
Stapleton, Gem, Plimmer, Beryl, Delaney, Aidan and Rodgers, Peter (2015)
Combining Sketching and Traditional Diagram Editing Tools. ACM Transactions
on Intelligent Systems and Technology, 6 (1). ISSN 2157-6904.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/42025/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/2631925

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/42025/
https://doi.org/10.1145/2631925
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

0

Combining Sketching and Traditional Diagram Editing Tools

Gem Stapleton, University of Brighton
Beryl Plimmer, University of Auckland
Aidan Delaney, University of Brighton
Peter Rodgers, University of Kent

The least cognitively demanding way to create a diagram is to draw it with a pen. Yet there is also a need for
more formal visualizations, that is diagrams created using both traditional keyboard and mouse interaction.
Our objective is to allow the creation of diagrams using traditional and stylus-based input. Having two
diagram creation interfaces requires that changes to a diagram should be automatically rendered in the
other visualization. Because sketches are imprecise, there is always the possibility that conversion between
visualizations results in a lack of syntactic consistency between the two visualizations. We propose methods
for converting diagrams between forms, checking them for equivalence and rectifying inconsistencies. As a
result of our theoretical contributions, we present an intelligent software system allowing users to create
and edit diagrams in sketch or formal mode. Our proof of concept tool supports diagrams with connected
and spatial syntactic elements. Two user studies show that this approach is viable and participants found
the software easy to use. We conclude that supporting such diagram creation is now possible in practice.

General Terms: Diagrams, Sketching, Intelligent Systems

Additional Key Words and Phrases: sketching interfaces, diagram editing, tools for visual languages

1. INTRODUCTION
With the rapid advance of technology and the now prevalent use of touch-screen de-
vices, it is timely to consider the possibilities for software that helps users draw dia-
grams. The range of input mechanisms has increased and we should consider whether
there is benefit to utilizing stylus-based diagram creation. Our experience suggests
that when people create diagrams they sometimes begin by sketching on paper or a
whiteboard to fine tune ideas and identify the diagram that they require. It can of-
ten be the case that people do not know exactly what they want their diagram to look
like before they begin creating it. This, in itself, suggests that stylus-based diagram
creation which allows rapid diagram creation and editing does have a place.

Sketching tools have the advantage of providing natural interaction with the dia-
gram and aids problem solving and communication [Goldschmidt 1999]. The resulting
hand-drawn diagrams are more effective for the external representation of a prob-
lem than using traditional computer editing tools [Goel 1995]. Thus, there is a role
for sketched diagrams with benefits arising from allowing diagram creation in this
way. The left of Fig. 1 is a user created sketch, whereas the right shows a beautified,
so-called formal, diagram. Formal diagram creation and editing means specifying the
location and appearance of shapes using a mouse or keyboard. In practice, this usu-

Author’s addresses: Gem Stapleton and Aidan Delaney, University of Brighton, Brighton, United Kingdom;
Beryl Plimmer, University of Auckland, Auckland, New Zealand; Peter Rodgers, University of Kent, Canter-
bury, United Kingdom.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝ 2013 ACM 2157-6904/2013/-ART0 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:2 G. Stapleton et al.

Fig. 1. A sketch and its formal version.

ally means that the user specifies the routing of curves by defining bend points with a
mouse, and often restricts shapes to simple ones such as ellipses or rectangles. Shapes
can typically be rotated and scaled by mouse input. Formal diagrams also have a role
to play, in part because of the perception that sketches are incomplete, unfinished or in-
accurate in some way [Yeung et al. 2008]. In addition, the formal diagram is generally
required for distribution. Thus, intelligent diagram creation systems should support
visualization via formal diagrams, which appear as though they have been drawn in
an editing tool rather than by hand, as well as sketched diagrams. Hence, there is a
need to advance our understanding of the methods and techniques that are necessary
to produce software systems that support diagram creation via both sketching, using
a stylus, and traditional diagram entry approaches, which typically use keyboard and
mouse-based interactions.

For good interaction design, it is important to allow the sketch and formal diagram to
be created and modified. This requires a close linkage between the sketch and the for-
mal diagram so that editing operations are automatically reflected in both views. The
tool used for this creation should automatically generate an equivalent representation
in the other view. Supporting both views brings with it the challenge of ensuring that
the sketch and formal diagram views are consistent and, consequently, that they con-
vey the same information. It is certainly possible that, when diagrams are created or
edited, a conversion between the sketch and formal views will produce visualizations
that have different syntaxes and, therefore, represent different information. This is
clearly important to avoid so we need techniques to automatically rectify differences.

This paper provides insight into the issues that arise in providing intelligent dia-
gram creation systems that support the above described functionality. The novel con-
tribution is a general approach and set of theoretical techniques for developing such
diagram creation tools. To demonstrate the practical utility of our approach, we apply
it to Euler diagrams augmented with graphs as a case study. We give an overview of
related work in section 2. Our general approach to supporting diagram creation and
editing is presented in section 3. The application of the techniques is exemplified in
section 4, where we present our case study and a user evaluation of our software.

2. RELATED WORK
This paper builds on results on user interaction work that focuses on converting a
sketch into a formal diagram. We also utilize approaches to formalizing visual lan-
guages, via a concrete and abstract syntax. Finally, we provide an overview of visual
languages that may benefit from this kind of work, in part to provide motivation for
devising intelligent sketching technology and to justify our choice of case study (Euler
diagrams augmented with graphs).

2.1. User Interface work on Sketching Technology
A sketch tool allows input to a computer using a stylus. Numerous sketch tools
have been proposed for visual languages including concept maps [Jiang et al. 2011],
graphs [Plimmer and Freeman 2007], UML class diagrams [Damm et al. 2000; Ham-
mond and Davis 2002] and Euler diagrams [Wang et al. 2011]. For a general review of

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

Combining Sketching and Traditional Diagram Editing Tools 0:3

sketch tools research we refer the reader to [Johnson et al. 2009]. In such tools, when
a user sketches an item it must be understood by the tool in order to compute the
so-called abstract syntax (see section 2.2). Thus, to provide intelligent support these
tools include recognizers. The most common approach is to first recognize the individ-
ual strokes, and numerous gesture recognizers are proposed for this including [Chang
et al. 2012; Rubine 1991; Wobbrock et al. 2007]. Taking the output from the gesture
recognizer, rules [Plimmer and Freeman 2007] or grammars [Costagliola et al. 2002;
Hammond and Davis 2002] are used to infer the concrete syntax of the visual lan-
guage. Some sketch tools convert the sketched input into a formal representation. For
example, [Damm et al. 2000] presents UML class diagrams at various levels of formal-
ity and [Plimmer and Freeman 2007] can generate files of appropriate format for for-
mal diagramming tools. By contrast, conversion from formal to sketch is less explored.
SketchNode provides formal to sketch conversion of graphs [Plimmer et al. 2010]. The
tool presented in section 4 directly extends the SketchNode code base. We are unaware
of any tools, other than SketchNode, that provide the functionality that is necessary
for combining sketched and formal diagrams into a system like that described in this
paper.

2.2. Formalization of Visual Languages
Over the last few decades, the approach to defining visual languages has evolved. In
the early work on diagrammatic logics, for example, the formalization tended to be
purely at the so-called concrete syntax level. This can be seen in Shin’s seminal work,
where she devised the first formalized sound and complete diagrammatic logic [Shin
1994]. The concrete syntax, sometimes called the token syntax [Howse et al. 2001],
directly formalizes the drawn diagrams. Thus, the concrete syntax carries with it all
of the geometric properties of the diagram. Since this early work, new approaches to
defining the syntax of visual languages have been proposed and it is now common to
have both a concrete and an abstract syntax, see [Baar 2006b; Erwig 1998]. The ab-
stract syntax, sometimes called the type syntax, can be thought of as a description of
the diagram which captures the semantically important features. Thus, the abstract
syntax need not capture geometric properties. The use of an abstract and concrete
syntax can be seen in numerous visual languages, such as constraint diagrams [Fish
et al. 2005; Kent 1997] and spider diagrams [Gil et al. 1999], which use spatial rela-
tionships to convey information, and deterministic finite automata [Maier et al. 2008]
where connectivity is semantically important.

2.3. Visual Languages: Applications and Properties
There are a wide variety of visual languages in existence, such as statecharts and
spreadsheets, which convey information using spatial relationships or connectivity
properties, for example. From the perspective of this paper, we are interested in vi-
sual languages which are diagrammatic in nature, drawn in 2 dimensions. Visual
languages that fall into this class include the suite of UML notations (except for
OCL) [Unified Modelling Language 2006], visual OCL [Bottoni et al. 2001], as well
as logics based on Euler diagrams including [Gil et al. 1999; Kent 1997; Mineshima
et al. 2012; Shin 1994; Swoboda and Allwein 2005], graphs [Wilson 1996], conceptual
graphs [Sowa 2013], existential graphs [Dau 2007; Peirce. 1933], and petri-nets [pet
2013]. These languages all comprise basic syntactic items that form the building blocks
of concrete (or abstract) diagrams. The ways in which these building blocks are con-
nected, their spatial relationships, and their specific geometric shapes can all be of
semantic relevance, important for ease of interpretation, arise from aesthetic prefer-
ence, or just simply used out of convention. For example, class diagrams use arrows to
connect two rectangles in order to provide information about an association between

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:4 G. Stapleton et al.

two classes. Thus, class diagrams use connectivity and geometric shapes to convey
information.

Existential graphs use hyperedges1 to represent the existence of elements and the
end points of those edges connect to other syntactic items (essentially textually dis-
played nodes) to assert set membership or to express binary or, generally, n-ary rela-
tionships between elements [Dau 2007; Peirce. 1933]. As well as using connectivity,
existential graphs also exploit spatial relationships for conveying meaning: enclosure
by a closed curves asserts negation and juxtaposition represents conjunction.

Euler diagrams augmented with graphs also use connectivity and spatial rela-
tionships to convey meaning [Stapleton and Masthoff 2007]. As an example, a user-
sketched augmented Euler diagram can be seen on the left of Fig. 1 with a formal
version placed on the right. The labelled closed curves form an Euler diagram and
they intuitively visualize exclusion, containment and intersection of sets, generalizing
Venn diagrams. That is, Euler diagrams use spatial relationships to convey semantics
and curves can take different geometric shapes. The spatial relationships utilize con-
tainment, disjointness and overlapping, although other spatial relationships, such as
alignment, are not of semantic importance. They often use curves with specific shapes,
like circles [Wilkinson 2012] or regular polygons [Kestler et al. 2008], because of their
aesthetically pleasing nature. Graphs are incorporated into Euler diagrams to repre-
sent connected individuals or items within the sets, allowing the visualization of more
complex information. Thus, Euler diagrams augmented with graphs use all three fea-
tures (connectivity, spatial relationships and specific geometric shapes). Therefore, us-
ing Euler diagrams augmented with graphs, we can provide insight into how to devise
intelligent diagram creation tools for other visual languages.

Of course, this is not the only visual language that we could have chosen for our case
study. A further motivation for our choice is that these diagrams are of interest in their
own right, having numerous application areas. In fact, they are a popular and widely
used visualization technique. The varied areas in which augmented Euler diagrams
are used for information visualization include: crime control [Farrell and Sousa 2001],
computer file organization [DeChiara et al. 2003], classification systems [Thièvre et al.
2005], education [Ip 2001], genetics [Kestler et al. 2005], and medicine [Soriano et al.
2003]. They form the basis of constraint diagrams [Kent 1997], spider diagrams [Gil
et al. 1999], concept diagrams [Howse et al. 2011], and can even be thought of as a
basis of statecharts [Dunn-Davies and Cunningham 2005].

3. A GENERAL APPROACH TO SKETCHED AND FORMAL DIAGRAM CREATION
We have argued that diagram creation should be allowed in two ways: via a sketch-
ing interface using a stylus and via a formal diagram interface using more traditional
point-and-click operations. In addition, users should be able to edit the diagram in
either view, since this is a natural way of interacting with the software. Editing in-
cludes the ability to add and delete items and alter their layout. This section presents
our general approach to supporting diagram creation utilizing sketching and formal
interfaces, both of which allow diagram drawing and editing.

A high-level summarization of the general framework is as follows. There are two
important mechanisms in this framework: the conversion of sketch to formal, and the
conversion of formal to sketch. Both of these mechanisms rely on abstract syntax com-
putations which are essential for maintaining consistency between the two views.

Sketch to Formal After a syntactic item has been sketched, it is sent to a recognizer
for classification; the chosen recognizer may or may not use the existing syntax in the

1Each hyperedge can have two or more end points.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

Combining Sketching and Traditional Diagram Editing Tools 0:5

Person

owns 0..*

Fig. 2. An incomplete class diagram.

sketches

conversion to formal

Fig. 3. Converting sketches to formal items.

diagram for this classification. After classification, the sketched item is converted into
a corresponding formal item in the other view in such a way that the abstract syntax
is preserved. This ensures that the two parallel views are consistent.

Formal to Sketch By contrast, the creation of a formal item does not require recog-
nition to be performed: the act of creating such items involves the user specifying the
type through the user interface. The procedure is then similar to that of sketched to
formal, where abstract syntax is calculated and a sketched version is generated whilst
maintaining consistency.

We discuss abstract and concrete syntax in section 3.1. Approaches for converting
automatically between the two views are described in section 3.2. Lastly, section 3.3
presents a method for rectifying differences that can arise between the sketched and
formal diagrams, as a result of a new item being added or another editing action being
performed.

3.1. Concrete and Abstract Syntax
Typically, the concrete and abstract syntax capture what constitutes a well-formed
statement or formula. The abstract syntax embodies the semantics of the diagram.
Displaying the abstract syntax on the user interface allows the user to determine the
semantics of the drawn diagram. Thus, users are able to edit the diagram if the seman-
tics are not those required. A key feature of tools to support diagram creation should
be their ability to compute the abstract syntax of both sketched and formal diagrams;
we discuss abstract syntax computation in section 3.3.

Inevitably, the act of drawing will include the construction of incomplete (not well-
formed) diagrams. For example, consider class diagrams that comprise rectangles and
arrows that connect rectangles. Their concrete syntax will include a set of rectangles
and a set of arrows [Unified Modelling Language 2006]. In Fig. 2, the diagram is not
a well-formed class diagram (because of the arrow with no target) and, therefore, does
not conform to definition of the concrete syntax [Baar 2006a]. We should not delay com-
puting the abstract syntax of the diagrams until the user has finished: any inconsis-
tencies between the sketched and formal diagrams may not then be apparent for some
time. We need to generalize previous definitions of concrete and abstract syntax, such
as that in [Howse et al. 2005], to capture partly formed diagrams. This is somewhat
different from the usual approaches to defining abstract syntax, which tend to capture
complete (or well-formed) diagrams. We demonstrate our more general approach via
our case study, where we define an abstract and concrete syntax of augmented Eu-
ler diagrams that allows any of their basic syntactic items (i.e., their building blocks:
closed curves, labels, nodes, and edges) to be drawn without requiring the diagram to
be complete.

3.2. Conversion
Every time the user makes a change (addition or edit) to a diagram in either sketch
or formal view, the corresponding change must be automatically reflected in the other

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:6 G. Stapleton et al.

Fig. 4. Adding a formal item to a petri-net, converting to a sketch.

Checking

Authorizing

Dispatched

Checking

Authorizing

Dispatched

Fig. 5. Removing a sketched item to a statechart and automatically updating the formal view.

view. For example, in Fig. 4, a transition is added to the formal petri-net, which can
then be automatically converted to a sketched transition, shown on the right. Likewise,
when removing an item from one view, the corresponding change needs to automati-
cally occur in the other view. An example is given in Fig. 5, which shows an item being
removed from a (partially formed) sketched statechart, with the formal version being
updated.

Consider first the addition of a sketched item by the user, which needs to be repli-
cated in the formal view. The beautification process makes the sketched item look as if
it was created in a diagram editor. The way in which this is done is dependent on the
nature of the syntactic item. For instance, a sketched ‘straight line’ can be converted
to an actual straight line. Sketched geometric shapes, such as circles, can likewise be
replaced by actual geometric shapes. More general syntactic items, such as sketched
closed curves, require a more complex approach to beautification, such as the applica-
tion of a smoothing procedure. An example for each of these three cases can be seen
in Fig. 3. In order to maintain two parallel visualizations, sketch and formal, we need
methods to render sketched items as formal items and vice versa.

This subsection describes techniques that can be used for the conversions. Given
the numerous types of syntactic items, it is unrealistic for us to describe techniques
that can be used to convert them all. Thus we focus on what we see as primary syn-

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

Combining Sketching and Traditional Diagram Editing Tools 0:7

Person Vehicle

Fig. 6. Converting a sketched straight line.

tactic elements that form a core part of many visual languages. We describe methods
to convert text, straight lines, geometric shapes (e.g. circles, rectangles, etc), arbitrary
curves (wiggly lines) which could be closed. Each part has its own challenge: when
moving from sketch to formal one has to ensure that the result is smooth or regular,
for instance, and when moving from formal to sketch the automatically produced re-
sult has to look hand-drawn. The conversion methods that we describe inevitably do
not preserve the geometry and, thus, can introduce differences between the abstract
syntaxes of the sketch and formal diagram. Subsection 3.3 presents techniques that
can be used to ensure consistency.

3.2.1. Sketch to Formal. The conversion of sketched items to formal items assumes that
the sketched items have been classified by a recognition engine and we acknowledge
that this in itself is a challenging research problem. Here we do not address the prob-
lem of segmentation or the identification of how many strokes form a single syntactic
item. The framework we present assumes this recognition task has been completed.
Our focus is on conversion and consistency.

The conversion of text is, at least at an implementation level, easy, since it can be
sent to an off-the-shelf character recognizer. For straight lines, one can simply compute
their start and end points and recreate an actual (formal) straight line in the formal
view between these two points. There may be some fine tuning required, depending on
the visual language. For instance, if the line is intended to connect two items together
then some adjustment to the length of the line or position of the end points may be
required. This is illustrated in Fig. 6, where a line has been sketched between two
rectangles, in an incomplete class diagram, that will form part of an arrow between
them, representing an association. The end points of the line do not perfectly meet the
rectangles. One end of the line needs to be trimmed and the other extended. The result
is shown in the formal diagram.

Fig. 7. Converting a sketched octagon.

Geometric shapes, such as circles, ellipses, triangles, rectangles and regular poly-
gons, can be realized in the formal view in a relatively straightforward manner. Our
approach is to find a bounding box for the sketched item, and use the center point of
that bounding box as the center point of the formal shape. The bounding box of the
sketched item then becomes the bounding box of the formal item. This is illustrated
in Fig. 7, where the sketched octagon is enclosed by a bounding box, with the formal
octagon shown on the right. Of course, there is still some computation to perform, in
order to establish the lengths and end points of each of the polygon’s edges. In practice,
such algorithms would need to be developed specifically for the application and visual

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:8 G. Stapleton et al.

language in question. However, we have given an approach which can be tailored to
suit specific circumstances. The basic idea just described generalizes the techniques
we used for circles and ellipses in [Wang et al. 2011].

Another example of conversion from sketch to formal can be seen in Fig. 8. In this
case, as the areas of the bars matter, as does the relative positioning, so using the
bounding box of each bar (rectangle), alongside the requirement that bars do not over-
lap, for the conversion seems sensible.

<30 30-65 >65

AGE

Frequency

10

20

30

Fig. 8. Converting a sketched bar chart to a formal version.

Arbitrary curves, including closed curves that are not specific geometric shapes and
non-closed curves that are not intended to be straight lines2, can be treated in much
the same way as each other, although the specific details will again depend on the vi-
sual language in question. When these items are drawn in an editor, they are typically
Bezier curves, which have a smooth appearance. A process was described in [Wang
et al. 2011] for smoothing sketched closed curves, which we now summarize here. First,
many of the points on the curve (stored as a sequence of points via digital capture) are
removed from the internal representation because, typically, digital capture is very
detailed and thus includes many unintended wiggles. Only those points where the
difference in the x or y value, as compared to x or y value respectively of the neigh-
bouring points, is greater than a given threshold are retained; setting this threshold
to 1000 himetric units, a value derived from experiments, is effective. A smooth curve
can then be generated that travels through every point in the input array. The result is
a smoother curve where sharp changes in direction are removed without changing the
path of the curve too much. Fig. 9 shows examples of curve smoothing using this tech-
nique. If the curve is not intended to be closed then the smoothing process is complete
and we can either preserve the position of the end points or adjust them depending
on context, much as was the case for straight lines. The correct action to be taken de-
pends on the syntax of the visual language in question and the arrangement of the
other items already drawn.

Sketched closed curves are unlikely to have end points that coincide exactly. The
ends of the stroke (or strokes, if more than one stroke is recognized as part of a curve)
need to be joined to form a closed curve. Here, either the stroke(s) crosses itself, there
is a gap, or the stroke(s) overlaps itself without crossing. Fig. 10 shows an example: in
the sketch, a crosses itself, b is overlapping, and c has a gap. In the first case, where
the stroke crosses itself, the ends can be trimmed to the intersection point. When the
curve does not cross itself, to determine which of the other two cases exists we draw
a line between the beginning and end points and another line between the beginning

2For example, when creating graphs, a user may sketch an edge (which is a non-closed curve) which is
intended to be formally rendered as a line comprised of straight line segments.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

Combining Sketching and Traditional Diagram Editing Tools 0:9

Fig. 9. Smoothing closed curves.
Fig. 10. Sketched closed curves and formal
closed curves.

point and the second point on the curve (i.e. point 2), as shown in Fig. 11. If α is greater
than than 90 degrees, we assume the ends do not overlap and can simply join the start
and the end point using a line. In the overlapping case, we delete all the ‘overlapping
points’ and connect the new end points to close the curve. The formal diagram in Fig. 10
shows the result of applying these operations to the sketch.

Fig. 11. Joining closed curves.

3.2.2. Formal to Sketch. For this conversion process, we take a user created formal di-
agrammatic component and produce a visualization that looks as though it was hand-
drawn. Any formal shape, including text, rectangles, ellipses and lines can be effec-
tively converted to a sketch-like version by one of two methods: either using a library
of hand-drawn pre-defined shapes, or by perturbing the existing shape.

Using a library of pre-defined shapes requires the prior collation of actual sketched
examples. Libraries have been shown to work effectively for predefined shapes such as
text, straight lines, and geometric shapes [Plimmer et al. 2009]. It is possible to ensure
a similar placement and size to the formal shape, scaling as appropriate, in the sketch
view. For example, in the case of geometric shapes such as rectangles and ellipses an
approach is to ensure the center points are the same and the bounding boxes are the
same in the sketch and formal views, once a sketched shape has been selected from
the library.

An illustration of this process is shown in Fig. 12. The geometric shapes (trapezoids,
rounded rectangles, and parallelograms) can be chosen from a library of pre-drawn ex-
amples, as can the text, lines and arrows. The relative positioning, whilst not essential
to the semantics, can be preserved for readability - the top down ‘flow’ could be seen
as important. In fact, this is a feature of the method described, since the center points
and bounding boxes of shapes are the same across views.

Alternatively, a shape created in the formal view can be converted to a simulated
sketch by perturbing the formal shape. This is achieved by subdividing the formal
curve and introducing small perturbations at the start and end of the subdivided seg-
ments. This technique is effective for arbitrary shapes that do not lend themselves to
classification in a library, such as general curves. For closed curves, the start and end
points can also be offset. In this way, the start and end are disconnected and may result

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:10 G. Stapleton et al.

Start

End

Print

"Ice"

 Print

"Water"

Find

Temp

Temp

 < 0

Yes No

Fig. 12. Converting a formal flowchart to a sketched flowchart.

Fig. 13. Converting a formal curve to a sketched curve.

in a crossing between the start and end line segments. An example of a formally drawn
closed curve, drawn using mouse based interaction in a formal diagram creation tool,
can be seen on the left in Fig. 13 and its conversion into a sketch is provided on the
right. The images deemed most sketch like by the authors had small perturbations of
approximately 0.1% of the area of the output viewport. Furthermore, as our implemen-
tation of a curve is a Beziér spline, we found that subdividing each Beziér curve 2 to 3
times was sufficient. Validating these observations with an empirical study remains a
future line of enquiry.

3.3. Consistency
To fully support diagram creation, we need to check that the sketch and formal views
are consistent and, where possible, automatically rectify any differences. For instance,
the sketched graph on the left of Fig. 14 has an edge incident with the vertices r and
t, whereas this edge is incident with vertices r and s in the formal view. In Fig. 15, the
two Euler diagrams on the left are consistent (informally, this is because the overlaps
between the curves are the same). However, after the formal diagram is edited, by
stretching the circle labelled b into an ellipse, an inconsistency is introduced: there
is an overlap between the curves b and c in the formal diagram that is not present
after the corresponding transformation is applied. Because of the imperfect nature of
sketched elements, the conversion process may not preserve the diagram’s structure.

Here we give a general overview of the processes required to maintain consistency
between sketched and formal version. These are not intended to be algorithms as they
will vary depending on the visual language under consideration. In section 4 and on-
wards we give specific algorithms in the case of Euler diagrams and graphs.

3.3.1. Checking for Consistency. For diagram creation tools to be able to check for con-
sistency between the sketched and formal diagrams, we compute and compare the
abstract syntax of each concrete diagram. Again, the abstract syntax has to cope with

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

Combining Sketching and Traditional Diagram Editing Tools 0:11

r

t

s

Fig. 14. Mismatched syntax between sketch and formal diagrams.

Edit: turn b into an ellipse in formal editing mode

Fig. 15. Mismatched syntax between sketch and formal diagrams.

Fig. 16. A concrete graph.

Cat

Cat
Lion

Fig. 17. Changing the meaning on conversion.

partly-formed diagrams (for instance, when an edge of a graph does not yet have a ver-
tex at one end), since users will draw them enroute to creating their final diagram. The
algorithms should update the abstract syntax of both the sketch and formal diagram
every time an edit is made, to allow on-the-fly consistency checking to be performed.

Given a formal diagram, where the type of each basic syntactic item is likely to
be known, we only need to develop an algorithm that turns the concrete diagram
into the abstract syntax. As a brief example, the (formal) graph, G, in Fig. 16 can
be converted to its abstract syntax by, first, noting that there are four vertices, giving
V (G) = {v1, v2, v3, v4} say, and three edges, E(G) = {e1, e2, e3} say. Next, we need to
establish the vertices incident with each edge; one way of capturing this is via a func-
tion, σ, that maps edges to incident vertices. Here, assuming e1 arose from the left
most edge, and v1 and v2 are the left most vertices, we have σ(e1) = (v1, v2). The other
edges and vertices can be matched up in a similar way. The abstract syntax of G is,
thus, V (G), E(G) and σ. For sketched items, they must first be sent to a recognition
engine for classification, then the same process as for formal diagrams can be followed.

3.3.2. Ensuring Consistency. To ensure consistency between the sketch and formal di-
agram, we need to be able to automatically rectify any differences that are detected
at the abstract syntax level. The manner in which this is achieved is linked with the
conversion process employed and the syntactic requirements of the diagrams (i.e. the
definition of the concrete syntax). For instance, if lines are used to connect other syn-
tactic items then the conversion of a sketched line to a formal line should ensure that
the end points are incident with the ‘same’ items in each view. In addition, further
management of the conversion process for the line may be required, such as to avoid
crossing other items where this conflicts with the requirements of the diagram syntax.

We illustrate this with Peirce’s existential graphs [Peirce. 1933] which use closed
curves, lines and text to represent negation, the existence of individuals, and predi-
cate symbols respectively with numbers giving the order of inputs to n-ary predicates.
Fig. 17 gives an example where the sketch expresses that there is an individual which
is a cat (the top ‘Cat’ has a line hitting it) and an individual which is a cat but not

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:12 G. Stapleton et al.

a lion (the other line hits ‘Cat’ and ‘Lion’, with the latter being enclosed by a curve
to represent ‘not’). In the formal diagram the meaning is different, since the ellipse
encloses the end of the top line; the diagram means there is an individual which is not
a cat and an individual which is a cat but not a lion. Clearly, these diagrams are not,
therefore, semantically equivalent; see [Dau 2007] for a more complete description of
existential graphs.

Differences between the abstract syntaxes can arise in two cases: (a) when a new
item is added (sketch or formal), or (b) when an edit is made. In case (a), the incon-
sistency arises because of the conversion process, when changes are necessarily made
to the geometry of the syntactic item. When converting syntactic items, the problems
that can arise are more complex when spatial relationships must be preserved than
when connectivity is to be preserved. In case (b), every time an edit is made, such as
the addition of a syntax item, erasure of an item, or moving or scaling an item, the
abstract syntaxes of the sketched and formal diagrams need to be recomputed and
compared. We can view the edit as a deletion followed by an addition. Thus, we only
need algorithms to compute the abstract syntax after these two types of edit. In either
case, some geometric changes need to be made in order to rectify the differences.

The way in which these changes are effected is dependent on the semantics and con-
ventions of the visual language being considered. For instance, suppose that a sketched
item has been recognized as a square and that this shape is aesthetically desirable
rather than of semantic importance. Further suppose that it could also have been rec-
ognized as a rectangle without changing the diagram’s semantics. Then changing the
recognized type accordingly and re-converting it may lead to a rectification of the syn-
tax differences. However, making alterations to just a single syntactic item is not nec-
essarily sufficient. Additionally, in order to preserve the user intention, the syntactic
item that the user added or edited should not be changed.

At a high level, our approach to rectifying differences is as follows. Identify the user-
sketched syntactic items and user-created formal syntactic items involved in the dis-
crepancy and iterate through the corresponding set of automatically created items.
Make modifications to each automatically created item in turn until the differences
are rectified or until each item has been considered; this can be made more general,
where we continue to iterate through, making changes in different combinations, but
here we keep the description simple to convey the spirit of the approach. The nature
of the modifications are described in the next two subsections. Ideally, these modifica-
tions will resolve the discrepancy. There is no approach that is guaranteed to eliminate
all differences, other than making both the sketch and formal diagram identical. This
loses the benefits of having two modes of input and visualization. In our case study,
if differences cannot be rectified then the user is informed and has the opportunity to
modify the diagrams manually. We now present some general approaches to automatic
modification in each view for the previously considered types: straight lines, geometric
shapes, and curves.

Sketched Items Converted to Formal Items Involved in the Discrepancy Here we fo-
cus on items that the user created in sketch view (i.e. with stylus based input), so we
modify their formal versions. First we consider the case when a sketched straight
line is involved in the discrepancy between the abstract syntaxes. If the line is in-
tended to connect two already drawn items then it is trivial to ensure the connectivity
matches across both views: our conversion technique specified that connectivity must
match, so this cannot be the source of a difference. This applies to all other syntactic
items involved in connectivity relationships too, so for the remaining cases we focus
only on spatial relationships. The spatial case is much more challenging and appro-

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

Combining Sketching and Traditional Diagram Editing Tools 0:13

Fig. 18. Iterative refinement of sketch conversion.

priate methods to resolve differences are likely to be specific to the visual language in
question and could well tailor the approaches we present here.

Suppose that a sketched geometric shape is involved in the discrepancy. If the
shape is not of semantic importance then we can attempt to iteratively change the
type of the sketched shape and re-convert it to a formal shape. Again, the details of
how this is done will be dependent on the visual language in question, and we propose
that defining a hierarchy of shapes (e.g. by user preference) for the re-typing step is one
part of this approach. If the shape cannot be altered then one can attempt resizing and
moving the center of the shape in small steps to see whether this resolves differences.

For the case of sketched curves, which are converted to smoothed curves, the
smoothing process can be the source of the error. In the smoothing process, roughly
speaking the more points that are removed from the sketched curve, the more likely
there is to be a difference in the abstract syntax: the formal curve’s geometry will have
deviated further from the sketched curve’s geometry. To restore more of the original
geometry, we can re-smooth by removing fewer points, iteratively, until differences are
rectified. This will, however, result in curves that are not as smooth.

Formal Items Converted to Sketched Items Involved in the Discrepancy Since the user
created the formal item, we should know the intended type (e.g. they added a circle) so
it would not preserve the user intention to change the type and attempt to reconvert
to a different type of sketched item. In the cases where we have used a hand-drawn
library to create the sketched item, we iteratively choose different hand-drawn exam-
ples of the correct type from the library to see whether that rectifies the differences.
Effectively, this simply re-converts the formal item to a new sketched item. The like-
lihood of this rectifying differences will be partly dependent on the size of the library
and the diversity of sketched items within it.

When a library is not used, or cannot rectify inconsistencies, our approach that con-
verts a formal curve to a sketched curve allows iterative refinement of the formal curve
into an appropriate sketch, with the result possibly appearing less like a sketch and
more like a formal curve. A series of refinements of a drawn closed curve can be seen
depicted left-to-right in Fig. 18. These three diagrams illustrate a formal curve and a
formal circle (leftmost diagram), which have been converted to sketches in the middle
and leftmost diagrams. In the rightmost diagram, the formal curve has been changed
to such an extent that the topological structure of the diagram has been altered. Iter-
atively altering the conversion of this curve allows us to correct this difference, shown
in the middle diagram. In fact, the sketched curves in the middle diagram represents
an instance between the two examples that both appears to be more hand-drawn and
maintains the users’ intended semantics for the diagram.

4. CASE STUDY: EULER DIAGRAMS AUGMENTED WITH GRAPHS
We demonstrate how to apply the general framework to Euler diagrams augmented
with graphs. First we describe the diagram creation and editing interface and func-
tionality of our tool. Then we go on to define the concrete and abstract syntax of these
diagrams, including the case when they are only partly formed. The application of the

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:14 G. Stapleton et al.

conversion techniques is subsequently demonstrated and the approach to rectify dif-
ferences is explained. Lastly, we present two user studies that evaluate our tool. The
first study looks at the user interaction with the tool and the second study stress-tests
the system, to establish the robustness of the consistency preserving mechanisms.

4.1. Diagram Creation and Editing
This section describes the process of creating sketches and formal diagrams along
with the editing functionality provided within our tool. Our code base uses SketchN-
ode [Plimmer et al. 2010] as its starting point. There are two interfaces for diagram
creation: a sketching interface and a formal interface. In the sketching interface, users
create sketches by drawing as on a piece of paper; Fig. 19 shows a screenshot. A sty-
lus stroke is immediately rendered on the canvas as digital ink. On completion of
the stroke (stylus up event) it is passed to a gesture recognizer that we have gen-
erated using RATA.Gesture [Chang et al. 2012]. RATA employs a training-based ap-
proach to generate customized recognizers for any 2D gesture set. The underlying al-
gorithm for RATA.Gesture is the Vote ensemble from Weka [Hall et al. 2009], which is
used to combine individually tuned algorithms from Weka: Bayesian Network, Logit
Boost, Logistic Model Trees, Random Forest and Multilayer Perceptron. Evaluations of
RATA.Gesture suggest that users can expect recognition rates of approximately 95%
- depending on the number of different classes being recognized and the differences
between classes; we detail our recognition rates below.

Fig. 19. The sketching interface of our tool. Fig. 20. Editing in the formal interface.

The recognizer for SketchSet 2.0 is generated using the RATA toolkit via the RATA
API. The first step is to collect realistic sketches using the data collection compo-
nent [Blagojevic et al. 2008]. Realistic sketches are important as they provides nat-
ural inter-gesture spatial and timing information that is beneficial for sketch recog-
nition [Field et al. 2009]. For optimal recognition results, examples drawn by 5 or 6
people are needed, with each person drawing at least four examples of each syntax
type. After the data is collected, manual classification of the gestures (the diagram’s
syntax) is required for the training algorithms; this is done in the labeller interface.
We asked 7 participants to each sketch 4 diagrams in order to provide training data.

The recognizer result is one of six classes: text; one of the three curve classes, namely
circle, ellipse or closed curve; the vertex class; or the edge class. When text is entered,

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

Combining Sketching and Traditional Diagram Editing Tools 0:15

it is taken to be a label associated with the closest unlabelled curve. Curves are im-
mediately assigned a colour, selected in sequence from a list of 16 colours, and filled
with a lighter shade of the same colour. Curve labels have the same colour as their as-
sociated curves. Vertices are immediately coloured black and edges are coloured grey.
When edges are associated with vertices, this is visualized by the use of a red dot.

This immediate colouring of sketched items and association of labels with curves and
vertices with edges allows the user to readily check the recognition result. Misclassifi-
cations can be corrected by selecting the appropriate stroke in edit mode and tapping
on the button for correct classification in the left hand panel of the user interface; for
example if an ellipse is misclassified as a closed curve then the user selects it and re-
classifies it appropriately. The process of label assignment is performed on-line, whilst
the user is creating the diagram, and adjustments are made as the user performs ed-
its. For instance, if a curve is erased but its associated label remains then that label
may be reassigned to the next closest curve, or assigned to no curve if every remaining
curve already has a label. The formal interface provides similar functionality. Based
on experience with SketchNode [Plimmer et al. 2010], care has been taken to design
simple interactions that are easy to perform with a stylus. A single tap on the canvas
creates a circle and opens a textbox for typing the label which is placed at the top left
corner of the circle’s bounding box. Vertices are added by tapping while the pen barrel
is button down or holding the pen down for an operating system defined time. Edges
are created by dragging the pen along the edge path. Circles can be stretched to form
ellipses and selected items can be resized, moved and rotated as in Fig. 20. The usual
editing functions are supported in both interfaces: add item (by sketching or tapping),
erase, move, and resize. When strokes are moved or resized, curve labels are moved
with their curves and edges resized so that they remain connected to incident vertices.
After any editing event, colouring is updated as appropriate. Progressive undo and
redo are available by tapping the buttons.

4.2. Concrete and Abstract Syntax
The abstract syntax is displayed on the user interface, allowing the semantics of the
diagram to be determined. Thus, users are able to edit the diagram if the semantics are
not those required. We argue that one should display the abstract syntax for both the
sketched and formal diagrams. An example is in Fig. 19, where the abstract syntax is
displayed in the two bottom left panels, for the Euler diagram and graphs respectively.

The remainder of this section has two main goals: to define the concrete syntax of
augmented Euler diagrams and to define their abstract syntax. The concrete syntax
embodies the actual drawn diagram and, we note, that a sketched diagram and its
rendering in the formal panel will have different concrete syntaxes: their geometric
properties will be different. The abstract syntax affords our tool with an internal rep-
resentation of the diagrams. This allows the tool to determine whether the sketch and
formal panels are displaying diagrams with the same abstract syntax.

The basic syntactic items of (concrete) Euler diagrams augmented with graphs are
closed curves, labels, and graphs which are formed from vertices, and edges. Any finite
collection of them can be entered by a user when creating a diagram. One kind of
incompleteness that can arise when drawing a diagram is: an edge can be drawn for
which an incident vertex is not present. An example can be seen in Fig. 21, which
shows a sequence of diagrams created by a user, where the fourth diagram has an
edge with only one incident vertex. The diagram becomes well-formed again at the next
step, when the ‘missing’ vertex is drawn. Another way in which non-well-formedness
can arise through labels that are not associated with any curve.

We first extend the standard (abstract) graph syntax to allow this kind of syntactic
construction to occur. In particular, we define the notion of a partial graph. In our

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:16 G. Stapleton et al.

Fig. 21. A sequence of sketches including a diagram that is not well-formed.

definition, each edge will be mapped to the pair of vertices, (v1, v2), with which it is
incident, should they exist. When an edge has an end point that is not incident with
any vertex, the pair will include the underscore symbol, , as a place holder for the
missing vertex. Moreover, if an edge is incident with one vertex, v1, but the other end
of the edge is not incident with any vertex then the underscore symbol, , will always
be the second element in the pair: (v1,). More formally:

Definition 4.1. A partial graph, G, is a triple, G = (V,E, σ) where
(1) V = V (G) is a finite set of vertices,
(2) E = E(G) is a finite set of edges, and
(3) at least one of V (G) and E(G) is not empty.
(4) σ = σG is a function, σ : E(G) → (V (G) ∪ { }) × (V (G) ∪ { }), where is a special

symbol that is not in V (G), that maps edges to pairs, σ(e) = (p1, p2) which ensures
that if p1 = then p2 = .

If σ(e) = (p1, p2) and p1 is a vertex then e is incident with p1. Similarly, if p2 is a vertex
then e is incident with p2. Given an edge, e, in E(G), if σ(e) = (p1,) then e is dangling.
If no edge in E(G) is dangling then G is a graph.

In Fig. 21, the partial graph in the fourth diagram is G = ({v1}, {e}, {(e, (v1,))}) where
e is dangling. In the last diagram, the partial graph is G′ = ({v1, v2}, {e}, {(e, (v1, v2))}).
Since e is no longer dangling, G′ is a graph. We assume that standard graph theory
terminology extends to partial graphs in the obvious manner. For instance, a partial
graph is connected if either every pair of vertices have a sequence of edges connecting
them and every edge is incident with a vertex or there is exactly one edge and no
vertices. As defined, partial graphs are at the abstract syntax level, since they have
no geometric information. An embedding of a partial graph in the plane is an actual
drawing of the graph, i.e. each vertex has a position (we treat such vertices as points)
and each edge is realized as a line segment. An embedded partial graph is a concrete
partial graph. To illustrate, consider the partial graph G, where:

(1) V (G) = {v1, v2, v3},
(2) E(G) = {e1, e2, e3, e4}, and
(3) σ(e1) = (v1, v2), σ(e2) = (v1, v3), σ(e3) = (v1, v4), and σ(e4) = (v2,).

An embedding of G is the concrete partial graph in Fig. 22; the vertex and edge la-
belling shows the correspondence between the embedded vertices and edges with those
in G.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

Combining Sketching and Traditional Diagram Editing Tools 0:17

Fig. 22. A concrete partial graph.

Fig. 23. A concrete Euler diagram augmented with a partial graph.

We now consider the concrete syntax of an Euler diagram, as this is more intuitive
than the abstract syntax. An Euler diagram comprises a set of closed curves (infor-
mally, lines – that may be wiggly, smooth, or bendy for instance – that have the same
start and end point). The curves may each have a label. The act of augmenting an
Euler diagram with a graph involves drawing the vertices inside the regions created
by the curves. An example can be seen in Fig. 23, where the Euler diagram has two
curves, labelled a and b respectively, and there are three vertices and two edges. In
this case, one edge is dangling, since it has an end point that is not incident with any
vertex.

We can now define the concrete syntax of an augmented Euler diagram:

Definition 4.2. An augmented Euler diagram is a 4-tuple, (C,L, l,G), where

(1) C is a finite set of simple closed curves drawn in the plane,
(2) L is a finite multiset of labels,
(3) l is a partial, injective function, l : C → L, that assigns labels to curves, and
(4) G is a set of concrete partial graphs

such that no vertex lies on any curve3 in C, each partial graph in G is connected, and
no two distinct graphs in G share a vertex or an edge. If l is both total and surjective
and all partial graphs in G are graphs then d is well-formed.

Given definition 4.2, the set of partial graphs, G, in a concrete diagram is uniquely
determined up to isomorphism. To identify the set G, one identifies each maximal con-
nected partial graph drawn, G, in the diagram. Each such G is an element of G. So, in
Fig. 23, we have:

(1) C = {c1, c2} where c1 and c2 are the curves in the diagram,
(2) L = {a, b}; as there is no multiple label use, this multiset is also a set,
(3) l(c1) = a and l(c2) = b; as each curve has a label, the function l is total (every curve

has a label), and
(4) G = {G1, G2, G3} where G1 is the concrete partial graph in d comprising two con-

nected vertices and the two edges, G2 is the isolated vertex inside b and G3 is the
isolated vertex inside a.

Here, the diagram is not well-formed as the partial graph G1 has a dangling edge; the
other two partial graphs do not have dangling edges.

3Whilst we cannot guarantee that a vertex will not be placed as such, because we treat vertices as single
points it is highly unlikely; if a vertex lies on a curve then our tool takes it to be outside that curve.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:18 G. Stapleton et al.

Given an augmented Euler diagram, d = (C,L, l,G), in the case where G = ∅, d is
an Euler diagram. In the above definition, we could have merely stated that G is a
concrete partial graph. In our interface, though, we display each connected component
as a graph so that the user can see which parts the tool considered to be connected. As
a consequence, we do not have to recompute the connected components after edits to
the diagram, since this will be captured by our algorithms that produce the abstract
syntax. The price to be paid for this saving is that the details of the algorithms for
computing the abstract syntax are sometimes more complex.

The abstract syntax that we provide for augmented Euler diagrams records, for the
curves, the spatial relationships between them, rather than any geometric informa-
tion about location or size. These spatial relationships are encapsulated by the regions
in the plane to which the curves give rise. These regions are called zones and can be
described as being inside some curves but outside the rest of the curves. For exam-
ple, both the sketch and formal diagram in Fig. 24 have five zones described by {Ca}
(the zone inside only the curve labelled a, which we call Ca), {Cb}, {Ca, Cb} (the zone
inside both the curve labelled a and that labelled b, but outside that labelled c), and
{Ca, Cb, Cc} as well as the zone outside all of the curves. As an abuse of notation, we
will write {Ca, Cb, Cc} as abc and so forth.

Definition 4.3. Let d = (C,L, l,G) be an augmented Euler diagram. A zone, z, in d
is a maximal set of points in the plane for which there exists a subset, C, of C such
that every point in z is inside all curves in C but outside the curves in C − C. The
description of z, denoted des(z), is C. The set of zones in d is denoted Z = Z(d).
Given a vertex, v, in a graph, G, in G, embedded in z the location of v is z and we
define loc(v) = z.

For example, in Fig. 23, there are two vertices located in the zone that is inside
the curve labelled a and one vertex located in the zone inside the curve labelled b. In
addition, there is also a single vertex located in the zone that is outside both of the
curves.

We can now define the abstract syntax of an augmented Euler diagram:

Definition 4.4. Let d = (C,L, l,G) be an augmented Euler diagram. The abstract
syntax of d is a tuple D = (AC,AZ,L, al,AG, aloc) where

(1) AC is a finite set of abstract curves,
(2) AZ ⊆ PAC is a finite set of abstract zones,
(3) L is the set of labels in d,
(4) al : AC → L is a partial, injective function that labels curves,
(5) AG is a the set of partial graphs in G but without the embedding information, and
(6) aloc is a function, aloc :

∪
G∈G

V (G) → AZ, that identifies the abstract zones in which

the vertices are located.

Moreover, there must exist a bijection, f : AC → C, which pairs abstract curves in D
with the curves in d such that for all ac ∈ AC, al(ac) = l(f(ac)), in order for D to be
the abstract syntax of d. In turn, f must induces a bijection g : AZ → Z, which pairs
abstract zones in D with the zones in d, where

(a) for all az ∈ AZ, if g(az) = z then des(z) = {f(ac) : ac ∈ az}, and
(b) for all v ∈

∪
G∈G

V (G), if aloc(v) = az then g(az) = loc(v).

Whenever we talk about a diagram and its abstract syntax, we assume that we have
access to the functions f and g as just given. The abstract syntax of the diagram in
Fig. 23 is as follows:

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

Combining Sketching and Traditional Diagram Editing Tools 0:19

Fig. 24. A sketch with its formal version. Fig. 25. Converting formal to sketch.

(1) AC = {κ1, κ2} (there are two curves),
(2) AZ = {∅, {κ1}, {κ2}} (there are three zones: one outside both curves, denoted ∅, one

inside just a, denoted {κ1}, and one inside just b, denoted {κ2},
(3) L = {a, b},
(4) al(κ1) = a and al(κ1) = b,
(5) AG = {G1, G2, G3}, where

(a) V (G1) = {v1, v2}, E(G) = {e1, e2}, σ(e1) = (v1, v2), and σ(e2) = (v2,)
(b) V (G2) = {v3}, E(G) = ∅,
(c) V (G3) = {v4}, E(G) = ∅, and

(6) aloc(v1) = {κ1}, aloc(v2) = ∅, aloc(v3) = {κ1}, and aloc(v4) = {κ2}.

4.3. Conversion
We now briefly describe how our conversion techniques are applied to augmented Euler
diagrams.

4.3.1. Converting Sketch to Formal. Each stroke is recognized immediately as it is drawn,
classified into one of six categories (label, circle, ellipse, closed curve, vertex, and edge)
by the recognizer and the conversion process depends on the recognition results:

(1) If an item is recognized as a label then it is sent to an off-the-shelf character rec-
ognizer and converted to a formal (type written) label: this formal label is added to
the formal panel with the centre coordinate of the formal label the same as that of
the original stroke.

(2) If an item is recognized as a circle or ellipse it is converted to a formal circle or
ellipse, respectively.

(3) If an item is recognized as a closed curve then its end-points are joined to ensure
that it is a closed curve and it is smoothed.

(4) If an item is recognized as a vertex then it is converted to a small filled circle,
whose centre point is the same as that of the sketched vertex.

(5) If an item is recognized as an edge then it is converted to a straight line segment.
The end points of the straight line segment are the same as those of the sketched
edge, unless one or both of the ends are identified as incident with vertices. In this
case, the respective end of the straight line segment is snapped to the vertex.

4.3.2. Converting Formal to Sketch. Currently we use a circle library, an edge library, a
filled vertex library, and a text library. In the formal interface, ellipses can only be ob-
tained by stretching circles so no ellipse library is needed. We have not implemented
functionality to allow arbitrary closed curves to be drawn in the formal view. The pro-
cess of converting from formal to sketch can be summarized as:

(1) If the user added a label then choose a hand-drawn label from a library of hand-
drawn examples.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:20 G. Stapleton et al.

(2) If the user drew a circle then choose a hand-drawn circle from a library of hand-
drawn examples.

(3) If the user drew an ellipse then this was done by distorting an already drawn circle.
Thus, a corresponding distortion is applied to the hand-drawn circle.

(4) If the user drew a vertex then choose a hand-drawn vertex from a library of hand-
drawn examples.

(5) If the user drew an edge then choose an edge of about the right length from the
library and offset the sketched edge’s endpoints a small random distance from the
incident vertices (if already drawn) or the actual endpoint (if no incident vertex is
drawn).

In all cases, the pseudo sketched stroke is placed on the sketching canvas with the
same centre coordinates as the corresponding formal syntax. Fig. 25 shows a formal
diagram on the left and the conversion to a sketch on the right. Here, the ‘sketched’
curves were chosen from the library, as explained above, and the curve labelled b was
formed by distorting a circle that was originally drawn in the formal interface.

4.4. Consistency
We now describe how we check for consistency, going on to show how our techniques
for rectifying differences and, thus, ensuring consistency, apply to our case study.

4.4.1. Checking for Consistency. Various algorithms have been given to compute the ab-
stract syntax of Euler diagrams (without graphs) from (formal) concrete diagrams.
The first approach to computing the abstract syntax was proposed by Clarke [Clarke
2007], which analysed the areas of the regions formed by the curves. An alternative
approach, by Cordasco et al. [Cordasco et al. 2011], computes the abstract syntax for
Euler diagrams that satisfy a fairly limiting set of properties4. A slightly quicker ver-
sion of Clarke’s algorithm was detailed by Wang et al. [Wang et al. 2011], which we
generalize in this paper to Euler diagrams augmented with graphs. We now proceed to
demonstrate how to compute the abstract syntax of a diagram each time a new item is
added or some other edit made to the diagram. First, we note that when the canvas is
blank, both sketched and formal diagrams have abstract syntax (∅, {∅}, ∅, ∅, ∅, ∅). The
abstract syntax of the diagram is computed by algorithm 1, where we make reference
to (sub-)algorithms which are included in the appendix.

The abstract syntax, once computed, is displayed on the interface in a stylized form,
as seen in Fig. 24. The zones are listed and the graphs are listed by way of displaying
the zones in which their vertices are placed. Other information, such as which edge
is incident with which vertex is visually displayed in the editing panel (for edges and
vertices, a red dot indicates an incidence relationship).

4.4.2. Ensuring Consistency. In augmented Euler diagrams, the spatial relationships
between sketched items are fundamental to their semantics and are embodied in the
abstract syntax. In particular, it is important to maintain the relative intersection,
containment and disjointness of the curves and the location of the vertices during
conversions between sketched and formal diagrams. Rather than present in detail the
application of the techniques to Euler diagrams (which would somewhat repeat the
text above), we focus on the case when a sketched item has been added and converted

4The properties are: the curves must all be simple, there must be no triple points of intersection, the so-
called zones must be connected, there must be no concurrency between curves, and no label can be used on
more than one curve. The exact details of these properties is not of relevance to this paper, the interested
reader should see [Stapleton et al. 2007]. The limitations of this approach imply that it is not appropriate for
applying in sketching environments where users are free to draw diagrams that need not conform to strict
conditions.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

Combining Sketching and Traditional Diagram Editing Tools 0:21

ALGORITHM 1: Compute Abstract Syntax of the Sketch and Formal Diagrams
Input: A sketched diagram, ds = (Ls,Ls, ls,Gs), with abstract syntax

Ds = (ACs,AZs,Ls, als,AGs, alocs). A formal diagram, df = (Lf ,Lf , lf ,Gf), with abstract
syntax Df = (ACf ,AZf ,Lf , alf ,AGf , alocf). An edit action which is either the addition of
an item of syntax. sa, or the erasure of an item of syntax, se.

Output: Abstract syntax D′
s = (AC′

s,AZ ′
s,L′

s ∪ {λ}′s, al ′s,AG′
s, aloc

′
s) and abstract syntax

D′
f = (AC′

f ,AZ ′
f ,L′

f ∪ {λ}′f , al ′f ,AG′
f , aloc

′
s);

(1) If the action is an addition then call one of algorithms 2 to 5 as appropriate, once with
inputs ds, Ds and sa and once with df , Df and sa. Set D′

s and D′
f to be the outputs of these

respective calls to the appropriate algorithm.
(2) Else the action is an erasure, so call one of algorithms 6 to 9 as appropriate, once with

inputs ds, Ds and se and once with df , Df and se. Set D′
s and D′

f to be the outputs of these
respective calls to the appropriate algorithm.

Fig. 26. Smoothing curves in the context of vertices. Fig. 27. Creating diagrams in the study.

to a circle or an ellipse, since this is the most likely occurrence of a mismatch before any
corrective action is taken. When there is a mismatch, we convert the newly sketched
item to a closed curve and check whether the abstract syntaxes match; we could have
first changed a circle to an ellipse. If they still do not match then we iterate through
the curves involved in the zone error, modifying them using the methods in section 3,
and rechecking the zones and vertex locations. As part of this process, when closed
curves are smoothed, we ensure that we do not alter vertex containment. If the error
is not corrected then an error message is displayed on the interface, alerting the user
to the differences.

An example is in Fig. 26, where the sketched curves labelled b and c are very similar
in appearance. In the formal diagram, though, b is smoothed more than c, with the
bulge being removed in this case. The similar bulge in c cannot be smoothed out, since
this would leave the vertex outside c in the formal diagram but inside c in the sketch.

4.5. Evaluation
To demonstrate whether the development of diagram creation tools using our general
approach produces effective, usable systems we conducted two studies: a task based
usability study to ensure that our tool was usable and a stress test to validate its ef-
fectiveness. For the first study, participants were asked to complete five tasks with
Euler diagrams augmented with graphs. The first two tasks asked them to create di-
agrams, using circles, in the sketch and formal interface respectively. The third task
tested moving diagram elements. The fourth task asked for input of closed curves. The
last task focused on deleting elements. Information was gathered from observation
and a questionnaire. In the second study, participants were given the freedom to draw
diagrams of their choice, with a large number of curves, vertices and edges. We now
describe the methodologies used for the studies and their results.

4.5.1. Usability Study Methodology. The ten participants (8 M, 2 F) aged between 18 and
21 had a varied background including: software engineering students (7) computer

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:22 G. Stapleton et al.

Fig. 28. A sequence of tasks: draw initial diagram, move the curve b in sketch view, switch to formal view,
and then move b back in line with a in the formal view.

Fig. 29. Testing the entry of
closed curves.

Fig. 30. A sequence of tasks: draw initial diagram, erase the curve z in
sketch view, erase the curve y in formal view.

science students (1), other engineering students (2). All had basic knowledge of set
diagrams, but not necessarily of Euler diagrams augmented with graphs. Each partic-
ipant undertook the study individually and we captured the screen activity for later
review. As our goal is an excellent user experience, we planned to observe enough par-
ticipants to show any major flaws, fix these and then continue with the study.

The study started with the experimental facilitator showing the participant how
to create and edit diagrams in both views. Participants were then asked to familiarize
themselves with the tool by creating a simple diagram in each view. For the initial part
of the study, the participants were then asked to reproduce the diagrams in Fig. 27,
with task one being to create the sketched diagram shown on the left and another task
being to create the formal diagram shown on the right.

The third task tested moving curves, with participants asked to create the diagram
shown on the left of Fig. 28 and move curve b away from a, switch to formal view, and
move curve b back in line with a. This task tests the selection of components and the
naturalness of the edge reflow when edges must be moved, lengthen or shortened.

The fourth task was designed to test the input of closed curves. For this, users were
asked to draw the sketch in Fig. 29. The final task tested erasing. The participants had
to first draw the diagram in Fig. 30 and then erase curve z, then switch to formal view
and erase curve y and the associated vertex and edge. After the tasks were completed
the participants filled in a qualitative questionnaire.

4.5.2. Usability Study Results. After six participants completed the tasks we reviewed
the results and made a number of minor refinements to the interfaces and then con-
tinued with the last four participants. The refinements after the first participants were
as follows.

When participants moved from the sketch view to the formal view, three participants
tried to use the pencil tool to scribe a curve (where a tap creates a curve). We made two
changes to the interface to address this. First, we change the cursor to a significantly
different custom designed cursor and changed the label on mode button to say ‘Shapes’
(as opposed to ‘Pencil’); the new versions can be seen in Fig. 31.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

Combining Sketching and Traditional Diagram Editing Tools 0:23

Fig. 31. The new formal view cursor and the new menu on the formal canvas.

Our tool is specifically designed for pen only interaction. However four people tried to
use the delete button to erase selected shapes in the formal view. We added this support
to the formal view, but not to the sketch view, reasoning that the eraser is a more
natural in sketch view. Both views (sketch and formal) have three interaction modes
(draw, select and erase) and it remembers the mode for each view independently: when
switching between views for the moves and deletes, users expected the mode to follow.
We have made that modification.

Drawing graphs caused problems in both views. In the sketch view, three partici-
pants drew a least one vertex and edge in a single stroke. While in the formal view,
both of the pen interactions, press and hold or tap with the barrel button down, are
difficult. These problems are more difficult to solve. A possible solution to the first
problem would be to segment the ink stroke into vertex and edge - however segment-
ing strokes is a difficult problem [Sezgin et al. 2001; Wolin et al. 2011] and is likely to
be error prone. As for the second problem, timeouts and stylus barrel buttons are both
known to be difficult for users [Plimmer 2008]. We cannot assume that a tap within
a curve is a vertex because curves can lie within curves. With the limited interaction
of a stylus, an alternative is a new mode for adding vertices. However, mode changes
can be annoying and adding another mode may also cause problems. We chose not to
make any alterations for either of these problems, reasoning that our tool supports the
creation of incomplete diagrams and that if users are aware of the expected interaction
they are likely to adapt to it.

There were two issues with deletion. The first was that users expected a curve to be
deleted if they tapped inside it with the eraser button: they must erase the curve itself.
We noted that users adapted to this interaction quickly and changing to erasing on tap
would make erasing very sensitive and likely result in unwanted erasing of vertices.
A similar situation occurred in the formal view where users tried to tap on an edge to
erase it, hitting the exactly on the edge is extremely difficult. When this did not work
they then dragged the eraser over the edge, which was successful. We expanded the
hit zone around the components to make tap delete easier.

We observed that some of the curve labels were recognized as numeric digits rather
than letters so we invoked the character recognizer’s factoid function. With this, char-
acter recognition is restricted to lower-case letters. We also corrected a number of mi-
nor bugs in the software.

After these modifications, we recommenced the user study with another four par-
ticipants. The only change to the instructions was a specific instruction to draw the
edges and vertices in separate strokes. The two changes in regard to view change - the
new cursor and retaining active mode across views, were very effective. Only one par-
ticipant tried to draw in the formal view and there were no frustrations of being in a
different mode when the view changed, we observed that the transition was seamless.
The erase problem in formal view was solved with the larger hit zone with no par-
ticipant problems. The modifications had the desired effect with users having fewer
problems with these functions and no other major issues were identified.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:24 G. Stapleton et al.

The questionnaire asked participants to rate the software on a scale of 1 to 5 (5
being the best), on a variety of features. The responses for all ten participants were
very positive, with all participants rating the software 4 or 5 on overall ease of use
(mean 4.6, sd 0.59). For each view we asked participants to separately rate how easy it
was to: find buttons, create the diagrams, edit the diagram, and correct the diagram.
For the sketch view the responses were all 4 or 5 for both usability testing rounds. The
formal view received seven ‘3’ ratings (out of 24) in the first round and this improved in
the second round with only two ‘3’ ratings (out of 16). We attribute this improvement to
the new cursor and easier deletions. All participants were satisfied with the time and
ease of completing tasks with scores of 4 or 5 (time (mean 4.8, sd 0.42), ease (mean 4.8,
sd 0.42)). The first set of participants completed the study in an average time of 7:53
minutes while the second group took just 4:20 minutes. We attribute this to smoother
transitions between views and fewer problems with deletion in formal view.

4.5.3. Stress Test Methodology. The goal of this test is to see how the software performs
under less controlled conditions, thus evaluating robustness. This study was conducted
on a Dell Latitude XT3 running Windows 7 64bit. It has an Intel i7 2.90GHz process or
8.GB of RAM. The eight participants (5 M, 3 F) came from a range of backgrounds. Four
were computer science graduate students who were familiar with Euler diagrams, the
others had varied backgrounds, one was familiar with Euler diagrams. To begin, the fa-
cilitator demonstrated the tool while describing the basic components of the diagrams.
It was emphasized that diagram elements could be drawn in any order and that the
shapes of the curves, intersections and so forth were entirely up to the participants.
They were also shown how they could erase, and select and edit ink. Before commenc-
ing drawing diagrams for the stress test, they were given a few minutes to explore
the application and practice drawing. For the stress test, the participants were asked
to draw a diagram, with whatever arrangement of curves, vertices and edges as they
liked. Our testing showed that a reasonable response time, by the software, could be
maintained while the diagrams has fewer than about 10 curves and 10 vertices - this
is dependent on the size of the items and number of intersections, further discussed
below. Therefore, the only condition given to the participants was that their chosen
diagram should have about 10 curves and up to 10 vertices and edges.

4.5.4. Stress Test Results. The participants drew a total of 88 curves that resulted in
171 minimal regions (these are regions formed by the intersections of the curves; zones
are made up of minimal regions), sixty vertices and 39 edges. The complexity of the
diagrams varied. Fig 32 is typical, however Participant 6’s (Fig. 33) is much more
complex with 48 minimal regions. In general terms, the software performed well with
no crashes. However when the diagrams get very complex (such as Fig. 33) and there
is a large amount of ink and filling to render the software slows to a degree where
one would not wish to use it. With more conventional diagrams such as Fig. 32 the
response time is acceptable at this level of complexity. The results of the recognition
and conversion are discussed in the next section.

To further stress-test the software, in terms of software response times, we sketched
12 diagrams of different complexities measured by number of curves, regions, vertices
and edges. The most time consuming part is the recognition and subsequent updating
of the abstract syntax on the addition of a curve. Table I shows times taken to recognize
the last sketched curve, which was drawn after the vertices and edges had all been
drawn, and update the abstract syntax; times were computed on a Dell Latitude XT3
with Intel i7 2.80GHz CPU and 8GB Ram, running Windows 7 64bit.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

Combining Sketching and Traditional Diagram Editing Tools 0:25

Fig. 32. Participant 3’s sketched and formal diagram.

Fig. 33. Participant 5’s sketched and formal diagram.

Table I. Computation time for curve addition.

Curves Regions Vertices Edges Time
1 2 1 0 0.240
2 4 2 1 0.252
3 7 3 2 0.395
4 10 4 3 0.459
5 13 5 4 0.485
6 16 6 5 0.634
7 19 7 6 0.834
8 16 8 7 0.945
9 19 9 8 1.006
10 11 10 10 0.345
10 22 10 9 1.231
10 40 0 0 3.403

4.6. Conversion and Recognition
In this section we first discuss the usability study results and then the stress testing
study results. During the usability study, the participants drew 329 strokes, of which
97 were labels, 59 were circles, 35 were ellipses, 17 were curves, 45 were edges and 79
were vertices. We did not observe any conversion errors (i.e. differences between the
abstract syntaxes of the sketch and formal diagram) during the study. We note that it
is possible to create inconsistencies, but the only way in which we have been able to do
so is via contrived examples like that in Fig. 15.

We calculated the recognition rates at two levels. First, when determining whether
a stroke was a label or a drawing element, the recognizer was 98.5% accurate. Labels
were then classified by the Microsoft character recognizer, which for the first round
was 86.20% accurate (i.e. 8 errors out of 58). For the last four participants, when we
invoked the factoid constraint the recognition rate was 94.87% accurate (i.e. 2 errors
out of 39). The success rates for the drawing elements were as follows. Circles: 59 out

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:26 G. Stapleton et al.

Fig. 34. An inconsistency created by the authors.

of 59, 100% accurate. Ellipses: 35 out of 35, 100% accurate. Curves: 17 out of 17, 100%
accurate. Edges: 40 out of 45, 88.88% accurate. Vertices: 66 out of 79, 83.54% accurate.
In the first round, three participants drew the edges and one or both vertices in a single
stroke, we count these as recognition errors for both edge and vertices. In the second
round we advised people that they must draw vertices and edges separately and one
person did this a couple of times but they soon modified their technique, drawing them
separately. When drawn separately there was 100% recognition rate for the edges and
92.75% recognition rate for the vertices. The five vertices misrecognized were recog-
nized as text. Given the similarity of vertices and some letters this is not surprising.

In the second (stress test) study the participants were not required to replicate a
pre-existing diagram. Therefore we have categorized the elements simply as curve, la-
bel, edge and vertices using our subjective judgement (although in all cases we felt
the intended type of each sketched item was clear). In many cases, the participants
observed that a recognition error had occurred at the time of drawing and corrected it
immediately - all these correction incidents were counted as errors. The curves were
recognized 100% correct, labels 100%, edges 94% with the others recognized as curves,
vertices 90% with the others recognized as labels. The character recognition was not
as good as in the user study at 67%. In part, this was due to the more informal nature
of the task coupled with some participants taking less care with their writing – if we
could not decipher the letter (for instance ‘a’ versus ‘d’) – if the recognizer gave a rea-
sonable result, we did not count this as an error. In addition, the Microsoft recognizer
seems to be more reliable on some letters than others - f, i and k were particularly
unreliable. Importantly, there were no inconsistencies between the sketches, formal
diagrams and abstract descriptions, even with these much larger diagrams produced
freeform by the participants. This demonstrates that the conversion method is robust.

To further test the robustness of the conversion methods, we (the authors) attempted
to draw diagrams in a way that would cause the conversion method to introduce an
inconsistency. Being experts in the underlying algorithms, we are best placed to create
such examples. Despite considerable effort, we only found one feature of diagrams
that caused inconsistencies to arise: two curves have small intersecting peaks that get
smoothed out by the conversion process. A typical example can be seen in Fig. 34. In
our experience, diagrams with small, peak-like intersections are not typically drawn
by people.

5. DISCUSSION AND CONCLUSION
This paper has described the theoretical considerations that are important when de-
veloping diagram creation tools that allow both sketched input via a stylus and formal
input using traditional mouse based input. Both views are necessary: sketching is an
important mode of entry, allowing users to focus on the task of diagram creation, but
ultimately users want formal versions of their sketches. Moreover, the ability to edit
the diagram in both views is important for achieving the final required result and a

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

Combining Sketching and Traditional Diagram Editing Tools 0:27

good user interaction experience. We have presented a conceptual framework required
to support systems that switch between sketch and formal approaches to diagram edit-
ing and used a case study to demonstrate how the inconsistencies that may result can
be rectified. Ensuring the consistency of the semantics between sketch and formal dia-
gram is embodied by the production of their abstract syntaxes. We have demonstrated
that this abstract syntax should be more general than is usually seen for visual lan-
guages, since it must capture partly formed diagrams. To establish that our approach
is practically applicable, we have presented a proof-of-concept software implementa-
tion centered around Euler diagrams augmented with graphs.

The size of the diagrams that can be drawn on the current version of the software
is limited by the processor power and efficiency of the software. While processors con-
tinue to get more powerful, there are two parts of the software that could be optimized.
First the algorithms that extract and match the formal descriptions could be investi-
gated. Second the graphics repaint could be customized - currently we are using the
standard canvas components and the entire canvas is repainted after each event. This
could be optimized so that only the region that has been changed is repainted. Thus,
there is potential to further enhance the usability of our tool.

The choice of case study was informed by two factors. First, we considered the ways
in which visual languages convey information (using spatial relationships as well as
connectivity and specific geometric shapes). Euler diagrams augmented with graphs
exhibit all these features. Secondly, our chosen notation has numerous application ar-
eas and form the basis of other, more expressive, visual languages. Thus, the specific
details of our case study provide a basis for future work developing diagram creation
tools for these richer notations. For instance, Euler diagrams augmented with graphs
can be extended with additional syntax, including arrows, shading and mathematical
symbols, to give a notation rich enough to model ontologies [Howse et al. 2011]. Such
syntax can be seen in other applications including visual logic representations, and
visualization of semantic networks and computer networks. To fully support diagram
creation in these areas we will need to further develop our software for these more
complex diagram types. Thus, the work in this paper lays a foundation for providing
diagram creation tools for visual languages having even wider ranging practical appli-
cation.

ACKNOWLEDGMENTS

We would like to thank Mengdi Wang and Dhruv Dhir for their substantial contributions to the software
implementation required for this paper.

REFERENCES
2013. Petri Nets. www.petrinets.info/. (2013). accessed April 2013.
T. Baar. 2006a. Correctly Defined Concrete Syntax for Visual Modeling Languages. In MODELS. Springer,

111–125.
T. Baar. 2006b. Correctly Defined Concrete Syntax for Visual Models. In MoDELS/UML. Springer, 111–125.
R. Blagojevic, B. Plimmer, J. Grundy, and Y. Wang. 2008. A data collection tool for sketched diagrams. In

SBIM. 80–93.
P. Bottoni, M. Koch, F. Parisi-Presicce, and G. Taentzer. 2001. A Visualization of OCL using Collaborations.

In UML 2001. Springer, 257–271.
S. H. H. Chang, R. Blagojevic, and B. Plimmer. 2012. RATA.Gesture: A Gesture Recognizer Developed using

Data Mining. AI EDAM (2012).
R. Clarke. 2007. Fast Zone Discrimination. In Visual Languages and Logic. 41–54.
G. Cordasco, R. De Chiara, and A. Fish. 2011. Efficient on-line algorithms for Euler diagram region compu-

tation. Computational Geometry: Theory and Applications 44 (2011), 52–68. Issue 1.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:28 G. Stapleton et al.

G. Costagliola, A. De Lucia, S. Orefice, and G. Polese. 2002. A classification framework to support the design
of visual languages. Journal of Visual Languages and Computing 13 (2002), 573–600. Issue 6.

C. Damm, K. Hansen, and M Thomsen. 2000. Tool support for cooperative object-oriented design: Gesture
based modelling on an electronic whiteboard. In SIGCHI conference on Human factors in computing
systems. ACM, 518–525.

F. Dau. 2007. Constants and Functions in Peirce’s Existential Graphs. In Conceptual Structures. 429–442.
R. DeChiara, U. Erra, and V. Scarano. 2003. VennFS: A Venn Diagram file manager. In Proceedings of

Information Visualisation. IEEE Computer Society, 120–126.
H. Dunn-Davies and R. Cunningham. 2005. Propostional Statecharts for Agent Interaction Protocols. In

Proceedings of Euler Diagrams 2004, Brighton, UK (ENTCS), Vol. 134. 55–75.
M. Erwig. 1998. Abstract syntax and semantics of visual languages. Journal of Visual Languages and Com-

puting 9 (1998), 461–483.
G. Farrell and W. Sousa. 2001. Repeat Victimization and Hot Spots: The Overlap and its Implication for

Crime Control and Problem-Oriented Policing. Crime Prevention Studies 12 (2001), 221–240.
M. Field, S. Gordon, E. Peterson, R. Robinson, T. Stahovich, and C. Alvarado. 2009. The Effect of Task on

Classification Accuracy: Using Gesture Recognition Techniques in Free-Sketch Recognition. Computers
and Graphics 34, 5 (2009), 499–512.

A. Fish, J. Flower, and J. Howse. 2005. The Semantics of Augmented Constraint Diagrams. Journal of Visual
Languages and Computing 16 (2005), 541–573. Issue 6.

J. Gil, J. Howse, and S. Kent. 1999. Formalising Spider Diagrams. In Proceedings of IEEE Symposium on
Visual Languages (VL99), Tokyo. IEEE Computer Society Press, 130–137.

V. Goel. 1995. Sketches of thought. MIT Press.
G. Goldschmidt. 1999. Visual and Spatial Reasoning in Design. University of Sydney, Chapter The Backtalk

of Self-Generated Sketches, 163–184.
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten. 2009. The WEKA Data Mining

Software: An Update. ACM SIGKDD Explorations Newsletter 11, 1 (2009), 10–18.
T. Hammond and R. Davis. 2002. Tahuti: A geometrical sketch recognition system for UML class diagrams.

In AAAI spring symposium on Sketch understanding.
J. Howse, F. Molina, S-J. Shin, and J. Taylor. 2001. Type-syntax and Token-syntax in Diagrammatic Systems.

In Proceedings FOIS-2001: 2nd International Conference on Formal Ontology in Information Systems,
Maine, USA. ACM Press, 174–185.

J. Howse, G. Stapleton, and J. Taylor. 2005. Spider Diagrams. LMS Journal of Computation and Mathemat-
ics 8 (2005), 145–194.

J. Howse, G. Stapleton, K. Taylor, and P. Chapman. 2011. Visualizing Ontologies: A Case Study. In Interna-
tional Semantic Web Conference. Springer, 257–272.

E. Ip. 2001. Visualizing Multiple Regression. Journal of Statistics Education 9, 1 (2001).
Y. Jiang, F. Tian, X. (L.) Zhang, G. Dai, and H. Wang. 2011. Understanding, Manipulating and Searching

Hand-Drawn Concept Maps. ACM Transactions on Intelligent Systems and Technology 3, 11 (2011), 21.
G. Johnson, M. Gross, and J. Hong. 2009. Computational Support for Sketching in Design. Now Publishers

Inc,.
S. Kent. 1997. Constraint Diagrams: Visualizing Invariants in Object Oriented Models. In Proceedings of

OOPSLA97. ACM Press, 327–341.
H. Kestler, A. Muller, J. Kraus, M. Buchholz, T. Gress, H. Liu, D. Kane, B. Zeeberg, and J. Weinstein.

2008. VennMaster: Area-Proportional Euler Diagrams for Functional GO Analysis of Microarrays. BMC
Bioinformatics 9, 67 (2008).

H. Kestler, A. Muller, H. Liu, D. Kane, B. Zeeberg, and J. Weinstein. 2005. Euler diagrams for visualizing
annotated gene expression data. In Proceedings of Euler Diagrams 2005. Paris.

S. Maier, S. Mazanek, and M. Minas. 2008. Layout Specification on the Concrete and Abstract Syntax Level
of a Diagram Language. In Layout of (Software) Engineering Diagrams, Vol. 13. ECEASST.

K. Mineshima, M. Okada, and R. Takemura. 2012. A Diagrammatic Inference System with Euler Circles.
Journal of Logic, Language and Information 21, 3 (2012), 365–391.

C. Peirce. 1933. Collected Papers. Vol. 4. Harvard University Press.
B. Plimmer. 2008. Experiences with digital pen, keyboard and mouse usability. Journal of Multi-modal User

Interfaces 2 (2008), 13–23. Issue 1.
B. Plimmer and I. Freeman. 2007. A Toolkit Approach to Sketched Diagram Recognition. In HCI. British

Computer Society, 205–213.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

Combining Sketching and Traditional Diagram Editing Tools 0:29

B. Plimmer, H. Purchase, and H. Laycock. 2009. Preserving the Hand-drawn Appearance of Graphs. In
Visual Languages and Computing. 347–352.

B. Plimmer, H. Purchase, and H. Yang. 2010. SketchNode: Intelligent sketching support and formal dia-
gramming. In OZCHI 2010. ACM, 136–143.

D. Rubine. 1991. Specifying gestures by example. ACM SIGGRAPH Computer Graphics 25 (1991), 329–337.
Issue 4.

T. Sezgin, T. Stahovich, and R. Davis. 2001. Sketch based interfaces: Early processing for sketch understand-
ing. In Workshop on Perceptive User Interfaces.

S.-J. Shin. 1994. The Logical Status of Diagrams. Cambridge University Press.
J. Soriano, K. Davis B. Coleman, G. Visick, D. Mannino, and N. Pride. 2003. The Proportional Venn Diagram

of Obstructive Lung Disease. Chest 124 (2003), 474–481.
J. Sowa. 2013. Conceptual Graphs. www.jfsowa.com/cg/. (2013). accessed April 2013.
G. Stapleton and J. Masthoff. 2007. Incorporating Negation into Visual Logics: A Case Study Using Euler

Diagrams. In Visual Languages and Computing 2007. Knowledge Systems Institute, 187–194.
G. Stapleton, P. Rodgers, J. Howse, and J. Taylor. 2007. Properties of Euler Diagrams. In Proceedings of

Layout of Software Engineering Diagrams. EASST, 2–16.
N. Swoboda and G. Allwein. 2005. Heterogeneous Reasoning with Euler/Venn Diagrams Containing Named

Constants and FOL. In Proceedings of Euler Diagrams 2004 (ENTCS), Vol. 134. Elsevier Science.
J. Thièvre, M. Viaud, and A. Verroust-Blondet. 2005. Using Euler Diagrams in Traditional Library Environ-

ments. In Euler Diagrams 2004 (ENTCS), Vol. 134. ENTCS, 189–202.
Unified Modelling Language. 2006. http://www.uml.org/. (2006).
M. Wang, B. Plimmer, P. Schmieder, G. Stapleton, P. Rodgers, and A. Delaney. 2011. SketchSet: Creating

Euler Diagrams using Pen or Mouse. In IEEE Symposium on Visual Languages and Computing. IEEE,
75–82.

L. Wilkinson. 2012. Exact and approximate area-proportional circular Venn and Euler diagrams. IEEE
Transactions on Visualization and Computer Graphics 18, 2 (2012), 321–331.

R. Wilson. 1996. Introduction to Graph Theory. Prentice Hall.
J. Wobbrock, A. Wilson, and L. Yang. 2007. Gestures without libraries, toolkits or training: a $1 recognizer

for user interface prototypes. In 20th annual ACM symposium on User interface software and technology.
ACM.

A. Wolin, M. Field, and T. Hammond. 2011. Combining corners from multiple segmenters. In 8th Eurograph-
ics Symposium on Sketch-Based Interfaces and Modeling.

L. Yeung, B. Plimmer, B. Lobb, and D. Elliffe. 2008. Effect of fidelity in diagram presentation. In 22nd
British HCI Group Annual Conference on People and Computers: Culture, Creativity, Interaction, Vol. 1.
British Computer Society, 35–44.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.

A. ALGORITHMS FOR THE ADDITION OF ITEMS
Of the four addition algorithms, the easiest algorithm to describe is that for when
a new label is added. This is described in algorithm 2. When a new label is added,
the interface updates if the label is associated with a curve, replacing the associated
curve’s colour in the displayed abstract syntax with the curve label. This is illustrated
in Fig. 35.

Fig. 35. Adding a label.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:30 G. Stapleton et al.

ALGORITHM 2: Adding a Label
Input: A diagram, d = (L,L, l,G), with abstract syntax D = (AC,AZ,L, al,AG, aloc), and a new

label, λ, added to the diagram;
Output: Abstract syntax D′ = (AC,AZ,L ∪ {λ}, al′,AG, aloc);

We only need to compute al′.
(1) Label Step If λ is not associated with any curve then al′ = al. Otherwise, λ is associated

with a unique curve, c, that does not have a label in d and we define al′(c) = λ and
al′(c′) = al(c′) for all other curves c′ in AC.

When an item has been added that is recognized as a vertex, we must determine
two things: (1) the impact on the set of partial graphs, dependent on whether the new
vertex is incident with any drawn edge, and (2) in which zone the new vertex is placed.
These are reflected in algorithm 3, which computes the abstract syntax on the addition
of a vertex: (1) is the Graph Step and (2) is the location step. To illustrate the algorithm,
consider figure 36. The left hand diagram, d1 say, has abstract syntax:

(1) AC = {κ1} (there is one curve),
(2) AZ = {∅, {κ1}} (there are two zones, one outside κ1 and the other inside κ1),
(3) al(κ1) = a,
(4) AG = {G1, G2}, where

(a) V (G1) = {v1}, E(G1) = {e1} and σ(e1) = (v1,),
(b) V (G2) = {v2}, E(G2) = {e2} and σ(e2) = (v2,), and

(5) aloc(v1) = {κ1} and aloc(v2) = ∅.

Working through the graph step, we see that the new vertex, v say, is incident with
both edges, so the set of edges considered by this step is {e1, e2} and the associated
set of partial graphs is {G1, G2} since e1 is in G1 and e2 is in G2. So, we have AG′ as
follows:

AG′ = (AG − {G1, G2}) ∪
{
({v1, v2, v}, {e1, e2}, σ′)

}
= {({v1, v2, v}, {e1, e2}, σ′)},

where σ′(e1) = (v1, v) and σ′(e2) = (v2, v). Notice that the number of partial graphs
has reduced from two to one, since the vertex v joined the two distinct partial graphs
in d1. For the location step, v is not inside the curve, so it’s location is aloc′(v) = ∅.
The locations of all other vertices are unchanged, meaning that aloc′(v1) = {κ1} and
aloc′(v2) = ∅.

Fig. 36. Adding a vertex.

Fig. 37. Adding an edge.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

Combining Sketching and Traditional Diagram Editing Tools 0:31

ALGORITHM 3: Adding a Vertex
Input: A diagram, d = (L,L, l,G), with abstract syntax D = (AC,AZ,L, al ,AG, aloc) and a new

vertex, v, added to the diagram;
Output: Abstract syntax D′ = (AC,AZ,L, al,AG′, aloc′);

We only need to compute AG′ and aloc′.
(1) Graph Step Give the set of edges, E = {e1, ..., en}, with which v has been identified as

incident, and the set of partial graphs, G = {G1, ..., Gn}, that contain the edges e1 to en (the
graphs G1 to Gn need not all be distinct) define

AG′ = (AG − {G1, ..., Gn}
)
∪ {(

∪
Gi∈G

V (Gi) ∪ {v},
∪

Gi∈G

E(Gi), σ
′)}

where σ′ :
∪

Gi∈G

E(Gi) → (
∪

Gi∈G

V (Gi) ∪ {v, })× (
∪

Gi∈G

V (Gi) ∪ {v, }) and is defined by

σ′(e) =


(x, y) e ̸∈ E ∧ σi(e) = (x, y) for some Gi ∈ G
(v′, v) e ∈ E ∧ σi(e) = (v′,) for some Gi ∈ G
(v,) e ∈ E ∧ σi(e) = (,) for some Gi ∈ G

where, for each i, Gi = (Vi, Ei, σi).
(2) Location Step Start by defining, for each v′ ∈ V (Gi) where Gi ∈ G,

aloc′(v′) = aloci(v
′). Next, set aloc′(v) = ∅. Iterate through the curves in d. For each

curve, c, determine whether v is inside the curve. If v is inside the curve, add f(c)
to aloc′(v), so aloc′(v) becomes aloc′(v) ∪ {f(c)}. If v is not inside the curve, leave
aloc′(v) unchanged.

Algorithm 4, for edge addition, is similar. However, it is somewhat more straight-
forward since any given edge is incident with at most two vertices. To illustrate the
algorithm, consider figure 37. The left hand diagram, d1 say, has abstract syntax:

(1) AC = {κ1, κ2} (there are two curves),
(2) AZ = {∅, {κ1}, {κ2}} (there are three zones, one outside both curves, one inside the

curve labelled a and the other inside the curve labelled b),
(3) al(κ1) = a, and al(κ2) = b,
(4) AG = {G1, G2, G3}, where

(a) V (G1) = {v1} and E(G1) = ∅,
(b) V (G2) = {v2} and E(G2) = ∅,
(c) V (G3) = {v3} and E(G3) = ∅,
and each of σG1 , σG2 and σG3 are empty functions because there are no edges.

(5) aloc(v1) = {κ1}, aloc(v2) = {κ2} and aloc(v3) = ∅.

To compute the graphs after the addition of the edge, e say, we see that e has joined
the partial graphs G1 and G2 by connecting their vertices. So, we are in case (3)(b) and
we have AG′ as follows:

AG′ = (AG − {G1, G2}) ∪
{
(V ′, E′, σ′},

where V ′ = {v1, v2}, E′ = {e} and σ′(e) = (v1, v2). That is, AG′ = {G3, (V
′, E′, σ′)}.

Notice that the number of partial graphs has reduced from three to two, since the edge
e joined two distinct partial graphs in d1.

We now demonstrate how to compute the new abstract description of an Euler di-
agram when a curve has been added, following algorithm 5. We will run through the
first steps of computing the abstract syntax of the sketch in Fig. 38, when a curve is
added as shown on the right. We start by noting that to simplify the details and aid

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:32 G. Stapleton et al.

ALGORITHM 4: Adding an Edge
Input: A diagram, d = (L,L, l,G), with abstract syntax D = (AC,AZ,L, al ,AG, aloc) and a new

edge, e, added to the diagram;
Output: Abstract syntax D′ = (AC,AZ,L, al ,AG′, aloc);

We only need to compute AG′.
(1) If e has not been identified as incident with any vertex then define

AG′ = AG ∪ {(∅, {e}), ∅}.
(2) If exactly one end point of e has been identified with a vertex, v, (i.e. e is dangling) then

define

AG′ = (AG − {G}) ∪ {(V (G), E(G) ∪ {e}, σ′}.
where G = (V (G), E(G), σG) is the graph in AG that includes v and σ′ is defined by

σ′(e′) =

{
σG(e

′) if e′ ∈ E(G)
(v,) ife′ = e

(3) If both end points of e have been identified with vertices, v1 and v2, (i.e. e is not dangling)
then there are two subcases:
(a) if v1 and v2 are both in the same graph, G = (V (G), E(G), σG), in AG then define

AG′ = (AG − {G}) ∪
{(V (G), E(G) ∪ {e}, σ′)}

where σ′ is defined by

σ′(e′) =

{
σG(e

′) if e′ ∈ E(G)
(v1, v2) ife′ = e

(b) else v1 and v2 are in different graphs, G1 = (V (G1), E(G1), σG1) and
G2 = (V (G2), E(G2), σG2) respectively, in AG in which case define

AG′ = (AG − {G1, G2}) ∪ {(V ′, E′, σ′)}.
where
i. V ′ = V (G1) ∪ V (G2)

ii. E′ = E(G1) ∪ E(G2) ∪ {e}, and

iii. σ′(e′) =

 σG1(e
′) if e′ ∈ G1

σG2(e
′) if e′ ∈ G2

(v1, v2) if e′ = e

intuition we blur the distinction between the new curve added, c say, and an abstract
representation of it. We also blur the distinction between the curves and their labels.
Given the abstract syntax,

D = (AC,AZ,L, al ,AG, aloc)

of the original sketch, which we call d, we demonstrate how to compute the zones of
the new sketch that results on the addition of the third curve, c; further, call the new
sketch d′. We consider each zone, z, of d in turn and determine whether any part of z
is inside c in d′ and whether any part is outside c in d′:

(1) The zone inside no curves in d does not have any part inside c in d′, but does have
a part (in this case all of it) outside c in d′. The abstract zone ∅ in AZ gives rise to
just the abstract zone ∅ in AZ ′.

(2) The zone inside just the curve a in d does not have any part inside c in d′, but does
have a part (in this case all of it) outside c in d′. The abstract zone {a} in AZ gives
rise to just the abstract zone {a} in AZ ′.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

Combining Sketching and Traditional Diagram Editing Tools 0:33

ALGORITHM 5: Adding a Curve
Input: A diagram, d = (L,L, l,G), with abstract syntax D = (AC,AZ,L, al ,AG, aloc) and a new

curve, c, added to the diagram;
Output: Abstract syntax D′ = (AC ∪ {c},AZ ′,L, al ′,AG, aloc′);

We need to compute AZ ′, al ′ and aloc′

(1) Zone Step To compute AZ ′, carry out the following:
(a) Initial Step Denote the region (i.e. set of points) inside the new curve, c, by in(c).
(b) Zone Creation Step Set AZ ′ = ∅ Iterate through the zones in Z(d). For each zone, z:

i. if z ∩ in(c) ̸= ∅ then add {f−1(c′) : c′ ∈ des(z)} ∪ {c} to AZ ′, and5

ii. if z − in(c) ̸= ∅ then add {f−1(c′) : c′ ∈ des(z)} to AZ ′.
Once all zones have been considered, we have computed AZ ′.

(2) Curve Label Step If c has not been associated with any label then al ′ = al . Otherwise, c

has been associated with a label, λ say, and we define al ′(c′) =

{
al(c′) if c′ ∈ AC
λ if c′ = c

(3) Location Step Iterate through each graph in G. For each graph, g, iterate through its
vertices. For each vertex, v, define aloc′(v) = aloc(v) ∪ {c} if v is inside the new curve c,
otherwise define aloc′(v) = aloc(v).

(3) The zone inside just the curve b in d does has a part inside c in d′, as well as a part
outside c in d′. The abstract zone {b} in AZ gives rise to two abstract zones, namely
{b, c} and {b} in AZ ′.

The locations of the vertices are updated in much the same way. In this example, only
one vertex has a different location, that which is inside the new curve c: its location
was {b} and it is now {b, c}.

Fig. 38. Adding a curve.

B. ALGORITHMS FOR THE ERASURE OF ITEMS
We now demonstrate how to update the abstract syntax when items are erased from
the diagram. The erasure of a label is trivial to handle, demonstrated in algorithm 6.

ALGORITHM 6: Erasing a Label
Input: A diagram, d = (L,L, l,G), with abstract syntax D = (AC,AZ,L, al,AG, aloc) and a label,

λ, to be erased from d;
Output: Abstract syntax D′ = (AC,AZ,L − {λ}, al′,AG, aloc);

We only need to compute al′. Trivially, al′ = al|L−{λ}, where | denotes a domain restriction.

Sometimes, when vertices are erased, a graph becomes disconnected, thus giving rise
to two or more graphs in the resulting diagram. This is illustrated in Fig. 39. Other
cases include that when the vertex was isolated and that when the vertex does not

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:34 G. Stapleton et al.

Fig. 39. Erasing a vertex.

Fig. 40. Erasing an edge.

disconnect a graph. All of these distinct possibilities for the erased vertex, however,
can be collapsed to a single case: we need to compute the set of graphs to which the
deletion of v gives rise. Algorithm 7 computes the abstract syntax on the erasure of a
vertex, is similar to that for the addition of a vertex.

ALGORITHM 7: Erasing a Vertex
Input: A diagram, d = (L,L, l,G), with abstract syntax D = (AC,AZ,L, al,AG, aloc), and a vertex

v, to be erased from d;
Output: Abstract syntax D′ = (AC,AZ,L, al,AG′, aloc′);

We only need to compute AG′ and aloc′.
(1) Graph Step Find the graph, G = (V, E) which contains v. Define {G1, ..., Gn} to be the set

of maximal connected partial graphs that arise from G on the deletion of v. Define
AG′ = (AG − {G}) ∪ {G1, ..., Gn}.

(2) Location Step Trivially, aloc′ = aloc except that v is not longer in the domain.

Similarly to the vertex erasure case, when an edge is erased we must look for the
maximal partial graphs that arise. This is illustrated in Fig. 40, where the erased edge
gives rise to two graphs. Algorithm 8 computes the new abstract syntax.

Finally, we must consider the impact of erasing a curve. As with adding a curve,
multiple features of the diagram can be altered. Alterations will necessarily occur to
the zone set of the diagram. As a consequence, the zones in which the vertices lie may
change. Fig 41 shows an example. The left hand diagram, d1 say, has abstract syntax:

(1) AC = {κ1, κ2, κ3} (there are three curves),
(2) AZ = {∅, {κ1}, {κ2}, {κ1, κ2}, {κ2, κ3}} (there are five zones),
(3) al(κ1) = a, al(κ2) = b, and κ3 has no label,
(4) AG = {G1, G2}, where

(a) V (G1) = {v1, v′1}, E(G1) = {e1} and σ(e1) = (v1, v
′
1),

(b) V (G2) = {v2, v′2, v′′2}, E(G2) = {e2, e′2}, σ(e2) = (v2, v
′
2), and σ(e2) = (v′2, v

′′
2),

(5) aloc(v1) = {κ1}, aloc(v′1) = ∅, aloc(v2) = {κ1, κ2}, aloc(v′2) = {κ2, κ3}, and aloc(v′′2) =
∅,

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

Combining Sketching and Traditional Diagram Editing Tools 0:35

The unlabelled curve, c, is deleted from d1, which impacts on most of the abstract
syntax, as follows, where f−1(c) = κ3:

(1) AC′ = AC − {κ3} = {κ1, κ2},
(2) AZ ′ = {∅, {κ1}, {κ2}, {κ1, κ2}} since {κ2, κ3} − {κ3} = {κ2}
(3) al′(κ1) = al(κ1) = a and al′(κ2) = al(κ2) = b,
(4) AG′ = AG = {G1, G2}, that is the set of partial graphs is (necessarily) unchanged,
(5) aloc(v1) = {κ1}, aloc(v′1) = ∅, aloc(v2) = {κ1, κ2}, aloc(v′2) = {κ2, κ3} − {κ3} = {κ2},

and aloc(v′′2) = ∅,

Algorithm 9 which determines the effect of the curve’s deletion is much more straight-
forward than that for the addition of a curve.

Fig. 41. Erasing a curve.

ALGORITHM 8: Erasing an Edge
Input: A diagram, d = (L,L, l,G), with abstract syntax D = (AC,AZ,L, al,AG, aloc) and an edge

e, to be erased from d;
Output: Abstract syntax D′ = (AC,AZ,L, al,AG′, aloc);

We only need to compute AG′.
(1) Find the graph, G = (V,E, σ), that contains e. Define {G1, G2} to be the set of maximal

connected partial graphs that arise from G on the deletion of e (note that G1 and G2 are the
same graph when e is not a disconnecting edge). Set

AG′ = (AG′ − {G}) ∪ {G1, G2}.

ALGORITHM 9: Erasing a Curve
Input: A diagram, d = (L,L, l,G), with abstract syntax D = (AC,AZ,L, al,AG, aloc) and a curve,

c, to be erased from d;
Output: Abstract syntax D′ = (AC − {f−1(c)},AZ ′,L, al′,AG, aloc′);

We need to compute AZ ′, al′ and aloc′.
(1) Abstract Zone Step Set AZ ′ = ∅ to be an empty list of zones. Iterate through the abstract

zones in AZ. When encountering abstract zone az add az − {f−1(c)} to AZ ′. When all
abstract zones in AZ have been considered, we have computed AZ ′.

(2) Labelling Step If c had no label or the label of c is not reassigned to any other curve then
define al′ = al|AC−{f−1(c)}. Otherwise, c has a label that is reassigned to another curve, say
c′. In this case, define

al′(c′′) =

{
al(f−1(c′′)) if c′′ ̸= c, c′′ ̸= c′ and al(f−1(c′)) is defined
al(f−1(c)) if c′′ = c′

(3) Location Step Iterate through the graphs in AG. For each graph, G = (V,E, σ), iterate
through the vertex set. When encountering vertex v define aloc′(v) = aloc(v)− {f−1(c)}.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

0:36 G. Stapleton et al.

The set of algorithms that we have presented are sufficient for computing the ab-
stract syntax of both sketched and formal diagrams.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 2013.

