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Abstract

This report gives a general review of the development of Optical Character Recognition (OCR),

about its key problems and various of the techniques used. An implementation based on skeleton

matching is introduced in detail, which is used mainly for printed character recognition and is

insensitive to font style and size. This report emphasises on the implementation principles for

text sectioning, preclassifier design, thinning algorithm, template database and matching strategy.

An experiment is described to observe the system performance. Compared with conventional

methods used, this implementation has included some new techniques, such as character dimension

dependent broad classification method, AVP value used in fine classification and spelling check

based post-processing method, in order to obtain a good performance.



Chapter 1

Introduction

Optical Character Recognition (OCR) is the process by which the printed characters in a document

are converted automatically into computer internal codes that can be processed by computers as a

textual data file.

1.1 The use of OCR systems

At the present time, keyboarding remains the the most common way of inputting data into computers.

This is probably the most time consuming and labour intensive operation [Moore 1990]. OCR is

the machine replication of human reading and has been the subject of intensive research for more

than three decades [Stevens 1970, Rabinnow 1969, Andersson 1969]. The origin of the character

recognition can be found as early as 1870 when Carey invented the retina scanner, that is an

image transmission system using a mosaic of photocells. It first appeared as an aid to the visually

handicapped and the first successful attempt was made by the Russian scientist Tyurin in 1900. The

modern version of OCR appeared in 1940s with the development of the digital computers. It is

the first time OCR was realised as a data processing approach, with a particular application to the

business world [Mantas 1986]. The principle motivation for the development of OCR systems is

the increased demand for capturing printed documents or text as well as pictures. The application

areas include:

� Use by blind and deaf people
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� Use of the photosensor as a reading aid and transfer of the recognition result into sound output

or tactile symbols through stimulators.

� Use in postal department

� Reading the address and post code to classify the different district mail.

� Use in machine vision

� Use in publishing industry and in library systems

� Combined with computer word processing and desk-top publishing techniques which have

been highly developed in recent years, OCR provides a revolutionary approach for computer

storing, editing, accessing, indexing and republishing documents.

� Use in direct processing of documents

� As a multi-purpose document reader for large scale data processing. A attempt made by an

UKC student to reproduce historical documents for teaching and researching history by the

the approach of OCR together with hypertext can be found in [McGuinness 1990].

� Use in bank and security service

� For reading bank cheques, credit card imprints, and personal signatures on identification

cards, etc.

� Use in business applications

� For reading product identification codes, goods declare forms and digital bar codes, etc.

1.2 The development of OCR systems

As long as the technical developments include the tremendous increase in computing power such

as the capacity and the speed, and falling costs, as well as the progress in scanning technology

stimulated by working out standards of Group Three digital facsimile, it is likely to result in a large

market in the near future for improved OCR systems [Moore 1990].

In the past decades, a large number of research works have been reported on this topic and many

commercial establishments have manufactured systems of varying capabilities. Portable, desk-top,

2



medium size and large size systems costing as high as half a million dollars are available, and are

in use for various applications [Govindan 1990].

Almost all the OCR systems have a number of difficult problems where recent advances in

these aspects have been made. Recognition rate is obviously of prime importance. This is an area

where systems have often fallen down. Recognition rate levels of 95% may sound high, but it still

means that there can be five mistakes in every hundred characters which is unacceptable for full

text retrieval applications. (One page of normal printed document may contain 5000 characters and

therefore 250 wrong characters may occur) The latest systems are claiming recognition rate levels

of over 99%. However the recognition rate is highly affected by many factors, such as the fonts,

type size, the quality of printing, the thickness of paper, the background of text, the resolution of

scanner and even the slight skewing of the text image to be scanned. The recognition rate may vary

from 100% to 50% or even lower. So, perhaps it is meaningless to measure the performance of

OCR systems only by the recognition rate.

The capability of processing characters in various fonts, typefaces, sizes and sets is also very

important. The very first systems could only process one or two sets of characters in fixed type

and size. This was the intention for issuing the OCR-A and OCR-B as two international standards

in 1968. However, they never became widely used as most application required using characters

which were not defined in these standards. Today the methodologies in character recognition

which use sophisticated techniques have enabled the recognition of a wide variety of both complex

typewritten and handwritten characters, symbols and word/script including Chinese and Japanese

characters. Because that the Chinese characters are ideographs composed by strokes which in

average are five times as many as in western characters, and the amount of daily used characters

is over 6000 which is roughly equivalent to entire western words, the computer recognition of

Chinese characters is considered to be a very hard problem and regarded as one of the ultimate goals

of character recognition research. Nowadays, many OCR systems developed in China and Japan

have reached fairly good performance. The information about this research can be found in [Zhang

1987, Yin+ 1986, CIRC 1988, Shu 1982, Mori+ 1980]. Besides these, so far we have seen systems

that can recognise English(Latin), Cyrillic(Russian), Arabic, Indian, Greek characters and so on, in

omnifont1.

Since western character recognition has its special difficulties compared with Chinese character

recognition, for example, the variable width and height, the overlapping and upper-lower cases,

1Characters with various fonts and sizes.
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western character recognition is by no means easier. Other problems in handwritten character

recognition and script recognition as well as on-line recognition probably are more difficult, and

few systems are available in use today. For a review of this area please see [Davis+ 1986, Tappert+

1990, Nouboud+ 1990].

Speed of operation is also a factor. This is decided by the type of recognition logic employed

and usually is contrary to the recognition capability. The more characters can be recognised the

slower the speed is. As computer processing power has grown, so also has speed of processing

led by certain modern technologies such as concurrent processing and database technique, the time

taken in character recognition is now much less than in the past. Scanning time and the time used

in verification processing have to be taken account for as well. Modern systems can be expected to

take up to 60 seconds to scan and convert a page of text.

Finally, the question is price. Like most computer related technologies, this has been falling

steadily since the first working OCR systems were introduced. OCR can now be handled by a micro

computer, (an example can be referred to [CIRC 1988]) scanners are available for about the same

cost as a personal computer, and software to run the system can be purchased for hundreds rather

than thousands of pounds. Running costs including staff time, will have to be included on top.

Of course, larger scale systems offering a wider range of functions consequently cost higher price.

Some practical OCRs can be found in [Govindan 1990, Mantas 1986, Moore 1990] and their prices

vary from $1000 to half a million dollars.

Until recently however for most application efficient optical character recognition remained a

potential rather than a practical technology: recognition rate left much to be desired and the price

of OCR systems restricted its use to big organisations with continuing large scale text conversion

problems. Furthermore, the range of written material suited to OCR treatment was very limited

[Moore 1990].

1.3 Construction of OCR systems

In generally, a typical OCR system is composed by several parts as shown in Figure 1.1.

The system can be divided into four major parts, according to the dashed boxes in Figure 1.1.

They are:

1. Preprocessing part

The function of this part is using a page scanner to transfer the original text image into a
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Figure 1.1: Construction of an OCR system

bitmap file or binary matrix. Text analysis techniques are applied thereafter to section the

text image into lines and characters. The position of each character is recorded in order to

rebuild the ASCII text file.

2. Self-learning part

Most modern OCR systems have this function to enrich the knowledge when an unknown

character is met. Character recognition is based on the database previously built in, which

contains the important features related to the characters which are known already. It is

necessary that this database is able to self expand as more and more new characters are met in

order to increase the recognition ability. It is realised through adding new characters features

and their human-given meanings into the database.

3. Recognition part

This is the main part above all. It extracts input character features and compares these features

with those recorded in the database used by the recognition. If the features are matched or

closely matched, the input character is classified into a class within which all the characters
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have these common features. The classification usually falls into several stages. The last

stage is called final classification while the others are called broad classification. After the

final classification, an individual character (result) is sorted out.

4. Postprocessing part

The ASCII text consisting of both the recognised and rejected characters normally needs

editing and modification. The purpose of this stage is to correct the mistakes, as they usually

appear after the recognition stage, and supply their due meanings (ASCII characters) to the

rejected characters.

For the preprocessing stage, the most important task is on the text section. A great many

documents comprise not only text lines, but also pictures, maps, forms, titles or headers, etc., while

the recognition stage can only process individual characters. Therefore, the superfluous information

other than character text should be removed.

The methodologies applied in the recognition stage are not different to that applied in any

general image pattern recognition problem, with respect to image analysis and pattern recognition.

However, because of the particularity of the character recognition problem, the main methodologies

used in OCR have formed their own family and can be summarised as follows [Gaillat and Berthod

1979].

1.4 Global analysis method

The key to the recognition is feature abstraction whose intention is to eliminate the redundant

information which is irrelevant to the attributes of the character, while its steadable information

which distinguishes this character from others should be extracted out for comparison use. Much

research has concentrated effort on this topic and they can be classified into two major categories

labeled as global analysis and structure analysis respectively. Global analysis directly makes use of

the shape matrix to find the features of characters. Some of the most important methods are listed

below.

1. Point by point global comparison

This is the traditional method implemented by pattern matching (also called matrix or template

matching) in which each digitised character is compared to a set of characters stored in
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memory. When a character is matched (or closely matched), it is assigned the ASCII code

linked with the corresponding character template, see Figure 1.2.
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Figure 1.2: Template matching of digitised characters

The process is repeated for each character in turn. The comparison methods can be as simple

as one-to-one comparison, or as complex as decision tree analysis in which only selected

pixels are tested. This type of technique suffers from sensitivity to noise and is not adaptive

to differences in writing style. As it is matching against existing pattern, the systems of this

kind only suit those fonts whose templates have already been stored, usually only one font or

typeface. However, this is a basic and effective approach.

2. Transformations

Global transformation and series expansion technique help to reduce dimensionality of the

feature vector and provides features invariant to some global deformations like translation

and rotation, since the properties of characters are described in different feature space, for

instance, frequency field. The possible transformations include Fourier, Hadamard, Rapid,

Karhunen-Loeve, Walsh, moment calculations, and finally rotations according to the principal

axis of inertia. An example of moment feature extraction is given below:
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For a point in the matrix I�i� j�, the summary of distances from every point in the matrix is:

M�x� y� �
mX
i�1

nX
j�1

G�i� j�ixjy

where m� n is the matrix size,

G�i� j� �

�
1 if �i� j� is a plack pixel

0 if �i� j� is a white pixel

x� y is called the order of the moment.

A class of moment features can be selected as

fM�0� 0��M�0� 1��M�1� 0��M�1� 1�� � � � �M�u� v�g

�u� v� is a pair of arbitrary integer.

Such feature extraction techniques demand high computational requirements. The topological

feature is not used sufficiently.

3. Cellular features

This method divides a character into n� n components (Cellulars). Each cellular is checked

in turn in eight directions to see if it has a horizontal or vertical stroke passing through. If

it has, the cellular with its position is marked as a cellular feature. The input character can

be sorted out by comparing these features with those stored in the template database. See

Figure 1.3. It is useful in recognition of printed characters.

4. X- Y- projection

Projecting the character shape in X and Y directions, two projection values can be obtained,

each of which represents the stroke distributions on these two directions. These values are

good feature properties after Fourier transformation and can be used in broad classification

(refer to the recognition stage described above). This method is shown in Figure 1.4.

5. Mesh features

Firstly the character matrix is divided intom�n components. Then for each component, the

proportion between the areas of strokes and of the whole element is calculated. The m � n

proportions form a mesh feature space, see Figure 1.5. It is often used in printed character

recognition.
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K Mesh Features of ’K’

Figure 1.5: Mesh features

Besides these, there are many features obtained from other global analysis manners, such as

peripheral features, surrounding coding features, Loci features, etc. Useful reading matter can be

found in [Lin+ 1987, Sakai+ 1976, Glucksman 1971].

1.5 Structure analysis method

Geometrical and topological feature analysis methods are the most popular technique investigated by

researchers. The features may represent global and local properties of the characters. These include

strokes, bays in various directions, end points, intersections of line segments, loops, stroke relations,

angular properties and sharp protrusions. These features have high tolerance to distortions and style

variations, and also tolerate a certain degree of translation and rotation. They help to process

characters at high speeds. However, the extraction processes are normally very complex, and it

is difficult to generate masks for these type of features. Furthermore, these methods work well

in recognition of characters which are mainly composed by vertical and horizontal strokes, like

Chinese. While for western characters, they are probably less suitable. Some important methods

are illustrated below.

1. Outline features

The outline shape of a character usually contains very distinct and stable information to

distinguish it from others. The contour can be achieved by contour tracing as proposed

in [Bakis+ 1968]. The outline features like end points, intersections of line segments, bays,

loops, length, directions, bumps and holes can easily be derived from the contour information.
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2. Skeleton features of strokes

The skeleton of a character embodys the basic shape information which is, in a sense, font

independent. Extracting high quality skeleton for skeleton matching and topological analysis

is therefore an ideal method for characters recognition, whereas in practice it remains a dream

of many technicians, because of its subjective character and hard to avoid deformations.

Plenty of reports about this research in past years can be found. For some examples, see

[O’Gorman 1990, Y.S.Chen+ 1990, Sossa 1990, C.S.Chen+ 1990, Bourbakis 1989, Xia 1989,

Arcelli 1985 1981]. Most of the skeletonisation algorithms can be classified into two essential

types. The first one is medial-axis transform (MAT), which searches for the set of centers and

radii of the maximal blocks contained in the objects. This kind of algorithm can preserve all

the details of the objects. However, it cannot make sure that all the initial object’s topology can

be preserved due to the property of discrete space. Moreover, it manifests noise-sensitivity.

The second type is referred to as thinning algorithms. The essence of this approach is to delete

iteratively the border points if their removal does not effect the connectivity of the objects.

This kind of algorithm usually has to use template matching and contour tracing because of

the the disconnection of the original pattern into a number of components. The time required

in these algorithms is linearly proportional to the pattern area, i.e, the size of images and the

maximal thickness of the pattern. For this reason, parallel approaches appeared to make the

process faster. In parallel thinning, all the pixels of the pattern are examined and, if necessary,

removed simultaneously. Skeleton features can be used together with topological analysis to

get end points, intersections of line segments, bays, loops, directions, bumps and holes, that

might be used in the final classification.

3. Complex index features

Complex index is the value which represents the degree of complexity in both vertical and

horizontal directions. It can be described as a ratio between the total stroke length in one

direction and the stroke’s density in that direction. It is usually used in broad classification.

4. Edges and line segments

Using a sub window moving across the shape matrix, a series of segments of lines is generated,

by which the slope and curvature of the line can be evaluated. These features can be used to

establish the graph representation of the characters. Having this representation, end points,

intersection points, nodes or loops of the stroke can easily be found. They may be used in
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recognition of hand written characters.

Besides these, some other solutions such as root resolving, stroke transform and coding etc., are

also used. Reading matter can be found in [Stallings 1972, Jeng and Chang 1988] .

Self-learning is a fundamental procedure in the intelligent OCR systems. In some systems

such as Kurtzweil K-5100 which is used in University of London Computer Center, when unknown

characters are encountered, they are shown on the screen and the operator can key in their meanings.

After that, the computer can “remember” these characters and it never interrogates the operator when

meets them again. It can be thought of as “learning from experience”. Since it goes along as it

learns, more and more characters can be recognised. However, the methodology used here is rather

of database techniques than OCR itself. It demands that the feature abstraction should be processed

automatically and template databases have to be expandable.

Another important aspect in recognition is the clustering and comparing algorithm. For the

character sets of large quantities, it is useful to use clustering method to put the characters which have

similar features into a cluster, according to a certain criteria. Through this classification, the number

of characters to be compared with is reduced significantly, so some sort of real time processing can

be achieved. The recognition rate can be increased as well, since the final classification algorithm

can be applied within a smaller cluster and performed thoroughly. Assume that the whole feature

space is Sw,C1� C2� � � � � Cn are clusters inSw, i.e., C1� C2� � � � � Cn � Sw, LetV be feature variance

in the feature space. V �Sw� is the total variance in the whole space, while V �Ci� Cj� �i� j � n� and

V �Ck� represent the between cluster and within cluster invariance respectively. We have

V �Sw� � Vb � Vw

V �b� �
nX
i�1

nX
j�1

V �Ci� Cj�

V �w� �
nX

k�1

V �Ck�

The purpose of classification is to maximise V �b� and minimise V �w� based on the similarity

of certain character features. The similarity can be measured by Euclidean Distance, Minkowsky

Distance, Correlation Coefficient, etc., while the classification methods can be chosen from Batche-

lor and Wilkin’s, H-means, K-means, Neighbourhood Function and Hidden Markov Model(HMM),

etc. For detailed discussion please see [Jeng+ 90].
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After feature abstraction, the features must be compared with those stored in the template

database. The entry of the best matched character in the database is the recognition result. An

example of an employed method is the Template Matching method.

We assume that the input character feature is �X1� X2� � � � � Xn� and template feature is �Yi1� Yi2� � � � � Yin�,

i � 1� � � � � k, i.e., it has k clusters. Sample distance is represented as:

S�Xi� Yik� �
�Xi� Yik�

kXik kYikk

where kXik� kYikk are the vector distances, �Xi� Yik� is inner product of vectors, its value is between

0 and 1 after normalisation.

The more similar the two vectors are, the larger the value of S. When S gets its maximum

value, the corresponding template character is the recognition result.

Some other methods used include Relaxation Matching, Differential Pattern Matching, Dynamic

Programming, Vector Quantisation, Neural Networks and Branch and Bound Search. For more

informations please see [Jeng 1990].

Not only a good recognition strategy can achieve a high recognition rate, but also additional

methods can significantly improve its performance. Postprocessing is another important stage

in the whole procedure, whose aim is to reduce the mistakes in the result. Up to now, none

of the recognition algorithms can avoid making errors, i.e., have 100% recognition rate in all

circumstances. For this reason, means for finding and correcting such errors are indispensable.

Several approaches have been developed to detect misspelled words and offer suggestions for the

correct word. (see [Peterson 1980]) With the progress in database systems, various question-and-

answer systems have also appeared. Usually these systems search for a word that corresponds

exactly to the input in a built in dictionary. If they fail in searching for the input word, however,

they merely display a warning message. For more flexible human-machine communication, it is

desirable to use a spelling correction programme to search for the most likely word. Research work

in this area can be found in [Takahashi+ 1989, Sinha 1989, Wells 1989]). Beside this semantic

analysis, context based syntactic analysis is desirable. However it is still a unsolved problem in

artificial intelligent and natural language understanding, and the technique rarely appears in the

commercial systems.

This report describes a current system that recognises printed characters of certain fonts and

various sizes for the Roman alphabets. The system combines several techniques in order to improve

the overall recognition rate. The result has achieved a fairly good recognition rate and processing
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time is comparatively short. Anyhow, the research so far is not complete. Some additional

techniques such as separating merged and joined characters could be applied to get better result.

Nevertheless, some characteristics of this system can be summarised as below:

1. A friendly user interface was developed using X11 programming environment. Users can

easily chose functions such as building up template databases, clipping a text image, setting

preknowledge, previewing text file and monitoring the performance, etc.

2. Scaling is used directly on the text image at first. All the characters fall into four classes

corresponding to the four template databases. This can significantly reduce the effects of

noise and distortion from the thinning algorithm. From a user’s point of view, it can deal with

various sizes of characters.

3. An efficient thinning algorithm is applied to abstract the skeleton of the character image.

Because the skeleton contains most of the structural information which are font independent

or nearly independent, using skeleton matching combined with the scaling technique can suit

the need of “omnifont” recognition.

4. An approximative comparing algorithm is used. Clustering and classification is based on

the dimensions of characters. The comparison method incorporates the features of Dynamic

Programming [Fu+ 1986] and Neural Networks [Rokert 1988], to get a closest matching

result. Therefore, this system allows certain distortion to exist between sample and template

characters so as to suit the wide applications.

As we described above, the global statistic analysis is more suited for processing a large quantity

of characters as it is less time consuming, and for building up template database for the reason of easy

feature abstraction; while the structure analysis is more ideal for processing various fonts and sizes

because of owning better feature space. For printed character recognition, as well as the main aim

of this system, it is desirable to combine the advantages of each of them. In this implementation,

the skeleton analysis is a structural method whereas the matching is by a point-to-point global

comparison. The benefit is that a good feature space can be established, however the processing

is rather simple. Furthermore, the skeleton-based template database is not as large as that used

in normal point-to-point matching, since it needs less templates in the database. A compression

technique is also applied to make the database as small as possible.
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Chapter 2

System outline

Xocr (X-environment Optical Character Recognition) is a real implementation of the character

recognition system. So far, it contains nearly 10,000 C source lines and was developed in about one

years time. At the first beginning, we have following design goals in mind:

1. Combine as much as possible of efficient feature analysis with global analysis techniques to

achieve good overall recognition rate.

2. Aim at printed character recognition and to achieve the flexibility for the case of omnifont

processing as much as possible.

3. Avoid making any change in system software and hardware, make full use of the existing

facilities with ordinary system configuration.

4. Realise the system as succinctly as possible and make it easy to put into practical use.

2.1 System support

This system is developed on Sun workstations with SunOS1 and X112 Window System. The system

is written in C language and X interface. A page scanner was used to generate the bitmap images

which normally have 300dpi resolution. The computer used was Sun4 workstation linked by NFS

1Sun, SunOS and Sun workstations are trademarks of Sun Microsystems, Inc.
2X Window is trademark of the Massachusetts Institute of Technology.
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network with at least 8 Mbyte direct memory space and virtual memory. The real image was

captured by a HP ScanJet Plus3 image scanner which had 300 dpi resolution. It allows the pictures

up to A4 size to be digitally sampled and turned into bitmap files that can be edited or stored on

disk. The xscan interface has been used which allows images to be easily scanned and saved in

various formats and size [Hesketh 1990].

“When run, xscan displays a window containing two main areas: the preview area

and control area, see Figure 2.1.

Figure 2.1: Xscan user interface

The preview area contains a preview scan of the available scanning area which

allows the user to choose which part of the A4 area to scan in detail. To produce

a preview scan you should place down on the scanner’s surface the photographs or

images to be scanned and then click on the Preview Scan button just above the preview

scan area. The scanner takes a few moments to traverse the whole of the scannable

area and then preview image is displayed.

3HP ScanJet Plus is trademark of Hewlett Packard Company.
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When the preview scan completed you can now choose to perform an Image Scan

on a particular part of the scannerable area. To choose this area drag out a rubber

box using the left mouse button. This defines the area that the scanner will scan in

detail. The control area has various controls that allow you to change the dots-per-inch

scanning resolution or to set the type of output.

The scanned image is saved to a file whose name is given in the box in the top right

hand corner. This should be a unix file name and relative to the directory that xscan

was start from.

Xscan uses the Sun rasterfile format to save the image it scans. the image can be

saved as one of two distinct types:

� Bitmap image – A bitmap image is one which has two colours, a foreground and

background colour. (This is the only image type that can be used in the xocr

system)

� Greyscale image – A greyscale image is made up of different shades of gray

ranging from black to white. These images can only be viewed directly on a

colour screen and produce results similar to black and white photographs.

� � � Greyscale images can be rendered as bitmaps using two normal methods,

they can be either dithered using any one of the four dither patterns built in to the

scanner or they can be thresholded. � � � Thresholding by hand can use the gip

command.” (More information about gip can be found in [Hesketh 1990]).

The user uses the four parameter boxes on the right of the xscan screen to obtain the optimum

settings. The resolution and intensity control are heavily used in prepare scanning documents for

xocr . Various values might be tried by various values before an optimised setting has been found.

The quality of scanned image can be examined through file viewer tools like vf [Russell+ 1985].

For bitmap images, contrast has no effect on the result. Automatic background control which

can filter background noise but might bring some losses on the pattern edges and make some strokes

broken, thus we should take care in using it.

In fact, xocr can accept two kinds of image input format, one is X11 bitmap file, the other Sun

raster file. However, only X11 bitmap file is used internally. Sun raster file will be transformed into

X11 bitmap file automaticly using the suntox11 facility provided by the X11 system. The definitions
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of the header structure of rasterfile and bitmap can be found in the manual page RASTERFILE(5)

and BITMAP(1).

2.2 Xocr user interface

Xocr command usage is:

xocr [-bm bitmap-file] [-rf raster-file]

[-tdir tdb-dir]

[-tdb1 first-tdb-name] [-tdb2 second-tdb-name]

[-tdb3 third-tdb-name] [-tdb4 fourth-tdb-name]

[-out ascii-output-file]

[X options � � � ]

where, -bm and -rf options indicate whether a bitmap or Sun raster file is used as input text image.

-tdir followed by tdb-dir indicates which directory the template databases are accommodated in.

Different set of template databases scatted in different directory can be chosen by this option. first-

tdb-name, second-tdb-name, third-tdb-name and fourth-tdb-name are the names of four template

database files used by xocr (described later). Ascii-output-file is the file name where the recognition

result – ascii coded characters are written. By default, the tdb-dir is the current working directory;

the template databases used are tdb1.Z, tdb2.Z, tdb3.Z and tdb4.Z , whereas they might not exist

at the beginning. (.Z is the suffix of compressed file names, see COMPRESS(1)). The default

ascii-output-file is ascii.out .

After a proper command has been keyed in, an typical xocr user interface is shown as Figure 2.2.

Xocr provides a window consisting of the following five areas:

1. Operation section

This area contains all the buttons to activate operations, such as to clip a region, i.e., choose

a part of whole image for processing; set preknowledge (described later), build up template

database, start recognition, preview ascii output file, monitor the performance, change related

file name and inquire system parameters and so on.

2. Message window

This area displays the system messages to feed back to the user.
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Figure 2.2: Xocr user interface
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3. Input window

This area is headed by an input flag which is set when an input is needed. The input

information is edited and accepted within this area.

4. Text image display window

When a text image file whether in raster file or bitmap file format has been properly indicated,

the text image is loaded here after a short delay. When the clipping region operation is

selected in the operation selection area, a rubber-band-rectangle can be dragged out from this

window to choose the working area. The window can scroll in both vertical and horizontal

directions. The mouse pointer position in this window can be reflected from the position

display window above when any mouse button has been pressed.

The ascii text (recognition result) is also displayed and edited here when text preview is

selected.

Relevant operations

1. Clip a region

Firstly, select the ‘Region clip’ button. Then move the mouse to the image window, press

the left button, a rubber- band-rectangle will appear. The dragging can be continued after

the image scrolling (in case of dealing with the image part outside the display window) by

pressing the middle button while moving the mouse. After the rectangle has covered the

proper area, pressing the right button will save the clipping. Once the left button has been

pressed, the previous region will be lost.

2. Pre-knowledge set

There are two pre-knowledge, which are the size of character ‘O’ and the offset between

two words. They can significantly benefit the section procedure. The input image will

be sectioned into lines and characters, these two pre-knowledge can help to make good

justification between upper case and lower case characters, and also help to separate the

words correctly. Therefore, the user would be better give these two values. The former can

be obtained by clipping a capital letter ‘O’ in the image wherever possible, if not, other capital

letters can be instead. The latter is input through the input window.

3. Template setup

The template can be setup whether at the beginning or in the middle of xocr execution
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(except that it has to be done at the beginning when none of the templates is available). When

‘Template setup’ has been selected, a section process starts, then a box will be around each

character, and it waits for the user to input the name of the character. After the input has

been given, a check procedure will be exerted to avoid building redundant template in the

database. The input of the character name should be paid a great attention, since the input

will directly write to the database file and there is no easy way to correct the mistakes. The

template comes from a region if a region has been selected or from the whole image if no

region has been found.

4. Recognition

There are two options to the recognition. When ‘Interactive’ has been selected, xocr will

stop at each unknown character which has not been met before, in other words, no template

in the database can match the input character. After the user has input the character name,

the recognition will continue, and the unknown character is remembered. This is called

self-learning. For non-interactive recognition, xocr never stops at any character, and marks

any unknown characters as ‘[]’ which means that the characters are rejected. The number of

recognised characters is displayed on the output window while the recognition is working.

5. Inquire values

Some important parameters used by xocr can be inquired and will be displayed on the output

window when the user selects the name concerned in ‘Value inquire’.

6. Performance display

When the user selects the ‘Performance’ button, the statistic result of the last recognition

will be displayed on the output window, which includes: the total characters, rejected ones,

recognition rate, time used and so on.

7. Ascii text preview

The recognition result is ascii text, and can be displayed and edited at this stage. There are

two options to view the text, one is with spelling check and another is without spelling check.

Because some similar characters like ‘1’ and ‘l’ may be confused when being recognised,

sometimes we need a spelling check to pick out these mistakes.

When the user previews the text with spelling check, the ascii text is displayed on the text

display window (or the image window), two subwindows will popuped as well and can be
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placed anywhere convenient. One of the subwindows is named ‘Misspelled’ which contains

all the mis-spelled words, another is ‘Suggestion’ which contains possible correct options

for each mis-spelled word. When the user types <ctr-R>, the third subwindow which is the

replace window will be popup. This is part of the operations of Athena asciiText widget,

further information about this can be found in the relevant document. To get the suggestions,

the user can move the mouse to one of the mis-spelled words in ‘Misspelled’ window and

press the left button twice. Soon afterwards, the corresponding suggestion will appear in the

‘Suggestion’ window. The current mis-spelled word will automatically become the search

text of the replace window. When the user chooses the preferred suggestion by pressing

the left button twice in ‘Suggestion’ window, the right word will become the replace text of

replace window. Then the user can press the ‘Search’ and ‘Replace’ button to replace the

text. All the text windows are fully editable.

When the user chooses the preview function without spelling check, only the ascii text is

displayed on the text display window.

Selecting any button will save the text file.

8. Rotate the image

A scanned image usually appears inclined, it can be corrected by this command. When the

user has chosen this button, there will be five new windows and two new button placed in the

input area, which are listed below:

(1) X0 and Y0: Coordinates of the first pixel in a inclined line;

(2) X1 and Y1: Coordinates of the second pixel in the same inclined line;

(3) Ok: This is the button to start image rotation;

(4) Cancel: This button will end the image rotation, and restore the input area as before.

(X0, Y0) and (X1, Y1) could be any pixels in the same inclined line. Xocr determines the

rotating angle by these two coordinates. After the image has been rotated, the inclined line

will become a horizontal one. This function sometimes might cause some loss of image

quality.

9. Others

File names can be changed and bitmap or raster image file can be reloaded through the popup
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menus of this selection. It is the normal way to quit the text preview and go on to process

next document image.

For further details please refer to the manual page XOCR(1).

The next part will explain how the functions are realised according to each of the stage described

above.
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Chapter 3

System Implementation

3.1 Preprocessing

3.1.1 Inclined image correction

A scanned image usually appears inclined. This is because that there is no mechanism available

in ordinary scanner to easily correct this inclination. However, the image inclination has a serious

effect on the section stage. The text image might not be sectioned into lines to lines correctly

because the detection of lines is based on the horizontal projection, and no evident zero projections

could be found in heavily inclined images.

Image rotation is realised by the trigonometric transformation to of each pixel in the bitmap.

The rotation is around the up-left corner of the original image. The user inputs coordinates of two

pixels in the same inclined line. The angle formed by the line passing through the two pixels and

the horizontal line is the rotation angle. Rotating the image by this angle in the opposite direction

results in the corrected image.

Let F �i� j� be the pixel in �x� y� position of the text image:

F �i� j� �

�
0 for white pixels

1 for black pixels
�3�1�

The image is like in Figure 3.1, where �Xs� Ys� is the up-left corner of the image while �Xe� Ye�

is the bottom-right corner.

Let �x0� y0� and �X1� Y1� be the two coordinates input by the user, the rotation angle � is:
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i

Xe

F(i, j)

Xs

Ys

Ye

j

B

Figure 3.1: The image

� � �arc tan
y1 � y0

x1 � x0
�3�2�

�x1 � x0 � 0�

Let P �x� y� be a black pixel in the original image B. The new pixel position in the transformed

image B’ is P ��x�� y��:

P ��x�� y�� �

�
x� � rcos��0 � ��

y� � rsin��0 � ��
�3�3�

where:

r � ��x1 � x0�
2 � �y1 � y0�

2�
1�2

�0 � arc tan�y�x� where x �� 0

See Figure 3.2.

3.1.2 Line section and character section

The text image scanned by a image scanner may contain text, titles, pictures, graphics, tables and so

on. Some noise may also be involved. Text section is processed manually instead of auto analysis.

This is because that on the one hand, to separate text image from titles, pictures or graphics is no

longer a difficult task for the operator using mouse dragging in a window system, and the amount
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Figure 3.2: Image rotation

of separation work is usually not too much; on the other hand, choosing the text image by hand

can increase the system flexibility since not all the text image is always needed for recognition in

practice.

The section algorithms must be performed upon the pure text image in order to get the informa-

tion for each characters. The later stage can use this information to find each character in the whole

text image and reorganise the ascii text in the same sequence as the original characters appeared.

The information from text analysis is recorded in the following data structure named info type.

typedef struct {

int up_position; /* Position of top edge of the current line */

int low_position; /* position of bottom edge of the current line */

char_info_type char_info[MAX_CHAR]; /* Information of each character

in current line */

info_type *next; /* Pointer to next line */

}info_type;

char info type is defined as:

typedef struct {

int up_position; /* Top edge of the current character */
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int low_position; /* Bottom edge of the current character */

int left_position; /* Left edge of the current character */

int right_position; /* Right edge of the current character */

int ccase; /* The value is as below if it discovered that

current character is of:

0 -- Upper case

1 -- lower case

2 -- special character like ‘.’,‘’’,‘:’,... */

char name[CHARNAME_MAX]; /* The ascii name of this current character */

char_info_type * next; /* Pointer to next char */

}char_info_type;

The information is stored in a global array of structures with above type. The information is

grabbed by two steps:

Line section

Line section finds the top and bottom edges of each text line in the text image. The principle used

here is horizontal projection analysis.

Let F �i� j� be the same image shown above. The projection of all pixels in the horizontal

direction is:

Ph�j� �
XeX

j�Xs

F �i� j� �3�4�

F �i� j� � B�Xs� Xe� Ys� Ye�

The top edge of the line can be judged by formula 3.5. i is the top edge of the line, if it satisfies:

�
LX
j�1

F �i� j� 	 P1�
 �
LX
j�1

F �i� 1� j�	 P2� 
 � � � 
 �
LX
j�1

F �i� k� j� 	 Pk�1� �3�5�

where L is the length of current line, k� P1� � � � � Pk�1 are constants greater than 0. In the case

when noise exists, assume that maximum width and height of noise are Nw and Nh, a supplement

condition is:
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�Nw � min�P1� P2� P3� � � � � Pk�1��
 �k � Nh� �3�6�

Similar with top edge decision, i is the bottom edge of the line if i satisfies:

�
LX
j�1

F �i� j� � Q1�
�
LX
j�1

F �i�1� j� � Q2�
� � �
�
LX
j�1

F �i�m� j�� Qm�1�
�
LX
j�1

F �i�m�1� j� � 0�

�3�7�

where m�Q1� � � � � Qm�1 are constants not less than 0. In the case when noise exists, the supple-

mentary condition is:

Nw 	 max�Q1� Q2� Q3� � � � � Qm�1� �3�8�

The decision of Nw� Nh can be set as a portion of the width and height of standard character –

Wpk and Hpk in the preknowledge. (Normally they are the width and height of ‘O’), for instance,

Nw � a0Wpk

Nw � a1Hpk

In this system a0 and a1 are all equal to 1/20 which are experimental results.

If the preknowledge has not been given, they are set to the default values obtained from

experiment.

Character section

Character section searches for the left and right edges of each character in the current line. The

principle used here is projection analysis in vertical direction. For the image of Figure 3.1, the

projection of all pixels in vertical direction is:

Pv�j� �
YeX

i�Ys

F �i� j� �3�9�

F �i� j� � B�Xs� Xe� Ys� Ye�

j is the left edge of a character if it satisfies:
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�
HX
i�1

F �i� j�	 P1� 
 �
HX
i�1

F �i� j � 1� 	 P2�
 � � � 
 �
HX
i�1

F �i� j � k� 	 Pk�1� �3�10�

where H is the height of current line, k� P1� � � � � Pk�1 are constants greater than 0. In the case when

noise exists, another condition have to be added:

�Nh � min�P1� P2� P3� � � � � Pk�1��
 �k � Nw� �3�11�

Similar with top edge decision, j is the right edge of the line if it satisfies:

�
HX
i�1

F �i� j� � Q1�
�
HX
i�1

F �i� j�1� � Q2�
� � �
�
HX
i�1

F �i� j�m� � Qm�1�
�
HX
i�1

F �i� j�m�1� � 0�

�3�12�

where m�Q1� � � � � Qm�1 are constants not less than 0. In the case when noise exists, another

condition have to be added:

Nh 	 max�Q1� Q2� � � � � Qm�1� �3�13�

However, character section is much more complex than line section. This is because in many

sample documents, lots of characters are either overlapped (merged) or joined. See Figure 3.3.

Figure 3.3: (a) Overlapped (merged) characters ‘tu’ : (b) Joined characters ‘mn’

In the situation listed above, it is almost impossible to use the projection method to get fair

results. Let us see the vertical projection of ‘tu’ as in Figure 3.4, where there is no evident trough

which can be used as a criterion to separate these characters.

It might be argued that in case of Figure 3.3 (b) that threshold could be used in this case.

Unfortunately, it is not always true. Also see Figure 3.4. We notice that the projection of ‘u’
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tu

Y-projection

Figure 3.4: Y-projection of overlapped ‘tu’

sometimes has a very similar trough inside the character so that it is hard to tell which trough can

be considered as threshold to separate characters or as the property of a character to be preserved,

i.e., if we want to separate ‘t’,‘u’, ‘u’ must be broken too.

For the situation of Figure 3.3 (a), an alternative approach in our early research was proposed

based on contour filling by connectivity (see [Pavlidis 1982]).

We firstly select a point which is the leftmost dark pixel in the current line as a seed and propagate

its colour (values other than 0, 1 which indicate white or white pixels) to adjacent pixels until the

contour of a character is reached. (For discrete characters, contour is of one of its components) The

algorithm can be described recursively in simple terms: Let C be the colour of the seed, S and F

be the filled region at some step. We set F � S initially, and then at each step we add to F all

pixels whose colour is C if who have a direct neighbour in F . Thus the contour filling is performed

on the basis of connectivity. After the contour of the first character has been found the algorithm

is repeated from the second seed in right direction whose colour is set different from the previous

one, until all the characters in the current line are achieved.

Recursive filling algorithm can be described below.

Definition 1 Two pixels are said to be direct neighbours (abbreviated as d-neighbours) if the

respective cells share a side, and indirect neighbours (abbreviated as i-neighbours) if those cells
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touch only at a corner. The name neighbour denotes either type. The term N-neighbour where

0 � N � 7 will be used to denote that pixel whose position is marked N in Figure 3.5.

P 0

123

4

5 6 7

Figure 3.5: N-neighbours

Algorithm 1 RecursiveFilling

BEGIN

Set seed to mostleft pixel of current text line

WHILE seed not meet the mostright pixel of the current line

C = COLOUR(seed)

CALL FILL(seed)

seed = SECOND SEED(seed)

ENDWHILE

END

Procedure 1 Fill(P)

BEGIN

Set the colour of p to C

FOR n = 1, 2, 3, 4, 5, 6

IF the colour of PN is not C

CALL FILL( PN )

f PN denotes the N-neighbour of P, 0 � N � 7 g

ENDIF

ENDFOR

END

31



Function 1 COLOUR(P)

BEGIN

IF P is the first seed

RETURN 1

ELSE

RETURN last seed’s colour + 1

ENDIF

End

Function 2 SECOND SEED(P)

BEGIN

RETURN nearest pixel to the previous seed in right

direction whose value is not the colour of previous seed

END

However, this solution is difficult to use in practice. This is because the poor quality scanned

images contain many broken strokes thus a character has no connectivity expected. Moreover, it

brings some side affects. For instance, a discrete character will divide into several parts, these must

be recognised separately and we have to use a additional algorithm to combine them. Another

problem is that this algorithm is extraordinary time consuming.

For the time being, no special effort has been made for this case. The merged characters are left

alone. They will be rejected or recognised by the operator in the recognition stage. It is hoped that

a better solution can be found and applied to the system in the future.

As for the case of Figure 3.3(b), we consider the connected characters as a single character.

At first look, one may think that the possible combinations of connected characters would be of

huge amount. However, the only possible combinations in a real document should be existed in

a dictionary. Therefore, a solution can be made to pick out all the possible combinations from a

dictionary and store their templates in the database. The number of combinations might not be too

large. Also because this situation does not happen frequently, it is believed that the four template

databases idea (described later) can support this implementation since the combinations are usually

stored in the 32�24 database which is rarely used in normal sample comparison. Furthermore,

some unseparated characters can also be processed in the postprocessing stage.
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3.1.3 Preclassification and normalising

In this system, all the characters are classified into four classes according to their dimensions. The

reason for doing so is:

� This method can process various sizes of characters.

� The global point-to-point comparison of skeletons needs the sample characters to have same

dimensions of the templates.

� This is one kind of broad classification which can speed up the recognition procedure and

improve the recognition rate.

� The most important point is that it can overcome the deforms caused by most thinning

algorithms to a great extent, as we know that thinning deforms increase with the thickness of

the patterns. Many characters or symbols have very simple strokes such as ‘I’, ‘l’, ‘.’ and

‘-’, in conventional processing, they will be scaled into only one dimension. A stop mark ‘.’

printed on a paper often becomes a blob after scanning and normalisation. See left side of

Figure 3.6 (a).

It can be said that there is no thinning algorithm can get correct result from these patterns.

The deforms also occur when thinning the characters or symbols like ‘I’, ‘l’ and ‘-’, etc.

However if the scaled size is not too big, say 4�4 instead of 16�16 in Figure 3.6 (b), the

thinning result may be very close to the correct result.

16X16 dot pattern

(a) (b)

16X16 thinning result

4X4 dot pattern 4X4 thinning result

Figure 3.6: Thinning result of a dot pattern

In order to get a better result, some characters like ‘.’,‘-’ and ‘|’ are firstly detected to assign

their meanings instead of being recognised later. The detection is according to the standard
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character dimension given by the preknowledge or according to the average dimension.

� Another important use is that it can reduce or eliminate noise. The noise usually has very

small dimensions. If it is scaled down, which is the normal case in the system (described

later), a blob of noize in the printed paper may become only a single point in the scaled image.

It may not have serious effects on the recognition stage if we use the later described matching

algorithm.

The scaled dimension should neither be too big nor too small. If it is too large, the comparison

time will be increased and recognition speed will slow down. If it is too small, some details of

strokes may be lost after scaling. We chose the dimensions of 32�24, 24�24, 12�24 and 12�12

just because that they are suitable for this purpose. The normally used font size is about 12 point (1/6

inch) on ordinary printed documents. If it is scanned by 300 dpi, which is the ordinary resolution,

a character pattern contains 50�50 pixels will be generated. For an English character set, a most

complicated character may contain no more than 4 strokes in one side. Thus a reasonable dimension

should be able to distinguish 8-9 (4�2) lines in each side. See Figure 3.7.

In other words, the dimension chosen for an ordinary character should not be smaller than 9�9.

On the other hand, an original stroke with normal width 6 (50/9) pixels, will have 4 pixels width in

32�32 dimension it might be about 4 pixels; in 24�24 dimension about 2.8 pixels and in 12�12

about 1.4 pixels. They are enough to preserve most details of the strokes. The scaled pattern of

Figure 3.7 (a) in 32�32, 24�24 and 12�12 are shown in Figure 3.7 (b), (c) and (d) respectively.

Therefore, four default template databases are used, they are:

tdb 32�24 This database usually stores template skeletons of very wide characters. Most of

connected characters are stored here as well.

tdb 24�24 This database usually stores characters with normal dimensions, like ‘A’, ‘e’, ‘2’, ‘&’,

etc.

tdb 12�24 This database usually stores “thin’ characters like ‘1’, ‘l’, ‘i’, etc.

tdb 12�12 This database usually stores very small characters like ‘,’, ‘*’, ‘’’, etc.

The classification is processed automatically. A set of approximate criteria to classify a character

into one of the four classes is described below. Some characters with border dimensions exist in

more than one database in order to increase the “hit percentage”.
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(c) "M" in 24X24

(b) "M" in 32X32

(a) "M" in 50X50

(d) "M" in 12X12

Figure 3.7: ‘M’ in different sizes
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Let Cw and Ch be the width and height (in pixels) of character C, Wj and Hj be the yardsticks

used to judge which class C falls into.

C belongs to tdb 32�24 if Cw and Ch satisfy the following conditions:

�Cw � a0Wj�� ��Wj � Cw � a0Wj� � �Cw � a0Cw � 1��

C belongs to tdb 24�24 if Cw and Ch satisfy the following conditions:

�Wj � Cw � a0Wj� �

�Cw � a0Wj 	 �Cw � a1Cw � 1���

�Cw � Wj � �Cw � a1Cw � 1��

C belongs to tdb 12�24 if Cw and Ch satisfy the following conditions:

���Cw � a1Cw � 1� � Wj� 
 �Ch � Hj���

���Cw � a1Cw � 1� � Wj� 
 ��Ch � a1Ch � 1� � Hj � Ch� 
 ��Ch � a1Ch � 1� � Hj�� �

��Cw � Wj� 
 �Ch � Hj � �Ch � a1Ch � 1���

C belongs to tdb 12�12 if Cw and Ch satisfy the following conditions:

���Cw � a1Cw � 1� � Wj� 
 �Ch � Hj���

���Cw � a1Cw � 1� � Wj� 
 ��Ch � a1Ch � 1� � Hj � Ch�� �

��Cw � Wj� 
 �Ch � Hj��

If preknowledge is available, Wj and Hj are set to half of the width and height of the standard

character respectively. Otherwise, Wj is set to the minimum of 15/16 average width of characters

and 15/42 average height of lines; Hj is set to 15/42 average height of lines. There are two factors

to determine Wj because the width of a character is an unsteady value and it needs average height

of lines to make auxiliary decision. 15/16 and 15/42 are the statistics counted from normal English

printing. That means in ordinary English printing, 15/16 average width of characters closely equal

to 1/2 width of character ‘O’; 15/42 of average height of characters closely equal to 1/2 height of
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‘O’. (‘O’ is usually used as standard character in preknowledge) Average values are counted from

the section stage.

a0 is the border width to incorporate a character into the 32�24 database instead of 24�24. It

is set to 2.5 in this system. a1 is a coefficient greater than 0. it makes the classification deviation

link up with the sizes of characters. In this system a0 is set to 1/20.

3.1.4 Scaling

Scaling is a simple process which can be described as below:

Let �u0� v1�� �u0� v1� be the coordinates of upper-left corner and lower-right corner of a character

in the original plane. After normalisation, they become �1� 1� and �k0� k1�. k0 � f24� 12g� k1 �

f32� 24� 12g, we have

��
�

i � 1 � k0
u�1

L�u1u0�

j � 1 � k1
v�1

L�v1v0�

�3�14�

where

L�u1u0� � u1 � u0

L�v1v0� � v1 � v0

See Figure 3.8.

k0

k11 j

i
u

v1

u0

u1

v0 v1

(a) Unscaled (b) Scaled

Figure 3.8: Scaling (normalisation)
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We use LAG (Line Adjacency Graph) (see [Pavlidis 1982]) to represent a character image. The

algorithm is:

Algorithm 2 Scaling

BEGIN

FOR each old run line in the original image

CALL ChangeSize(k0� k1)

ENDFOR

END

Procedure 2 ChangeSize

BEGIN

Calculate the start position of new run line using formula 3.14

Calculate the length of new run line using formula 3.14

Record new run line

END

3.1.5 Thinning

A complete discussion of the thinning algorithm used in this system can be found in [Li 1990]. It

is summarised below.

Theo Pavlidis gave the definition of skeleton in [Pavlidis 1982].

Definition 2 “Let R be a plane set, B its boundary, and P a point in R. A nearest neighbour of P

on B is a point M in B such that there is no other points in B whose distance from P is less than

the distance PM . If P has more than one nearest neighbour, then P is said to be a skeletal point

of R. The union of all skeletal points is called the skeleton or medial axis of R.”

He indicated that:

“A line drawing or text must be digitised at a high enough resolution to assure that no lines will

be broken and that the ends of the serifs will be preserved. Such a resolution will cause a width

of more than two pixels in other locations. Thinning is required in order to recapture the lineal

structure of the input without destroying its connectivity.
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The skeleton of a set of pixels R is a set found as follows. First, the skeletal pixels and the

contour pixels of R are determined. Then, all the contour pixels that are not skeletal are removed

and the set thus found replaces R. The process is repeated until a set consisting of only skeletal

pixels is left.

Most of the algorithms in the literature define skeleton pixels as only those that fit either of the

patterns of Figure 3.9.”

A A A

0 P 0

B B B

A A A

A P 0

A 0 2

At least one of each group of pixels marked with 
A or B must be none zero

Figure 3.9: Neighbourhood patterns of multiple pixels

Algorithm 3 Thinning

Note:

I is the input image. P is the set of patterns of neighbourhoods of skeletal pixels shown in Figure 3.9,

including also a 90� rotation of the first pattern and three 90� rotations of the second pattern. Flag

remain, when set to true, is used to denote that nonskeletal pixels may remain. Flag skel is set

to true when the neighbourhood of a pixel matches one of the pattern in P. A “one” in the pattern

matches any nonzero element of the neighbourhood.

BEGIN

Set the flag remain to true

WHILE remain is true

Set remain to false No change has been made

FOR all pixels p of the image I

IF p is 0

FOR i=0,1,2,3,4,5,6 and 7

IF i-neighbour of p is 1
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Set flag skel to false

FOR all patterns P

IF the neighbourhood of p’s i-neighbour matches

the pattern P

Set skel to true and exit from the loop

ENDIF

ENDFOR

IF the flag skel is true

Set i-neighbour of p to 2 skeletal pixel

ELSE

Set i-neighbour of p to 3 deletable pixel

Set remain to true

ENDIF

ENDIF

ENDFOR

ENDIF

FOR all pixels p of I

IF p is 3

IF neighbourhood of p matches the pattern P

Set p to 1

ELSE

Set p to 0 and also set remain to true

ENDIF

ENDIF

ENDFOR

ENDFOR

ENDWHILE

END

Some examples of the application of the algorithm are shown in Figure 3.10.

After preprocessing, a text image is resolved into a set of subimages, each of which contains

the skeleton of a single character. The subimages are sorted into four classes, which are 32�24,

24�24, 12�24, 12�12, according to their dimensions. They may be used either as templates to be
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"M" in 32X32 and its thinning result

"K" in 16X16 and its thinning result

Figure 3.10: Some thinning result
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merged into the database or as samples to be recognised in the later stage.

3.2 Template database and implementation of self-learning

A record in the template database has following data structure:

typedef struct {

unsigned long tdb_bitmap[]; /* Skeleton pattern */

float projection; /* Average vertical projection */

int ccase; /* Upper case or lower case indicator */

char name[]; /* character name */

tdb_type *next; /* Pointer to next template */

} tdb_type;

where tdb bitmap stores the characters’ skeleton bitmap. The four databases mentioned above

have similar structures except that each tdb bitmap has different dimensions. Even though we

have a preclassifier used which sorts all the characters images into four classes, some databases still

have too many templates. For example, tdb 24�24 usually stores normal characters and is large.

Because that large template database brings slow recognition speed, it would be better to build

some other broad classifiers. Average vertical projection AVP is another criterion of classification.

Average vertical projection of Figure 3.1 is defined as:

AV P �

PYe
i�Ys F �i� j�PXe

j�Xs
C�j�

�3�15�

where

C�j� �

�
1 if

PXe

i�Ys F �i� j� � 0

0 if
PXe

i�Ys F �i� j� � 0

The reason why to chose AVP as a classifier is that it has light relation with various fonts and

typefaces. For example, ‘H’ in Times-Roman font has four evident hairline serifs while in Helvetica

has sanserives. See Figure 3.11.

It is known that AVP of (a) is 3.50, AVP of (b) is 3.33. We can see that AVP classifier is able to

sort characters with different fonts correctly. An argument may be made that some characters like

‘E’ have “vertical serives” which probably have a strong effect on AVP. However, in general, the

number of characters which have “vertical serives” is much fewer than the number of characters
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(a) (b)

Figure 3.11: Two fonts of ‘H’

which have “horizontal serives” and it does not interfere the use of AVP as a broad classifier. The

calculation of AVP is performed in the preprocessing stage.

Another element of above structure is ccase. The terms upper case and lower case have lost

their ordinary meanings here. Here they are specially used to tell the difference of characters which

have similar shapes but different cases like ‘O’ and ‘o’, ‘C’ and ‘c’, ‘P’ and ‘p’, etc. They almost

have the same shape after normalising. It is extremely difficult to distinguish them if there is no

auxiliary method assistance. ccase was introduced to solve this problem.

Let Ch and Cw be the height and width of current character, Hpk and Wpk be the height and

width of standard character in the preknowledge, Lh be the height of current line, Dlc be the

difference between top positions of current line and current character, b0� b1� b2� b3� b4 and b5 be

constants greater than 0. We have:

character C is in upper case if

�Ch � b0Hpk� 
 �Dlc � b1Hpk�

with preknowledge available, or

�Ch � b2Lh� 
 �Dlc 	 b3Lh�

without preknowledge available;

character C is in lower case if
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�Ch � b0Hpk� � ��Ch � b2Lh� 
 �Dlc � b3Lh��

with preknowledge available, or

�Ch � b2Lh� � ��Ch � b0Hpk� 
 �Dlc 	 b1Hpk��

without preknowledge available;

character C is in special case, i.e., ‘.’, ‘-’, ‘|’, ‘I’, ‘l’, etc., if

�Ch � b4Hpk� 
 �Cw � b5Wpk�

with preknowledge available, or

�Ch � b6Lh� 
 �Cw � b7Lh�

without preknowledge available.

In this system b0 is set to 0.85, b1 0.2, b2 0.5, b3 0.15, b4 0.1, b5 0.15, b6 0.08 and b7 0.1. These

are statistical results based on the normal English printing.

As for the name in the above data structure, it is the name of current template character given by

the operator when the template database was established or expanded. When the template database

is being built, the system automatically sets up the input flag in the input area of the xocr interface

and produces a frame around the current character until the name of the character has been input by

the operator. The name is recorded in tdb name . See Figure 3.12.

A similar way to add in templates is through the interactive recognition. The recognition process

stops at any sample character whose recognition is below a gate value, which is a little higher than

that in non-interactive case. The recognition process continues after the user has input the character

name. The character is remembered in the database as a new template.

After the template database has been built, an input sample can be recognised by comparing the

sample skeleton with the skeletons of the templates stored in the template database. The template

database is loaded into the memory when the system starts at the very beginning, except that it

does not exist at all, in this case, the template database can be built while interactive recognition

is running. The number of templates can be expanded at any time and the databases both inside
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Figure 3.12: Template character input

memory and outside memory will be updated synchronously. A redundancy check is performed

when a new template is added into the database so as to keep the database as small as possible.

The templates in the database are stored in ascii code and can be modified by users. When stored

on disk, the database is compressed by adaptive Lempel-Ziv coding method, which can reduce

50-60% of textual space (see [Welch 1984]). Recognition implementation will be explained in the

next section.

3.3 Character recognition

In this stage, the features of an input character will be compared with certain templates stored in

the database. The closest match is considered the recognition result. If none of the matches is close

enough (or the difference is too big), the input character is said to be rejected.

So far, three broad classifiers are established. They are based on:

1. dimensions of characters – 32�24, 24�24, 12�24 and 12�12
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2. character cases – upper case, lower case and special case

3. AVP

Using the three classifiers, firstly an input sample can find a set of templates to be compared

with in the database which have the same dimension and same case as the sample, and an AVP

which is in a certain range around the AVP of the templates. Secondly, a final classifier which is

based on the skeleton matching will be used on this set of templates to find out which of them is the

final result. The matching algorithm is explained below.

Let T be the set of templates in the database, it can be expressed as: T � ftkg where

k � 1� 2� 3� � � � � K�K is the total number of templates.

Each tk in turn can be expressed as: tk � fslg where l � 1� 2� 3� � � � � Lk� Lk is the the total

skeletal pixels number of template tk .

F �i� j� is defined as same as equation 3.1.

Let p1 and p2 be two pixels in the two matching planes, we define:

f�p1� p2� �

�������
������

W1 if p1 is in the same position of p2

W2 if p1 is 0- 2- 4- 6-neighbour of p2

W3 if p1 is 1- 3- 5- 7-neighbour of p2

W4 if p1 is not N-neighbour of p2, N = 0, 1, 2, � � � , 7

�3�16�

W1 � W2 � W3 � W4

This is a simplified distance function to measure the distance between p1 and p2.

Let

Dk1 �

PLk
l�1 f�sl� �i� j��PLk

l�1 W1
�3�17�

and

Dk2 �

PLk
l�1 f��i� j�� sl�PLk

l�1 W1
�3�18�

for F �i� j� � 1.

Let

Dk � min�Dk1� Dk2� �3�19�

and

Dr � min�D1� D2� � � � � Dk� �3�20�
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where r � f1� 2� � � � � Kg

If D 	 e� 0 	 e � 1, we say that tr is the recognition result, otherwise F �i� j� is rejected.

The rejected characters are simply labeled with ‘[]’, the operator can easily find the places and

do necessary modification.

Algorithm 4 Recognition

Note:

Constant W1, W2, W3 and W4 have tremendous influences on the recognition result, they thus

have to be carefully chosen. The higher the difference between W1, W2, W3 and W4 is, the more

the accurate matching will be examined. If it is too high, many input characters will be rejected. If

it is too low, many characters will be recognised incorrectly. In this system they are set to 14, 10, 5

and 0 respectively. e is the rejection threshold and is set to 0.7. e1 is rejection threshold in first pass

and is set to 0.98. If the first pass of comparison cannot achieve the accuracy of e1, then second

pass is performed. avp range indicates that in which area of AVP the first pass is compared. For

example, if avp range is 0.5, then all the template whose AVP is between sample AVP � 0.5 will

be compared with. avp range is set 0.5 here. For the sake of conciseness, the attributes related to

sample precede with s ; while to template with t .

BEGIN

Set Dk1� Dk2� Dk� r� Dr to 0

Set pass to 0

Select a proper template database according to the s dimension

FOR all templates in the database

IF input sample and template have different case

SKIP to next template

ENDIF

IF pass is 0 and the difference of s AVP and t AVP is greater than avp range

SKIP to next template

ENDIF

IF pass is 1 and the difference of s AVP and t AVP is less than avp range

SKIP to next template

ENDIF

Calculate Dk1 using equation 3.17

47



ENDFOR

FOR all templates in the database

IF t Dk1 is greater than e1

Calculate Dk2 using equation 3.18

ENDIF

ENDFOR

Get Dk from Dk1 and Dk2 use equation 3.19

Get Dr from Dk use equation 3.20

IF Dr is greater than e

Record r and Dr as recognition result

ELSE

Record “rejected” in the sample data structure

ENDIF

END

3.4 Postprocessing

An interactive misspelling correcting function based on spelling check is applied in this stage in

order to increase the system performance. There are two things that may make the final recognition

result unacceptable. One comes from the rejected characters which are marked by ‘[]’. Another is

caused by the mis-recognised characters. For example, ‘l’ is recognised as ‘1’, ‘Z’ as ‘2’, etc. Both

these two case will generate misspelled words. Therefore if we can find a way to correct the wrong

words, the recognition result might be improved a lot.

Xocr provides a convenient way to do this work. It can list all the misspelled words, give

the correct suggestions and do replacement, as described in section 2.2. Figure 3.13 shows the

correction interface.

A spelling-correcting system requires the following functions:

1. A check as to whether the input word is correctly spelled or not (spelling check).

2. A search to provide likely alternative words (spelling correction) (See [Takahashi+ 1990].

Two approaches to providing these functions have been proposed. In one, the exact-match

method, candidates for the correctly spelled word are generated from an input word by using certain
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Figure 3.13: Xocr correction interface
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applied rules which define patterns of misspelling; these candidates are then checked to determine

whether they are in the dictionary. This method is widely used because of its simple dictionary

structure. Another method, the best match method, searches for words that are spelled similarly to

the input word. The former has a lower capability than the second method because that it is very

difficult to discover the errors not defined in the rules. A large amount of statistical data is also

needed to construct rules specific to each input method. The second approach is hardly practical

because it takes a long time to calculate the similarities between an input word and each word in

the dictionary. Also some complicated dictionary structures have to be used as well.

In the xocr system, a solution based on the best match method was developed. However,

because of the use of a hash index, the searching time is fairly short and the structure of the

dictionary is quite simple.

Xocr calls spell (See SPELL(1)) for spelling check. Since spell is a mature text preparing tool,

there is no need to redesign such a system to pick up misspelled words.

Xocr uses a dictionary which contains more than 36,000 words, ordered by their length sequence.

A hash table consisted of first positions of words with different lengths was built in order to speed

up the searching.

In order to get an effective system, we have to make it clear which kind of misspelling we are

dealing with.

A misspelled word generated by xocr usually has following appearance:

XX � � �X �� � � �X �� � � �X

where X represents any one in the characters set; ‘��’ indicates that a character in this position is

unknown or there are several overlapped characters missed here. Therefore, a ‘��’ might match at

least one characters in a candidate. The word can be represented as:

s1��s2� � � � � ��sn

where s1� s2� � � � � sn are segments delimited by ‘[]’s. n is the total number of segments.

Except this case, there are few chances for misspelling by missing a character in a sample

word. Thus the problem becomes how to find candidates which have the best match of segments

s1� s2� � � � � sn in the same order as they occurred in the sample.

Assume that the length of sample is Ls; let Lc1� Lc2� � � � � Lcm be the lengths of candidates,

where m is the total number of candidates. We have:

0 � Lci � Ls � L0 �3�21�
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i � f1� 2� � � � � mg

L0 is a constant, in this system L0 = 3.

Let M1�M2� � � � �Mn be the matched rate of the segments. The matched rate compared by

candidates ci is marked as Mji� j � f1� 2� � � � � ng. A candidate ck is chosen to be a correcting

suggestion if it satisfies:

ak

nX
j�1

Mjk � max�a1

nX
j�1

Mj1� a2

nX
j�1

Mj2� � � � � am

nX
j�1

Mjm� �3�22�

where ai are weights determined by difference between the two lengths:

ai � 1 � a0
jLci � Lsj

Lci
�3�23�

i � f1� 2� � � � � mg

a0 is a constant whose value is 0.5 in the system.

As for Mji, it is the ratio between the number of matched characters in a certain range of a

candidate, and the number of all the characters in the segment. See Figure 3.14.

[] [] []

a  b  c  d e  f g  h  i  j . . .*

a  b  c  d g  h  i k

k

... *

Candidate Ci

Misspelled sample
Segment 1 Segments 2 Segment n

Figure 3.14: Matching candidates

In Figure 3.14, the darkest shadow is the overlapped area of two succeed segments in the

candidate, which is to be matched by both corresponding segments in the sample. In this system

it at most matches two characters. It means that a ‘[]’ may represent no more than two missed

characters.

The algorithm can be described as follow.
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Algorithm 5 SpellingCorrection

Note: ci� ai and Mj have the same meaning as listed above.

BEGIN

Call spell to pick up all the misspelling words

FOR each misspelling word (sample)

Dissemble the sample into segments separated by ‘[]’

Adjudge the searching area (start and end position) in the dictionary

according to the sample length by condition 3.21

FOR each candidate ci in the searching area

Calculate ai using equation 3.23

Calculate Mji as described above

ENDFOR

FOR each candidate

Chose the candidate with maximum Mj as correction suggestion

using equation 3.22

ENDFOR

ENDFOR

END

This programme runs in the background while the interactive correcting runs in the foreground

to avoid the inconvenience brought about by the execution time.

So far the xocr realisation has been described. Some results obtained from experiments are

given in the next section to show the system profile.
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Chapter 4

Performance and experiment

The complete performance testing has not been done yet. An application experiment is shown

below.

Figure 4.1 is a text image (from ULCC News November 1989) to be recognised.

Figure 4.1: A sample text image
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After scanning, the image can be seen in Figure 2.2, see Page 19. The scanner was set to:

Bitmap dithering patterns: bitmap

Resolution: 300 dpi

Scale factor percentage: 100

Intensity: 0

Contrast: 0

Automatic background control: no

The xocr setting is:

Preknowledge standard width: 30

standard height: 30

offset between words: 9

Template

The fonts was adopted from X11 built in fonts library, which is named:

-adobe-times-medium-r-normal–34-240-100-100-p-170-iso8859-1

These characters were included:

A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z

a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z

1,2,3,4,5,6,7,8,9,0,.,,,*,&,%,$,#,!,:,;,+,=,[,],f,g,?,/,(,)

templates number and space in the databases are shown in Table 4.1- 4.2.

Table 4.1: Templates number

Databases dimension Without self-learning With self-learning

32�24 2 2

24�24 61 76

12�24 23 26

12�12 2 4

Recognition result without self-learning is as follows:
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Table 4.2: Templates space

Databases Without self-learning With self-learning

Uncompressed Compressed Uncompressed Compressed

32�24 454 298 454 298

24�24 13568 5284 16994 6489

12�24 5259 1767 5855 1883

12�12 174 129 383 240

Man[] of lhe new announcemen{s

were 1n hardware[] or ln {he lools an

ins{al1a{ion uses lo manage lhe s[]slem.

One sligh{l[] older announcemenl cf

inler[]sl is TSO/E version Z. This includes

lhe abiIil[] lo []el[]cl aulomalicall[]

whelher RECONNECT is neede[] cn lhe

LOGON ccmm[]n[][] []nd 1nlrcduces lo

MVS {he CMS procedures language[]

REXX.

IBM also announced DFSMS for VM

al lhls SEAS. This is in lhe ver[] earl[]

s{ages[] bu{ 1l looks as {hough fBM ar[]

inlenl on re[]esigning lhe ol[][]fashioned

CMS filebase as well[] an[] mav []n[] up

pcl []lss1miIar lo MVS. []

Recognition result with self-learning is as follows:

Many of the new announcements

were in hardware, or ln the tools an

instal1ation uses to manage the system.
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One slightly older announcement of

interest is TSO/E version 2. This includes

the abiIity to detect automatically

whether RECONNECT is needed on the

LOGON command, and introduces to

MVS the CMS procedures language,

REXX.

IBM also announced DFSMS for VM

at this SEAS. This is in the very early

stages, but it looks as though fBM are

intent on redesigning the old-fashioned

CMS filebase as well, and may end up

not dissimiIar to MVS. #

Recognition result with spelling correction is as follows:

Many of the new announcements

were in hardware, or ln the tools an

installation uses to manage the system.

One slightly older announcement of

interest is TSO/E version 2. This includes

the ability to detect automatically

whether RECONNECT is needed on the

LOGON command, and introduces to

MVS the CMS procedures language,

REXX.

IBM also announced DFSMS for VM

at this SEAS. This is in the very early

stages, but it looks as though IBM are

intent on redesigning the old-fashioned

CMS filebase as well, and may end up

not dissimilar to MVS. #

System performance is listed in Table 4.3 (the speed of the Sun Sparcstation1 which was the
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machine being used is 12.5 mips).

Table 4.3: System performance

No self-learning Self-learning Spelling correction

Total number of characters 447 447 447

Rejected number 28 0 0

Recognition rate (%) 93.7 100 100

Recognised number 319 447 447

Correct number 364 442 446

Correct rate (%) 81.43 98.88 99.78

Average matching accuracy (%) 89.9 87.5 87.5

User time (matching only) (s) 46.11 46.02 46.02

System time (s) 0.47 1.15 1.15

Time/per character (s) 0.104 0.106 0.106
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Chapter 5

Conclusion

The development of a character recognition method using skeleton matching has been presented.

This research involved the text section method, preclassifier selection, thinning algorithm design,

template database implementation, matching strategy and spelling correction technique. An exper-

iment was made to observe the system performance. A survey of general methodology in OCR by

recent year’s research was also summarised in the beginning of this report.

Various improvement aspects might be worthwhile:

Many OCR algorithms could be processed concurrently. For example, the thinning procedure

can be applied to all the characters concurrently and the matching procedure can also be performed

on all the characters at the same time. It is probably more desirable to modify the programme

in concurrent processing environment, such as to use OCCAM language and run the system on

transputers. A limitation is that many X11 facilities will not be available if this is done

The skeleton of a character could be further processed to abstract more crucial informations, such

as start points, end points, pronounced angles or corners, the T junctions, and crossing of strokes.

These can be used as features instead of the whole skeleton in order to reduce the memory space

and accelerate the speed. However, this idea cannot be realised until a better thinning algorithm

is developed. Many thinning algorithms used today bring about lots of distortions and the crucial

points would not be very reliable.

Some other approaches like contour analysis could be combined together to increase the recogni-

tion rate. Joined and overlapped characters should be treated more earnestly and further development

is expected to separate them. Also an automatic general text analyser seems very attractive. But
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they are expected not to conflict with the original intention that to make the system as ingenious as

possible.
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