
Hill, Steve (1994) The Functional Simulation of a Simple Microprocessor.
 Technical report. University of Kent, Computing Laboratory, University
of Kent, Canterbury, UK

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21176/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21176/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

The Functional Simulation of a Simple

Microprocessor

Steve Hill

September ��� ����

Abstract

This paper documents the microprocessor simulator developed to sup�

port the teaching digital systems to undergraduate computer scientists�

The framework of the simulation is described� and two variant machines�

register�based and stack�based� are given� Finally� a more abstract version

of the register machine is detailed�

� Background

This work arose from the need to provide a platform for the simulation of
microprocessor architectures suitable for undergraduate students of computer
science� However� we believe that our experience shows that the techniques
employed could well have a wider application�

Our problem was this� in the second year of our undergraduate programme�
two groups of students study a digital systems course� The �rst group study
Computer Systems Engineering which is oriented more towards electronics than
is the Computer Science degree� Originally� the course contained a laboratory
experiment which involved a fair amount of practical electronics� We decided
that iy was an unreasonable requirement that the main stream computer sci�
entists� especially those from largely mathematical or computing backgrounds�
should have to perform this experiment� It was proposed� therefore� that these
students be o�ered a software�based project as an alternative�

The �rst part of this paper describes the main features of the simulation that
was developed for this purpose� From the outset we determined that a functional
language would be used for the assessment� There were several reasons for this�

� Functional programming is taught in the �rst year� and this exercise would
provide an opportunity for reinforcement� In particular� it would provide
an opportunity to show how functional programming could be used in an
unfamiliar role�

�

� The conciseness of the functional descriptions should help students to
understand the concepts of machine architecture without needing to worry
about the mechanics of the simulation�

� There would not be much time available 	approximately one week as it
turned out
 for the development of the project� A functional language
would support rapid and accurate program development�

� The mathematical elegance of functional language would a�ord opportu�
nities in the future for formal proofs of properties of the machines� We
intend to use them as the basis for a compiling techniques course which is
due for introduction in �����

The simulation was initially written using Gofer
��� and then manually
converted into Miranda
��� Gofer provided a convenient development language
since it can be run on a wide range of platforms� Miranda is the 	second

programming language that is taught in our �rst year� The conversion was a
simple task requiring less than an hour to complete� We are not aware of any
tools that perform the translation in this direction�

We chose to provide simulations for two architectural styles � a register ma�
chine and a stack machine� Both machines share a common core which is
extended to provide their peculiar instruction sets� The simulations are con�
structed in three levels�

� The core machine provides the basic architecture described by means of
primitive transitions of machine state�

� The micro�code provides a specialisation of the core machine by imple�
menting an instruction set in terms of the basic transitions�

� The assembly language interface is implemented by an assembler and
loader which together construct an initial machine state� This is then
run until the machine halts�

� The Core Machine

The core machine provides a characterisation of the machine architecture� It
comprises a type of �machine state� along with a set of permitted state transi�
tions� These transitions are the only ones allowed� The style is similar to that
adopted by Peyton Jones and Lester
�� for the description of abstract machines
for the implementation of functional languages�

Ideally� the type of machine state should be abstract� This would prevent
unwanted modi�cation of the core machine� In our implementation� the type
of machine state is not actually abstract� but this is for pragmatic pedagogic
reasons � there being insu�cient time available in the �rst year to cover abstract
data types in Miranda adequately�

�

ALUMAR MDR R0 R1

A−Bus

B−Bus

C−Bus

D−Bus

Memory

Figure �� Architecture of the Core Machine

��� Components

The machine� depicted in Figure � was decomposed into six parts�

� Memory � the memory is modelled as an association list between address
and contents�

� Memory Interface � the memory interface comprises two special purpose
registers � the memory address register 	MAR
 and the memory data
register 	MDR
�

� Register File � the registers are modelled as an association list between
register number and register contents� The core machine thus makes no
commitments as to the number of registers available�

� Buses � the machine has four internal buses or data highways�

� Statistics � the statistics �eld is used to accumulate measures of the ma�
chine�s performance�

� Halt Flag � this indicates if the machine has halted�

For the purposes of this simulation� we have chosen to represent machine
words and addresses as integers��

address == num
word == num

memory == assoclist address word
memory_interface == (word, word)
registers == assoclist num word
buses == (word, word, word, word)
stats == (num, num, num, num, num, [char])

�Miranda makes no type distinction between �oating point and integer types � the distinc�

tion is maintained at run time

�

machine == (memory, memory_interface, registers,
buses, stats, bool)

��� Primitive Transitions

The machine is characterised by its transitions� Most transitions involve the
movement of data from one part of the machine to another� The primitive
transitions represent the lowest level of the simulation� All machine operations
must ultimately be composed of these primitives�

transition == machine -> machine

The A�bus and B�bus are used to communicate argument values to the ALU�
Registers in the register �le or the MDR 	but not the MAR
 may be copied onto
either the A�bus or the B�bus� In addition to the data copy� the �register to
bus� statistic is incremented�

regToAbus, regToBbus :: num -> transition

regToAbus n (m, i, r, (a, b, c, d), s, h)

= (m, i, r, (a1, b, c, d), incRegBus s, h)
where
a1 = aLookup n r

mdrToAbus, mdrToBbus :: transition

mdrToAbus (m, (mar, mdr), r, (a, b, c, d), s, h)

= (m, (mar, mdr), r, (mdr, b, c, d), incRegBus s, h)

The C�bus is used to hold the result of an ALU operation� The D�bus carries
the condition codes� Data may be copied from the C�bus to the register �le�
MAR or MDR� The D�bus is more restricted� Data on the D�bus can only be
copied into the register �le�

cbusToReg, dbusToReg :: num -> transition

cbusToReg n (m, i, r, (a, b, c, d), s, h)

= (m, i, r1, (a, b, c, d), incBusReg s, h)
where
r1 = aBind n c r

cbusToMar, cbusToMdr :: transition

cbusToMar (m, (mar, mdr), r, (a, b, c, d), s, h)

= (m, (c, mdr), r, (a, b, c, d), incBusReg s, h)

�

Access to the memory is via the MAR and MDR� To read memory� the
address is placed in the MAR and a memory read cycle executed� The word
that is read is placed in the MDR�

memRead :: transition

memRead (m, (mar, mdr), r, b, s, h)

= (m, (mar, mdr1), r, b, incReads s, h)
where
mdr1 = aLookup mar m

To write data into the memory� the data is placed in the MDR and the
destination address placed in the MAR� A memory read cycle is then executed�

memWrite :: transition

memWrite (m, (mar, mdr), r, b, s, h)

= (m1, (mar, mdr), r, b, incWrites s, h)
where
m1 = aBind mar mdr m

The ALU�cycle transition performs calculations� Data is placed onto the
A�bus and possibly the B�bus� then an ALU�cycle executed The result appears
on the C�bus� The D�bus holds the condition codes which result from the
calculation� The operation of the ALU is speci�ed via an enumerated type�
although perhaps a word would be more appropriate�

aluOp ::= AluA | AluB | AluIncA | AluDecA | AluNegA | AluAbsA |
AluAdd | AluSub | AluMul | AluDiv | AluMod

aluCycle :: aluOp

aluCycle op (m, i, r, (a, b, c, d), s, h)

= (m, i, r, (a, b, c1, d1), incAluCycle s, h)
where
c1 = a, if op = AluA

= b, if op = AluB
= a+1, if op = AluIncA
|| And other unary operations
= a+b, if op = AluAdd
= a-b, if op = AluSub
|| And other binary operations

d1 = condbit (c1 = 0) aluZero +
condbit (c1 < 0) aluNeg

The calculation of the condition code bits is rather cumbersome� It would
be much simpler in a language which provided words as a primitive data type�

�

Such a type could have been de�ned in Miranda� but at the loss of the set of
familiar built�in operators associated with the datatype num� Miranda� unlike
Gofer and Haskell does not permit the de�nition of overloaded functions�

The �nal transition which deals with the simulation proper is halt�

halt :: transition

halt (m, i, r, b, s, h)

= (m, i, r, b, s, True)

A set of functions which log messages in the statistics �eld of the machine
state are also provided�

printMar, printMdr, printAbus,
printBbus, printCbus, printDbus :: transition

printString :: [char] -> transition
printReg :: num -> transition
printMem :: address -> transition

��� Compound Transitions

The operation of the machine is speci�ed as a sequence of primitive transitions�
Two transitions could be combined using functional composition but a variant�
which has its arguments reversed� is provided instead� It was thought that the
ordering of the arguments for this function would be more intuitive for students
unpractised in functional programming�

comma :: transition -> transition -> transition

(t1 $comma t2) m = t2 (t1 m)

Most machine operations require a sequence of transitions� A list of transi�
tions is performed sequentially by the following function��

do :: [transition] -> transition

do [] = id
do (t:ts) = t $comma do ts

The switch transition is more specialised� It allows a transition to be selected
from a table according to the contents of a register� Its role mimics the operation
of the mapping PROM in a micro�code engine� This de�nition would be more
concise and readable if Miranda supported the as and don�t care patterns�

�A rather more elegant de�nition in terms of foldr could be given� but the simple recursive

de�nition is preferred�

�

switch :: num -> assoclist num transition -> transition

switch reg tab (m, i, r, b, s, h)

= (aLookup (aLookup reg r) tab) (m, i, r, b, s, h)

Similarly� it is often the case that a section of micro�code is parameterised on a
register value� The following function allows for this�

passReg :: num -> (num -> transition) -> transition

passReg reg tr (m, i, r, b, s, h)

= tr (aLookup reg r) (m, i, r, b, s, h)

��� Register Transfer

We are now in a position to be able to de�ne transitions which correspond more
closely to the register transfer style� The �rst allows the contents of one register
to be copied to another and might be written as�

Rs � Rd

regToReg :: num -> num -> transition

regToReg rs rd

= do [
regToAbus rs,
aluCycle AluA,
cbusToReg rd

]

In a similar way transitions for copying data to and from the MAR and to
the MAR from the register bank are provided�

mdrToReg, regToMdr, regToMar :: num -> transition

Finally� some compound transitions for combining registers via the ALU are
provided� These might be written in the register transfer style thus�

�Rn � Rd

Rn � Rm � Rd

The second of these transitions is presented�

op2 :: num -> aluOp -> num -> num -> transition

op2 rn op rm rd

�

= do [
regToAbus rn,
regToBbus rm,
aluCycle,
cbusToReg rd

]

� A Register Machine

We have implemented two instruction sets for the machine� The �rst is a register
machine loosely based on the Motorola ������ The second is a paper stack
machine which is described in the digital systems lecture course� The register
machine is described in detail� The stack machine is rather simpler� so only
brief details of its implementation are given�

��� Registers

The machine has the following registers�

� pc � the program counter

� ir � the instruction register

� tmp�� tmp� � two temporary registers� not intended for general use

� sp � the stack pointer

� ccr � the condition code register

� r�� r�� r�� r� � four general purpose registers

��� Instruction Encoding

The instruction encoding for this machine is very simple� Each instruction is
identi�ed by a word� Any arguments are represented by two words following the
instruction� The �rst identi�es the addressing mode� and the second the actual
argument value eg� a register number or address�

|| Instruction codes
moveW = 1
addW = 2

|| Addressing modes
litW = 1
regW = 2

For example a typical move instruction might be represented by the sequence
moveW� litW� ��� regW� r� 	move literal value �� into register zero
�

�

��� Instructions and Addressing

The basic operation of this machine consists of two operations� The transition
fetch retrieves a word from the address held in the program counter� This
instruction is then executed by selecting the appropriate micro�code via a switch
and invoking it�

fetch :: transition

fetch

= do [
regToMar pc,
memRead,
mdrTo ir,
op1 pc AluIncA pc

]

execute :: transition

execute

= switch ir [
(moveW, moveI),
(addW, addI),
|| Other instructions
(haltW, haltI)

]

Each instruction is now represented as a machine transition� For example�

moveI

= do [
srcOpTo tmp1,
dbusToReg ccr,
destOpFrom tmp1

]

addI

= do [
srcOpTo tmp1,
srcOpTo tmp2,
op2 tmp1 AluAdd tmp2 tmp1,
destOpFrom tmp1

]

All these instructions make use of the functions srcOpTo and destOpFrom

which handle addressing modes for the source and destination arguments re�
spectively�

�

srcOpTo :: num -> transition

srcOpTo r

= do [
fetch,
switch ir [

(litW, do [fetch, regToReg ir r]),
(absW, do [fetch, regToMar ir, memRead, mdrToReg r]),
(regW, do [fetch, passReg ir ((flip regToReg) r)]),
(indW, do [fetch, passReg ir ((flip memToReg1) r)])

]
]

destOpFrom r

= do [
fetch,
switch ir [

(litW, halt),
(absW, do [fetch, regToMem r ir]),
(regW, do [fetch, passReg ir (regToReg r)]),
(indW, do [fetch, passReg ir (regToMem r)])

]
]

The description of the machine is now complete� The literal destination
mode� although allowed by the instruction set is clearly a nonsense and has
been implemented as a halt transition�

��� Assembler and Loader

The �nal stage of the simulation was to provide an assembly language� loader
and functions to run programs to completion� Using a functional progamming
environment was of great bene�t� Programs were represented as lists of instruc�
tions which were themselves simply elements of an algebraic datatype� There
was no need to have a concrete syntax for assembly language programs� Instead
the syntax of lists and constructors is used directly�

For simplicity� labels are not implemented� In retrospect this was probably
a mistake� Many of the errors that students encountered in their test data were
due to incorrect jumps�

program == [instruction]

instruction

::= Move operand operand |
Add operand operand operand |
|| Other instructions
Halt

��

It is also possible to provide directives or pseudo�ops� In students� version of
the simulator a de	ne constant data directive was provided� but it was hardly
used� The operand type describes the set of addressing modes�

operand

::= Lit word |
Reg word |
Abs word |
Ind word

It would have been possible to specialise the operands according to their
use� For example� two sorts of operand 	one for source operands and another
for destinations
 could be provided� The possibility of nonsenses such as a literal
destination are then excluded�

The task of the assembler is to produce a memory binding� For simplicity it
is assumed that programs always start at address zero�

assemble :: program -> memory

assemble = assemble1 0 []

The main part of the assembler creates a memory binding starting at the
speci�ed address from the given program� The memory binding is accumulated
in the second argument�

assemble1 :: word -> memory -> program -> memory

assemble1 w m [] = m
assemble1 w m (i:is) = assemble1 w1 m1 is

where
(w1, m1) = assemI w m i

Each instruction is converted into its internal representation and placed in
memory� The work of assembling an instruction is performed by assemI� It
assembles the instruction i starting at address w by augmenting the memory
bindings in m� It returns the augmented memory binding and the memory
location at which subsequent code should be placed�

assemI :: word -> memory -> instruction -> (word, memory)

assemI w m (Move src dst) = assemI2 w m moveW src dst
assemI w m (Add src1 src2 dst) = assemI3 w m addW src1 src2 dst
|| Other instructions
assemI w m Halt = (w+1, aBind w haltW m)

Instructions are assembled according to the number of operands� For exam�
ple�

��

assemI2 w m instr src dst

= (w3, m3)
where
w1 = w + 1
m1 = aBind w instr m
(w2, m2) = assemO w1 m1 src
(w3, m3) = assemO w2 m2 dst

Finally operands are themselves assembled by the function assemO�

assemO w m (Lit x) = assemO1 w m litW x
assemO w m (Reg x) = assemO1 w m regW x
assemO w m (Abs x) = assemO1 w m absW x
assemO w m (Ind x) = assemO1 w m indW x

assemO1 w m mode val

= (w2, m2)
where
w1 = w + 1
m1 = aBind w mode m
w2 = w1 + 1
m2 = aBind w1 val m1

The simulation is completed by the de�nition of a loader and a function to
execute a program to completion� The loader creates a machine in its initial
con�guration� where the memory is bound to the result of assembling a program�

load :: memory -> machine

load mem

= (mem, (0, 0), aBind pc 0 initial_regs,
(0, 0, 0, 0), initial_stats, False)

The function run assembles a program� loads it� and executes it to completion
ie� until the halt �ag becomes true� The result of the run function is a string
containing any diagnostic messages generated during the program run� followed
by a dump of the machine�s �nal state�

run = run’ . load . assemble

run’ mc

= d ++ showMachine m2, if h
= d ++ run’ m2 , otherwise

where
m1 = execute (fetch mc)
d = getDiagnostics m1
m2 = resetDiagnostics m1

��

� A Stack Machine

The core machine has also been used to implement a stack�based architecture�
In this section a brief overview of its unique features is given� This is achieved
by reprogramming it with a new set of micro�code� The new machine has only
the minimum of internal registers� pc� ir� tmp�� tmp�� sp and ccr�

��� Instructions

The stack machine has far more instructions than the register machine� but
fewer addressing modes� Most instructions work on data held in the stack�
Therefore� the following simple transitions� used in the implementation of many
other instructions� are de�ned�

push r

= do [
op1 sp AluIncA sp,
regToMar sp,
regToMdr r,
memWrite

]

pop r

= do [
regToMar sp,
memRead,
mdrToReg r,
op1 sp AluDecA sp

]

The transitions place the contents of a register onto the stack and pop the top
of the stack into a register respectively� The following machine instructions are
typical of the bulk of the implementation�

addI

= do [
pop ir,
pop tmp1,
op2 ir AluAdd tmp1 ir,
dbusToReg ccr,
push ir

]

dupI

= do [

��

pop ir,
push ir,
push ir

]

There is scope for optimisation of these instructions by careful tracking of values�
In many cases it is possible to avoid expensive memory accesses by caching the
top elements of the stack� This was set as one of the tasks in the digital systems
assignment�

In order to e�ect addressing modes� there are a number of special instructions
which push and pop data to and from the stack� In summary there are�

� pushLit � pushes a literal value onto the stack

� pushAbs� popAbs � push a value held in a speci�ed memory location and
pop the top of stack into a speci�ed memory location respectively�

� pushRel� popRel � push a value held in the stack at a speci�ed o�set from
sp� pop the top of the stack into a location at a speci�ed o�set from the
sp respectively�

This set facilitates the manipulation of constants and local and global variables�
There is no provision for indirection� although this would be simple enough to
add� An example of these instructions is�

popAbsI

= do [
fetch,
pop tmp1,
regToMar ir,
regToMdr tmp1,
memWrite

]

��� Assembler and Loader

The instruction set for the stack machine is much simpler than the register
machine� and consequently the assembler is much simpler� The implementation
has only to deal with instructions of zero or no operands� and operands when
present consist of a single item�

There are only minor di�erences between the loader for the stack machine
and that of the register machine�

� Re�nements

In the simulation described� the level of abstraction 	micro�code
 was mandated
by circumstance� The simulation was speci�cally designed at a level that coin�
cided with the teaching in the digital systems course� However� if one were to

