
Hill, Steve (1994) Continuation Passing Combinators for Parsing Precedence
Grammars. Technical report. University of Kent, Computing Laboratory,
University of Kent, Canterbury, UK

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21168/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21168/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Continuation Passing Combinators for Parsing

Precedence Grammars

Steve Hill� University of Kent� UK

November ��� ����

Abstract

We describe a scheme for constructing parsers for precedence gram�
mars based on the combinators described in ���� The new combinators
provide a robust method for building parsers and help avoid the possi�
bility of a non�terminating parser� E�ciency is improved via an opti�
misation to the grammar� A number of approaches to the problem are
described � the most elegant and e�cient method is based on continu�
ation passing� A parser for the expression part of the C programming
language is presented�

� Introduction

In this paper� we use the parsing combinators described in ��� to construct
a set of higher�level combinators designed speci�cally to handle precedence
grammars� This set is open ended 	 we have chosen to implement func�
tions to handle the most common expressions syntaxes
 speci�cally� there
are combinators for in�x binary operators� pre�x and post�x unary opera�
tors� subexpressions and atoms� In Section � we develop some specialised
combinators to handle some of the more unusual constructions in C�

Hutton�s combinators provide a powerful set of primitives with which
one may rapidly construct top�down parsers� They provide for backtracking
and hence can cope with ambiguous grammars� We summarise them in
Figure
� In fact� parsers written in this style go back at least as far as
���� All code in this paper is written in Gofer ���� whose syntax is similar to
Haskell ���� This has necessitated some function renaming to avoid clashes
with keywords and the standard prelude�

Brie�y� a parser is implemented by a function from a list of input tokens
to a list of possible parses� where a parse is a pair consisting of the remnant

of the input list and the value constructed by the parser� The value part
of a parser might be a parse tree� or a basic value such as a number� The
combinators use the �list of successes� technique ��� to provide backtracking�
so can handle ambiguous grammars�

Parsers can be combined sequentially� p� �seq� p� denotes a parser
which accepts parses from p� followed by parses from p� �usually written as
juxtaposition in BNF�� or by using an alternation� p� �alt� p� denotes a
parser which accepts parses from both p� and p� �usually denoted by j in
BNF�� There are some useful variants on seq which discard the values from
one or other of the parsers
 they are used when we are only interested in the
fact that a parser succeeds� for example when parsing a keyword� Related to
these is the return combinator which applies a parser replacing the result
value with the speci�ed new value�

There are a number of basic parsers� The fail parser always fails� It
is useful since it is an identity for the alt operator� The succeed parser
succeeds immediately without consuming any input� This is often used to
return a terminating value� such as ��� The satisfy and literal combina�
tors succeed if a token satis�es a predicate or is equal to a particular value
respectively� In both cases� the matched token is returned�

The many combinator repeatedly applies a parser until it fails returning
a list of result values and corresponds to the � operator in BNF� The using
combinator applies a function �ie� a semantic action� to the value part of the
parse� It consumes no input� The anyof combinator applies a function to a
list of values to produce a list of parsers� These parsers are then combined
using alternation� For example�

abc � anyof literal ��a�	 �b�	 �c��

is a parser that accepts either �a�� �b� or �c� which we could have written
in a long�winded fashion as�

abc � literal �a� �alt�
literal �b� �alt� literal �c��

We do not use the into combinator in this paper� but we have used
it to construct versions of our combinators which avoid the construction of
intermediate lists 	 see Section ���� The into function is similar to sequential
composition except that the second parser is applied to the result from the
�rst�

Clearly� parsers for precedence grammars may be constructed directly
using these combinators� However� this often involves mechanical manip�
ulation of the grammar and the construction of a large number of parsing

�

rules all of which are similar� The combinators presented in this paper em�
body these routine manipulations� and provide a robust and quick method
for building reasonably complex parsers�

� The Grammar of Expressions

Often the most complex part of the grammar for a programming language
deals with expressions� Expressions in most programming languages are
built from a number of in�x binary operators and pre�x �and sometimes
post�x� unary operators� To resolve ambiguity� typically each operator is
assigned a precedence and an associativity� The expression x� y� z can be
read as �x� y�� z or x� �y � z� according to the precedences of � and ��
The expression x � y � z can be read as either x � �y � z� or �x � y� � z

according to the associativity of ��
Let us consider a grammar for simple expressions�

e ��� e � � � e j e � � � e j ��� e ��� j v

�where v denotes a variable�� This grammar is ambiguous� In order to con�
struct a top�down parser for it we need to re�express the grammar� We use
our knowledge of the precedence of the operators to derive a new grammar�

e ��� t j e � � � e

t ��� f j t � � � t

f ��� ��� e ��� j v

which gives multiplication a higher precedence than addition� Unfortunately
this grammar is not suitable for a top�down parser since it involves left�
recursion� which would lead to non�termination� Again� we must re�express
the grammar� Our tactic is to replace recursion with iteration in the follow�
ing way�

e ��� t �� � � t� �

t ��� f �� � � f� �

f ��� ��� e ��� j v

�

type Parser t v � �t� �
 �
v	�t���

�� Immediately succeed� Consumes no tokens�
succeed �� v �
 Parser t v

�� Always fails�
fail �� Parser ts v

�� Succeeds if predicate is True�
satisfy ��
t �
 Bool� �
 Parser t t

�� Match a literal token
literal �� Eq t �
 t �
 Parser t t

�� Alternation	 parses from either p� or p� or both�
alt �� Parser t v �
 Parser t v �
 Parser t v

�� Sequential composition	 parses of p� followed by p�
�� Variants throw away result from first or second parser�
seq �� Parser t v� �
 Parser t v� �
 Parser t
v�	 v��
xseq �� Parser t v� �
 Parser t v� �
 Parser t v�
seqx �� Parser t v� �
 Parser t v� �
 Parser t v�

�� Apply semantic action to value
using �� Parser t v� �

v� �
 v�� �
 Parser t v�

�� Repetition	 keep applying parser until it fails�
many �� Parser t v �
 Parser t �v�

�� Throws away parse tree returns supplied value instead�
return �� Parser t v� �
 v� �
 Parser t v�

�� Monadic style combinator � result passed to next parser
into �� Parser t v� �

v� �
 Parser t v�� �
 Parser t v�

�� Combines a list of parsers with alternation�
�� Parsers obtained by applying function to a list of values�
anyof ��
a �
 Parser t v� �
 �a� �
 Parser t v

Figure
� Hutton�s Parsing Combinators

�

where the notation x� denotes zero or more occurrences of x� There are
other re�arrangements of the grammar which accept the same language�
but they either give the wrong associativity or are still left�recursive� This
new grammar is suitable for a top�down parser� but there is still ambiguity
regarding associativity �although clearly in this example it is not important
because the operators are associative�� The semantic actions associated with
these productions will be responsible for resolving this ambiguity�

Grammar manipulation is mechanical� tedious and prone to error� We
have also ended up with one rule for every level of precedence all of which
are essentially the same� Instead� let us propose the following parametrised
rule which captures the grammatical pattern for an in�x binary operator at
precedence level n�

en ��� en�� ��n en����

Most programming languages have a number of operators occupying each
level of precedence� so we need to generalise this rule in the following fashion

if precedence level n has k operators� the rule is�

en ��� en�� ���

n en��� � j

en�� ���

n
en��� � j

� � �

en�� ��k

n
en����

Note that the �rst and last non�terminal in each alternative is the same�
A more e�cient parser may be constructed by factoring these terms out
leading to�

en ��� en�� ����

n j ��

n j � � ��k

n� en��� � �
�

Similar manipulations lead to the following rules for pre�x and post�x unary
operators� The rule for pre�x operators is�

en ��� ���

n j ��

n � � ��k

n� � en�� ���

and that for post�x�

en ��� en�� ���

n j ��

n � � ��k

n� � ���

In the next section� we show a number of approaches to the implemen�
tation of these rules�

�

� Representing the Grammar

The �nal form of our combinators is presented in Section �� First we describe
two earlier approaches which we hope will provide a better insight into their
motivation and operation� Each method provides a toolkit for constructing
parsers for expressions involving at least in�x binary and pre�x unary op�
erators� However� it is clear that many real languages require support for
peculiar features� This motivates our move away from an approach based
on algebraic data to a higher order method�

��� Explicit Data

In the �rst method we represent a grammar as a table �or list�� The table
enumerates the tokens corresponding to operators in the grammar� and as�
sociates these with semantic actions �for example� to build a parse tree or
evaluate an expression�� Thus we de�ne a type Ptable�

type Ptable token exp � �Rule token exp�

type Rule token exp � �
token	 exp�
exp�
exp��

where the rules in the parse table are listed in increasing order of precedence�
The parser examines a Ptable processing each level of precedence in turn
attempting to match expressions involving the speci�ed tokens� It constructs
the parse tree from the operators paired with each token� In practice� we
need more than one sort of rule� since we wish to handle binary and unary
operators� as well as sub�expressions and atoms� A more realistic Rule type
might be�

data Rule token exp �
Binopr �
token	 exp�
exp�
exp�� �
Binopl �
token	 exp�
exp�
exp�� �
Prefix �
token	 exp�
exp�� �
Postfix �
token	 exp�
exp�� �
Subexp �
token	 token�� �
Atom

A parser is constructed by applying an interpreter to the grammar table�
for example�

parser �
parse
�

Binopl �
���	 Plus�	
���	 Minus��	

�

Binopl �
���	 Times�	
���	 Divide��	
Binopr �
���	 Apply��	
Subexp �
�
�	�����
Atom

�

Each entry in the table is processed by a di�erent function� The functions
corresponding to each rule type take the remnant of the parse table as an
argument� They can then call the parser again in order to parse higher
precedence rules�

parse �� Ptable token exp �
 Parse token exp

parse

Binopl ops��rest� �
binopl rest ops

parse

Binopr ops��rest� �
binopr rest ops

���
parse �� �

fail

binopl ptable ops �
parse ptable �seq� ���

��� Using Functions

The problem with the previous approach is that we need a constructor for
each sort of operator� We also su�er an interpretive overhead� Notice that
the constructors merely serve to identify the function that should be used to
parse a particular level of precedence� In a functional language we shouldn�t
be afraid of using functions� We can replace the entries in our table with
the parsing functions themselves� giving the new types�

type Ptable token exp � �Rule token exp�

data Rule token exp � Rule
Ptable �
 Parse Char Expr�

Unfortunately� neither the type system of Miranda� ��� nor of Haskell ���
allow recursive type synonyms� We are forced to use a data constructor to
�break the loop�� The parsing function now becomes�

parse �� Ptable token exp �
 Parse token exp

parse
Prule f�fs� �

�Miranda is a trademark of Research Software Ltd�

�

f fs
parse �� �

fail

and the parse table looks like this�

parser �
parse
�

Prule
binopl �
���	 Plus�	
���	 Minus���
���

This method is also more �exible� Any parsing function with the correct
type can be slotted into the parse table� The intention is that these functions
should process their own precedence level� and where appropriate call the
parse function on the remnant of the parse table to deal with higher levels
of precedence�

��� Using Continuations

The parse function in the previous section is still essentially an interpreter�
We also have to use a constructor that is not logically necessary 	 it merely
serves to keep the type system happy� Fortunately� we can do better� The
value that is passed to each rule function �the remnant of the parse table�
is a representation of the computation that is required in order to parse any
higher precedence operators� Why do we need a representation� Why not
pass this computation explicitly ie as a function�

The type of a typical parsing function now becomes�

binopr �� ��� �
 Parse token exp �
 Parse token exp

binopr ��� next � ��� next ���

The parameter next is the function to parse the next highest level of prece�
dence 	 it is a continuation� This is not the only instance where continuations
have proved useful in compiling techniques �
��

A parser is now constructed by applying the lowest precedence parser to
the next level�s parser which is in turn applied to the next and so on� For
example��

�The � symbol stands for function application � it associates to the right� In Miranda

�id would have the same e�ect�

�

parser �� Parse �Char� Expr

parser � binopl �
���	 Plus�	
���	 Minus�� �
binopl �
���	 Times�	
���	 Divide�� �
���
atom

� The Combinators

In Section �� we derived rules for operator precedence grammars suitable
for a top�down parser� In this section� we convert these de�nitions into
concrete code using the continuation�based method described above� In the
next section� we will use the combinators to build a realistic parser for the
expression part of the C programming language�

We require our set of basic combinators to deal with the following con�
structs�

� in�x binary operators with left and right associativity�

� pre�x and post�x unary operators�

� subexpressions and

� atoms�

Note that the set of combinators is not �xed� New combinators can be
de�ned as the need arises 	 in fact� we will develop some in the next section�

Before we de�ne any combinators� let us �rst de�ne a simple parser�

litret �� Eq t �

t	 v� �
 Parser t v

litret
t	 o� � literal t �return� o

This parser matches a token� throws it away and returns the value o� Our
parsing combinators will use it to recognise operators and convert them to
their semantic actions� The tokens and their corresponding node construc�
tors will be held by a list of pairs� so the parser�

anyof litret ops

where ops is such a list� is a parser that accepts the listed tokens and converts
them to their associated value�

�

��� Unary Operators

Let us begin with unary pre�x operators� The parser is parametrised on a
table of pairs� The �rst item is the token representing the pre�x operator�
and the second is the semantic action �or node constructor if we are building
a parse tree�� To parse a unary pre�x operator� we use the grammar given
earlier� A transliteration of the grammar �Equation �� leads to�

prefix �� Eq t �
 �
t	 v�
v�� �
 Parse t v �
 Parse t v

prefix ops next
�
many
anyof litret ops� �seq� next� �using� build
where
build
os	 e� � foldr
�� e os

Here the many parser is applied to a parser that tries to match the tokens
at this level of precedence� replacing them with their semantic actions when
succesful� Once the pre�x operators have been consumed� we parse any
higher precedence operators� Thus� the result of the parser is a pair con�
sisting of a list of semantic actions of type v�
v and a value of type v� The
function build combines these together using function application in the
following manner�

build������� � � ��k �� e� � ����� � � � ��ke� � � ��

The post�x parser is very similar� The grammar is adjusted 	 the higher
precedence parser is invoked �rst followed by a parser for a list of post�x
operators �see Equation ��� The build function is also di�erent since the list
is built in a di�erent sense 	 the �rst element of the list should be applied
�rst rather than last�

postfix �� Eq t �
 �
t	 v�
v�� �
 Parser t v �
 Parser t v

postfix ops next
�
next �seq�
many
anyof litret ops��� �using� build
where
build
e	 os� � foldl
converse
��� e os

The converse function is de�ned as�

converse f x y � f y x

It is interesting to note that earlier versions of Miranda ��� had a version of
foldl which behaved as�

oldfoldl op � foldl
converse op�

which is precisely what we require here�

��� Binary Operators

When dealing with binary in�x operators� we have the added complexity of
associativity� However� the grammar for left� and right�associative operators
is identical� so we can tackle associativity independently� Let us deal with
the grammar �rst�

binop �� Eq t �
 Assocfn v �
 �
t	 v�
v�
v�� �

Parser t v �
 Parser t v

binop assoc ops next
�
next �seq� op�� �using� assoc
where
op� �
many
anyof litret ops �seq� next��

The binary operator parser is de�ned from the grammar �Equation
�� As
with the unary operators� the ops argument is a table enumerating the op�
erator tokens and their associated semantic actions and the next parameter
is a parser for the next level of precedence� The binop function looks for
an expression with higher precedence followed by a sequence of operators
and expressions� The function assoc is used to re�arrange the resulting list
according to the associativity of the operators�

We can now tackle the associativity problem� We can specialise binop

to handle left and right association according to the assoc parameter� so�

binopr �� Eq t �
 �
t	 v�
v�
v�� �
 Parser t v �
 Parser t v

binopr � binop assocr

binopl �� Eq t �
 �
t	 v�
v�
v�� �
 Parser t v �
 Parser t v

binopl � binop assocl

Finally� we need to de�ne the associativity functions� Their type is�

type Assocfn v �
v	 �
v�
v�
v	 v��� �
 v

that is� they consume a value and a list of operator value pairs combining
them into a single value either grouping to the left or to the right� Informally�
the operations we require are�

assocr �e�� ����� e��� ���� e�� � � ���k � ek��� � e� �� �e� �� �e� � � ��k ek� � � ���

assocl �e�� ����� e��� ���� e�� � � ���k� ek��� � �� � ���e� �� e���� e�� � � ��k ek�

and these can be de�ned formally as�

assocr
e�	
op	 e�� � l�
� op e�
assocr
e�	 l��

assocr
e	 ���
� e

assocl
e	 l�
� foldl f e l
where
f e�
op	 e�� � op e� e�

��� Subexpressions and Atoms

We have two further parsers to consider� We need a combinator to deal with
sub�expressions and another to parse the atoms of our expressions� We will
de�ne a generic sub�expression combinator which allows for di�erent styles
of parentheses�

subexp �� Eq t �
 Parser t v �
 �
t	t�� �

Parser t v �
 Parser t v

subexp back bs next
� anyof subexp� bs �alt� next
where
subexp�
op	 cl�

�
literal op �xseq� back� �seqx� literal cl

The subexpression combinator �rst matches the open brace� The sub�
expression itself is parsed by the function parameter back which would nor�
mally be the parser for top�level expressions �although one is at liberty to
use any suitably typed parser�� Finally� we match the closing brace� If we
fail to match a subexpression� we proceed to the next level of precedence�

The �nal combinator is responsible for parsing atoms� This parser will
be used as the �nal level of precedence� so has no next parameter� The
atom parser has two parameters� a recogniser and a semantic action� The
recogniser checks that the next input token is a valid atom� and the semantic
action is then applied to recognised tokens�

atom ��
t �
 Bool� �

t �
 v� �
 Parser t v

atom rec leaf �
satisfy rec �using� leaf

�

��� Example

Recall the simple expression grammar from Section �� We can now use our
combinators to construct a parser� We need to assign a precedence level
and associativity to each operator� Let us say that addition has the lower
precedence and that both addition and multiplication group to the left� as
is customary� A suitable parser is then given by�

parse �� Parser �Char� Tree

parse � binopl �
���	 Plus�� �
binopl �
���	 Times�� �
subexpr �
�
�	����� �
atom isAtom Atom

��� Discussion

When using these combinators� the implementation of a wide range of com�
mon expression grammars is quick and simple� A parser can be written
directly from the language grammar and precedence rules� Moreover� pro�
vided that we use just the core set of combinators� we are assured that our
parser will terminate �assuming that the semantic actions do�� The parsers
for in�x and pre�x operators embody the grammar transformations required
to remove left�recursion� The sub�expression combinator could introduce a
loop� but since it always consumes a token there is no possibility of non�
termination� The atom parser will terminate provided that the recogniser
does�

It is worth noting that it is possible to de�ne our combinators such
that they do not construct intermediate lists� The alternative de�nitions
make use of the into parser� and are slightly more e�cient� However� the
de�nitions are more complicated than those shown here�

� Example� Parsing C Expressions

The C language has a notoriously complex expression syntax� This is ev�
idenced by the existence of a tool cparen which parses C expressions and
outputs them fully parenthesised� We have used the combinators developed
in the previous section to build a functional program similar to cparen�

In this section� we will describe the parser from our cparen program�
Its task is to construct a parse tree from a list of input tokens� We will
assume that a lexical analysis has taken place �our lexical analyser is in

�

fact built using the lower level combinators described in Section
�� We do
not show the trivial unparse function which converts the parse tree into
a fully bracketed expression string� In fact� it would be possible to avoid
constructing the parse tree at all� and instead apply the unparse operations
as semantic actions�

We �rst de�ne a data type to represent C expressions� of which the
following is a part�

data CExp �
Comma CExp CExp �
Assign CExp CExp �
PlusAssign CExp CExp �
���
Func CExp CExp �
Arglist �CExp� �
CondOp CExp CExp CExp �
Atom �Char�

Next� we build the parser using the combinators from the previous section�
It is worth noting at this point that the syntax of C expressions is rather
peculiar in its treatment of function arguments� The comma symbol has two
meanings in C� It is used to delimit function argument lists� but it is also an
operator� The expression a	 b has the value b but� as a side�e�ect� it also
evaluates a� So an expression f
a	 b� could be parsed as either a function
call with two arguments� or a call with one expression argument
a	 b��
In fact� the former interpretation is intended� This peculiarity requires us
to have two versions of our parser 	 implemented as two entry points� The
�rst parses expressions including the comma operator� The second is used
when parsing function arguments� and requires that comma expressions be
parenthesised�

We present the parser in Figure �� For the most part� we are able
to de�ne the parser in terms of the combinators described in the previous
section� However� there are a few syntactic constructs that require additional
de�nitions� The �rst of these is the ternary conditional operator� A parser
for this operator is�

condop �� Parser �Char� CExp �
 Parser �Char� CExp

condop next
�
condop� �using� mkCondop� �alt� next
where
condop� � toquery �seq�
tocolon �seq� cparser�
toquery � next �seqx� literal ���

�

tocolon � cparser �seqx� literal ���
mkCondOp
e�	
e�	 e��� � CondOp e� e� e�

In order to parse functions and arrays� we develop another combinator
which is a generalisation of binopl with the following type�

genopl �� Eq t �
 �
Parser t v �
 Parser t v	 v�
v�
v�� �

Parser t v �
 Parser t v

The table given to genopl contains a list of pairs� The second element is�
as before� the semantic action� The �rst element is a parsing combinator
ie� it is a parser which takes an argument parser for higher precedence
expressions�

genopl ops next
�
next �seq� op�� �using� assocl
where
op� � many
foldr� alt
map mkParser ops��
mkParser
p	 o� � succeed o �seq� p next

To explain 	 we apply mkParser to each of the list entries to produce a
list of parsers� Each parser will have been applied to the next parser� so can
handle higher precedence expressions� These parsers return a pair consisting
of the semantic action for the operator� and an operator argument value�
For completeness� the companion function genopr with right associativity
can be de�ned in a similar manner�

We can use genopl to obtain the same e�ect as binopl as� for example�

parser � genopl �
oparg ��
�	 Pointer�	
oparg ���	 Dot��

oparg t next � literal t �xseq� next

The oparg parser recognises an in�x operator �genopl will already have
parsed the �rst argument�� followed by an expression of higher precedence�
Thus the above could have been written as�

parser � binopl �
��
�	 Pointer�	
���	 Dot��

We need to use genopl when operators with a conventional in�x syntax
have the same precedence level as other expression forms not handled by
the basic combinators� In the C expression parser� for example� we use it
to parse functions and arrays which occupy the same level of precedence as
the structure element referencing operators� For example� arrays are parsed
with the function�

�

array next �
literal ��� �xseq� cparser� �seqx� literal ���

Notice that the next parser is not used since the array parser calls the top�
level expression parser to process its argument� Note also that genopl will
have already parsed the expression denoting the address of the array� The
parser for functions is similar� except that it must parse a list of arguments�
Moreover� it has to use cparser� to avoid the comma ambiguity described
earlier�

� Conclusions

We believe that these higher�level combinators provide a useful addition
to the parser writer�s toolbox� They allow parsers for reasonably complex
grammars to be constructed rapidly and accurately� Once our combinator
set had reached its �nal form� it took approximately an afternoon�s work
to write the functional cparen tool� Further work will reveal whether there
are other common syntactic patterns that deserve their own combinators�
The experiment with C was remarkable in that it lead to the de�nition of
only two extra combinators� Although we have used Hutton�s set of basic
combinators in this paper� it is possible to base our combinators on other sets
	 in particular sets that provide for less backtracking will be more e�cient�

�

cparser �
binopl �
�	�	 Comma�� �
cparser�

cparser� �
binopr �
���	 Assign�	

����	 PlusAssign�	

����	 MinusAssign�	

����	 MulAssign�	

����	 DivAssign�� �

condop �
binopl �
����	 Or�� �
binopl �
����	 And�� �
binopl �
���	 BitOr�� �
binopl �
���	 BitEor�� �
binopl �
���	 BitEor�� �
binopl �
���	 BitAnd�� �
binopl �
����	 Equal�	

����	 NotEqual�� �
binopl �
���	 Less�	

����	 LessEq�	

�
�	 Greater�	

�
��	 GreaterEq�� �

binopl �
����	 LeftShift�	

�

�	 RightShift�� �

binopl �
���	 Plus�	

���	 Minus�� �

binopl �
���	 Times�	

���	 Divide�	

���	 Mod�� �

prefix �
����	 PreInc�	

����	 PreDec�	

���	 Not�	

���	 BitNot�	

���	 Indirect�	

���	 UnaryPlus�	

���	 UnaryMinus�	

���	 Address�� �

postfix�
����	 PostInc�	

����	 PostDec�� �

genopl �
oparg ��
�	 Pointer�	

oparg ���	 Dot�	

array	 Array�	

func	 Func�� �

subexp cparser �
�
�	����� �
atom isAtom Atom

Figure �� The C Expression Parser

�

References

�
� AndrewW� Appel� Compiling with Continuations� Combridge University
Press�
����

��� W� H� Burge� Recursive Programming Techniques� Addison Wesley�
����

��� P� Hudak� S� Peyton Jones� and P�L Wadler �editors�� Report on the
functional programming language Haskell� a non�strict purely functional
language �version
���� ACM SIGPLAN Notices� ������ May
����

��� Graham Hutton� Higher�order functions for parsing� Journal of Func�

tional Programming� ����� July
����

��� Mark P� Jones� Introduction to Gofer �����
��
� Available via ftp from
nebula�cs�yale�edu�

��� Research Software Ltd� Miranda System Manual�
�� � On�line manual
section ���

��� D� A� Turner� An overview of Miranda� SIGPLAN Notices� December

����

��� Philip Wadler� How to replace failure by a list of successes� In Lecture

Notes in Computer Science ���� Springer�Verlag�
����

�

