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On The Equivalence Between CM�C and TIM

Rafael D�Lins � Simon J�Thompson
Dept� de Inform�atica � Universidade Federal de Pernambuco � Recife � Brazil

Computing Laboratory � The University of Kent � Canterbury � England�

Abstract

In this paper we present the equivalence between TIM� a machine developed to implement lazy

functional programming languages� and the set of Categorical Multi�Combinators� a rewriting

system developed with similar aims�

Keywords� Categorical Multi�Combinators� lambda calculus� functional programming�

Introduction

A number of di�erent abstract machines for the implementation of lazy functional languages have been
developed in the last few years� Many of these machines were developed using di�erent principles or
even based on di�erent theories of functions and seem to be unrelated� In our opinion� it is important
to examine the similarities and di�erences between these machines� because this will provide a better
understanding of their features� In this paper� we investigate the relationship between TIM and
the system of Categorical Multi�Combinators� Although these two abstract machines seem to be
completely unrelated we prove their equivalence�
The method of compilation of functional languages into combinators� �rst explored by Turner

in��	
� provides a way of removing the variables from a program� transforming it into an applicative
combination of constant functions or combinators� Turner used a set of combinators based on
Curry�s Combinatory Logic� To each combinator there is associated a rewriting law� In rewriting a
combinator expression� Turner rewrites the leftmost�outermost reducible subexpression �or redex
 at
each stage� When no further rewriting can take place the expression is said to be in normal form�
Another theory of functions is provided by Category Theory ��
� and we can see the notation used

herein as providing an alternative set of combinators� The original system of Categorical Combinators
was developed by Curien ��
� This work was inspired by the equivalence of the theories of typed ��
calculus and Cartesian Closed Categories as shown by Lambek ��
 and Scott ���
�
Aiming to implement lazy functional languages in an e�cient way using rewriting of Categorical

Combinators we developed a number of optimisations ��� �
 of the na��ve system� the most re�ned of
which was the system of Linear Categorical Combinators ��
� The modi�cations introduced reduce
the number of rewriting laws and increase the e�ciency of the system by reducing the number of
rewriting steps involved in taking an expression to normal form� whilst leaving the complexity of the
pattern matching algorithm unchanged�
Categorical Multi�Combinators are a generalisation of Linear Categorical Combinators� Each

rewriting step of the Multi�Combinator code is equivalent to several rewritings of Linear Categorical
Combinators� since an application of a function to several arguments can be reduced in a single step�
The core of the system of Categorical Multi�Combinators consists only of two rewriting laws with a
very low pattern�matching complexity and avoids the generation of trivially reducible sub�expressions�
Independently� there has been much interest in compiled versions of functional languages which

run much more quickly on von Neumann machines than do interpreters� Johnsson� with his imple�
mentation of Lazy ML ��
� showed that it is possible to get fast implementations of lazy functional
languages� Johnsson�s implementation model was described as the G�Machine ���� �
� The basic

�



principle of the G�Machine is to avoid generating graph nodes when it is unnecessary� Several optimi�
sations to the G�Machine are suggested in ���� �
� In ���
 there is an analysis of these optimisations
and their performance �gures obtained with several di�erent benchmark programs�
Categorical Multi�Combinators served as basis for two compiled machines� GMC ���
 and CM�

CM ���� ��
� GMC is inspired by the G�Machine� in the sense that it generates graph lazily� The
implementation of GMC has shown performance close� but slower� than the G�machine� CM�CM is
a stack based machine which served as a basis for �CMC� a lower level abstract machine suitable
for e�cient implementation of functional languages on RISC architectures� The implementation of
�CMC� still in progress has shown performance �gures which in the best case is several times faster
and in the worst case it is ��� slower than Chalmers LML compiler based on the G�machine�
At the same time� independent work on the Ponder abstract machine by Fairbairn and Wray

developed into a more sophisticated system� the Three Instruction Machine� or TIM ��
 which can be
thought of as a lazy SECD machine�
In this paper we investigate the relationship between TIM and the system of Categorical Multi�

Combinators� The �rst section presents the source language for generating CategoricalMulti�Combinator
expressions and TIM code� To make presentation easier we adopted a slightly di�erent notation for
Categorical Multi�Combinators from the one presented in �	
� The multi�pair combinator is repre�
sented by a tuple �x�� � � � � xn
� we use the empty tuple �
 to denote identity� and angle brackets stand
for closures ha� bi �which we previously wrote � a b
� We follow this by explaining the evaluation
mechanism in Categorical Multi�Combinators �	
 and TIM ��
� For further details on TIM� and indeed
on other machines we refer readers to ���
� The core of the paper is section �� in which we present
two functions C and T translating from TIM to CMC and vice versa� We show in ��� and ��� that
each of the translation functions respects rewriting� in a sense which we explain� and in ��� we show
that T is a left inverse of C� and that C is a left inverse of T modulo rewriting�

� The Source Language

A program is taken to be a sequence of combinator de�nitions together with an expression to be
evaluated� which will involve these combinators�

c� �def combinator�

� � �

cn �def combinatorn

main�expression

A program when compiled will generate a script which is formed by a sequence of combinators linked
to their code thus�

� �

�
��

c� �� ��combinator�


���

cn �� ��combinatorn



�
��

In order to �atten the source code the compilation algorithms for Categorical Multi�Combinators and
TIM will extract right�parenthesised expressions and replace each of them by a unique label� These
labels will also be part of the script� and as with combinators they have their name linked to their
code�

� �

�
���������

c� �� ��combinator�


���

cn �� ��combinatorn


l� �� ��expression�



���
lm �� ��expressionm



�
���������

�



The main�expression is compiled separately as�

��main�expression 

�

In order properly to interpret recursion� we assume that the environment � contains the de�nition of
all combinators� so that recursive combinators produce recursive references through the environment�
The notation we use is� with each label l there is associated code lr and with each combinator c there
is associated code cr� we supress the environment � when no confusion is possible�

��� Compiling into Categorical Multi�Combinators

In Categorical Multi�Combinators function application is denoted by juxtaposition� taken to be
left�associative� The compilation algorithm for translating ��expressions into Categorical Multi�
Combinators is given by the function Rx����xj where each xi is a variable and the corresponding i

its depth in the environment� i�e� the corresponding DeBruijn number� Top level expressions are
translated using an empty environment� so by R� �� For a matter of uniformity combinators will be
represented as composed with a dummy frame� �
� which can be seen as the identity frame�

�T ��� R� � �xk � � ��xl� �z 	
m

�a � hLm��� �
i�Rxk���xla


�T ��� Rx����xja � � � b � Rx����xja � � �Rx����xjb

�T ���� Rx����xj �a � � � b
 � li
where li is a new unique label in the script� such that
li �� �Rxi���xja
 � � � �Rxi���xj b


�T ��� Rx����xjb � b � if b is a constant

�T �	� Rx����xjxi � i

Combinator names and labels are treated as constants�

����� Example of Compilation

The script�

S � �a��b��c�ac�bc


K � �k��l�k

I � �i�i

SKKI

forms the following environment�

S �� R� ����a��b��c�acl�



K �� R� ����k��l�k



I �� R� ����i�i



which by application of the compilation rules above translates to�

S �� hL��� � l�
� �
i

K �� hL���
� �
i

I �� hL���
� �
i

l� �� � �

�



The expression to be evaluated is translated as

R� ���SKKI



which generates SKKI as compiled code�

��� Generating TIM Code

Now we present the compilation algorithm for TIM�
The script� �

����

c� �� ��combinator�


���

cn �� ��combinatorn


main�expression

�
����

Compiles into TIM code as�

� �

�
����

c� �� B��combinator�


���

cn �� B��combinatorn


C��main�expression 



�
����

where compilation schemes B and C are given below�

�C��� B���a�� � � �an�body 

� �Take n�C��body

�a�� � � � � an
 


�C��� C��e� e�

�a�� � � � � an
� �P ��e�

�a�� � � � � an
�C��e�

�a�� � � � � an



�C��� C��atom

�a�� � � � � an
� E��atom

�a�� � � � � an


�C�	� P ��am

�a�� � � � � an
� �Push arg m


�C�
� P ��ci

�a�� � � � � an
� �Push combinator ci


�C��� P ��e

�a�� � � � � an
 � �Push label l
� where l is a new �unique
 label and the rule side�e�ects �
thus � �� ��e� �� �C��e



 means � with entry �e� �� �C��e



�

�C��� E��am

�a�� � � � � an
� �Enter arg m


�C�
� E��ci

�a�� � � � � an
� �Enter combinator ci


The ��� used in rules �C��
 and �C��
 is overloaded� In rule �C��
 semi�colon is equivalent to cons ��

in a functional language� while in rule �C��
 semi�colon stands for append �  
� Compilation of an
expression into TIM generates a �at sequence of code� always� In rules C�� and C�� a variable am is
replaced by m� its position in the list of variables �a�� � � � � an
�

����� Example of Compilation

The script�

S � �a��b��c�ac�bc


K � �k��l�k

I � �i�i

SKKI

�



forms the following environment�

S �� B���a��b��c�acl�



K �� B���k��l�k



I �� B���i�i



which by application of the compilation rules above translates as�

S �� �Take �� Push label l�� Push arg �� Enter arg �


K �� �Take �� Enter arg �


I �� �Take �� Enter arg �


l� �� �Push arg �� Enter arg �


The expression to be evaluated generates the following TIM�code�

C��SKKI

� �� Push Combinator I� Push Combinator K� Push Combinator K� Enter Combinator S�

� Executing the Code

In this section we show how Categorical Multi�Combinators and TIM execute the code compiled by
the compliation schemes above�

��� Categorical Multi�Combinator Rewriting Laws

The core of the Categorical Multi�Combinator machine is presented on page �� of �	
� For a matter
of convenience we will represent the multi�pair combinator� which forms evaluation environments as
�x�� � � � � xn
 and compositions� which represent closures� will be written as ha� bi� Using this notation
the kernel of the Categorical Multi�Combinator rewriting laws is�

�M���� hn� �xm� � � � � x�� x�
i � xn

�M���� hx�x�x� � � � xn� yi � hx�� yi � � � hxn� yi

�M���� hLn�y
� �w�� � � � � wm
ix�x� � � �xnxn�� � � �xz � hy� �x�� � � � � xn
i xn�� � � �xz

The state of computation of a Categorical Multi�Combinator expression is represented by the
expression itself� Rule �M!��
 performs environment look�up� this is the mechanism by which a variable
fetches its value in the corresponding environment� �M!��
 is responsible for environment distribution�
The rule �M!��
 performs environment formation� if during rewriting a label or a combinator reaches
the leftmost position of the code we proceed a script look�up and enter the corresponding code in the
de�nition environment� This can be expressed as

hl� yi � hlr� yi

��� TIM states

The state of a TIM computation is a tuple

hCode�Current Frame�Argument Stack �Framesi

The Code part is a sequence of TIM instructions� The Current Frame is the label �pointer
 to a
frame in Frames� which will be used for the evaluation of the Code� Speci�cally it is used to hold the

�



values of free variables in the code� These values might be literal values� or closures represented by
code�frame pairs� The Argument Stack is a stack of values� which are arguments to functions� Frames
is a heap in which frames are stored� We use Miranda list notation to represent stacks�
The initial state of the machine is

hCode� �
� � 
� � 
i

The state transition laws for TIM presented on page �� of ��
 are�

�s��� h�Take n� I
� f�� �a� � � � � � an � A
� F i � hI� f� A� F �f �� �a�� � � � � an

i�
where f selects an unused frame

�s��� h�Push arg n� I
� f� A� F �f �� �� � � � an� � � �

i � hI� f� �an � A
� F �f �� �� � � � an� � � �

i

�s��� h�Push label l� I
� f� A� F i � hI� f� �hl� fi � A
� F i

�s�	� h�Push combinator c� I
� f� A� F i � hI� f� �hc� �
i � A
� F i

�s�
� h�Enter arg n
� f� A� F �f �� �� � � � hc� fi� � � �

i � hcr � fn� A� F �f �� �� � � � hc� fni� � � �

i

�s��� h�Enter combinator c
� f� A� F i � hcr � �
� A� F i

Note that in law �s��
 above we use the notation F �f �� �a�� � � � � an

 to represent the heap F updated
with a new frame f � consisting of a� to an� In all other rules F �f �� �a�� � � � � an

 means the heap F

contains a particular frame f � The empty tuple� �
� represents the empty frame�

� C�M�C � TIM

The close relationship between TIM ��
 and the original set of Categorical Multi�Combinators ��� 	

has been known to the �rst author for a long time� and has also been mentioned by other people ��"
�
This equivalence was also outlined in ���
�
Our aim in this section is to make clear the relationship between TIM ��
 and the original set of

Categorical Multi�Combinators ��� 	
� We present two functions C� translating from TIM to CMC and
T going in the reverse direction� The translation functions and equivalence proofs we supply depend
upon a number of simple properties of the form of the state and expressions produced by rewriting or
executing compiled lambda expressions�

� All lambda expressions rewritten are of ground �non�functional
 type� This is implicit in the
rewriting rule for Take in TIM where it is assumed that there are always su�cient arguments
upon the stack to perform a function application when required�

� All lambda expressions are assumed to be lambda�lifted before compilation �c�f� ��

� since this
is intrinsic to the rewriting rules for Categorical Multi�Combinators� Examining the form of
rewritten lambda expressions in CMC� it is safe to assume that in any composition hl� ri� l is
not a composition and that r is a multi�pair or tuple �x�� � � � � xn
�

We then show that the translations given commute with rewriting� First we show that if a TIM
state T� rewrites in one step to state T� then C�T�
� the Categorical Multi�Combinator equivalent
rewrites in a sequence of zero or more steps to C�T�
 # �Property I�� We then show that if a CMC
expression M� rewrites in one step to M� then T �M�
� the TIM equivalent rewrites in a sequence of
zero or more steps to T �M�
 # �Property II��

Property I Property II
T� �� C�T�

	 	 

T� �� C�T�


M� �� T �M�

	 	 

M� �� T �M�


Finally we show that T is a left inverse of C� i�e� $C then T � is the identity on TIM states� The other
inverse relationship does not hold� We exhibit an example to show this� but we also show that it is
an inverse modulo rewriting�

�



��� Translating TIM into C�M�C

The translation from TIM states to Categorical Multi�Combinator expressions is performed by the
following functions�

�t��� C�hI� f� �x�� � � � � xz
� F �f �� �y�� y�� � � � yn

i
 � h�F I� ��F y�� �Fy�� � � � � �Fyn
i �Fx� � � � �Fxz

�t��� �F �hcn� fi
 � h�F cn� ��F y�� � � � � �F ym
i�where f �� �y�� � � � � ym
 in F

�t��� �F �Take n� I
 � Ln����F I


�t�	� �F �Push arg n� I
 � �F I �n � �


�t�
� �F �Push label l� I
 � �F I l
�

r

�t��� �F �Push combinator c� I
 � �F I c
�

r

�t��� �F �Enter arg n
 � �n� �


�t�
� �F �Enter combinator c
 � c�r

As we can observe �F in rules �t��
 to �t�	
 is recursively invoked only on code sequences without
any need for heap information� which is carried by F � For notational simplicity the subscript F �
such as in �F � which stands for the heap of frames in TIM states� will be omitted in the sequel� if
no misunderstanding can arise� Rule t�� above translates a TIM state into a top�level Categorical
Multi�Combinator expression it is used to translate the expression under evaluation� In this case �F
is ancillary to C and translates a code sequence into Categorical Multi�Combinator sub�expressions�
We also apply �F to each entry in the TIM script in order to generate the corresponding C�M�C script
thus�

�F

�
�����

c �� ��combinator�


���

l �� ��label�


���

�
����� �

�
�����

c� �� �F ��combinator�


���

l� �� �F ��label�


���

�
�����

��� Proof of Property I

We show that if a state T� rewrites to a state T� then C�T�
� the Categorical Multi�Combinator
equivalent expression to T�� rewrites in a sequence of zero or more steps to C�T�
� The translation
between TIM states and C�M�C� expressions is performed by the algorithm above� The following
sub�sections prove the result clause by clause�

����� Multi ��Reduction

Let us start analysing the most important state transition law of both machines� the one which
corresponds to ��reduction in the ��Calculus� We can see that

h�Take n� I
� f�� �a� � � � � � an � A
� F i � hI� f� A� F �f �� �a�� � � � � an

i�

where f selects an unused frame

and

hLn�y
� �w�� � � � � wj
ix�x� � � �xnxn�� � � �xz � hy� �x�� � � � � xn
ixn�� � � �xz

�



perform exactly the same transformation to the code� This equivalence can be shown formally as
follows�

C�h�Take n� I
� f� �x�� � � � � xz
� F �f �� �y�� � � � � yi

i

t��
� h� �Take n� I
� ��y�� � � � � �yi
i �x� � � � �xz

	 s�� k t��

C�hI� f�� �xn� � � � � xz
� F �f� �� �x�� � � � � xn��

i
 hLn����I
� ��y�� � � � � �yi
i �x� � � � �xz

k t�� 	M���

h�I� ��x�� � � � � �xn��
i �xn � � � �xz h�I� ��x�� � � � � �xn��
i �xn � � � �xz

����� Push arg as Environment Look�up

The operation which allows a variable to fetch its value from its corresponding environment is expressed
in TIM and C�M�C� as�

h�Push arg n� I
� f� A� F �f �� �� � � � an� � � �

i � hI� f� an� A� F �f �� �� � � � an� � � �

i

hn� �xm� � � � � x�� x�
i � xn

Consider the behaviour of the two rules�

C�h�Push arg n� I
� f� �x� � � � �
� F �f �� �am� � � �

i

t��
� h� �Push arg n� I
� ��am� � � �
i �x� � � �

	 s�� k t��

C�hI� f� �an � x� � � �
� F �f �� �am� � � �

i
 h�I �n � �
� ��am� � � �
i �x� � � �

k t�� 	M���

h�I� ��am� � � �
i �an �x� � � � h�I� ��am� � � �
i h�n � �
� ��am� � � �
i �x� � � �

	M���

h�I� ��am� � � �
i �an �x� � � �

����� Push label as Environment Distribution

This operation is performed by the following laws in TIM and C�M�C� respectively�

h�Push label l� I
� f� A� F i � hI� f� hl� fi � A�F i

hx�x�x� � � �xn� yi � hx�� yihx�� yi � � � hxn��� yihxn� yi

Right associated applications are removed from the TIM code and replaced by a label� Push label l
builds a closure of the current frame and the label l�
Let us prove the operational equivalence between the laws above�

C�h�Push label l� I
� f� �x�� � � �
� F �f �� �am � � �

i

t��
� h� �Push label l� I
� ��am� � � �
i �x� � � �

	 s�� k t��

C�hI� f� �hl� fi� x� � � �
� F �f �� �am � � �

i
 h�I l�� ��am� � � �
i �x� � � �

k t�� 	M���

h�I� ��am� � � �
i � hl� fi �x� � � � h�I� ��am� � � �
ihl
�� ��am� � � �
i�x� � � �

k t��

h�I� ��am� � � �
ih� l� ��am� � � �
i�x� � � �

k

h�I� ��am� � � �
ihl
�� ��am� � � �
i�x� � � �

We recall that l� is the TIM label corresponding to l�

	



����	 Push combinator as Script Look�up

In TIM and C�M�C functions are lambda lifted during compilation� so that each function corresponds
to a closed ��expression or a combinator� Whenever a combinator is applied it will generate its
own evaluation environment� binding actual parameters to formal parameters� In C�M�C whenever
a combinator name reaches the leftmost outermost position in the code we enter the corresponding
code�

h�Push combinator c� I
� f� A� F i � hI� f� hc� �
i � A�F i

Let us prove the operational equivalence between the laws above�

C�h�Push combinator c� I
� f� �x�� � � �
� F �f �� �am� � � �

i

t��
� h� �Push combinator c� I
� ��am� � � �
i �x� � � �

	 s�� k t��

C�hI� f� �hc� �
i� x�� � � �
� F �f �� �am� � � �

i
 h�I c�� ��am� � � �
i �x� � � �

k t�� 	M���

h�I� ��am� � � �
i � hc� �
i �x� � � � h�I� ��am� � � �
i hc
�� ��am� � � �
i �x� � � �

k t��

h�I� ��am� � � �
i h�c� � �
i �x� � � �

k

h�I� ��am� � � �
i hc
�� � �
i �x� � � �

where c� is the TIM combinator corresponding to c� As combinators discharge the environments they
are composed with we have both sides above operationally equal�

����
 Enter arg as Environment Look�up

In the law�

h�Enter arg n
� f� A� F �f �� �� � � � hc� f �i� � � �

i � hcr� f
�� A� F �f �� �� � � � hc� f �i� � � �

i

Enter performs a similar transformation to the code as Push arg n above� i�e� an environment look�up�
Let us see the state transition this law performs in C�M�C�

C�h�Enter arg n
� f� �x�� � � �
� F �f �� �� � � hc� f �i � � �

i

t��
� h� �Enter arg n
� �� � � � � hc� f �i� � � �
i �x� � � �

	 s�� k t��

C�hcr � f
�� �x�� � � �
� F �f

� �� �y�� � � � � yn

i
 h�n� �
� �� � � � � hc� f �i� � � �
i �x� � � �

k t�� 	 M���

h�cr� ��y�� � � � � �ym
i �x� � � � � hc� f �i �x� � � �

k k t��

hc�r� ��y�� � � � � �ym
i �x� � � � h�c� ��y�� � � � � �ym
i �x� � � �

k

hc�� ��y�� � � � � �ym
i �x� � � �

k

hc�r � ��y�� � � � � �ym
i �x� � � �

"



����� Enter combinator as Script Look�up

The other role of the Enter combinator is simply to read the code for a function de�nition from the
script� performing a lazy linking of the code� by the following law�

h�Enter combinator c
� f� A� F i � hcr � �
� A� F i

This law is equivalent to the following state transformation in C�M�C�

C�h�Enter combinator c
� f� �x�� � � �
� F �f �� �am� � � �

i

t��
� h� �Enter combinator c
� ��am� � � �
i �x� � � �

	 s�� k t�	

C�hcr � �
� �x�� � � �
� F �f �� �am� � � �

i
 hc�r � ��am� � � �
i �x� � � �

k t��

h�cr� ��am� � � �
i �x� � � �

k

hc�r � ��am� � � �
i �x� � � �

where c�r is the TIM code associated with combinator c��

��� Translating C�M�C into TIM

The translation between Categorical Multi�Combinator expressions and TIM states is performed by
the following functions�

�r��� T �he� �y�� � � � � ym
i w� � � �wk
 � h�e� f� ��w�� � � � � �wk
� F �f �� ��y�� � � � � �ym

i

�r��� �Ln���x
 � �Take n� �x


�r��� �n � Enter arg �n �


�r�	� �c�r � Enter combinator c

�r�
� ��e�e� � � � em
 � %em� � � � � %e�� �e�

�r��� �hn� �y�� � � � � ym
i � �yn

�r��� �hx� �y�� � � � � ym
i � h�x� fi�where f �� ��y�� � � � � �ym


�r�
� %n � Push arg �n �
� if n is a variable

�r��� %c�r � Push combinator c� if c is a combinator

�r���� %l�r � Push label l

T translates a top�level Categorical Multi�Combinator expression into a TIM state� � and % are
ancillary functions which translate the code of a Categorical Multi�Combinator sub�expression into
TIM�code� As we can observe in rule �C��
 above for compiling TIM code each subterm in an
application is translated depending on its position in the term� % is needed to re�ect this di�erence�
which does not exist in Categorical Multi�Combinators� into TIM� F appears as an unbound variable in
rule �r��
 � the meaning of this is �the heap built by the recursive invocation of � on the subexpressions
to which it is applied�� When �r��
 is applied a new frame in the heap is generated� and we can see
that the traversal of the Categorical Multi�Combinator expression gives rise to a collection of frames
�F 
 in the heap�

��



The corresponding TIM script is generated by applying � to each of the entries of the C�M�C
script� thus

�

�
�����

c� �� ��combinator�


���

l� �� ��label�


���

�
����� �

�
�����

c �� ���combinator�


���

l �� ���label�


���

�
�����

The syntax of Categorical Multi�Combinator expressions which can arise from compilation or rewriting
of compiled expressions shows us that in rule �r��
 e can either be a variable� an application� or an
abstraction �Ln�a
 or ci
� We use this in proving property II below�

��� Proof of Property II

We show here that if a Categorical Multi�Combinator expressionM� rewrites in one step to expression
M� then the TIM state T �M�
 rewrites in a sequence of one or more steps to T �M�
� The translation
between C�M�C� expressions and TIM states is performed by the algorithm above�

��	�� Environment Look�up

T �hn� �� � � � hy� �xj � � � � � xl
i� � � �
iw� � � �wk

r��
� h�n� f� ��w�� � � � � �wk
� F �f �� �� � � � h�y� f �i� � � �

i

	 M��� k r��

T �hy� �xj � � � � � xl
iw� � � �wk
 hEnter arg �n �
� f� ��w�� � � � � �wk
� F �f �� �� � � � h�y� f �i� � � �

i

k r�� 	 s��

h�y� f �� ��w�� � � � � �wk
� F i h�y� f �� ��w�� � � � � �wk
� F �f �� �� � � � h�y� f �i� � � �

i

The translation rules give rise to di�erent heaps on the left and right hand sides� Note� however that
the only di�erence is the presence of an additional frame� f � on the right hand side� As rewriting is not
a�ected by the presence of this extra frame we can say that the two expressions above are equivalent�

��	�� Environment Distribution

T �hx� � � � xn� �ym� � � �
iw� � � �

r��
� h��x� � � �xn
� f� ��w�� � � �
� F �f �� ��ym� � � �

i

	 M��� k r��

T �hx�� �ym� � � �
i � � � hxn� �ym� � � �
iw� � � �
 h%xn � � � �x�� f� ��w�� � � �
� F �f �� ��ym� � � �

i

k r��

h�x�� f� ��hx�� �ym� � � �
i� � � � � �w�� � � �
� F �f �� ��ym � � � �

i

There are three cases to be considered depending on the form of the expression xn�
xn is a combinator c��

k r�� k r���

h�x�� f� �� � � � h�c
�� �
i� �w�� � � �
� F i hPush combinator c � � � �x�� f� ��w�� � � �
� F �f �� ��ym � � � �

i

k 	 s��

h�x�� f� �� � � � hc� �
i� �w�� � � �
� F i h%xn�� � � � �x�� f� �hc� �
i� �w�� � � �
� F �f �� ��ym� � � �

i

	 
�s��� s��� or s��


h�x�� f� �� � � � hc� �
i� �w�� � � �
� F �f �� ��ym � � � �

i

��



xn is a variable a�

k r�� k r��

h�x�� f� �� � � � �ya� �w�� � � �
� F i hPush arg �a �
 � � � �x�� f� ��w�� � � �
� F �f �� ��ym� � � �

i

	 s��

h%xn�� � � � �x�� f� ��ya � �w�� � � �
� F �f �� ��ym� � � �

i

	 
�s��� s��� or s��


h�x�� f� �� � � � �ya � �w�� � � �
� F �f �� ��ym � � � �

i

xn is a label l��

k r�� k r���

h�x�� f� �� � � � h�l
�

r � fi� �w�� � � �
� F �f �� ��ym � � � �

i hPush label l � � � �x�� f� ��w�� � � �
� F �f �� ��� ym � � �

i

k 	 s��

h�x�� f� �� � � � hlr� fi� �w�� � � �
� F �f �� ��ym � � � �

i h%xn�� � � � �x�� f� �hlr� fi� �w�� � � �
� F �f �� ��ym � � � �

i

	 
�s��� s��� or s��


h�x�� f� �� � � � hlr � fi� �w�� � � �
� F �f �� ��ym� � � �

i

��	�� Multi ��Reduction

T �hLn���y
� �w�� � � � � wj
ix� � � �xz

r��
� h�Ln���y
� f �� ��x�� � � � � �xz
� F �f

� �� ��w�� � � � � wj

i

	M��� k r��

T �hy� �x�� � � � � xn��
i xn � � �xz
 h�Take n� �y
� f �� ��x�� � � � � �xz
� F �f
� �� ��w�� � � � � wj

i

k r�� 	 s��

h�y� f� ��xn� � � � � �xz
� F �f �� ��x�� � � � � �xn��

 h�y� f� ��xn� � � � � �xz
� F �f �� ��x�� � � � � �xn��

i

The heap in the right hand side has an additional frame� f �� if compared with the heap in the left
hand side� As this does not a�ect rewriting we can say that the two expressions above are equivalent�

��� C and T

We show that the two translation functions C and T are related to each other� In particular we show
that T is a left inverse of C� but the reverse is not true� However� it is an inverse modulo expression
rewriting� as explained in section ������

��
�� T � C � Identity

Here we prove that T �Cx
 � x� when x is a TIM state by structural induction over the structure of x�

T �ChI� f� �x�� � � � � xz
� F �f �� �y�� � � � � yn

i

t��
� T �h�I� ��y�� � � � � �yn
i �x� � � � �xz

r��
� h���I
� f� ����x�
� � � � � ���xz

� F �f �� ����y�
� � � � � ���yn


i

Assuming that ���x
 � x� this equals
��
� T �ChI� f� �x�� � � � � xz
� F �f �� �y�� � � � � yn

i


��



Now we prove that ���x
 � x by induction over the structure of x�

��� �Take n� I


t��
� ��Ln����I


r��
� �Take n� ���I



by induction ���I
 � I� so
��
� �Take n� I


��� �Push arg n� I


t��
� ���I� �n � �


r�	
� �%�n� �
� ���I


r�

� �Push arg n� ���I



by induction ���I
 � I� so
��
� �Push arg n� I


��� �Push combinator c� I


t��
� ���I� c�r

r�	
� �%c�r� ���I


r�

� �Push combinator c� ���I



by induction ���I
 � I� so
��
� �Push combinator c� I


��� �Push label l� I


t�	
� ���I� l�r

r�	
� �%l�r � ���I


r�

� �Push label l� ���I



by induction ���I
 � I� so
��
� �Push label l� I


��� �Enter arg n


t��
� ��n � �

r��
� �Enter arg n


��� �Enter combinator c


t�

� �c�r
r��
� �Enter combinator c


��� �hcn� fi


t��
� �h�cn� ��y�� � � � � �ym
i�where f �� �y�� � � � � ym

r��
� ����cn
� f
�where f �� ����y�
� � � � � ���ym



by induction ���cn
 � cn� so
��
� hcn� fi

��



��
�� C � T � Identity

We will show that C�T x
 � x� where x is a Categorical Multi�Combinator expression does not hold�
but if C�T x
 � x� then x rewrites to x� in a �nite sequence of steps�
Firstly let us try to prove that C�T x
 � x�

C�T �he� �y�� � � � � ym
iw� � � �wk


r��
� Ch�e� f� ��w�� � � � � �wk
� F �f �� ��y�� � � � � �ym

i
t��
� �h� ��e
� �� ��y�
� � � � � � ��ym

i � ��w�
 � � � � ��wm


If � ��x
 � x� then
��
� �he� �y�� � � � � ym
i w� � � �wk

Now we will try to prove that � ��x
 � x� where x is a Categorical Multi�Combinator expression by
induction over the structure of x�

� ��Ln���I


r��
� � �Take n� �I

t��
� Ln���� ��I



by induction � ��I
 � I

��
� Ln���I


� ��n

r��
� � �Enter arg �n �


t��
� �n  �
� �

� n

� ���e�e� � � � em


r�	
� � �%em� � � � � %e�� �e�


if em is a variable n
r�

� � �Push arg �n  �
� � � � � %e�� �e�

t��
� � �� � � � %e�� �e�
n

t����
� e�e� � � � em

if em is the code linked to a label l�
r���
� � �Push label l� � � � � %e�� �e�

t�	
� � �� � � � %e�� �e�
l

�

r

t����
� e�e� � � � em

if em is the code linked to a combinator c�
r�

� � �Push combinator c� � � � � %e�� �e�

t��
� � �� � � � %e�� �e�
c

�

r

t����
� e�e� � � � em

� ���hx� �y�� � � � � ym
i

r��
� � �h�x� fi

t��
� h� ��f 
� �� ��y�
� � � � � � ��ym

i
��
� hx� �y�� � � � � ym
i

��



� ���hn� �y�� � � � � ym
i

r��
� � ��yn

��
� yn

In the last case we saw that � ��x
 �� x� However� we can see that if � ��x
 � x� then x rewrites to x�

in a �nite sequence of rewriting steps� so we have ��x � x� and CT x � x� as required�

� Conclusions

In this paper we have shown the equivalence between the operational semantics of the TIM ma�
chine and rewriting of Categorical Multi�Combinator expressions� every TIM state is equivalent to a
Categorical Multi�Combinator expression and vice versa� equivalent expressions are transformed into
equivalent expressions by rewriting�
The point of similarity of the two systems which distinguishes them from others is their coarse

granularity of computation # a number of ��reductions can be performed in a single step in both
systems� Both perform formation� distribution� look�up and deletion of multi�element environments
as single computation steps�
The result shows that we can see Categorical Multi�Combinators as describing machine computa�

tions at a high level of abstraction� and also indicates that e�cient implementations of this system
are feasible� The authors are currently investigating a novel abstract machine� �CMC �"
� based on
Categorical Multi�Combinators and CM�CM ���� ��
�
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