
Using Producer and Consumer Manipulators to

Extend Stream I�O Formatting in C��

Michael Rizzo
Computing Laboratory� University of Kent

Canterbury� KENT CT� �NF� UK
Email� M�Rizzo�ukc�ac�uk

Published in ACM SIGPLAN Notices ��	
�� March ���
�

Introduction

The C�� iostream package makes use of the notion of stream manipulators� principally as
a means of manipulating formatting state associated with a stream� This paper illustrates
how parameterized manipulators which produce output and consume input can be de�ned
to extend stream I�O formatting� Such manipulators can be especially useful for simple
parsing of stream input�

Format state

There are two problems with stream format state�

� handling new formats can be messy� and

� it is all too easy to �forget	 the current format state when inputting values�

For illustration purposes� consider a manipulator base�b�which causes input and output
of ints to be done in the indicated base�

To implement this manipulator in the typical format
state manipulator style e�g� as for
the hex manipulator� a variable to hold the base must be added to the stream state� The
ios class allows this to be done dynamically via the xalloc�� member but the insertion
and extraction operators for ints do not know about the base and consequently have to be
re
de�ned� To make matters worse there is a feature
interaction problem as the following
code segment demonstrates�

int i�

cout �� base��� �� i �� hex �� i�

Clearly the implementation of the hex manipulator will also have to be changed for the
above to be executed correctly� The same goes for dec� oct and resetiosflags�

The second problem is that when processing input it very easy to forget to �turn o�	 a
formatting manipulator� The e�ects of this may not become apparent until much later in
the program	s execution and it is not always immediately obvious as to what the cause of
the problem is� For example� one may turn on the hex manipulator� and forget to turn it o�

�



when it is no longer needed� Later in the execution an input sequence of digits intended to
be interpreted as a decimal integer will be interpreted as a hexadecimal one and the e�ects
of this misread value may not be detected until much later� if ever�� Detection of such an
error is even more di
cult if it is execution
path dependent�

Producer and Consumer Manipulators

A producer manipulator is one which generates output on an output stream e�g� endl�
Similarly a consumer manipulator consumes input from an input stream e�g� ws� We could
de�ne the base manipulator described earlier as a producer
consumer manipulator which
does not require any stream state and which is only applied to its argument so that it does
not need to be �turned o�	� For example�

int i� j�

cin �� base�	
�i� �� base���j��

This treats the �rst value as a number in base �� and the second as a number in base ��
The stream format state remains unchanged throughout� Implementation is easy and does
not involve re
de�nition of any existing operations� Additionally each formatted value is
clearly and explicitly associated with a format speci�er� which is not always the case with
format state manipulators�

There is one potential disadvantage with this approach which may be signi�cant in some
circumstances� Consider a vector class containing an array of ints� An insertion operator
for such a class might output each of the ints in turn using the insertion operator for int�
The format state approach enables all manipulators de�ned for ints to be used with the
vector class� With the producer�consumer manipulator approach� new manipulators for
vectors would have to be de�ned��

However there are several applications where this disadvantage is not an issue� In
particular� the author has found the consumer manipulator technique to be especially useful
when applied to string input as demonstrated in the following sections�

String Consumer Manipulators

A common source of irritation when reading a string from an input stream is that white
space is used as delimiter� One well
known technique for specifying strings containing white
space involves enclosing the string in quotation marks �as is the case with command line
arguments in UNIX shells for example�� Assuming the existence of a String class� we would
ideally like to be able to write something like

istream is�

String s�

���

is �� s�

�This problem is no di�erent from that of side�e�ects in programming languages like C� where evaluation

of an expression may alter the system state�
�One could argue that this is actually safer� even if a bit long�winded�

�



so that if the incoming sequence of characters is Hello there then s is assigned the
value Hello but if the incoming sequence is 
Hello there
 then the value assigned is Hello
there�

The above code would force the extraction operator for class String to take care of
processing quotation characters in this way� However this is not a very good solution
because there are other ways of specifying strings containing white space and it wouldn	t
be wise to restrict our String class to a �xed set of possible representations�

The correct approach is to de�ne a consumer manipulator to do the job so that this
code becomes

istream is�

String s�

���

is �� quoted�s��

where the quoted manipulator takes care of processing quotation marks and assigning
the value to s� This approach does not have any implications on the implementation of
either of the stream or String classes� Di�erent manipulators can be written to process
other representations of strings containing white space�

Implementation is pretty straightforward� the standard IMANIP template for input
manipulators can be used as described in Stroustrup pg ���� the only di�erence being that
the argument is actually a reference�� Figure � contains the implementation of the quoted
manipulator for the String class�� Note that this correctly handles error conditions� in
spite of the apparent lack of error handling code�

Using String Consumer Manipulators to provide scanf���like functionality

The scanf�� family of functions may not be type
safe� but is richer than standard input
streams in terms of its input processing capabilities� � Consider the example�

char buffer�BUF�LEN��

���

scanf�
��d BEGIN ��A�Z�
� buffer��

This code reads and throws away an integer value� reads and throws away the characters
�BEGIN	 and then reads a character string into buffer� This example demonstrates two
classes of scanf��	s input processing capabilities� namely�

� character
eating �e�g� assignment suppression� format string matching��

� string
processing �e�g� matching incoming characters against a scanset��

Type
safety aside� scanf�� is still far from perfect� It does not� for example� allow input
to be matched against regular expressions� Worse still� scanf�� is not extensible� adding
features would require modi�cation to its implementation�

�Manipulators taking more than one argument can be implemented in a similar fashion except that no

standard template is provided�
�Using GNU g�� ����	 with libg�� ����
�This has led to some implementations of istream de
ning a scan function which works like scanf���

This approach defeats the whole purpose of streams because it su�ers from precisely the same problems that

scanf�� does�

�



istream� quoted�str�

istream �is� String �s

� �

char c�

is �� c�

if �c �� ��
�� � �� Quoted string

s � 

�

bool end � FALSE�

do �

if �is�get�c�� �

switch�c� �

case �
��

end � TRUE�

break�

case �����

if �is�get�c�� s �� c�

break�

default�

s �� c�

break�

�

�

else �

end � TRUE�

�

� while ��end��

�

else � �� String not quotes

is�putback�c��

is �� s�

�

�

imanip�String�� quoted�String �s� �

return imanip�String����quoted�str� s��

�

Fig �� The quoted manipulator

Streams� in contrast� are very easily extensible� Consumer manipulators can be de�ned
to achieve the same functionality of scanf�� and more� Going back to the last example�
three manipulators eat int� eat and scanset could be used to achieve the same e�ect as
follows�

istream is�

char buffer�BUF�LEN��

���

�



is �� eat�int �� eat�
BEGIN
�

�� scanset�
A�Z
� buffer��

Discussion

The C�� iostream package contains a rather small handful of pre
de�ned producer�consumer
manipulators� the only instance of a consumer being the white
space eater ws� Other pre

de�ned manipulators set stream state variables which in�uence processing of input and
output e�g� hex� The implementation of these manipulators relies on state in the imple

mentation of the ios class as well as the implementations of the insertion and extraction
operators corresponding to the a�ected types�

In this paper it has been demonstrated that producer and consumer manipulators can
be used to enhance stream I�O formatting in a clean� easily extensible� type
safe fashion
which is free from side
e�ects�

It is felt that producer and consumer manipulators o�er a signi�cant amount of as
yet untapped potential� Considering the convenience� elegance� and safety they o�er� it is
perhaps rather surprising that the standard set of prede�ned manipulators �see Stroustrup
sec �������� or AT�T C�� Programmer	s Guide sec ���� is so limited in scope�

Acknowledgements

The idea of manipulators is due to Andrew Koenig�
I am grateful to Ian Utting for revising the paper and for making many useful sugges


tions�

References

B� Stroustrup� The C�� Programming Language� Second Edition� Addison Wesley� Read

ing� Massachusetts �������

SunPro� C�� ����� Programmers Guide� Sun Microsystems Inc� Mountain View� Cali

fornia �������

Note� Sources for many of the manipulators described in this paper and others are
available by anonymous ftp from eagle�ukc�ac�uk in pub�mr��manip �for GNU g�� �����
with libg�� �����

�


