to human society and its architecture. However, Grassé's 

idea of stigmergy can been extended to encompass all forms of cues and signals that organisms - 

including humans - leave in their environment that have the potential of mediating indirect 

interactions between individuals [51,191,192]. Stigmergic traces represent the information that 

organisms embed in the spatial context and, together with environmental influences, they define a 

large part of the information landscape accessible to each organism.  

In the social sciences, Grasse’s original insight has been studied in the context of numerous forms of 

human activity, including the stock market, economies, traffic patterns, urban development and 

more besides [248–251]. One may claim even that the way architects design traditionally, through 

drawing sketches, is stigmergic; whereby a line drawn on the page breaks the homogeneity of the 

blank surface, and influences scribing the next line. Successive lines are added influenced by and 

influencing the developing pattern to mediate the development of an idea. Working in a team the 

same sketch is referred to and developed by others who are influenced by what they see and add to, 

adapt or emphasise aspects of the sketch. Building Information Modelling (BIM) uses a stored digital 

model, which is accessible to all members of a design team, who work on and develop the model in 

parallel, detecting clashes and developing the model collectively. Recently architects have begun 

experimenting with stigmergy literally as a method of generative design [252–257].  
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As mentioned above (see section 3.2.2), the capacity to use the computer to simulate the autonomy, 

emergence, and distributed functioning of natural systems provides architects a new way of 

producing form and structure, and to think about the organisation of areas constituting a building or 

city. Adjacency and circulation are fundamental concerns in organising architectural layouts, because 

of factors like the movement of people, material and information between areas, and/or the need to 

control or supervise one area from another. The nature of such problems has been characterised as 

“wicked” [188] because of the interrelatedness of the factors involved. The food foraging behaviour 

of ants, for example, has been explored as an alternative method of organising distribution networks 

in buildings and cities. Instead of placing activity areas in relation to one another based on 

convention the stigmergic behaviour of assorted artificial ant colonies has been utilised as a method 

of self-aggregation, and applied to generating the desired arrangements between activities in a 

building [258], and to generate primitive room arrangements [255]. Pussepp proposed a model 

whereby circulation is developed as an emergent by-product of global morphogenesis of the built 

form [259], and proposed a tool for generating outline urban arrangements often associated with 

unplanned settlements [260]. The stigmergic behaviour evident in insect societies and animals has 

also been adopted as a method of form finding [253,257,261]. Carranza and Coates, for example, 

used the trails left behind by a population of swarming agents as a scaffold to wrap a continuous 

surface around [253]. 

Whilst stigmergy has been applied as an alternative approach to organising buildings and form 

finding, the casual form of urban aggregation evident in medieval villages, Brazillian favelas and 

Chinese Hutongs exemplifies stigmergic configuration driven by environmental constraints, as with 

vernacular architecture, but urban aggregation of this type is also driven by associations with one’s 

neighbour. Whilst cities are prone to top-down planning by the authorities they have been shown to 

operate as a dynamic, adaptive system based on interactions with neighbours, feedback and 

decentralised distribution of people, goods, information and energy [70,262,263]. Consequently 

urban growth has been evaluated computationally and illustrated to replicate natural systems 

[66,264]. Coates demonstrated how the formation of early human settlements is underpinned by 

geometrical constraints that inform the arrangement of unplanned as well and planned urban 

arrangements through a combination of environmental feedback and simple local rules [265]. The 

algorithmic approach driving contemporary architectural design today is motivated by this 

comprehension of geometrical rules and stigmergic behaviour of agent-systems evident in shaping 

urban settlements and the configuration of buildings. Coupled with the capacity of social insect 

societies to unscramble the wickedness of certain problems (like searching for food), architects are 

today looking to the decentralised and distributed control evident in the behaviour of social insects 

and how they form the structures they build [13,51,194]. 

3.3.3. Explicit and implicit information  

In the previous two sections, we discussed information from the point of view of the signaller: 

signals and cues are categorized based on whether the signaller has evolved them specifically to 

convey information about itself or its environment - or not (Section 3.3.1); and stigmergic traces are 

characterized by whether they persist in the environment even in the absence of the signaller 

(Section 3.3.2). In this section, we would like to shift the focus toward the receiver of the 

information. In particular, we would like to argue that information can influence the behavior of the 

receiver in either an explicit manner, or in an implicit one. We consider information as being explicit 

if the receiver has evolved - through natural or cultural evolution - perceptual and/or cognitive 

abilities to specifically give a meaning to this information. In other words, the organism has acquired 
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dedicated processes to operate on the content of a piece of information (e.g. neural pathways) and 

react to it accordingly. This corresponds to all forms of information for which the organisms 

possesses a receptor and mechanisms to interpret the output of the receptor.  

Implicit information, on the other hand, corresponds to features that can modify the behavior of an 

organism without requiring this organism to process or even perceive the associated stimuli. In other 

words, they are features of the physical and social environment that do not have a meaning for the 

organism - the organism might not even be able to perceive them -, yet they may influence its 

actions in a manner that the organism cannot control. These are often external physical forces 

applied on the organism without its knowledge (e.g. the tide pushing planktonic organisms toward 

the shore) [266] or barriers that constrain the movement of the organism. In some species of ants 

for instance, it was found that the geometry of their networks of foraging trails is asymmetrical: 

when a forager comes back toward its nest and reaches a branching point, the trail heading toward 

the nest after the branching point deviates less (~30º) from the ant’s original direction than the 

other trail (~120º) which leads away from the nest [17,209,210,212,267]. While one species of ants 

may be able to use this information explicitly to navigate its trail network [210], others do not seem 

to perceive the difference and simply follow the path of ‘least resistance’ [92,209]. As a result, they 

are more likely to find their way back to the nest and their foraging output will be increased up to 3 

times, all this without requiring any navigational capabilities, spatial awareness or even the ability to 

detect the configuration of the branching point (as demonstrated using robots) [211].  

Most studies on the building behavior and construction use of social insects involve characterizing 

explicit forms of information: pheromone deposits, tactile contacts, air movements, etc 

[14,230,268]. Few however have considered the importance of implicit information in shaping the 

collective behavior of the colony. Indeed one difficulty with studying implicit information, is that it is 

not always obvious to an external observer given the disconnection between this form of 

information and the sensory and cognitive apparatus of the organism. Yet, as in the example 

mentioned above, there is strong evidence that the topology and geometrical organization of the 

environment has an influence on the spatial distribution of organisms, even when they are 

imperceptible to said organisms. Therefore it should be explored more systematically in the context 

of social insect constructions.  

Similarly, we can see examples of information that is embedded within the human built 

environment, and in architectural form, and how it too can have an influence on the behaviour of 

the perceiver. Again, this impact may be described as implicit or explicit. Winston Churchill’s adage 

“we shape our buildings; thereafter they shape us” exemplifies the built environment a chief factor 

in determining behaviour. The correlation between perception of the environment and its implicit 

effects on well-being and behaviour has long interested psychologists [269]. The complexity of the 

built environment is a crucial factor contributing to human behaviour. Experiments measuring how 

the brain and body responds to different kinds of settings show people are bored and unhappy when 

faced with extensive bland facades, and by contrast, happy and stimulated by varied and permeable 

building frontages, which will in turn have an influence on where a person will choose to spend their 

time [270,271]. 

Quantitative theories and methods of analysing urban configurations, such as Space Syntax [272], 

illustrate the correlation between the geometrical composition of the built environment and social 

behaviour [104,105]. Graph based representations and statistical analysis of the structural 

properties of built form illustrates there is a direct correlation between the topology and 

geometrical organization of the environment and the spatial distribution of people and movement 

[273–275]. For example the least angular deviation along a route suggests the structure of the street 
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network is itself the key determinant of pedestrian flow. A pedestrian will tend to choose routes that 

require the least amount of turns, and this will correlate to their perception of how well integrated 

the street is within a network, and consequently to pedestrian density. The implication is that 

configuration can have effects on movement which are independent of attractors [276,277]. 

The role of explicit information in the built environment is both more literal and more formalised. 

Road signs, and the demarcation of pathways is an obvious example. In extreme cases the function 

of the building is literally interpreted by the observer, such as “Big Duck”: a shop selling ducks and 

duck eggs that is built in the shape of a duck. However, a particular aspect that distinguishes the 

human use of information is our capacity to build arbitrary associations between things and to think 

metaphorically. Symbolism enables humans to communicate with other humans they don’t meet: 

i.e., symbols are an indirect form of communication, which are embedded and perceived throughout 

the built environment and have developed their associations (or meanings) through cultural 

evolution. A structure is symbolic when it acts as a vehicle of arbitrary content and the observer 

reads the embedded meaning, making architecture “other than” just a building: as discussed in 

section 3.1.3. 

4. Conclusion 

Humans have long since looked on the natural world as a source of inspiration, and observation of 

what other animals can do has driven us to achieve feats beyond our natural capabilities; such as 

being able to fly. The idea of late that simple creatures build complex and dynamic constructions has 

spurred researchers to investigate the mechanisms behind such phenomena, from the building of 

social insects nests to the formation of cells, tissues, organs and ultimately organisms. The complex 

and coordinated behaviours resulting from interactions between individuals in a collective has led 

scientists and engineers to question how this understanding may be applied to human-related 

problems. Architects, on the other hand, who are becoming more aware of the parallels between 

biological processes and design, as well as the artefact making capacities of animals are turning 

more to biology to explore innovative methods of problem solving and designing. 

Whilst there is a long history of biology influencing architectural endeavour only recently have 

biologists and architects begun to meet and collaborate. As indicated at the start of this paper this 

union brings inherent difficulties, as each discipline claims its own high ground and concepts 

fundamental to both are viewed distinctly from either side. Perhaps none more so than the concepts 

of “architecture”, “space” and “information”, which are not only fundamental to the sciences and 

humanities but everyday understanding. Consequently we set out in this review to cross-examine 

these concepts in biology and architecture and to establish a framework within which fundamentals 

that span both disciplines are apparent and beneficial to both, with the view to better enabling 

cooperation in the study of constructions built by social organisms and how these structures 

influence, direct and manage behaviour of social systems.  

The primitive framework established here provides a basis on which to build. Having examined the 

notion of architecture we have proposed an open definition spanning human and non-human 

constructs, and reviewed the concepts of “space” and “information” in relation to human and social 

insect constructions. Additional concepts, such as “emotion”, may be scrutinised and included to 

facilitate and bolster interdisciplinary discourse. The notion of delight is perhaps beyond scientific 

reason but aesthetics (if we refer to Baumgarten [122,123]) may be considered a fundamental 

aspect of all living systems. The key, we suggest, is to analyse the occurrence of internal-external 

relations established by perceptual systems in the process of distinguishing information about their 
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world. The real issue is to avoid anthropomorphising the social insect and consider how the insect’s 

perceptual system conveys information about its world. In so doing we should avoid seeking the 

meaning and establish the internal-external relations that inform, direct and lead to, for example, 

the termites pillar building activity. 

Living systems are embedded in their environment, which, we have proposed, from the organism's 

perspective is a matter of relations and forms that influence behaviour. These features, which may 

be evolved (signals) or not (cues), perceptible (explicit) or otherwise (implicit), constitute 

environmental pressures which constrain and coerce the activity of organisms. Spatial constraints 

are a fundamental feature of living systems, both in their development and in their unfolding 

engagement with the world [278,279]. Evident, for example, in the building of self-ventilating 

mounds in termites, the rules that govern construction can be seen as productive constraints, 

because they are sensed by the organism that responds to it, giving it a meaning, and ultimately 

creating a functional pattern (the mound and its passive ventilation) that improves the colony’s 

fitness. It is a fundamental character of natural systems that spans scales from abiotic to social 

systems. This semiotic perspective unifies architecture and biology and, we hope, could be the basis 

for a more formal collaborative language between the two disciplines.  
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