
Computing Laboratory Technical Report No. 9/94

IPP Routing Architecture
Damiano Bolla

University of Kent at Canterbury, England
May, 1994

Abstract

This paper describes the structure of the IPP routing architecture. IPP is an evolution of the
TCP-IP protocol. The main advantage of IPP is the variable length addressing scheme. An IPP
address can be fifteen bytes long and is optimised for local area networks. The logical structure
of the address is very similar to IP, with the main difference, that each byte specifies a subnet,
apart from the last byte that indicates a host.
Routing speed is maximised by the fact that all routing tables are accessed using a direct
lookup method. The size of the routing tables within a router is fixed and small. The above two
points allow the construction of very cheap and fast routers.
This routing architecture supports broadcast, multicast and real time data. It uses different
routing priorities for each type of service. This results in a better management of network links.
For normal network traffic the link usage is maximised by automatically load balancing the
usage of available links. A working router can be found in the part of this document describing
the tests done on this architecture.
IPP aims to keep all the other qualities of IP Eg: the method used to manage flow control,
resequencing, etc.. The only things that changes are the structure of an address, the routing
table and routing functions.

Table of Contents

1. Introduction ..3
2. Desirable qualities of a routing architecture...4

2.1. Address aggregation...4
2.2. Distributed routing tables ...4
2.3. Load balancing and redundant routes ...4
2.4. Expandable addressing space ...5
2.5. Efficient Multicast..5
2.6. Support for real time data...5

3. IPP Solution ..5
3.1. Description of the IPP architecture ...5
3.2. Packet Routing ...9
3.3. Broadcast Routing..14
3.4. Multicast Routing...15
3.5. Routing of Real Time Packets...18

4. Example programs ..19
4.1. Router Structure ...19
4.2. Auxiliary programs ..19
4.3. How to build the tool kit ...20
4.4. How to use the programs ..20
4.5. Available commands on the Router ..21
4.6. Example One ...22
4.7. Example Two...23
4.8. Example Three...23

5. Side Issues...24
5.1. Two routers in one ...24
5.2. Migration Path ...25

6. Conclusion ..26
7. Glossary ..26
8. References...26
9. Bibliography ...26

2

1. Introduction
This paper is about a computer Network Routing Architecture. The need for routing arises
when two computers need to exchange data and there is a choice of which links to use to
transfer the data across the network. In this paper I assume that a network can be composed of
many millions of hosts and that they can be distributed across the world. In this situation
deciding what is the next link that has to be used to reach the desired destination can be a
complex task.

In this paper I will not discuss the problems associated with providing a reliable connection on
top of an unreliable one or how to provide the physical transport of the data over the network. I
am only concerned with the Level Three of the OSI model.

Phisical

Data Link

Network

Transport

Session

Presentation

Application

Level 1

Level 3

Level 2

Level 4

Level 5

Level 6

Level 7
OSI

Reference

Model

This paper makes reference to TCP-IP. TCP-IP is a set of protocols providing a means to
transfer data within a network with an address length of four bytes. The basic building block of
TCP-IP is an IP packet that provides unreliable transfer of data from one end to another. On
top of IP is it possible to build a reliable connection (TCP-IP) or have something that is more
reliable then IP but less than TCP-IP (UDP). For further reference see [Davi-88].

IPP is shorthand for IP Plus, an improved (from the routing point of view) IP protocol. It is
desirable to increase the limited addressing space of IP, to provide better routing management
and to support advanced services like multicast and real time data. This paper addresses the
routing aspect keeping all the other qualities the same. In this document there is a continuous
reference to IP and TCP and it is therefore assumed that the reader is familiar with this subject.

This report presents an almost completed version of the IPP structure. At this point I am more
concerned about explaining the structure of the router and how the address space is managed
than talking about theoretical aspects. However, chapter two is a reminder of what I am trying
to achieve.

• Section two outlines the desirable qualities of a routing architecture. This list is the result
of reading and experience and it is stated in general terms.

• Section three describes the structure of IPP. It is possible to experiment with the routing
aspects of IPP using a tool kit that has been written for the purpose. The tool kit simulates
a real router and hosts in a network and has been used to test the IPP solutions proposed.

• Section four shows possible examples that can be tested using the IPP tool kit. The tool kit
allows a test network to be built and checks how the routing algorithms perform.

• Section five discusses issues that are related to routing but in an indirect way. One of this
issues is how to migrate from an IP addressing scheme to IPP.

• Section six concludes this report with a very brief outline of the achieved objectives.

3

2. Desirable qualities of a routing architecture
This part will attempt to specify what can be considered important from the routing point of
view. Note that the order of importance is not well defined and depends on the particular
situation being dealt with.

A routing architecture should provide the router with a simple and fast way to decide where to
send the incoming data. A simple example of a "router" is an employee of a Post Office. He is
in charge of deciding where to send the incoming letter given the recipient's address.

2.1. Address aggregation
Address aggregation is the ability to hide routing information for a set of addresses so the
network community does not need to know how to reach each single address. A very common
example of address aggregation can be made using a mail address. Eg:

John Smith
University of Kent
Canterbury
England

From the address we understand that "England" hides all the remaining parts of an address.
"Canterbury" hides 'University of Kent, John Smith'. "University of Kent" hides the final
destination that is 'John Smith'

Without address aggregation all hosts would need a table that maps all possible destinations
into a router that is able to route to that host. This is obviously not reasonable for Wide Area
Networks. Address aggregation is therefore the first quality that is needed in a routing
architecture. See [Estr-92 Par 2.2]

2.2. Distributed routing tables
This property not only states that the routing tables should be distributed across the network
but it also assumes that the total size of all routing tables grows linearly with the number of
hosts/Subnets present in the network.

• If a new Subnet/Host is added the total size of routing information distributed across the
network is increased by one unit only.

• The routing information is distributed evenly across all routers in the network. This is of
course a desirable property since it is not economical to build routers with huge amounts of
memory and it is also difficult to maintain large routing tables.

• Changes in routing tables should remain as local as possible. It would be very inconvenient
if a change in a remote part of the network needed to be propagated throughout the whole
network.

2.3. Load balancing and redundant routes
The routing architecture should allow for more than one link to a given destination and this
should provide load balancing (if desired) and a redundant route to the given destination in case
one of the links fails. The load balancing is especially desirable to control network congestion
since it allows bandwidth to be created on demand and makes it available to everybody who
requests it.

4

2.4. Expandable addressing space
The current problem of IP is the lack of address space. It should be noted that it is not
reasonable to have an unlimited addressing space since this will pose a great burden on the
routing algorithms. It is a more reasonable requirement to have a variable length address but to
impose an overall limit on the size of this field.

It is not acceptable to overload a packet with excessive address information when it is not
needed. There should be a mechanism that allows the redundant part of an address to be
stripped off when it is not needed. This process of address abbreviation should be transparent
to the user since the user is not concerned with how the network transports the data from one
side to the other.

2.5. Efficient Multicast
First of all I have to specify what it is meant by multicast. It seems to be widely accepted that
multicast is a way to distribute packets of information to a list of recipient hosts. The hosts
may be anywhere in the network. In this situation there are two main problems to solve to
provide the above service. The first is managing the multicast list of hosts that are part of the
same multicast group. The second is finding the best tree of network links that connects all the
hosts in the best bandwidth efficient way. This process is called finding the best spanning tree
for a multicast list. For further Reference see [Raj-92]

2.6. Support for real time data
The normal behaviour of IPP is to optimise network bandwidth usage and redundancy. To be
able to do this, no guarantee is made on the order on which the packets will arrive or the time
they will take to travel across the network. For some applications this is not acceptable. There
should be a way by which the routing algorithm detects that a packet should meet some special
connection constraints in terms of timing and other parameters.

3. IPP Solution
In this part it is explained how IPP addresses the above requirements. This is done by first
presenting the general ideas and then by going into the detailed description of the routing
algorithms.

It is worth remembering that I am only concerned with the routing of a packet from one point to
another. It is not guaranteed that the packet will arrive at the destination and like IP it is
possible to build a reliable protocol (TCP) on top of an unreliable one (IP). There is however
provision for special classes of packets that have different privileges. You can consider
Multicast and Real Time data as a separate router scheduling classes. [Shenker-93]

3.1. Description of the IPP architecture
This part describes the structure of IPP in simple terms. There are various aspects that need to
be explained.

• The relationship between the network structure (topology) and a IPP address.
• The structure of a broadcast address.
• The structure of a Multicast address.
• The structure of a Real Time address.

5

3.1.1. IPP Network Topology and Addressing Scheme
IPP is a variable length, limited, addressing scheme architecture. The address format is very
much like IP, i.e. addresses are in the form 148.162.2.67 but addresses can be of variable
length. The maximum IPP address length is 15 bytes. What follows is a series of examples
explaining the various address parts.

Note:
• An address cannot contain a zero.
• Address 255 is reserved for broadcast.
• Address 254 is reserved for Real Time data.
• Address 253 252 251 are reserved for future use.

Example:
1 This identifies a host. Host 1 at the topmost level
2.4 This is host 4 but on Subnet 2
1.2.4 Host 4 again but on Subnet 2 of Subnet 1
3 Host 3 at topmost level
147.162.2 Host 2 on Subnet 162 of Subnet 147
148.162.2.30 Host 30 of Subnet 2 of Subnet 162 of Subnet 148
6.8.9.3.5 Host 5 of Subnet 3 of Subnet 9 of Subnet 8 of Subnet 6

The above examples show how the rightmost number always identifies a host in the given
hierarchy of networks.

X.Y.A.B.C

Host C

Subnet B of subnet A of subnet Y of Subnet X

At the topmost level of the tree there can be 1 to 250 hosts or routers that are able to route to a
Subnet. The topmost level can have 250 Subnets each having 250 hosts or routers. A domain
is formed by the 250 hosts that are part of the same Subnet.

The network topology of an IPP network is closely related to the address given to any host or
router. There are two rules.

• Any router of a domain must be able to reach any other router of the same domain
without using a parent network or subnet. This is equivalent of IP where a member of an
IP subnet cannot send one packet to another member of the same subnet using another
subnet.

• The address of a host/router must be either a parent of the domain where it is directly
connected or a member of the same domain or a subnet. It is not possible to have a direct
link to a domain that is more than one subnet above or below a given domain.

At this point clearly such a routing scheme is too weak if multiple routes for a host or Subnet
are not provided. The desired structure is something like this.

6

1 10 60 5

1.1 1.30

1.7 1.3 5.4 5.80 5.23

5.67

From the diagram it can be seen that there are two Subnets, Subnet 1 and Subnet 5. Each one
is connected to the parent by two links. A packet for Subnet 5 can go via router 10 or via
router 5. This therefore achieves what is load balancing and redundancy at the Subnet level.
(This is an extension of the Fat Tree concept [leis-92]). There can of course be more than two
links to a Subnet.

It is also possible to achieve load balancing in the same domain. This means that for the
network structure as follows.

1

2

3

4

5

6

It is possible to set the routing tables so there is load balancing on routers 3 and 4 when
packets are from host 1 and 6 (Or 2 and 5). More in section 4.5.

It is important to note that the routing tables for each router are of fixed size. If a new Subnet
or host is added the changes are local to the domain and do not change the parameters of other
routers.

One of the main objections of having a close relation between the address and the network
topology is that it is not flexible enough for today's networks. I will now try to show how the
required constraints are not as strong as they seem.

A real example can be the network topology of a university. This is a simplified version but the
concepts still apply. The idea is to show that you can arrange your subnet in a meaningful way
even with current topology.

7

Internet Janet

Fddi Ring

A B

CD

E

F

G

I have to assume that a subnet identifier has been given to this organisation, this is like IP. E.g.:
1.2.3 This university can then decide how to manage the remaining addressing space below
1.2.3. One possibility is to put routers A,B,D,G, on the same domain and C as a sub domain.

Alternatively you can have only A,B in the same domain and all the other routers as a sub
domain.

The question is then how to decide if to put a router on the same domain or in a sub domain?
The answer is "depends on the traffic locality". That is a sub domain should be created if there
is a forecast that the machines that are part of that domain will have local traffic.

3.1.2. Broadcast address Structure
A broadcast address uses the special octet 255 to identify all hosts of a given domain.
Examples of broadcast addresses are:

255 Broadcast to all hosts at the top level domain
1.2.255 Broadcast to all hosts of the subnet 1.2
1.255.255 Broadcast to all hosts of subnet 1 plus the broadcast is sent to all subnet

where it is further expanded.

3.1.3. Multicast address Structure
The adopted definition of Multicast is as follows: a multicast address represents a list of
recipients to which the given packet has to be delivered. No assumptions are made about
particular address properties of the recipients.

There is the need for somebody to maintain this list of hosts that belong to the same multicast
list and there is the need to uniquely identify a multicast list.

8

A multicast identifier can be called an "addressed broadcast" since it is an address that starts
with 255 and it is followed by the real local multicast id for the list.

255.3 Identifies the local multicast list number 3
255.3.5 Identifies the local multicast list 3.5

The detailed structure of multicast routing will be explained in detail later. To uniquely identify
a multicast list, I use the address of the managing host followed by the local multicast identifier
for that list. If the managing host is 3.4 and the multicast id for the list in the domain 3.x is
255.9 I can uniquely identify the multicast list with the following address.

3.4.255.9

3.1.4. Real Time address structure
Real time packets travelling on the network must be subjected to special routing algorithms.
They may be guaranteed to be in sequence and to have a specified range of possible time
delays.

To be able to enforce such special behaviour, the first thing that a router needs to do is to
recognise such a special packet. Giving the requirement that an IPP network must be able to
use a fast data link, it follows that the operation of recognising special packets should be
simple.

For this reason there is a separate class of addresses, similar to multicast, for real time data.
The set-up of a real time connection between two arbitrary hosts will be done by the calling
host. The calling host will take care of asking all the domains where the packet will travel for a
Real Time Id and for the minimum connection requirements in terms of delay and data
throughput. This is called admission control and is one of the steps required to be able to
guarantee the specified requirements.

Once all the domains grant the required bandwidth and time delay the calling host can ask for
the route to be set-up. The calling host will then send packets with the special address prefix
254.xxx The router identifies this special packet and deals with it accordingly. The router is
therefore bound to deliver the Quality Of Service that was requested and granted at connection
establishment. To avoid possible deadlocks the granted real time resource will be released if
there is no usage for a specified amount of time.

The structure of a real time address is therefore 254.xxx...

3.2. Packet Routing
Having in mind the structure of the network it is possible to understand how routing a packet is
performed. This part is divided in sections with each one dealing with a particular aspect of
routing. The first section will explain how sending packets within the same domain is
performed. Then the subnet routing is explained and finally the routing to a parent domain is
explained.

3.2.1. Same Domain Routing
IPP does not assume a network topology at domain level, i.e. hosts that belong to the same
domain can be variously connected (See Section 4.7) but all hosts of the same domain must
know how to reach each other without using another domain. It is known that there are a
maximum of 250 hosts in the same domain. I can set-up a table that lists the interface to be
used and who will be the next host to use to reach the desired destination.

9

Destination Next Hop Interface
1 23 1
2 42 2
3 2 1
4 33 3
.....

Each time I want to reach a host in the same domain I read the data in the destination field of
the routing table and send the packet using the given Interface to the given NextHop.

To allow redundant routes to the same host I have to list more than one choice for each
destination. For example if I use the following network topology.

1

2

3

4

5

6
a

b

c

The routing table will be different for each host. Host 1 has to use host 2 to route to any other
destination. Host 2 can use two different links to reach host 5 therefore the routing table for
host 2 will be:

Destination Next Hop Interface
1 1 c
5 3 b

4 a
....

The first entry says that the Next Hop to reach destination 1 is 1 itself on interface c
There are two choices to reach host 5. One is using host 3 and the other is by using host 4.

To be able to do load balancing on the two or more routes I need a way to give a price to a
route. This is done by adding a cost for every packet and by keeping track of how much has
been spent on that route. The final route data structure is like this.

struct Route
u_char Next
u_char Interface
u_char Cost
u_int Cumulated

The meaning of the above fields is as follows.
• Next is the address in this domain or in a directly connected domain of the router/host that

will be receiving the packet. If this value is Zero it means that this entry is not valid.
• Interface is the interface to use in this router to send the packet. In the case of a route to a

Subnet or parent if this is zero it means that the Next is a distant router in this domain for
the given Subnet.