��

simulate a microprocessor in earnest one would probably wish to start with a
high�level description and to re�ne it 	not necessarily in its entirety
�

��� A Simpli�ed Machine

Initially the internal operations of the device are not a concern� What is of
interest is its observable behaviour� The machine state is rede�ned to re�ect
this in the following manner�

machine == (memory, registers, stats, bool)

Notice that the memory interface and the internal buses have been removed�
The registers are retained since they are directly observable� A new set of tran�
sitions which describe the basic operations of the machine can now be de�ned�
Interfacing to the memory is via the following two transitions�

regToMem :: num -> address -> transition
memToReg :: address -> num -> transition

Operations to transfer data and manipulate data within the machine are
also required� They apply an ALU operation to the contents of two registers
and place the result in a destination register� The variant transition opc also
sets a condition code register�

op :: num -> num -> num -> aluOp -> transition
opc :: num -> num -> num -> num -> aluOp -> transition

There is a halt transition and a number of transitions responsible for diag�
nostics as in the micro�code machine�

As with the low�level machine� primitives to sequence transitions� select
transitions according to a register value� and to pass register contents to a
transition are provided�

comma :: transition -> transition -> transition
do :: [transition] -> transition
switch :: num -> assocList num transition -> transition
passReg :: num -> (word -> transition) -> transition

The machine is described in a similar fashion to the earlier simulation�

fetch :: transition

fetch

= passReg pc (flip memToReg ir)

execute :: transition

execute

��

= switch ir [
(moveW, moveI),
|| other instructions

]

And the individual instructions are similarly simpli�ed� for example�

moveI :: transition

moveI

= do [
srcOpTo tmp1,
opc tmp1 tmp1 tmp1 ccr,
dstOpFrom tmp1

]

The functions srcOpTo and dstOpFrom are de�ned as before�
Work is currently in progress to prove that the two machines are equivalent�

A logical framework for reasoning about Miranda programs has been constructed
under the Isabelle system
��� A paper reporting this work is in preparation�

� Conclusions and Future Work

Experience of marking the assignments based on this simulator would suggest
that the students have had little di�culty with it� Few of the questions about
the simulator related to the workings of functional languages� Some students
have not grasped the di�erence between the simulation and the device that is
being simulated� but this is not a problem con�ned to a functional implemen�
tation� However� we must be somewhat cautious� The group that attempt
this assessment are self�selecting� Any student who struggled with functional
programming in the �rst year is unlikely to want to attempt this assessment�
Between a half and a third of the CS cohort opted to avoid the simulation
exercise 	or opted for the interfacing lab
 each year�

From the point of view of the implementer� the simulator has been a great
success� During the two years of its use� we have identi�ed only a few minor
bugs which were �xed in a matter of minutes� One was due to a typographical
error and a couple of others were introduced when the simulation was modi�ed
to emulate a transputer�style architecture� Performance was not a problem for
us since the students� test programs were quite small� On the basis of our
experience� we would recommend using functional languages for the rapid and
accurate development of software�

Although this work was primarily motivated by the requirements of an un�
dergraduate course� we believe that it is possible to use functional description
techniques to design hardware� Design would start with a high�level abstract

��

description of a device� and then proceed via a number of formally veri�ed re�
�nement steps to a concrete description suitable for fabrication� for example

���

References

�� Mark P� Jones� Introduction to Gofer ����� ����� Available via ftp from
nebula�cs�yale�edu�

�� John T� O�Donnell� Generating netlists from executable circuit speci�cations
in a pure functional language� In John Launchbury and Patrick Sansom�
editors� Workshop on Functional Programming� Springer�Verlag� �����

�� Lawrence C� Paulson� The foundation of a generic theorem prover� Technical
Report ���� University of Cambridge� Computer Laboratory� �����

�� Simon L� Peyton Jones� Implementing Functional Languages� Prentice�Hall�
�����

�� D� A� Turner� An overview of Miranda� SIGPLAN Notices� December �����

��

