Using Producer and Consumer Manipulators to
Extend Stream /O Formatting in C++

Michael Rizzo
Computing Laboratory, University of Kent
Canterbury, KENT CT2 7NF, UK
Email: M.Rizzo@ukc.ac.uk

Published in ACM SIGPLAN Notices 29(3), March 1994.

Introduction

The C++ iostream package makes use of the notion of stream manipulators, principally as
a means of manipulating formatting state associated with a stream. This paper illustrates
how parameterized manipulators which produce output and consume input can be defined
to extend stream I/O formatting. Such manipulators can be especially useful for simple
parsing of stream input.

Format state
There are two problems with stream format state:
¢ handling new formats can be messy, and
e it is all too easy to ‘forget’ the current format state when inputting values.

For illustration purposes, consider a manipulator base(b) which causes input and output
of ints to be done in the indicated base.

To implement this manipulator in the typical format-state manipulator style e.g. as for
the hex manipulator, a variable to hold the base must be added to the stream state. The
ios class allows this to be done dynamically via the xalloc() member but the insertion
and extraction operators for ints do not know about the base and consequently have to be
re-defined. To make matters worse there is a feature-interaction problem as the following
code segment demonstrates:

int i;
cout << base(3) << i << hex <K i;

Clearly the implementation of the hex manipulator will also have to be changed for the
above to be executed correctly. The same goes for dec, oct and resetiosflags.

The second problem is that when processing input it very easy to forget to ‘turn off” a
formatting manipulator. The effects of this may not become apparent until much later in
the program’s execution and it is not always immediately obvious as to what the cause of
the problem is. For example, one may turn on the hex manipulator, and forget to turn it off



when it is no longer needed. Later in the execution an input sequence of digits intended to
be interpreted as a decimal integer will be interpreted as a hexadecimal one and the effects
of this misread value may not be detected until much later, if ever'. Detection of such an
error is even more difficult if it is execution-path dependent.

Producer and Consumer Manipulators

A producer manipulator is one which generates output on an output stream e.g. endl.
Similarly a consumer manipulator consumes input from an input stream e.g. ws. We could
define the base manipulator described earlier as a producer-consumer manipulator which
does not require any stream state and which is only applied to its argument so that it does
not need to be ‘turned off’. For example:

int i, j;
cin >> base(12,i) >> base(4,j);

This treats the first value as a number in base 12 and the second as a number in base 4.
The stream format state remains unchanged throughout. Implementation is easy and does
not involve re-definition of any existing operations. Additionally each formatted value is
clearly and explicitly associated with a format specifier, which is not always the case with
format state manipulators.

There is one potential disadvantage with this approach which may be significant in some
circumstances. Consider a vector class containing an array of ints. An insertion operator
for such a class might output each of the ints in turn using the insertion operator for int.
The format state approach enables all manipulators defined for ints to be used with the
vector class. With the producer/consumer manipulator approach, new manipulators for
vectors would have to be defined?.

However there are several applications where this disadvantage is not an issue. In
particular, the author has found the consumer manipulator technique to be especially useful
when applied to string input as demonstrated in the following sections.

String Consumer Manipulators

A common source of irritation when reading a string from an input stream is that white
space is used as delimiter. One well-known technique for specifying strings containing white
space involves enclosing the string in quotation marks (as is the case with command line
arguments in UNIX shells for example). Assuming the existence of a String class, we would
ideally like to be able to write something like

istream is;
String s;

is >> s;

!This problem is no different from that of side-effects in programming languages like C, where evaluation
of an expression may alter the system state.
20me could argue that this is actually safer, even if a bit long-winded.



so that if the incoming sequence of characters is Hello there then s is assigned the
value Hello but if the incoming sequence is "Hello there'" then the value assigned is Hello
there.

The above code would force the extraction operator for class String to take care of
processing quotation characters in this way. However this is not a very good solution
because there are other ways of specifying strings containing white space and it wouldn’t
be wise to restrict our String class to a fixed set of possible representations.

The correct approach is to define a consumer manipulator to do the job so that this
code becomes

istream is;
String s;

is >> quoted(s);

where the quoted manipulator takes care of processing quotation marks and assigning
the value to s. This approach does not have any implications on the implementation of
either of the stream or String classes. Different manipulators can be written to process
other representations of strings containing white space.

Implementation is pretty straightforward: the standard IMANIP template for input
manipulators can be used as described in Stroustrup pg 347, the only difference being that
the argument is actually a reference. Figure 1 contains the implementation of the quoted
manipulator for the String class®. Note that this correctly handles error conditions, in
spite of the apparent lack of error handling code.

Using String Consumer Manipulators to provide scanf ()-like functionality

The scanf () family of functions may not be type-safe, but is richer than standard input
streams in terms of its input processing capabilities®. Consider the example:

char buffer[BUF_LEN];

scanf ("%*d BEGIN %[A-Z]", buffer);

This code reads and throws away an integer value, reads and throws away the characters
‘BEGIN’ and then reads a character string into buffer. This example demonstrates two
classes of scanf ()’s input processing capabilities, namely:

e character-eating (e.g. assignment suppression, format string matching),
e string-processing (e.g. matching incoming characters against a scanset).

Type-safety aside, scanf () is still far from perfect. It does not, for example, allow input
to be matched against regular expressions. Worse still, scanf () is not extensible; adding
features would require modification to its implementation.

Manipulators taking more than one argument can be implemented in a similar fashion except that no
standard template is provided.

4Using GNU g++4 2.4.5 with libg++ 2.4.

®This has led to some implementations of istream defining a scan function which works like scanf ().
This approach defeats the whole purpose of streams because it suffers from precisely the same problems that
scant () does!



istream& quoted_str(
istream &is, String &s
) A{
char c;
is >> c¢;
if (¢ == ’\"?) { // Quoted string
s ="
bool end = FALSE;
do {
if (is.get(c)) {
switch(e) {
case '"’:
end = TRUE;
break;
case *\\’:
if (is.get(c)) s += c;
break;
default:
8 += c;
break;
}
}
else {
end = TRUE;
}
} while (lend);
}
else { // String not quotes
is.putback(c);
is >> s;
}
}

imanip<String&> quoted(String &s) {
return imanip<String&>(&quoted_str, s);

+
Fig 1. The quoted manipulator

Streams, in contrast, are very easily extensible. Consumer manipulators can be defined
to achieve the same functionality of scanf() and more. Going back to the last example,
three manipulators eat_int, eat and scanset could be used to achieve the same effect as
follows:

istream is;
char buffer[BUF_LEN];



is »> eat_int >> eat("BEGIN'")
>> scanset("A-Z", buffer);

Discussion

The C++ iostream package contains a rather small handful of pre-defined producer/consumer
manipulators, the only instance of a consumer being the white-space eater ws. Other pre-

defined manipulators set stream state variables which influence processing of input and

output e.g. hex. The implementation of these manipulators relies on state in the imple-

mentation of the ios class as well as the implementations of the insertion and extraction

operators corresponding to the affected types.

In this paper it has been demonstrated that producer and consumer manipulators can
be used to enhance stream I/O formatting in a clean, easily extensible, type-safe fashion
which is free from side-effects.

It is felt that producer and consumer manipulators offer a significant amount of as
yet untapped potential. Considering the convenience, elegance, and safety they offer, it is
perhaps rather surprising that the standard set of predefined manipulators (see Stroustrup
sec 10.4.2.1 or AT&T C+4+ Programmer’s Guide sec 5.8) is so limited in scope.

Acknowledgements

The idea of manipulators is due to Andrew Koenig.
I am grateful to lan Utting for revising the paper and for making many useful sugges-
tions.

References

B. Stroustrup, The C++ Programming Language, Second Edition, Addison Wesley, Read-
ing, Massachusetts (1991).

SunPro, C++ 3.0.1 Programmers Guide, Sun Microsystems Inc, Mountain View, Cali-
fornia (1992).

Note: Sources for many of the manipulators described in this paper and others are
available by anonymous ftp from eagle.ukc.ac.uk in pub/mr3/manip (for GNU g4+ 2.4.5
with libg++ 2.4).