10

• Cost is the cost of this route and is a means of determining how many packets will be sent
using this particular route. In the case that a link is too expensive compared to others that
are available, the Domain Admin may decide to completely remove that link from the
routing table.

• Cumulated is the total cumulated cost of this route and is used to decide what route will be
selected next by the route manager.

Note that the above description applies for both Same-Domain routings, Sub domain routing
and Parent routing.

The complete routing table for the same domain routing is a set of possible routes for each
destination. That is for each destination there will be a certain number (ROUTE_MAX) of
possible routes that can be used.

Given that a network structure may contain routing loops there must be a way to avoid them.
The first step in avoiding a network loop is to detect that the packet that is received is the same
packet that was sent some time ago. Once this is done there should be a way to try to deliver
the packet if it is possible.

For this reason a host entry will have an entry (Another) that is used for loop avoidance.

struct HostEntry
u_char Direct
u_char Another
struct Route Link[ROUTE_MAX+1]

The array of Route contains the various possible routes to the desired host.
• Direct is an index to a direct route to the given host. It is used when a loop is detected and

the router must make sure that the packet will arrive to destination.
• Another is also an index into the array of possible routes and is used to try to avoid

network loops. This is used when a lookup in the routing table has as next hop the same
host from which the packet is received. To avoid sending the same packet back to the
router from which the packet just arrived, and thus creating a loop, the Another route is
used.

Direct points to what is the cheapest route at the moment. Another points at the second
cheapest route to the desired destination. Note that a route to a host must have a valid interface
to use to reach the next hop in the same domain. The routing table for all possible hosts in the
same domain is therefore an array of the above structures.

typedef struct HostEntry HostData[ADDR_NUM]

The function that finds a route to a host will then use the above data structure in the following
way. For further details see the function FindHostRoute.

11

Is there a Direct route to the host ?

Is the Next hop the same I received the packet from ?

Is there another route available ?

No, no route available

Yes, there is a direct route available

Yes

No, Return the route

No, No route available

Yes, increment the usage statistics, return the route

Since the routing tables are all direct tables determining the availability of a route is a very
fast process. The search speed depends only on the speed of the processor. It does not vary with
routing table size or other factors.

3.2.2. Subnet Routing
The duty of this table is to hold information on how to reach each of the Subnets of this
domain. Again this table can have multiple routes for a given Subnet and as in the host table
the routing algorithm just picks up the route that is prepared by the router manager.

The structure of a Subnet table is as follows:

struct NetEntry
u_char Try
u_char Direct
struct Route Link[ROUTE_MAX+1]

A routing entry for a subnet is similar to the routing entry for a host. Each entry has a set of
routes available. In this case, however, the next hop can assume two different meanings
depending if the route has a valid interface or not.

• If the route has a valid interface then NextHop is a directly connected router accepting
packets in the subnet that we want to reach.

• If the route does not have a valid interface then NextHop is not a directly connected router
to the desired subnet. It is a distant router for the given subnet. The address of a distant
router is a single byte that indicates what router in this domain is able to directly send
packets to the desired subnet.

The meaning of Try and Direct is the following
• Try contains the index of the Route to use for this subnet. This index is updated to point of

the cheapest route so far.
• Direct contains the index of a direct route to the given subnet. This field can be empty

indicating that this router does not have a direct route to the subnet.

The table is an array of the above entries as follows.

typedef struct NetEntry NetData[ADDR_NUM];

The algorithm that finds a route to a Subnet is as follows. For further details see the function
FindSubnetRoute.

12

Does this packet have a distant router, am I such router ?

Is there a route to Try for this subnet ?

Yes. Try to find a direct route

If none available fails.

No

No. No route available for this subnet

Is this route a Direct route ?

Yes

Yes. Use this direct Link

No. It uses a Distant Router

Do I have a route for the Distant router ?

No. No route available for the subnet

Yes. Use the Distant router to reach the given subnet

3.2.3. Parent Routing
Since there is only one parent of a given Subnet this table contains only a series of multiple
routes that can be used to reach the parent domain.

Finding a route for a parent domain is very similar to finding a route for a subnet. The
structure of the algorithm is the same the only difference is the names of the variables. For
further details see the function FindParentRoute.

3.2.4. Loop table
This table is needed to handle the possible loops that are present in a domain when there are
multiple routes to a host. The principle is that a packet coming from one host with a given
PacketId should not appear again within a certain amount of time.

Since there are 250 possible "hosts" in a domain and each one can generate 255 different
packet ids, it follows that this table is a direct table holding 250*255 entries each one holding
the last time a packet coming from the given sender with the given Id was seen.

It is possible to set up the domain routing tables so loops are impossible. If I set up a routing
table without loops I will lose some redundancy. Experiments done with the tool kit (See
Section 4.5) shows that the number of packets dropped due to loop detection (In the case of
routing tables with loops) is of the order of 5%. However this is not a fixed figure and will vary
depending on the network topology, the routes cost and the traffic type.

The loop detection algorithm is closely coupled with the routing algorithm when a packet is
sent down to a subnet or up to a parent. In the above two cases the packet id and the Sender are
set to Zero (Indicating field not used) and the receiving router will assign a new packet id. In
respect of loop avoidance, every time a packet crosses a domain the receiving router will
appear to be the "creator" of the given packet.

The algorithm that creates a new packet id can be described as follows. See the function
FindRoute for further reference.

13

Is the packet being sent to another directly connected domain ?

Sender = NOT_USED

PackId = NOT_USED

Do not modify the existing

Sender or PackId

YesNo

Send the Packet

When a packet is received from a router one of the validation checks that are performed is to
see if the packet has already been seen. To do this Sender and PackId is used. For further
details see the function SeenAlready.

Is Sender or PackId == NOT_USED ?

When was the last time a packet with this Sender

and this PackId was seen ?

Current Time - Last Time >= T

Packet is a valid one.

Current Time - Last Time < T

Packet is invalid.

Update the time I have seen this packet and return

No. There is a valid Sender

Yes. Packet is valid

A positive aspect of this method of detecting loops is that the time stored in the router table is
not an absolute time. This means that the clocks in the routers of the same domain do not need
to be synchronised.

3.3. Broadcast Routing
This part describes the method used to implement broadcast routing. The strategy used is
flooding the domain with the broadcast. One of the problems to solve is deciding when to start
to "explode" a broadcast while trying to avoid creation of duplicate packets that cannot be
recognised as such.

As an example, consider the following broadcast 1.255.255. This broadcast should reach all
hosts in subnet 1 and all hosts in all the Subnets of subnet 1. To do this the expansion of a
broadcast will always begin from the top of the network address tree even if the packet comes
from a sub domain of the broadcast destination.

The routing algorithm for a broadcast can be outlined as follows. The interesting part is the
fact that the normal routing algorithm will take care of sending the packet to a parent if the
DoBroadcast function does not recognise the need to expand this broadcast.

When the packet is sent down to a subnet the router performs two checks. The first one is that
the subnet must be directly connected to avoid unnecessary overhead. The second test is to see

14

if it is the designated router for the given subnet. This avoids sending the same copy of a
broadcast packet to the same subnet from two directly connected parents.

Is this packet a broadcast packet ?

Has this packet arrived at the highest broadcast point ?

Set the expand Flag

Is the expand flag set ?

Do flooding routing for this domain

Is this broadcast for subdomains also ?

Send the packet down to a direct subnet (If allowed)

NoBegin

Yes

Yes

No

Yes

Yes

No

For further details see the function DoBroadcast.

3.4. Multicast Routing
This part will describe how multicast set-up and routing are implemented. One aspect that
should be kept in mind is that a multicast channel has different requirements than a normal IPP
routing of a packet and therefore it needs to be implemented in a different way.

The more general definition of multicast is used. This assumes nothing about what and how
many hosts are part of the multicast list of recipients. What multicast requires is to be able to
distribute a single packet to multiple recipients in a network bandwidth efficient manner. It is a
reasonable assumption that only one host is in charge of adding or deleting other recipients
from the multicast list.

A multicast packet is a special packet since it follows different routing strategies than normal
IPP packets. It will have its own addressing scheme that is similar but different to IPP. A
special multicast addressing scheme results in a simple and fast algorithm that detects if a
packet is a multicast packet. Once a packet is recognised as a multicast packet a special
routing algorithm can be performed to satisfy the multicast requirements.

A multicast channel is identified by one or more bytes. These bytes do not have any inherent
meaning, that is, they are chosen by the system to denote one particular multicast session and
they may be reused as soon as the given ID is not in use. A multicast distribution list has
therefore two types of addresses.

• An address, local to the current domain, that identifies a specific multicast list. This
address is the one used by the network and is different for each domain. The mapping
between different Multicast addresses in each domain is done at connection set-up. The
format of this multicast address is 255.x

15

• The global address of the multicast list. This address is the one used by the hosts in the
network to join or leave the multicast list. It is a symbolic address that is used by the
administration programs. This address results from joining the IPP address of the host that
maintains the multicast list with the Multicast address of that list in the domain where the
multicast list Admin resides. Eg: If the administrator for the multicast list has IPP address
1.2.3 and the multicast identifier in domain 1.2.x for the given multicast list is 255.9 then
you can uniquely identify the given multicast list using the address 1.2.3.255.9.

Before going into the details of how a multicast list is set up it is important to introduce the
figure of the Domain Admin. The Domain Admin is a host in each domain that is in charge of
managing the routing tables and decides policies on the usage of the given domain. It is
assumed that the set-up of the multicast routing tables for a given domain would be driven by
the creator of the multicast list but managed by the Domain Admin.

3.4.1. Multicast List Set-up
It is useful to see how a multicast set-up is done to have a better understanding of the routing
algorithm. Given the following network topology and addresses.

3 2 5

4

10

1.3 1.1 1.4

1.2 1.5

2.3 2.1

2.1.2 2.1.1

3.3

3.1

1

11

1

2
3

45

1

2

3

4
1

2

1 2

3

4
5

1
2

31

24

1

2

3 3
1

2

Host 2.1.1 is the creator of the multicast list that includes hosts 2.1.1, 1, 1.3, 1.5. Since 2.1.1
is the creator of the list it is his duty to set-up the multicast routing. The first thing that 2.1.1
does is to request a multicast id for all domains that the multicast packet will travel to. It is
possible to do this by looking at the address of the hosts in the list. In this case host 2.1.1
should get a multicast id from the following domains.

16

Domain Obtained Mid
2.1.x 255.1
2.x 255.3
x 255.1
1.x 255.2

Once this information is obtained, the managing host can set the routing table of each domain
to reach the desired hosts. This operation will define the actions to do for the given multicast id
in the local domain.

What happens is that the Multicast creator sends a request to the domain Admin to route the
given multicast id to the specified hosts or subnet. In the case of the above example it is
possible to see how in domain 2.1.x we need to reach host 2.1.1 and therefore the Mid 255.1 in
domain 2.1.x will include host 2.1.1 as recipient of the multicast. A multicast list that is not
used will be cleared by the router administration software. This solves possible deadlocks that
can happen if the administrator of a multicast list does not release the allocated multicast
identifiers due to exceptional circumstances.

3.4.2. Multicast Routing Algorithm
This part will describe how the routing for multicast packets is performed. It is essential to
remember that for every domain where the multicast packet travels there is a possibly different
multicast id. Each time a multicast packet crosses a domain it has to map its multicast id into
the new multicast id in the new domain.

This multicast is not being expanded

Given a valid local Mid

Send the packet to the parent with the new Mid

Set the Expand flag to True, since I must be at the top of the minimum spanning tree

YesNo

Send this packet to all the hosts in the hosts list for this Mid

Send this packet to all the subnet list for this Mid

For each subnet map this Mid into the New Mid in the subnet

Done

Done

If this Mid has to send data to a Parent Mid and

Since the multicast routing table of each router is different, the routing decisions are different
for each router.

The routing algorithm does not need to search the routing table. It performs the operations
previously decided by the Domain Admin and the Multicast List manager.

For further details see the function DoMulticast

17

3.5. Routing of Real Time Packets
This part describes how real time data can be supported by an IPP network. The first thing to
recognise is that real time data has a separate class of router scheduling requirements. Real
time data requires the travelling time of the packet to be within given boundaries and may
require packets to be kept in sequence.

To be able to satisfy these special requirements a domain must be able to decide if it can carry
the given real time channel or not. A router must be able to quickly detect this special class of
packets and apply the given operations to them.

3.5.1. Real Time connection Set-up
The set-up of a real time connection is driven by the caller. For each domain where the packet
will travel the caller will need to ask if the domain can satisfy the minimum acceptable
conditions. This is the first step to be able to guarantee prefixed constraints and it is called
Admission Control.

If a domain accepts the given real time connection it will return a Real Time Id. A Real Time
Id (Rid) is similar to a Mid but uses a different root identifier (254 instead of 255).

Once all domains have granted the permission to carry the given real time connection the caller
is in charge of actually asking the Domain Admin to route the given Rid to another Rid in
another Domain. Since a real time connection reserves valuable resources, a connection or real
time identifier that is not used for a specified amount of time will be released.

3.5.2. Real Time routing Algorithm
The routing algorithm is in charge of detecting a valid Rid and performing the requested
operation on it. A diagram of the algorithm is the following.

Given a valid Rid

If there is a parent send the packet to the parent with the new Rid

If there is a host send the packet to the host

If there is a subnet send the packet to the subnet with the new Rid

Done

Done

Done

No

No

It can be seen that the algorithm is simple. No time is wasted in searching for what to do. All
the decisions on where the data should go and the connection requirements are done at
connection establishment.

The router has the ability to put a real time packet in front of the output queue of the desired
link if this needs to be done to satisfy the timing constraints. Note that a router has no input
queue. This can be done since each interface can be served by a dedicate processor and results
in a simpler routing algorithm than if an input queue were provided.

18

If an input queue was present, the router would need to do a lookup in the input queue looking
for real time packets, by having no input queue this lookup is avoided and all timing is done by
deciding where to put the real time packet in the output queue.

4. Example programs
This section describes the example programs that come with the experimental tool kit. The tool
kit is a series of programs that allows the simulation of the behaviour of an IPP network. This
simulation is from the routing point of view only. It is assumed that a fully implemented IPP
network will implement all features of IP plus the changed addressing and routing scheme.

Note that even if this test implementation does not permit two routers to share one physical line
it is obviously possible to do so in a real implementation.

4.1. Router Structure
Before entering into the details of the routing algorithms I will describe the general structure of
the router as implemented in the toolkit. The router work is completely driven by network
requests. The main loop waits for packets and processes them as soon as they arrive.

router.c

RouterIo
ProcessCall

ProcessPack

RcvPack

ParsePack

DoBroadcast

DoMulticast

Send the packet

DebugInit
RouterInit

DoCommands

SetInterface

SetRoute SetInterface

SetRoute

Show....

SetMulticast

RR

Ping

KillInterface

DoRealtime (Not implemented yet)

The program starts at the main function in the file router.c it then calls DebugInit, RouterInit
and then loops waiting for packets. Packets are received by RouterIo and processed by
ProcessPack.

ProcessPack is in charge of detecting what to do with the given packet. In the case when the
packet is directed at the router itself the ParsePack will try to do what the packet requests.

4.2. Auxiliary programs
This part will describe the other programs that are distributed with the tool kit and are used to
set-up an experimental network structure. All of them are very similar to each other. The
differences are in what they allow you to do.

4.2.1. Host
This program provides a very crude simulation of a host. It requires a configuration file that
specifies where this host should send packets. What the program does is to send a packet to
each of the destinations. It also shows the packets that it receives.

19

4.2.2. User
It is necessary to provide a way to interact with the network in a non automated way. The user
program provides this. It is a command line interface that allows you to send different types of
packets to the network.

4.2.3. NetAdm
An IPP network requires a Network Administrator program for each domain. This program is
in charge of administering the routing tables for the given domain. The NetAdm program is
just a stub for a Network Administrator. The duties of the NetAdm are:

• It knows about the topology and link capacity of the domain. It also knows the topology
and link capacity toward the parent network and all the Subnets.

• It is in charge of setting up the routing tables for the domain given the above knowledge of
the domain topology.

• It is in charge of allocating valid Multicast Id addresses for the given domain. It also
handles the set-up of the multicast routing tables after the Multicast List Administrator has
given the necessary information to this Domain Administrator.

• It is in charge of releasing Real Time addresses after it has acknowledged that the domain
is able to withstand the required data rate with the specified constraints.

It is important to note the difference between the framework of this Domain Administrator
compared to the framework of administering the Internet routing table. The amount of
information that this Domain Admin needs to handle is limited in size and is localised. This
allows for a far better knowledge of the network topology and link type than if this amount of
information was not known in advance and spread across various networks.

To avoid wasted resources and possible deadlocks a Multicast Id or a Real Time Id that is not
used for a preset amount of time will be released.

4.3. How to build the tool kit
The tool kit is delivered as a tarred and gzipped file. Installation is done by creating a working
directory and then extracting the material into that directory. Once this is done the readme file
in the main tool kit directory can be read and the instructions inside should be followed.

The tool kit and source of this paper can be obtained via anonymous ftp from: unix.hensa.ac.uk
The postscript can be found in: /pub/misc/ukc.reports/comp.sci/reports/9-94.Z
The tool kit can be found in: /pub/misc/ukc.reports/comp.sci/reports/9-94.app.tar.Z

4.4. How to use the programs
This section explains the basic structure of the tool kit and shows how it can be used. The tool
kit parts are divided in different sub directories each one holding part of the system. The most
useful part is probably the logd demon. This program is under the logd directory listens for
packets on udp port 1234 of the local machine. The other parts of the tool kit will then send
data to this daemon when they need to display debugging information.

The second most important program is the router. The router requires the configuration file that
specifies its address, the ports to connect to, the interfaces to create and the routing table
specification. This file must be given on the router stdin. Once started a router will output on
stdout the "interfaces" it has created and then starts accepting packets from the network.

20

Connection to a router can be done by using the program mon under the monitor directory.
This is an interactive program. It will ask for the IP port to connect to. This is like a telephone
number to dial to connect to the router. This information can be found by looking at the router
output after it has been started. Mon will then ask for its own address and for the address of the
router in this domain. This is the single trailing byte of a router address.

Once this information is given the mon will wait for packets to display from the router or for
user commands. A typical command is to ask to the router to show its routing table. Using the
topology shown in example two the monitor has address 1 and the router has address 2. To
show router 2 routing table type:

Destination> 2
packet Type (Data, RecordRoute Ping) > d
data> show route

If something goes wrong the logd should explain why.

The other program that is used in this version of the tool kit is the host. A host is a simulation
of a host behaviour. It is configured by a config file passed in stdin and what it does is to send
data to the specified destinations.

4.5. Available commands on the Router
A router will respond to commands that are directed to it. What follows is the list of the
available commands and a short summary of the effects. Some commands are self explanatory
and are therefore not described. It must be noted that words that are written in Italic should be
replaced with an appropriate value, words that are written in bold should be written as they are.
An example of usage of the following commands can be found in the initialization scripts for
the routers in the various examples.

The command set route parent has two possible syntax's. The first one is used to specify a
direct route to a parent. The second one is used to specify a distant route for the parent domain.
Note the similarity to the set route net command.

show route
show multicast
show interface
show stat

set route parent NextHop Interface Cost
NextHop Remote Cost

set route host HostId NextHop Interface Cost
set route net NetId NextHop Interface Cost

NetId NextHop Remote Cost

set multicast mid Maddr AdminHost
set multicast expire Maddr Seconds
set multicast parent Maddr ParentMaddr
set multicast host Maddr HostId
set multicast net Maddr NetId NetMaddr RouterId

set interface IfNum Tech Listen
set interface IfNum Tech Connect ToLevel Parameters

21

set brdhost HostId
set debug Debug-Level

kill interface IfNum
kill router

get mid

4.6. Example One
This example shows how a Subnet can be connected to a parent by two routes and how load
balancing can be performed on the two links.

There is a parent network composed of three routers, three hosts and a Subnet. The Subnet is
also composed of three routers and three hosts. The hosts send data to each other and the
option Record Route will show the path taken by the packets.

The numbers on the links indicate the interface that the router is using to connect to the other
end. The arrow indicates what router is the caller and what is the listener in the action of setting
up a link.

The routers are prefixed by the letter R, the hosts are prefixed by H and the monitor is prefixed
by the letter M.

R 2 R 15 R 16

R 1.1 R 1.30 R 1.20

H 10 H 5 H 11

H 1.3 H 1.4 H 1.5

1

2

3 4

1 2 2
1

4

2

1

4

4

21 1

4

3

M1

3

This example can be run using the run command in the config/ex1 directory. Note that if
something goes wrong, possible causes may be the fact that the X screen is too small or that the
PATH is not correct. In this case the system can be built by hand by starting one router at a
time and understanding what the system is doing.

The logd daemon should always be started first since this will probably show what went
wrong.

22

4.7. Example Two
This example shows how it is possible to achieve load balancing at the same domain level. It
also shows how this network configuration will lead to routing loops only in certain cases. In
the case of routing loops it can be seen how many packets actually get discarded due to a real
loop and how many still get to the destination.

1 5
2

3
4

1

23

4

4

1
2

3

4

1

2 3

R2 R3

R4R5

H6 H7

H8H9

M1

The arrows indicate if the destination interface is a listening interface or not. Eg: Host 9
connects to Router 5 at interface One of the router that is a Listening interface.

4.8. Example Three
This example shows a network with a multicast list already set-up. The multicast host list is
composed of hosts 1 1.3 1.5 2.1.1

23

3 2 5

4

10

1.3 1.1 1.4

1.2 1.5

2.3 2.1

2.1.2 2.1.1

3.3

3.1

1

11

1

2
3

45

1

2

3

4
1

2

1 2

3

4
5

1
2

31

24

1

2

3 3
1

2

You can run this example by using the run command inside the config/ex3 directory.

5. Side Issues
This section describes the parts of the project that are not yet implemented but that are planned.

5.1. Two routers in one
It can be seen that there is always a link between a Parent and a Child domain. This link is in
most cases real but in other cases can be imaginary. A typical case is when two Subnets are
connected with only one box between them. In this case the box would contain two routers with
a hidden link. It will appear as two routers and one link from the network point of view but it
will be one single box and no wires in practice.

Subnet 1

Subnet 1.2

1.2.1

1.2.2 1.2.10

1.1

1.2
1.3

Single router between the two subnets

Hidden link between the two subnets

24

5.2. Migration Path
The huge address space of IPP should not be wasted in a very unbalanced tree. It is therefore
advisable to specify different Subnets depending on regional areas and other Subnets for
organisations that would like to keep their own network separate.

A possible structure would be
Subnet Subnet
1 USA

1 Texas
2 Minnesota
3 North Dakota
....

2 Europe
1 England
2 Italy
3 Germany
....

3 Australia
4 Russia
.....

Subnets can be allocated to companies. Something like.

5 Company
1 Motorola
2 IBM
3 HP
....

6 Packet Radio

It is possible to see that the top level remains quite sparse. Again this choice is debatable and
can be changed.

To migrate from IP to IPP a means must be provided to transparently obtain the IPP addresses
of a host. It is possible to modify the domain name server bind to return IPP addresses as well
as IP if queried for. In the transition period the same physical links could be serving both IP
and IPP depending on the address supplied.

It is possible to say that the address of something is determined by where it is logically
connected. If for example a Host or Router connects to a router that has address 1.2.3 the
address can only be either a parent of 1.2.3 or in the same domain as 1.2.3 or a Subnet of 1.2.
This scheme is like the road system where your home address is determined by where your
house is in relation to a road.

25

6. Conclusion
A connectionless approach to network routing gives advantages in terms of load balancing and
reliability of a network connection. It is also possible to make the choice of a route an
extremely quick process if the tables that are being "searched" are direct tables. Having a fixed
size, direct lookup, routing table allows the construction of very high speed routers. This is
possible since most of the routing functions can be built in hardware.

The fact that the network administrator of a domain only sees and cares for a limited part of the
network should make network administration easier and more efficient possibly reducing the
downtime of routes.

A variable length, limited, address space gives greater possibility to organise the structure of
the network in a logical way and this will result in less illogical routes taken by packets when
trying to reach the desired destination.

7. Glossary
It is useful to clearly specify words that have different meaning in different context.

• Domain: Defines the group of hosts and/or routers that are within the same subnet. Note
that this does not include the hosts and routers that are below any of the subnet of the
given domain. Given the structure of IPP it follows that a domain can have a maximum
of 250 hosts and/or routers.

8. References

[leis-92] Charles E. Leiserson, 1992: "The Network Architecture of the Connection
Machine CM-5," Thinking Machines Corporation Cambridge, Massachusetts
April 27, 1992

[Scott-94] Scott Shenker, David D. Clarck, Lixia Zhang, 1994 "A Scheduling Service
Model and a Scheduling Architecture for an Integrated Services Packet
Network", MIT Electronic Paper.

[Davi-88] John Davison, 1988 "An Introduction to TCP-IP", Springer-Verlag
ISBN 3-540-96651-X

[Raj-92] Bala Rajagopalan, 1992 "Reliability and Scaling Issues in Multicast
Communication", Computer Communication review, Vol 22, No. 4 pp.188-
198.

9. Bibliography

[zaum-91] William T. Zaumen, J.J Garcia-Luna Aceves, 1991: "Dynamics of distributed
shortest-path routing algorithms," Computer Communication review, Vol 21,
No. 6, pp.31-42

[tsu-91] Paul F. Tsuchiya, 1991: "Efficient and Robust Policy Routing Using Multiple
Hierarchical Addresses," Computer Communication review, Vol 21, No. 6,
pp. 53-65

26

[est-91] Deborah Estrin and Martha Steenstrup, 1991: "Inter Domain Policy routing:
Overview of architecture and Protocols" Computer Communication review,
Vol 21, No. 1, pp.71-78

[wang-92] Zheng Wang, 1992: "Analysis of Shortest-Path Algorithms in a Dynaming
Network environment," Computer Communication review, Vol 22, No. 2, pp.
63-71

[Estr-92] Deborah Estrin, Yakov Rekheter, Steven Hotz, 1992: "Scalable Inter-Domain
Routing Architecture," Computer Communication review, Vol 22, No. 4,
pp.40-52

[bahk-92] Saewoong Bahk, Magda El Zarki, 1992: "Dynamic Multi-path Routing and
how it compares with other Dynamic Routing Algorithms for High Speed
Wide Area Networks," Computer Communication review, Vol 22, No. 4,
pp.53-64

[tsu-92] Paul F. Tsuchia, 1992: "Internet Routing over Large Public Data Networks
using Shortcuts," Computer Communication review, Vol 22, No. 4, pp.65-75

[bil-91] Paul Bay and Gianfranco Bilardi, 1991: "Deterministic On-Line Routing on
Area-Universal Networks," Proceedings of the 31 Annual Symposium on
Foundations of computer Science (St. Louis, MO, Oct 22-24) pp. 297-306

[gaug-93] Patrick T. Gaughan and Sudhakar Yalamanchili, 1993: "Adaptive Routing
Protocols for Hypercube Interconnection Networks," Computer, May 1993,
pp. 12-23

27

