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Continuation Passing Combinators for Parsing

Precedence Grammars

Steve Hill� University of Kent� UK

November ��� ����

Abstract

We describe a scheme for constructing parsers for precedence gram�
mars based on the combinators described in ���� The new combinators
provide a robust method for building parsers and help avoid the possi�
bility of a non�terminating parser� E�ciency is improved via an opti�
misation to the grammar� A number of approaches to the problem are
described � the most elegant and e�cient method is based on continu�
ation passing� A parser for the expression part of the C programming
language is presented�

� Introduction

In this paper� we use the parsing combinators described in ��� to construct
a set of higher�level combinators designed speci�cally to handle precedence
grammars� This set is open ended 	 we have chosen to implement func�
tions to handle the most common expressions syntaxes
 speci�cally� there
are combinators for in�x binary operators� pre�x and post�x unary opera�
tors� subexpressions and atoms� In Section � we develop some specialised
combinators to handle some of the more unusual constructions in C�

Hutton�s combinators provide a powerful set of primitives with which
one may rapidly construct top�down parsers� They provide for backtracking
and hence can cope with ambiguous grammars� We summarise them in
Figure 
� In fact� parsers written in this style go back at least as far as
���� All code in this paper is written in Gofer ���� whose syntax is similar to
Haskell ���� This has necessitated some function renaming to avoid clashes
with keywords and the standard prelude�

Brie�y� a parser is implemented by a function from a list of input tokens
to a list of possible parses� where a parse is a pair consisting of the remnant






of the input list and the value constructed by the parser� The value part
of a parser might be a parse tree� or a basic value such as a number� The
combinators use the �list of successes� technique ��� to provide backtracking�
so can handle ambiguous grammars�

Parsers can be combined sequentially� p� �seq� p� denotes a parser
which accepts parses from p� followed by parses from p� �usually written as
juxtaposition in BNF�� or by using an alternation� p� �alt� p� denotes a
parser which accepts parses from both p� and p� �usually denoted by j in
BNF�� There are some useful variants on seq which discard the values from
one or other of the parsers
 they are used when we are only interested in the
fact that a parser succeeds� for example when parsing a keyword� Related to
these is the return combinator which applies a parser replacing the result
value with the speci�ed new value�

There are a number of basic parsers� The fail parser always fails� It
is useful since it is an identity for the alt operator� The succeed parser
succeeds immediately without consuming any input� This is often used to
return a terminating value� such as ��� The satisfy and literal combina�
tors succeed if a token satis�es a predicate or is equal to a particular value
respectively� In both cases� the matched token is returned�

The many combinator repeatedly applies a parser until it fails returning
a list of result values and corresponds to the � operator in BNF� The using
combinator applies a function �ie� a semantic action� to the value part of the
parse� It consumes no input� The anyof combinator applies a function to a
list of values to produce a list of parsers� These parsers are then combined
using alternation� For example�

abc � anyof literal ��a�	 �b�	 �c��

is a parser that accepts either �a�� �b� or �c� which we could have written
in a long�winded fashion as�

abc � literal �a� �alt� 
literal �b� �alt� literal �c��

We do not use the into combinator in this paper� but we have used
it to construct versions of our combinators which avoid the construction of
intermediate lists 	 see Section ���� The into function is similar to sequential
composition except that the second parser is applied to the result from the
�rst�

Clearly� parsers for precedence grammars may be constructed directly
using these combinators� However� this often involves mechanical manip�
ulation of the grammar and the construction of a large number of parsing
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rules all of which are similar� The combinators presented in this paper em�
body these routine manipulations� and provide a robust and quick method
for building reasonably complex parsers�

� The Grammar of Expressions

Often the most complex part of the grammar for a programming language
deals with expressions� Expressions in most programming languages are
built from a number of in�x binary operators and pre�x �and sometimes
post�x� unary operators� To resolve ambiguity� typically each operator is
assigned a precedence and an associativity� The expression x� y� z can be
read as �x� y�� z or x� �y � z� according to the precedences of � and ��
The expression x � y � z can be read as either x � �y � z� or �x � y� � z

according to the associativity of ��
Let us consider a grammar for simple expressions�

e ��� e � � � e j e � � � e j ��� e ��� j v

�where v denotes a variable�� This grammar is ambiguous� In order to con�
struct a top�down parser for it we need to re�express the grammar� We use
our knowledge of the precedence of the operators to derive a new grammar�

e ��� t j e � � � e

t ��� f j t � � � t

f ��� ��� e ��� j v

which gives multiplication a higher precedence than addition� Unfortunately
this grammar is not suitable for a top�down parser since it involves left�
recursion� which would lead to non�termination� Again� we must re�express
the grammar� Our tactic is to replace recursion with iteration in the follow�
ing way�

e ��� t �� � � t� �

t ��� f �� � � f� �

f ��� ��� e ��� j v
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type Parser t v � �t� �
 �
v	�t���

�� Immediately succeed� Consumes no tokens�
succeed �� v �
 Parser t v

�� Always fails�
fail �� Parser ts v

�� Succeeds if predicate is True�
satisfy �� 
t �
 Bool� �
 Parser t t

�� Match a literal token
literal �� Eq t �
 t �
 Parser t t

�� Alternation	 parses from either p� or p� or both�
alt �� Parser t v �
 Parser t v �
 Parser t v

�� Sequential composition	 parses of p� followed by p�
�� Variants throw away result from first or second parser�
seq �� Parser t v� �
 Parser t v� �
 Parser t 
v�	 v��
xseq �� Parser t v� �
 Parser t v� �
 Parser t v�
seqx �� Parser t v� �
 Parser t v� �
 Parser t v�

�� Apply semantic action to value
using �� Parser t v� �
 
v� �
 v�� �
 Parser t v�

�� Repetition	 keep applying parser until it fails�
many �� Parser t v �
 Parser t �v�

�� Throws away parse tree returns supplied value instead�
return �� Parser t v� �
 v� �
 Parser t v�

�� Monadic style combinator � result passed to next parser
into �� Parser t v� �
 
v� �
 Parser t v�� �
 Parser t v�

�� Combines a list of parsers with alternation�
�� Parsers obtained by applying function to a list of values�
anyof �� 
a �
 Parser t v� �
 �a� �
 Parser t v

Figure 
� Hutton�s Parsing Combinators
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where the notation x� denotes zero or more occurrences of x� There are
other re�arrangements of the grammar which accept the same language�
but they either give the wrong associativity or are still left�recursive� This
new grammar is suitable for a top�down parser� but there is still ambiguity
regarding associativity �although clearly in this example it is not important
because the operators are associative�� The semantic actions associated with
these productions will be responsible for resolving this ambiguity�

Grammar manipulation is mechanical� tedious and prone to error� We
have also ended up with one rule for every level of precedence all of which
are essentially the same� Instead� let us propose the following parametrised
rule which captures the grammatical pattern for an in�x binary operator at
precedence level n�

en ��� en�� ��n en����

Most programming languages have a number of operators occupying each
level of precedence� so we need to generalise this rule in the following fashion

if precedence level n has k operators� the rule is�

en ��� en�� ���

n en��� � j

en�� ���

n
en��� � j

� � �

en�� ��k

n
en����

Note that the �rst and last non�terminal in each alternative is the same�
A more e�cient parser may be constructed by factoring these terms out
leading to�

en ��� en�� ����

n j ��

n j � � ��k

n� en��� � �
�

Similar manipulations lead to the following rules for pre�x and post�x unary
operators� The rule for pre�x operators is�

en ��� ���

n j ��

n � � ��k

n� � en�� ���

and that for post�x�

en ��� en�� ���

n j ��

n � � ��k

n� � ���

In the next section� we show a number of approaches to the implemen�
tation of these rules�
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� Representing the Grammar

The �nal form of our combinators is presented in Section �� First we describe
two earlier approaches which we hope will provide a better insight into their
motivation and operation� Each method provides a toolkit for constructing
parsers for expressions involving at least in�x binary and pre�x unary op�
erators� However� it is clear that many real languages require support for
peculiar features� This motivates our move away from an approach based
on algebraic data to a higher order method�

��� Explicit Data

In the �rst method we represent a grammar as a table �or list�� The table
enumerates the tokens corresponding to operators in the grammar� and as�
sociates these with semantic actions �for example� to build a parse tree or
evaluate an expression�� Thus we de�ne a type Ptable�

type Ptable token exp � �Rule token exp�

type Rule token exp � �
token	 exp�
exp�
exp��

where the rules in the parse table are listed in increasing order of precedence�
The parser examines a Ptable processing each level of precedence in turn
attempting to match expressions involving the speci�ed tokens� It constructs
the parse tree from the operators paired with each token� In practice� we
need more than one sort of rule� since we wish to handle binary and unary
operators� as well as sub�expressions and atoms� A more realistic Rule type
might be�

data Rule token exp �
Binopr �
token	 exp�
exp�
exp�� �
Binopl �
token	 exp�
exp�
exp�� �
Prefix �
token	 exp�
exp�� �
Postfix �
token	 exp�
exp�� �
Subexp �
token	 token�� �
Atom

A parser is constructed by applying an interpreter to the grammar table�
for example�

parser �
parse
�

Binopl �
���	 Plus�	 
���	 Minus��	
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Binopl �
���	 Times�	 
���	 Divide��	
Binopr �
���	 Apply��	
Subexp �
�
�	�����
Atom

�

Each entry in the table is processed by a di�erent function� The functions
corresponding to each rule type take the remnant of the parse table as an
argument� They can then call the parser again in order to parse higher
precedence rules�

parse �� Ptable token exp �
 Parse token exp

parse 

Binopl ops��rest� �
binopl rest ops

parse 

Binopr ops��rest� �
binopr rest ops

���
parse �� �

fail

binopl ptable ops �
parse ptable �seq� ���

��� Using Functions

The problem with the previous approach is that we need a constructor for
each sort of operator� We also su�er an interpretive overhead� Notice that
the constructors merely serve to identify the function that should be used to
parse a particular level of precedence� In a functional language we shouldn�t
be afraid of using functions� We can replace the entries in our table with
the parsing functions themselves� giving the new types�

type Ptable token exp � �Rule token exp�

data Rule token exp � Rule 
Ptable �
 Parse Char Expr�

Unfortunately� neither the type system of Miranda� ��� nor of Haskell ���
allow recursive type synonyms� We are forced to use a data constructor to
�break the loop�� The parsing function now becomes�

parse �� Ptable token exp �
 Parse token exp

parse 
Prule f�fs� �

�Miranda is a trademark of Research Software Ltd�
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f fs
parse �� �

fail

and the parse table looks like this�

parser �
parse
�

Prule 
binopl �
���	 Plus�	
���	 Minus���
���

This method is also more �exible� Any parsing function with the correct
type can be slotted into the parse table� The intention is that these functions
should process their own precedence level� and where appropriate call the
parse function on the remnant of the parse table to deal with higher levels
of precedence�

��� Using Continuations

The parse function in the previous section is still essentially an interpreter�
We also have to use a constructor that is not logically necessary 	 it merely
serves to keep the type system happy� Fortunately� we can do better� The
value that is passed to each rule function �the remnant of the parse table�
is a representation of the computation that is required in order to parse any
higher precedence operators� Why do we need a representation� Why not
pass this computation explicitly ie as a function�

The type of a typical parsing function now becomes�

binopr �� ��� �
 Parse token exp �
 Parse token exp

binopr ��� next � ��� next ���

The parameter next is the function to parse the next highest level of prece�
dence 	 it is a continuation� This is not the only instance where continuations
have proved useful in compiling techniques �
��

A parser is now constructed by applying the lowest precedence parser to
the next level�s parser which is in turn applied to the next and so on� For
example��

�The � symbol stands for function application � it associates to the right� In Miranda

�id would have the same e�ect�
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parser �� Parse �Char� Expr

parser � binopl �
���	 Plus�	 
���	 Minus�� �
binopl �
���	 Times�	 
���	 Divide�� �
���
atom

� The Combinators

In Section �� we derived rules for operator precedence grammars suitable
for a top�down parser� In this section� we convert these de�nitions into
concrete code using the continuation�based method described above� In the
next section� we will use the combinators to build a realistic parser for the
expression part of the C programming language�

We require our set of basic combinators to deal with the following con�
structs�

� in�x binary operators with left and right associativity�

� pre�x and post�x unary operators�

� subexpressions and

� atoms�

Note that the set of combinators is not �xed� New combinators can be
de�ned as the need arises 	 in fact� we will develop some in the next section�

Before we de�ne any combinators� let us �rst de�ne a simple parser�

litret �� Eq t �
 
t	 v� �
 Parser t v

litret 
t	 o� � literal t �return� o

This parser matches a token� throws it away and returns the value o� Our
parsing combinators will use it to recognise operators and convert them to
their semantic actions� The tokens and their corresponding node construc�
tors will be held by a list of pairs� so the parser�

anyof litret ops

where ops is such a list� is a parser that accepts the listed tokens and converts
them to their associated value�
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��� Unary Operators

Let us begin with unary pre�x operators� The parser is parametrised on a
table of pairs� The �rst item is the token representing the pre�x operator�
and the second is the semantic action �or node constructor if we are building
a parse tree�� To parse a unary pre�x operator� we use the grammar given
earlier� A transliteration of the grammar �Equation �� leads to�

prefix �� Eq t �
 �
t	 v�
v�� �
 Parse t v �
 Parse t v

prefix ops next
� 
many 
anyof litret ops� �seq� next� �using� build
where
build 
os	 e� � foldr 
�� e os

Here the many parser is applied to a parser that tries to match the tokens
at this level of precedence� replacing them with their semantic actions when
succesful� Once the pre�x operators have been consumed� we parse any
higher precedence operators� Thus� the result of the parser is a pair con�
sisting of a list of semantic actions of type v�
v and a value of type v� The
function build combines these together using function application in the
following manner�

build������� � � ��k �� e� � ����� � � � ��ke� � � ��

The post�x parser is very similar� The grammar is adjusted 	 the higher
precedence parser is invoked �rst followed by a parser for a list of post�x
operators �see Equation ��� The build function is also di�erent since the list
is built in a di�erent sense 	 the �rst element of the list should be applied
�rst rather than last�

postfix �� Eq t �
 �
t	 v�
v�� �
 Parser t v �
 Parser t v

postfix ops next
� 
next �seq� 
many 
anyof litret ops��� �using� build
where
build 
e	 os� � foldl 
converse 
��� e os

The converse function is de�ned as�

converse f x y � f y x

It is interesting to note that earlier versions of Miranda ��� had a version of
foldl which behaved as�

oldfoldl op � foldl 
converse op�

which is precisely what we require here�


 



��� Binary Operators

When dealing with binary in�x operators� we have the added complexity of
associativity� However� the grammar for left� and right�associative operators
is identical� so we can tackle associativity independently� Let us deal with
the grammar �rst�

binop �� Eq t �
 Assocfn v �
 �
t	 v�
v�
v�� �

Parser t v �
 Parser t v

binop assoc ops next
� 
next �seq� op�� �using� assoc
where
op� � 
many 
anyof litret ops �seq� next��

The binary operator parser is de�ned from the grammar �Equation 
�� As
with the unary operators� the ops argument is a table enumerating the op�
erator tokens and their associated semantic actions and the next parameter
is a parser for the next level of precedence� The binop function looks for
an expression with higher precedence followed by a sequence of operators
and expressions� The function assoc is used to re�arrange the resulting list
according to the associativity of the operators�

We can now tackle the associativity problem� We can specialise binop

to handle left and right association according to the assoc parameter� so�

binopr �� Eq t �
 �
t	 v�
v�
v�� �
 Parser t v �
 Parser t v

binopr � binop assocr

binopl �� Eq t �
 �
t	 v�
v�
v�� �
 Parser t v �
 Parser t v

binopl � binop assocl

Finally� we need to de�ne the associativity functions� Their type is�

type Assocfn v � 
v	 �
v�
v�
v	 v��� �
 v

that is� they consume a value and a list of operator value pairs combining
them into a single value either grouping to the left or to the right� Informally�
the operations we require are�

assocr �e�� ����� e��� ���� e�� � � ���k � ek��� � e� �� �e� �� �e� � � ��k ek� � � ���

assocl �e�� ����� e��� ���� e�� � � ���k� ek��� � �� � ���e� �� e���� e�� � � ��k ek�

and these can be de�ned formally as�







assocr 
e�	 
op	 e�� � l�
� op e� 
assocr 
e�	 l��

assocr 
e	 ���
� e

assocl 
e	 l�
� foldl f e l
where
f e� 
op	 e�� � op e� e�

��� Subexpressions and Atoms

We have two further parsers to consider� We need a combinator to deal with
sub�expressions and another to parse the atoms of our expressions� We will
de�ne a generic sub�expression combinator which allows for di�erent styles
of parentheses�

subexp �� Eq t �
 Parser t v �
 �
t	t�� �

Parser t v �
 Parser t v

subexp back bs next
� anyof subexp� bs �alt� next
where
subexp� 
op	 cl�

� 
literal op �xseq� back� �seqx� literal cl

The subexpression combinator �rst matches the open brace� The sub�
expression itself is parsed by the function parameter back which would nor�
mally be the parser for top�level expressions �although one is at liberty to
use any suitably typed parser�� Finally� we match the closing brace� If we
fail to match a subexpression� we proceed to the next level of precedence�

The �nal combinator is responsible for parsing atoms� This parser will
be used as the �nal level of precedence� so has no next parameter� The
atom parser has two parameters� a recogniser and a semantic action� The
recogniser checks that the next input token is a valid atom� and the semantic
action is then applied to recognised tokens�

atom �� 
t �
 Bool� �
 
t �
 v� �
 Parser t v

atom rec leaf �
satisfy rec �using� leaf
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��� Example

Recall the simple expression grammar from Section �� We can now use our
combinators to construct a parser� We need to assign a precedence level
and associativity to each operator� Let us say that addition has the lower
precedence and that both addition and multiplication group to the left� as
is customary� A suitable parser is then given by�

parse �� Parser �Char� Tree

parse � binopl �
���	 Plus�� �
binopl �
���	 Times�� �
subexpr �
�
�	����� �
atom isAtom Atom

��� Discussion

When using these combinators� the implementation of a wide range of com�
mon expression grammars is quick and simple� A parser can be written
directly from the language grammar and precedence rules� Moreover� pro�
vided that we use just the core set of combinators� we are assured that our
parser will terminate �assuming that the semantic actions do�� The parsers
for in�x and pre�x operators embody the grammar transformations required
to remove left�recursion� The sub�expression combinator could introduce a
loop� but since it always consumes a token there is no possibility of non�
termination� The atom parser will terminate provided that the recogniser
does�

It is worth noting that it is possible to de�ne our combinators such
that they do not construct intermediate lists� The alternative de�nitions
make use of the into parser� and are slightly more e�cient� However� the
de�nitions are more complicated than those shown here�

� Example� Parsing C Expressions

The C language has a notoriously complex expression syntax� This is ev�
idenced by the existence of a tool cparen which parses C expressions and
outputs them fully parenthesised� We have used the combinators developed
in the previous section to build a functional program similar to cparen�

In this section� we will describe the parser from our cparen program�
Its task is to construct a parse tree from a list of input tokens� We will
assume that a lexical analysis has taken place �our lexical analyser is in
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fact built using the lower level combinators described in Section 
�� We do
not show the trivial unparse function which converts the parse tree into
a fully bracketed expression string� In fact� it would be possible to avoid
constructing the parse tree at all� and instead apply the unparse operations
as semantic actions�

We �rst de�ne a data type to represent C expressions� of which the
following is a part�

data CExp �
Comma CExp CExp �
Assign CExp CExp �
PlusAssign CExp CExp �
���
Func CExp CExp �
Arglist �CExp� �
CondOp CExp CExp CExp �
Atom �Char�

Next� we build the parser using the combinators from the previous section�
It is worth noting at this point that the syntax of C expressions is rather
peculiar in its treatment of function arguments� The comma symbol has two
meanings in C� It is used to delimit function argument lists� but it is also an
operator� The expression a	 b has the value b but� as a side�e�ect� it also
evaluates a� So an expression f
a	 b� could be parsed as either a function
call with two arguments� or a call with one expression argument 
a	 b��
In fact� the former interpretation is intended� This peculiarity requires us
to have two versions of our parser 	 implemented as two entry points� The
�rst parses expressions including the comma operator� The second is used
when parsing function arguments� and requires that comma expressions be
parenthesised�

We present the parser in Figure �� For the most part� we are able
to de�ne the parser in terms of the combinators described in the previous
section� However� there are a few syntactic constructs that require additional
de�nitions� The �rst of these is the ternary conditional operator� A parser
for this operator is�

condop �� Parser �Char� CExp �
 Parser �Char� CExp

condop next
� 
condop� �using� mkCondop� �alt� next
where
condop� � toquery �seq� 
tocolon �seq� cparser�
toquery � next �seqx� literal ���
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tocolon � cparser �seqx� literal ���
mkCondOp 
e�	 
e�	 e��� � CondOp e� e� e�

In order to parse functions and arrays� we develop another combinator
which is a generalisation of binopl with the following type�

genopl �� Eq t �
 �
Parser t v �
 Parser t v	 v�
v�
v�� �

Parser t v �
 Parser t v

The table given to genopl contains a list of pairs� The second element is�
as before� the semantic action� The �rst element is a parsing combinator
ie� it is a parser which takes an argument parser for higher precedence
expressions�

genopl ops next
� 
next �seq� op�� �using� assocl
where
op� � many 
foldr� alt 
map mkParser ops��
mkParser 
p	 o� � succeed o �seq� p next

To explain 	 we apply mkParser to each of the list entries to produce a
list of parsers� Each parser will have been applied to the next parser� so can
handle higher precedence expressions� These parsers return a pair consisting
of the semantic action for the operator� and an operator argument value�
For completeness� the companion function genopr with right associativity
can be de�ned in a similar manner�

We can use genopl to obtain the same e�ect as binopl as� for example�

parser � genopl �
oparg ��
�	 Pointer�	 
oparg ���	 Dot��

oparg t next � literal t �xseq� next

The oparg parser recognises an in�x operator �genopl will already have
parsed the �rst argument�� followed by an expression of higher precedence�
Thus the above could have been written as�

parser � binopl �
��
�	 Pointer�	 
���	 Dot��

We need to use genopl when operators with a conventional in�x syntax
have the same precedence level as other expression forms not handled by
the basic combinators� In the C expression parser� for example� we use it
to parse functions and arrays which occupy the same level of precedence as
the structure element referencing operators� For example� arrays are parsed
with the function�


�



array next � 
literal ��� �xseq� cparser� �seqx� literal ���

Notice that the next parser is not used since the array parser calls the top�
level expression parser to process its argument� Note also that genopl will
have already parsed the expression denoting the address of the array� The
parser for functions is similar� except that it must parse a list of arguments�
Moreover� it has to use cparser� to avoid the comma ambiguity described
earlier�

� Conclusions

We believe that these higher�level combinators provide a useful addition
to the parser writer�s toolbox� They allow parsers for reasonably complex
grammars to be constructed rapidly and accurately� Once our combinator
set had reached its �nal form� it took approximately an afternoon�s work
to write the functional cparen tool� Further work will reveal whether there
are other common syntactic patterns that deserve their own combinators�
The experiment with C was remarkable in that it lead to the de�nition of
only two extra combinators� Although we have used Hutton�s set of basic
combinators in this paper� it is possible to base our combinators on other sets
	 in particular sets that provide for less backtracking will be more e�cient�


�



cparser �
binopl �
�	�	 Comma�� �
cparser�

cparser� �
binopr �
���	 Assign�	


����	 PlusAssign�	

����	 MinusAssign�	

����	 MulAssign�	

����	 DivAssign�� �

condop �
binopl �
����	 Or�� �
binopl �
����	 And�� �
binopl �
���	 BitOr�� �
binopl �
���	 BitEor�� �
binopl �
���	 BitEor�� �
binopl �
���	 BitAnd�� �
binopl �
����	 Equal�	


����	 NotEqual�� �
binopl �
���	 Less�	


����	 LessEq�	

�
�	 Greater�	

�
��	 GreaterEq�� �

binopl �
����	 LeftShift�	

�

�	 RightShift�� �

binopl �
���	 Plus�	

���	 Minus�� �

binopl �
���	 Times�	

���	 Divide�	

���	 Mod�� �

prefix �
����	 PreInc�	

����	 PreDec�	

���	 Not�	

���	 BitNot�	

���	 Indirect�	

���	 UnaryPlus�	

���	 UnaryMinus�	

���	 Address�� �

postfix�
����	 PostInc�	

����	 PostDec�� �

genopl �
oparg ��
�	 Pointer�	

oparg ���	 Dot�	

array	 Array�	

func	 Func�� �

subexp cparser �
�
�	����� �
atom isAtom Atom

Figure �� The C Expression Parser
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