
Day, Warren and Hill, Steve (1993) Farming: Towards a Rigorous Definition
and Efficient Transputer Implementation. Technical report. University of
Kent, Computing Laboratory, University of Kent, Canterbury, UK

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21136/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21136/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Farming� towards a rigorous de�nition and

e�cient transputer implementation

Warren Day� Steve Hill

University of Kent

Abstract

The technique of the processor farm has become very widely used for paral�

lelising applications� often being mentioned without reference to any source�

The goal of this work has been to put together a complete and rigorous un�

derstanding of what the technique can be used for and what is needed in order to

arrive at an e�ciently farmed application� This paper consists of these two parts�

We have shown� via the UNITY theory of programming� that the basic struc�

ture of the processor farm may be used to parallelise a much wider domain of

applications than has generally been considered�

Second� we show by example� how to build e�cient implementations for the

�rst generation of INMOS Transputers� This work is new in that it is the �rst

that has been able to test farming harnesses by taking an abstract view of the

application�

This paper has been written in a semi��instruction manual� style� Also it

should serve as an introduction to the subject�

� Introduction

The processor farm was proposed by May and Shepherd in �MS��� �also in �INM�����
Since this original piece of work there have been a large number of papers that have
dealt with the technique in one context or another� These range from documenting an
implementation that used farming at one end to performing a study of farming at the
other� With there being many more of the former than of the latter� However	 there
are a few papers where the work done in optimising a farming harness have resulted in
some interesting discoveries� Thus some of this work here is not new�

Formal methods because of their thoroughness are very good at clarifying and mak

ing precise our thinking� Here we have used UNITY �CM��� to explore the types of
programs that can be parallelised using farming�

Our work with the UNITY theory of programming will be merely to look at the
execution model and then to view our programs in this perspective� As the execution
model does not use any mathematical logic	 the reader not familiar with any formal
methods may also use the UNITY perspective to view programs�

On a similar note	 we have learned from the area of formal program construction
that it is advantageous to view programs in terms of the properties they possess� When
it is useful	 we will use properties in our discussions�

We start by looking at what farming is	 then we look at what it can be used for	
and lastly how to implement it well�

�

� Farming

The basic concept of farming consists of having a central controller that hands out jobs
of work to be processed by the members of a pool of workers� It has become common
practise to call the controller process a farmer � Jobs can take two types	 the �rst is
that of a job number and the second is that of a packet of data� We will refer to the
overall computation to be performed as the task �

Sometimes it is desirable for the controller to exist as two processes	 one for issuing
the jobs of work and the other for receiving the results� If the destination process for
the results is di
erent from the source this second process is called the harvester � The
diagram below shows this logical shape of a processor farm�

harvesterfarmer

worker

worker

worker

worker

worker

When implementing a processor farm	 as the �rst series of transputers possesses
a smaller degree of connectivity than the logical model� A communications system
will be needed which achieves the same logical connectivity on the limited fanout of
the hardware� This communications system is named the harness� This consists of
some extra processes running on the various processors passing messages between some
combination of the processes in the logical model and the other processes in the harness�
As the second series of transputer possesses virtual channel routing and a hardware
communications system this logical model can be implemented directly�

� The uses of Processor Farming

UNITY is a theory that has been put forward to provide a foundation for programming�
A program design can be developed and examined before it is implemented onto an
architecture� The theory consists of an execution model and an associated program
correctness proof system� Here we are only interested in the former�

One of the programming constructs in the UNITY programming notation is quan

ti�cation� As with a for loop	 quanti�cation is used for generating a set of statements
from a template� A block that also has some of the variables which are used as index
variables�

The UNITY execution model for �running� the program is a very simple continual
process	 a statement is selected at random and executed� This process continues	 one
statement at a time	 inde�nitely� Thus	 there is no notion of control �ow� The statement
selection process has a notion of fairness in that �all statements are executed in�nitely
often��

�

A UNITY program may be �mapped� from being a UNITY program	 to an equiva

lent program that implements the same speci�cation� This program can be executed on
a real architecture for execution in the real sense of the word� The abstract execution
model of UNITY being replaced by a more concrete one such as the sequential method
of conventional computers�

In light of the UNITY approach to program execution	 a parallelisation technique	
such as farming and pipelining	 that distributes a computation over a number of com

municating processors really amounts to an execution strategy�

Quanti�cation was discussed above as it is the only method in UNITY by which sets
of similar calculations can be generated� Thus any application that has been farmed
would be expressed using quanti�cation�

However	 can all quanti�cations be farmed� Traditionally	 the sets of similar calcu

lations must be computationally independent of one another but with a bit of insight
we can see that this restriction can be weakened�

For example	 as the jobs return from being processed	 the results could be farmed
out again as an iterative computation� With the results being jobs with either the same
or di
erent types to the original job� When the jobs are of the same type iterations
of the same task can be performed with any necessary synchronised operations being
performed in between� Alternatively if the types are di
erent then a second type of
processing could be performed� This need not be performed by a di
erent processor
farm� By all of the work being performed by the same farm the entire work load becomes
completely balanced� So there is no load balancing of the application to be performed
in its development	 the moving of a number of processors from one processing farm to
another	 as all load balancing is performed at run time� Of course all processes need to
have the code to be able to execute all types of jobs	 but this may not be a problem�
Many farmed applications are not necessarily large at the job level it is just that there
are so many jobs to be processed� This iterative approach may be useful if some form
of synchronisation is required between computations� Often this synchronisation is be
of a nearest
neighbour variety� An example of an iterative computation that could
be farmed in this way is bubble sort� Pairs of elements are sent out as jobs to be
processed� The processing in this case being comparison and swapping� Upon return
the elements are paired up with their other adjacent neighbour and these are sent out
to be potentially swapped� If this is repeated the appropriate number of times the
data will be sorted� For a su�ciently long and also variable times of comparison this
approach would actually be an ideal and e�cient one	 provided that the number of
processors used was less than half the size of the data being sorted� In essence this
example is farming out bubble sort�s inner loop� Similarly one computation that can
involve two stages is generating a three dimensional landscape plot of the Mandelbrot
set �PR���� Sections of the plane can be computed followed by pairs of scan lines could
be sent out for the �nal rendering before display�

The jobs of the computations with non global relations can be sent out using one
of two approaches� These are equivalent to depth
�rst and breath
�rst searches� In the
�rst case as soon as the �rst handful of results are returned from the workers and all of
the other results on which they rely are present then these jobs can be send out again
for the second stage of processing immediately	 taking preference over other primary
jobs which have not been farmed out yet� The alternative is to complete one set of
calculations and gather all of the results before starting the next set�

The advantages of the depth
�rst method are that as the results return there is no
need for them to be stored anywhere	 and thus there need be no or in some cases little

�

provision made for them to be bu
ered or stored� However	 this approach may bring
up the problem that especially for very large farms	 there can be the question that the
speed of the farmer or the harvester process can be the bottleneck of the entire farm�
If for the application in hand such synchronised processing is creating a bottleneck the
dependent processing could be pipelined over a few processors�

As has been already shown with the Mandelbrot set example	 workers can be used
to execute more than one type of job� This can be taken further� As opposed to just
farming out one computation on a farm which takes several separate stages in one form
or another� It is also possible to have two completely unrelated sets of jobs processed
together on the same farm� As the two	 or however many	 tasks are completely unrelated
the jobs can be computed side by side on the same processor farm at the same time
with all of the advantages of dynamic load balancing to be gained� It might be useful
to have an application consisting of several parallel components that at any time may
produce a request to the farmer	 acting as a server	 for some work to be performed�
There is already one good example of a processor farm being used as one part of an
application�s implementation �BTU���� Also there is a good example in �CU��� of a
farm that computes di
erent types of jobs and also uses the di
erences in characteristics
to obtain a higher degree of speed
up�

As we can choose to have an extra process by having the harvester separate from
the farmer	 we can also have a number of harvesters	 though this entails a more com

plicated collecting structure than is traditional� One use of this method could be for
the processor farm to perform the generating of some computational result which could
be displayed di
erently on di
erent graphics monitors� Similarly	 although it is highly
advantageous to having a single central controller	 there could be others� either as a
hierarchy of processor farms �Inm���	 or with workers generating fragments of work to
be processed in a recursive manner�

Perhaps the largest insight this piece of work has provided us	 is that the jobs could
have some computational dependence between them� To clarify	 the pixels of the screen
for the Mandelbrot set can be computed individually� However	 the iteration of the
calculation on which the set is computed must be performed in order	 the result of one
calculation being the parameter for the next� The style of computation we are talking of
here is where there is some form of middle group� If a task exists that has a non
cyclic
directed graph of computational dependence	 i�e� there must be some piece of work
we can do �rst and know what we can do next and so on	 then it is possible to farm
out the work to obtain a speed
up� As always	 the amount of parallelism possible is
dictated by the application	 and thus the number of processors usable� We may have
to be careful of any bu
ering and the amount of it in our farming harness here and the
way it behaves and e
ects the performance of the computation�

One obvious expansion from the domain of networking and remote procedure calls
is that of setting the number of processors to be used to vary throughout the execution�
However	 due to the large overheads of	 processor and program initialisation	 and that
of program storage and retrieval	 it is unclear at present how the number of processors
could be varied e
ectively and practically�

The processors we have considered here are of the message passing variety� This
technique may be amenable to other multiprocessor architectures�

�

� E�cient Processor Farm Implementation

Now we develop and examine the processes for a small variety of farming harnesses for
the �rst series of INMOS transputers� We will arrive at some e�cient processes that
make use of the processor�s built
in parallelism� The harnesses developed here are for
classical processor farms	 i�e� singlely executed completely independent jobs� Most of
this knowledge on farming presented here is borne out of both theory and experiments�
However	 as we are attempting to bring together all of the necessary ideas in this one
place	 some of the ideas presented below are the work of others�

Our measure of e�ciency here is a simple one	 that of the quickest execution� Much
of the theory here is to do with the basic characteristics of the transputer and how to
use the processor�s parallelism e�ciently	 and thus the approach here can be used to
e�ciently implement any type of system	 including the more elaborate farming archi

tectures described above�

From UNITY we know that the harness is separate from the application� However	
the implementation of a farming harness is in�uenced by the data requirements of the
application and shape of the network topology� In our tests we have abstracted away
from the application by parameterising it by the aspects the farming harness sees� the
size of the job packet	 the time to execute a single job and the size of the result packet�

The author�s work was performed in occam on our institution�s MEiKO Computing
Surface	 but similarly e�cient systems should be produced with any competent trans

puter system and compiler� Our tests have been of two varieties� The �rst has involved
evaluating pieces of code running on a single processor� The second has been on full
processor farms	 of varying sizes	 abstracted away from any application as described
above� For all runs of our processor farms a task consisted of ��� jobs for each worker�
This approach of issuing a number of jobs that is proportional to the size of all farms
is so that the timings are to a small extent in�uenced by how well the farm starts and
more importantly �nishes� In order to make the processor�s behaviour more realistic	
the worker process polls the clock continually for the length of a job� The only thing
arti�cial is that all jobs for any particular �application� took the same amount of time	
thus it is not known how �nely these harnesses load balance� All our times are in low
priority clock ticks�

harvesterfarmer

worker

worker

worker

worker

worker

As we cannot directly implement the structure shown in our logical model above
due to being restricted by limitations of the hardware	 we need a harness� This comes
in two parts� the topology	 the shape of the interconnection at the placement level	 and
the communications processes at the software level�

�

��� Topology

First we will take a look at one aspect of implementing a processor farm that has not
been given a great deal of serious consideration	 the farm�s topology�

Here is a list of properties we would like our farm to possess�

�� To keep communications to a minimum�

In the ideal topology there is one channel between any two processes	 therefore we
would like to make any implementable topologies have an average interconnection
as close to one as possible�

�� To keep all C� P� U� overheads to a minimum�

�� To use all of the communications bandwidth available�

�� Any bu
ering should only be present to aid performance	 not to hinder it in any
way�

�� The harness should consist only of bu
ering that aids performance	 and none that
hinders performance in any way�

�� To have all processors in the farm working continually	 so that no processors are
starved of work�

�� A software harness that is as simple and easy to write as possible�

Solving most of these is quite easy� Keeping communications to a minimum can
be achieved by having a high fan out of interconnection� Also having a good topology
reduces the number of communications leaving the processors free for computation�
Using the full bandwidth available is achievable by careful utilisation of the underlying
hardware� As is shown latter very rarely does a sensible bu
ering mechanism get in the
way� However any variables in the harness which hold data that is in transit act as a
level of bu
ering� A parallel system only runs at less than full speed if important parts
of the mechanism are prevented from proceeding by being forced to wait for resources�

With some topologies the last property is the most di�cult to achieve� Any topology
is going to involve some processes being closer to the farmer or harvester than others�
In order to remain true to the last property	 topologies should have the same harness
code running on each transputer wherever the position in the topology� Thus what is
ideally needed is a communications structure where one set of processes can be used
through
out the network� For this to be achieved the same method of distribution
should be performed at all places in the network	 regardless of the position relative to
the farmer� This implies that from the point
of
view of the �ow of the communications	
the topology should look exactly the same from all places within it� The structure
should be self�similar or fractal �Man���� This is what we would ideally like to achieve	
we will settle with being able to come close�

workerfarmer workerworker

workerfarmer workerworker harvester

workerfarmer workerworker

�

Pipes	 rings and trees possess this property� However	 this property does not apply
to all even structures� For example grids	 tori	 hypercubes and others have a very
uneven structure when viewed from the farmer�s single viewpoint� Although it should
be possible to develop a method of distribution that does supply jobs to all parts of the
farm evenly when needed	 as far as we are aware	 this can not be done with one or two
simple processes ��PC��� �CHvdV�����

From the point of view of keeping communications down to a minimum	 given four
links a ternary tree is the best topology obtainable� The largest number of hops from
the farmer to any worker is the base � log of the number of workers� However	 a
ternary tree does have a limitation and a disadvantage� The limitation of ternary trees
is that the harvester and the farmer should reside on the same C� P� U� Although it
is feasible to join two ternary trees together at the leaves forming a ternary diamond	
with farmer and harvester at opposite ends� The disadvantage is that in con�guration
and placement languages that are evaluated by constant folding at compile time only	
such as in occam	 a fully scalable and balanced tree is very di�cult if not impossible to
describe� However	 unbalanced trees are possible and it remains to be discovered how
ine�cient these are� Pipes and rings are very easy to scale linearly� However a large
system will su
er from more communications problems than an equivalently sized tree�

There are of course some simple variations on the above� If a great deal of data is
needed to pass in and out of the farm during run time then two pipes	 rings or ternary
trees could be used leaving two links to be used to link the farm to the outside world�
A single binary tree could also achieve the same e
ect� Similarly	 three pipes or rings
could be hung o
 one farmer�

The thing to keep in mind for simple topologies is that the shape should be self

similar from the point of view of the controller process or processes as it is this property
which leads to an even �ow of communication�

��� Harnesses

In essence harnesses consists of two extra processes	 though for e�ciency reasons we
may use more� One is to distribute the jobs from the farmer to where it is needed� The
other is needed to perform the equivalent collecting of results from the workers and
passing them back up to the harvester� These run at high priority so that they may be
executed in preference to the worker in order to service the links instantly�

This work originated out of a farming harness developed by Welch ��SS��� and
�Stu����	 using the �lego
land� discipline �Wel���	 to use fully the parallelism available
on the transputer	 for use in an application which had large data bandwidth and pro

cessing requirements� This basic design and variations upon it were implemented and
tested by Sturrock� We have evaluated it further for the general case	 and improved
upon it while doing so� The basic strategy consists of passing out jobs from the farmer
into the distribution part of the harness and �lling the bu
ering capacity of the farm�
The farmer becomes temporarily deadlocked until the workers obtain more work from
the bu
ering in the harness� The collection mechanism returns �nished jobs of work as
quickly as possible to their destination�

We look at three methods of collecting results from the workers and two of distribut

ing jobs to them� As the former involves simpler communications we look at this area
�rst�

�

����� Merging results

worker

id

worker

id

worker

id

id par.mergemergemerge

A B C

The �rst method A	 is a basic implementation of what needs to be performed	 passing
results back down stream to the harvester�

WHILE TRUE

PRI ALT

local�result � result

down�stream � result

up�stream � result

down�stream � result

In the second method B	 the reasoning behind having two processes is that now
there is a process connected to each of the links	 as these processes are running in
parallel on the processor both links can be engaged at the same time	 resulting in a
quicker throughput of result tra�c�

The third method C	 is a conglomeration of the other two� It is a single process
so there is less context switching and no on
chip copying of the data� This process is
internally parallel and is an unwinding execution sequence of B�

SEQ

��� load into result� �� same as below

PRI ALT

local�result � result�

SKIP

up�stream � result�

SKIP

���

WHILE TRUE

SEQ

PAR

down�stream � result�

��� load into result	 �� similar to above

PAR

down�stream � result	

��� load into result� �� same as above

Note that all of the PRI ALTs are written with the local worker process having
priority� This ensures that at times of con�ict the local worker is relieved of its result
packet as soon as possible�

The worker has a bu
er that relieves the process as soon as a job completes	 by
always being ready to complete the communications of the fresh result� The bu
er
then waits until the merge process is ready to interleave the result into the stream of

�

results� In the worst case a job can �nish just as the merger process has started to read
from the upstream link� Any other processes waiting to complete a branch of the ALT

have to wait for both that link to �nish its transfer and for the down stream link to
perform the same transfer� This bu
er allows the worker to immediately proceed with
the next job without having to wait for the slower link engines to complete transfers�

The results below show how long it took to transfer ��� counted array of bytes
�INT

��BYTE� through the three mergers� Note for transfers of less than � bytes

bytes A
 merge B
 merge � bu
er C
 par�merge
� �� �� ��
� �� �� ��
� �� �� ��
� �� �� ��

�� �� �� ��
�� ��� �� ��
�� ��� ��� ���

��� ��� ��� ���
��� ��� ��� ���
��� �	��� ��� ���
���� �	��� �	��� �	���
���� �	��� �	��� �	���
���� ��	��� �	��� �	���
���� ��	��� ��	��� ��	���

����� ��	��� ��	��� ��	���
����� ��	��� ��	��� ��	���

�including the � byte INT� B performs slower than A	 although clearly for larger packets
there are considerable performance bene�ts� However	 C clearly obtains the best all
round performance	 as it is when on
chip communications are removed that the largest
obtainable performance is achieved from the hardware� Any of the three processes may
be selected for a farming harness	 depending on the amount of throughput required and
how much code is desired�

����� Distributing jobs

worker

splitter

worker

splitter id

A B

Here we are not just collecting packets of data and sending them to one point	 but
rather the complete opposite	 sending packets of data	 in this case jobs of work	 out
from one place to where they are needed� This makes this part of the harness the more
important� The selecting of where a job is needed is performed by requesting	 with

�

all harnesses performing this to varying degrees� In the past	 some strategies have just
performed requests at a local level	 others involve requests travelling all the way between
a worker and the farmer� From UNITY we have seen that a set of computations can
be performed with a for loop sequentially may also be executed on a processor farm	
assuming no interdependencies between each computation in the set� In the traditional
model of execution the for loop generates the index values and the body of the loop
consumes them directly and performs the computations� Thus in the equivalent of
farming there is no need for requesting as part of the basic execution strategy	 only
production and consumption� Thus requesting should not be in a farming harness as
part of the main strategy of job distribution� Rather they should only be in at the low
level in order to prompt any ALT statements used�

The two methods of job distribution here are written with the same philosophies
as the processes involved with collection and as a result use similar processor resources
and produce similar performance�

The �rst	 A is that of a single process that performs both parts of the job requesting
protocol as follows	

WHILE TRUE

SEQ

req � TRUE

in � job

PRI ALT

req�distant � any

give�distant � job

req�local � any

give�local � job

This harness exhibits minimum bu
ering and is ideal for when there is only a slow
demand for jobs�

The second	 B uses two processes	 the code of the �rst is identical to that of the
above except that the instruction which makes the initial request for work isn�t needed�
Request being sent over links are avoided here by use of a bu
er that performs the
necessary request and then passes the job over the link� The advantage here again
is that both links may be engaged at the same time allowing jobs to be distributed
through the network at a higher rate� One interesting feature of B is that the job held
in the bu
er is only destined for other workers� The local worker can not access or
claim it� This property of approach B may be undesirable for use with trees as the
large number of end workers will be forced to �nish o
 more of the �nal jobs of the
application�

If it is known that the results bandwidth is equal to that of the jobs bandwidth	 then
the results should always be retrieved slightly faster than the jobs can be delivered�

In the distribution process	 the local worker is at the lower priority in the ALT	 in
contrast to the merging of results� This shouldn�t matter too much as most of the time
the farm should be working �at out� However	 if both guards are ready at the same
time	 which is the case when a farm starts up	 the ALT is executed then either the jobs
can be performed locally �less communication� or by a distant worker� As this code
is run many times on many processors this latter option may lead to more parallelism
and is therefore desirable� This point is more important in branched topologies� In
our timings	 where jobs could be processed faster than the harness could supply them
�something that may happen in localised places in some farm topologies� having the
ALT this way round did indeed lead to more processors working at any one time�

��

��� Other aspects

One common way to cut down communications is to put the jobs into groups� The only
advantage to grouping up jobs that contain data is that of reducing the communications
set up time� Further	 jobs that consists solely of sequence numbers can be grouped to
reduce the amount of communications bandwidth needed	 by simply rede�ning the
sequencing� If possible only have one part to the sequence number reducing the work
load the farmer has to perform� For example	 areas of Mandelbrot screens are best
farmed by generating a single sequence of numbers with a simple loop� These numbers
are then decoded by the workers in parallel into the y coordinate and the appropriate
segment of the scan line� In general it is a good idea to perform as much work as is
possible in the workers so that the farmer and harvester will have a very low cycle time	
be able to process more and thus allow for a larger maximum possible size of farm�

Grouping jobs results in a reduced total set up time for communications� Though
this grouping should be done to keep the total communications in balance overall� If
jobs take a noticeably long period of time to process	 the completion of whole task
will be an unnecessarily drawn out process� In such cases the last job to �nish will
have been stuck behind C� P� U� intensive jobs in a queue of bu
ers that probably may
only be executed by a single worker� The two parallel job distribution processes both
contain a bu
ering capacity of two jobs per worker� Having a shorter job time greatly
reduces the �nishing latency� This can be especially noticeable when users can see the
results coming in� For graphical demonstrations a suitable upper limit for the longest
job could be of the order of a second�

The topologies that have some form of an end need to be terminated with a little
care� For example	 be careful not to engage ALT statements that consist of dummy
channels as jobs will be lost� The preferred mechanism is to have a separate process
that is a cut down version of the splitter process that performs exactly what is required
at the end position� Having a process is recommended so a bu
er has more work ready
for immediate processing�

In general ALTs are expensive at run time so they should not be used to generalise
an input� To illustrate	 if writing the farming harness for a ternary diamond that fans
out from the farmer and then in to the harvester� two processes should be written	 one
for each section of the diamond� A general process with two ALTs would increase the
latency of the harness a great deal�

On many farms	 the farmer process will not consume all of the available computing
resources of the processor on which it executes� In such cases it is advantageous to have
a worker process running on the same processor at low priority using the remaining
processing capacity� Naturally the farmer should be run at high priority�

worker

splitter idfarmer

id

��

Thus it can be a good idea to keep the jobs of a reasonably similar size of small grain	
as any large variation of execution time present in the job sequence can hinder a farm
from �nishing the task smoothly� When a farm	 consisting of splitter B	 supplied jobs
that	 in the middle of the task were a few orders of magnitude more computationally
intensive than the rest	 some workers in the farm ran out of jobs while the rest of the
farm were still computing most of the central region of the task� Though to a certain
extent a part of this problem is also due the way B passes around jobs as mentioned
before� This hindrance would be reduced with splitter A in this situation due to the
much smaller amount of bu
ering in the harness	 but the speed of hand out of A is also
slower�

For linear farms tests show it is better to send the results in the same direction
as the jobs� This puts the harvester at the other end of a pipeline from the farmer	
which allows for when it is desirable for the harvester to be a separate processor� If it
is desirable to have both farmer and harvester on the same processor a ring topology
can be used�

In a ring all of the data is following in one direction so it might be advantageous to
multiplex jobs and results together across both links and then demultiplex the stream
of data at the other end� This approach balances out the high proportion of jobs at the
start of the ring and the high proportion of results as the end�

To give an indication of the fall o
 in performance due to communications overheads
the following results are presented� These were obtained on a ring topology using
splitter B and merge C	 for computationally bound work of small jobs ���� for each
worker� generating in just over a second of work to create a �K result� No worker was
present on the farmer�s processor� Even with a large ring the performance obtained is

processors � e
ective speed
up
� ������� �����
� ������ �����
� ������ �����
� ������ �����
�� ������ ������
�� ������ ������

encouraging� For applications where the communications demand starts to exceed the
computational demand this starts to drop o
 and a non
linear topology needs to be
used� For processor farms containing anything of the order of �� or above workers one
should start to consider a tree or perhaps diamond topologies in order to reduce the
amount of unnecessary communications tra�c�

So far we have only discussed implementation for a linear topology	 namely a pipe
or ring� Fortunately all of the processes above can be easily expanded to implement
spanning topologies such as trees� However	 this raises some questions as regards how
to extend the harnesses� Fortunately for the harnesses developed here the body of
the ALT statements can just be expanded for the extra channels� However	 replication
makes ALTs more expensive at run time� Losing up to around �� of the communications
bandwidth� Thus it is better to write out the three channels by hand rather than to
use replication�

The number of jobs should always outweigh the number of processors or the per

formance of the farm greatly deteriorates� Should such performance be desired other
parallelisation techniques should suggest themselves to be more appropriate�

��

� Future Work

We need to test to see if for some application parameters that the time lost while
workers are blocked by link engines are less than the overheads of having a bu
er�

Trees and diamonds need to be evaluated in the same manner� Trees may exhibit
adequate performance without being fully balanced�

Ideally it should be possible to recommend a suitable topology and harness for any
given job size	 job run time	 size of result and desired performance requirement�

Various works have been published that use a discipline which looks carefully at the
times of any particular transputer operation	 say C� P� U�	 and then considers what else
may be done in that length of time by the other parts of the chip	 say link engines�
This discipline needs to be applied here to de�ne precise points at which one technique
has advantages over another�

� Conclusions

This work has reached six conclusions�

�� The idea of a single central controller that passes out work to a number of pro

cessors is a very �exible method of execution� Also as the technique consists of
very little synchronisation	 it is likely to be very e�cient�

�� A parallelisation technique is really a strategy for the execution of the statements
of a program�

�� Thus as farming is such an execution strategy	 it should perform equally well for
all applications	 subject to hardware constraints�

�� In a parallel implementation	 which topology is used is just as important to the
success of the implementation as such issues as algorithm selection and the quality
�e�ciency etc�� of the communications harness code�

�� We can implement a processor farm on a network of transputers to obtain close
to the maximum possible computational performance�

�� We believe that farming is as fully understandable as the �fetch
and
execute�
cycle of a conventional C� P� U�	 and that it is worth studying in its own right	
thoroughly	 rigorously and completely�

In this paper we have attempted a �rst signi�cant step in this direction�

� Acknowledgements

This work was funded by a Science Engineering Research Council �SERC� Research
Studentship Award� Many thanks to my supervisor Steve Hill and David Morse for
enduring the earlier work� Thanks also go to the anonymous referees for their comments
and Shane Sturrock for talking so much about his work� Those who know the works of
Peter Welch and of Herman Roebbers will �nd their in�uences in the latter half of this
paper�

��

References

�BTU��� R� D� Beton	 S� P� Turner	 and C� Upstill� A State
of
the
Art Radar Pulse
Deinterleaver�A Commercial Application of Occam and the Transputer�
In Charlie Askew	 editor	 Occam and the Transputer�Research and Ap�

plications	 pages ��� ���� IOS Press	 �����

�CHvdV��� N� Carmichael	 D� Hewson	 and J� van der Vorst� A prototype simulator
output movie system based on parallel processing technology� In Char

lie Askew	 editor	 Occam and the Transputer�Research and Applications	
pages ��� ���� IOS Press	 �����

�CM��� K� Mani� Chandy and Jayadev Misra� Parallel Program Design�A Foun�

dation� Addison Wesley	 �����

�CU��� I� Cramb and C� Upstill� Using Transputers to Simulate Optoelectronic
Computers� In Stephen J� Turner	 editor	 Occam and the Transputer�

Research and Applications	 pages �� ��� IOS Press	 �����

�INM��� INMOS� Communicating Process Architecture	 pages �� ��� Prentice Hall	
�����

�Inm��� Inmos� Occam � Reference Manual� Prentice Hall	 �����

�Man��� Benoit Mandelbrot� The Fractal Geometry of Nature� W� H� Freeman and
Co�	 �����

�MS��� David May and Roger Shepherd� Communicating Process Computers�
Technical Report ��	 INMOS	 �����

�PC��� Iain Phillips and Peter Capon� Strategies for Workload Distribution� In
Janet Edwards	 editor	 Occam and the Transputer�Current Developments	
pages �� ��� IOS Press	 �����

�PR��� Heinz
Otto Peitgen and Peter Richter� The Beauty of Fractals� Springer
Verlag	 �����

�SS��� Shane S� Sturrock and Ian Salmon� Application of Occam to Biolog

ical Sequence Comparisions� In Janet Edwards	 editor	 Occam and the

Transputer�Current Developments	 pages ��� ���� IOS Press	 �����

�Stu��� Shane S� Sturrock� Biological Sequence Comparisons on a Transputer Net

work� Master�s thesis	 University of Kent at Canterbury	 October �����

�Wel��� Peter H� Welch� The Occam Approach to Transputer Engineering� In Third
Conference on Hypercube Concurrent Computers and Applications� ACM	
�����

��

