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Abstract

The De�nition of Standard ML contains several errors and ambiguities� Some

of them have already been published in the Commentary on Standard ML� but

the list given there is incomplete�

The paper lists all errors known to me today� including the errors listed in the

Commentary� On most of the others I came across when writing the semantics of

Extended ML� Most errors are supplied with an explanation �what goes wrong�

and with a suggested correction� I understand �error� in a very broad sense �

ranging from typos to serious �aws in the rules� Some of the problems I mention

are originated by a certain tension between formal de�nitions and informal ex	

planations� e�g� overloading is informally explained though impossible in the given

formal setting�

Some parts of the paper are di
cult to understand without prior knowledge

of the De�nition and the Commentary� because I rely on the notation and jargon

introduced in these books� However� the nature of this paper has it that the

various sections do not depend on each other� making it possible for somebody

not familiar with the entrails of SML to read the less technical sections on their

own�

Structure of the Paper

I have divided the errors into the classes �Errors Listed in the Commentary� and
�Further Errors�� This is by no means a conceptual distinction� It simply gives a quicker
answer to the question �What�s new�� for the lucky owners of the Commentary� Here
and in the following� the �De�nition� always refers to 	MTH
��� the �Commentary� to
	MT

��
Within the two parts� the errors are listed in the same order as they appear in the

De�nition� References of the form �line �n� refer to the nth line from the bottom of
the corresponding page or section�

�The research reported here was partially supported by SERC grant GR�E ������






Part I

Errors Listed in the Commentary

All errors described in this part are mentioned in the Commentary� Not all corrections
proposed in the Commentary are entirely satisfactory� this is also discussed� Some of
the quotations from the Commentary refer to certain �Sections� � these are sections
of the Commentary itself�

� Syntax

��� Comments

The Commentary adds the following clari�cation for SML comments on page � of the
De�nition�

No space is allowed between the two characters which make up a comment
bracket �� or ��� Even an unmatched �� should be detected by the compiler�
Thus the expression �op �� is illegal� But �op � � is legal� so is op� �

The example suggests that �should be detected� cannot be interpreted as �may only
be accepted with a warning��
It is not obvious whether �op ��� is permitted or not� It should be� according to

the principle of longest match� and it should not be� according to the principle of open
comment brackets� Notice that the De�nition does not de�ne �� as a lexical item� We
could make it a lexical item by adding �� to the list of reserved words � this decides
the ambiguity in favour of �should�� because the longest match principle applies to all
lexical items� The use of the reserved word �� in programs is then not allowed� because
it is not mentioned elsewhere� i�e� no program containing it can pass the syntax check�

��� Identi�er Status

There are nine classes of identi�ers in SML� �Class� is an attribute of an identi�er
depending on the context of its occurrence� it does not refer to a partition of identi�ers
into disjoint classes� For instance� an identi�er can be a structure identi�er �strid� and
a variable identi�er �var� in the same scope� The classes Var� Con� and ExCon have
to be kept disjoint in each scope� because identi�ers in those classes denote values and
can occur anywhere a value can occur� Therefore each scope has an associated status
map that assigns to identi�ers one of the values fv� c� eg� indicating to which of the
three classes it belongs in that scope�
Pages � and 
� of the De�nition give principles to determine the status of an identi�

�er� These principles are informally stated and incomplete� In particular� they do not
explain the e�ect of signatures and structures on identi�er status�
A more detailed description of how to keep track of identi�er status is in appendix

B of the Commentary� pages 
���
��� One can take this appendix almost unchanged
as an additional section for the appendix of the De�nition� I do not repeat it here�
Two things about appendix B deserve a remark� The Commentary says about

incorporating the treatment of identi�er status into the De�nition�

�



����� and indeed the status map could have been combined with the static
environment� so that elaboration could be given the task of assigning status�

This is more an insinuation for implementors than a serious remark about the present�
ation of the semantics� for the dynamic semantics has no access to the results of static
analysis�
Appendix B comments brie�y about the identi�er status in derived forms�

Also� we ignore derived forms�

This is a pity� because the replacement of a derived form by its equivalent form is
inevitably preceded by parsing the program text into the parse tree of a derived form
� a process which depends on identi�er status� For the derived form of function
declarations there is indeed a choice� the left�hand side of fun f x�� could be parsed
in a similar way to patterns� requiring f not to have status c or e� but this requirement
is actually redundant� Not all SML implementations agree on this matter�
Part II discusses a couple of problems related to the treatment of identi�er status

in Modules �as it is suggested in the Commentary��

��� Syntactic Restrictions

Add the following restriction to the end of section ���� page 
��

� In the tyvarseq tycon in any typdesc or datdesc� tyvarseq must not
contain the same tyvar twice� Any tyvar occurring on the right side
of the datdesc must occur in tyvarseq�

Similar restrictions already exist for the syntax of the Core� i�e� for datbind � etc�

� Static Semantics for the Core

Three corrections on page ��� sections ��

 and ��
��

Lines 
�
� of 	Sec ��

�� principal type schemes ��� principal environments

Line ��� E � E� ��� ClosCE � E�

Line ��� delete �and imperative type variables��

There is no reference in the rules to anything called a principal type scheme� making
the old remark in the De�nition rather pointless�
The second correction captures a problem caused by SML�s imperative type vari�

ables� more precisely by the limitations that apply to the abstraction of imperative
type variables� An environment E is principal for dec in C if C � dec � E and for any
environment E� with C � dec � E� we have �N��m�E�� 	 S 
 �m�E� where N are the
names in E� not in C and m is fresh�� The restrictions for abstracting imperative type
variables occasionally exclude the environments that are principal in this stricter sense�
and only in these cases the correction is signi�cant� declaring environments with free

�A formula 	 � S � S
� denotes signature matching in SML
 see sections ���
 ��


 and ��
� in the

De�nition�

�



imperative type variables as principal� For the purposes of this paper I call themweakly

principal� Weakly principal environments characterise all other derivable environments�
but they do not generalise them�
The third correction is a consequence of the second� the phrase �and imperative

type variables� is now obsolete� One could even remove the whole sentence if �in the
second correction� E � E� were replaced by the more liberal ���ClosCE� � E �� for
some realisation � with Supp� � T of C � ��� This would more directly re�ect the
above idea of principality in terms of signature matching�

� Static Semantics for Modules

page �
� Line �
�� delete �imperative���

There is simply no such thing as an imperative attribute for type names�

About page ��� lines ������ the Commentary says

the claim that a principal signature exists must be slightly quali�ed� since
it may be ill�formed in a mild sense� This is discussed at the end of Section


���

This correction is a rather technical point� because principal signatures are only required
in an intermediate step to get equality�principal signatures and the existence of the
latter cannot be claimed in general anyway�

Page ��� rule ��� tyvars�� � � � ��� tyvars�ty� � �� This is needed to
ensure that rule �� is a structural contraction� see Section A�
�

The new condition is slightly more restrictive� because ty might contain more type
variables than � �
A type expression ty is a syntactic object composed from type variables and type

constructors� A type � is a semantic object composed from type variables and type
names� In a static context� type constructors are bound to type functions� k�ary func�
tions mapping k types to a type� All type variables occurring in the result of a type
function have to occur in one of the arguments� but the converse is not true� for ex�
ample ���int is a type function mapping any type �possibly containing type variables�
to int�
Therefore� all type variables occurring in a type � also occur in any type expression

ty that it denotes� but again the converse is not true� Unfortunately� tyvars is only
de�ned for semantic objects� not for syntactic ones such as ty� such that one also has
to extend the domain of tyvars to syntactic objects �page 
��� The change is needed to
guarantee the existence of principal signatures� Type names are not quite as expressive
as type functions �they cannot ignore arguments�� but in a principal signature a type
name is supposed to generalise a class of type functions�

Another correction�

Page ��� rule 

� namesS�n��N ofB�
N� ��� namesS�h�in��N ofB�
N�

This is obviously a typo in the De�nition�

�



� Dynamic Semantics for the Core

Two mistakes of the dynamic Core semantics are reported in the Commentary� the
variable environments that a datatype binding or an exception bindings generates �or
rather should generate�� and the treatment of the constructor ref� which does not
coincide with the static semantics�

��� Variable Environments

On page ��� section ��
� three corrections are necessary�

�rst bullet� exception bindings ��� constructor and exception bindings�

second bullet� delete �or �datatype datbind� � �see Section �����

fourth bullet� delete �DatBind� Conbind���

All three changes are about the same problem� the �rst and third change being necessary
because of the second� Datatype de�nitions give rise to variable environments �the
constructors� in the static semantics and so they should in the dynamic semantics�
On �rst look it seems unnecessary� because such environments only bind constructors
to themselves and constructors evaluate to themselves anyway� but the status of an
identi�er can change� There is a related problem in the dynamic semantics for Modules�
which was not mentioned in the Commentary� see part II�

We need three additional rules to cope with this properly� also rule 
�� has to
be changed for a similar reason� as an exception environment gives rise to a variable
environment in the static semantics� compare rule �
�

After rule 
�
 we add the following rule for datatype declarations�

� datbind � VE

E � datatype datbind� VE in Env
�
�
�
�

Rule 
�� changes to the following version�

E � exbind � EE VE � EE

E � exception exbind � �VE�EE� in Env
�
���

After rule 
�� we insert two extra rule sections and add two rules�

Data Type Bindings � datbind � VE

� conbind � VE h � datbind � VE�i

� tyvarseq tycon � conbind hand datbind i � VE h VE�i
�
���
�

�



Constructor Bindings � conbind � VE

h � conbind � VEi

� con h � conbindi � fcon �� cong h VEi
�
�����

The Commentary is not quite as explicit about the insertion �the suggested version
for rule 
�� is the same� for rule 
�
�
 almost � see page �
 of the Commentary��
in particular it avoids these two extra sections� Similar context�free rules exist in the
dynamic semantics for Modules anyway� i�e� for consistency of style the insertion should
be as explicit as described�
Remark� these corrections are not su!cient� Abstract types have the same problem

with variable environments� see section 

�� in part II�

��� The Constructor ref

The identi�er ref is not a reserved word� it can be hidden or rede�ned just as any
other identi�er� But� as the Commentary states�

Rule 
�� deals incorrectly with the case in which a program redeclares
ref as a value constructor� since it will always interpret ref as a memory
reference� Rule 

� 	p�
� is similarly at fault in this case� For this reason�
compilers may wish to issue a warning if ref is redeclared or speci�ed as a
value constructor�

This is not quite the whole story� because rules 

�� 
��� and 
�� make exactly the
same mistake� The suggestion to �issue a warning� is too tame� because it urges the
compiler to make the programs still behave as de�ned by the incorrect rule� This obvi�
ously loses type�safety� and it would be di!cult and very unsatisfactory to implement�
The correction is moreover incomplete� since the redeclaration of ref as an exception
constructor would not work well with rule 
���
Looking up the type of ref at all those places seems to be a simple correction�

because its result type distinguishes it from any other value constructor or exception
constructor� Unfortunately� the dynamic semantics has no access to the results of the
static analysis� The problem goes a bit deeper� because there are similar problems with
the constructors true� false� nil� and �� in appendix A �Derived Forms�� �gures 
�
and 
�� page ����

All these problems are caused by the fact that value constructors are syntactic
and semantic objects� that there is no distinction between the syntactic item con and
the semantic value con� Such a distinction could be introduced analogously to the
treatment of exception names�


� Extend the Simple Semantic Objects �Figure 
�� page ��� by a class of constructor
names ConName� vcon � ConName�

��Type�safety� is the soundness of the static semantics� if a program elaborates �it successfully
passes the static analysis�
 then the evaluation of the program �does not go wrong�
 i�e� the case
analysis in the dynamic semantics is exhaustive�

�A simple solution to this problem is to make these identi�ers reserved words that cannot be
�re��bound
 similarly as ��

�



�� Add for ConName semantic classes ConNameSet and ConVal to the Compound
Semantic Objects �Figure 
�� page ���� analogous to ExName�

�� Replace �Con 
 �Con �Val�� in the de�nition of Val by �ConVal��

�� Extend the class State by a third component ConName� vcon � ConName�

�� Change rule 
�� to�
E�longcon� � vcon

E � longcon � vcon
�
���

�� Replace con by vcon everywhere in rule 

��

�� Change rule 
���� as follows�

vcon �� vcons of s s� � s fvcong hs� � conbind � VE� s��i

s � con h � conbindi � fcon �� vcong h VEi� s�h�i
�
�����

�� Change in rules 
��� 
��� 
��� and 
�� the premise �side�condition� longcon �
strid������stridk�con to E�longcon� � vcon and replace con in the other premises
by vcon�


� Move derived forms which make explicit use of constructors to the bare language��
This concerns if�then�else and lists in square bracket notation� expressions
and patterns� The reason is that in a particular context there might not exist an
equivalent form in the bare language�


�� Expressions containing andalso and orelse can still be expressed as derived
forms� but in a di�erent way�

exp� orelse exp� let

val var� � exp�
and var� � fn�� �� exp� var� �� var�

in if var� then var� else var��� end

exp� andalso exp� let

val var� � exp�
and var� � fn�� �� exp� var� �� var�

in if var� then var��� else var� end



� The vcons component of the initial state becomes ftrue� false� ��� nil� refg�

These changes respect the original SML semantics� in the sense that programs produce
the same values on observable types �bool� int�� However� there is one exception�

fun f 	 � let datatype a � B in B end

�Remark� moving case�expressions to the bare language would allow to make their bound identi�ers
polymorphic�

�



In the SML semantics� �f ��f 
� is a well�typed expression and evaluates to true�
After the changes indicated above� the expression would instead evaluate to false�
because each evaluation of the datatype declaration gives a fresh set of constructor val�
ues� But there is a type�safety problem with rule � �let expressions� static semantics�
anyway� see page 
� in part II� and the correction given there would eliminate these
di�erences between SML semantics and the suggested treatment of constructors� The
example does not elaborate then� and the phenomenon that each evaluation of a data�
type declaration gives a fresh set of constructor values would be unobservable and hence
of no concern for implementations�

� A Appendix� Derived Forms

The Commentary makes two comments about derived forms� referring to page �� in
the De�nition�

Some of the derived forms of expressions 	Fig 
��� such as ��� must be parsed
as atomic expressions� they can be found under atexp in the full grammar
	App B� Fig 

� p �
�� Similarly� the derived forms of patterns 	Fig 
�� must
be parsed as atomic patterns� they all appear under atpat in 	Fig �
� p ����

I understand that this means to split �gures 
� and 
� into �gures 
�a �for exp� and

�b �for atexp�� similarly for patterns� The derived forms which happen to be atomic
go to 
�b or 
�b� the others to �gures 
�a or 
�a� respectively� We have to do a little bit
more� if the derived form is atomic but the equivalent form is not� then the equivalent
form has to be enclosed in parentheses�
These corrections are necessary but not su!cient� Several equivalent forms do not

respect parsing� because the equivalent forms have not always the same precedence as
the corresponding derived forms� For example� when a nested if�then�else �nested
in its then�part� is rewritten into its equivalent form� then the �parse tree� could be
reshaped� because the resulting nested case�expression does not parse in the intended
way� Or rather� as case�expressions are derived forms themselves� the result depends
on the order in which the rewrite rules are applied � they do not form a con�uent
string rewriting system� This can be seen in Figure 
�
Therefore� we have to add parentheses at the appropriate places to prevent the parse

tree to be reshaped � this is the price one has to pay for omitting an abstract syntax
and for the absence of parse trees as semantic objects� The most convenient way to
add those parentheses is to have a convention for inserting parentheses�

All occurrences of the syntactic variables exp and pat �with or without in�
dex� in the equivalent forms are abbreviations of the corresponding atomic
expressions or patterns �exp� and �pat� �with their old index� if any�� Simil�
arly� the equivalent forms of expressions and patterns have to be considered
as atomic� i�e� if �gure 
� or 
� de�nes an equivalent form phrase of the
syntactic classes Exp or Pat� then this is an abbreviation for �phrase��

This convention emulates parse trees on the level of strings�

The second comment in the Commentary about derived forms addresses a problem
we have already considered�

�



if A then
if B then C
else D

else E

case A of true ��
�fn true �� C �

false �� D �
false �� E��B�

case A of true ��
case B of true �� C

� false �� D
� false �� E

�fn true ��
�fn true �� C �

false �� D �
false �� E� �B���A�

if A then
case B of true �� C

else E
� false �� D

if A then
�fn true �� C � false �� D��B�

else E

� false �� E��A�
� false �� D��B�

�fn true �� �fn true �� C

case A of true ��
�fn true �� C � false �� D��B�

� false �� E

Figure 
� Derived Forms

Note that the meanings of certain derived forms 	Fig 
� and 
�� change if
certain parts of the initial basis are overwritten� For example� the meaning
of an if ���then ���else expression is a�ected by a rebinding of true or
false� similarly� giving it constructor status changes the meaning of the
derived form of expressions at top�level 	Fig 
��� For this reason� compilers
may wish to issue a warning if true� false� nil or �� is redeclared or
speci�ed as a value constructor� exception constructor or variable� or if
it is declared at top�level as a value constructor or exception constructor�

This is again about the distinction between con as a syntactic item and as a value�
In the derived form for if�then�else� one needs a syntactic gadget that accesses the
values true and false� In general� this might not exist�� In a strict sense� this means
that if�then�else in its usual meaning cannot be de�ned as a derived form�
On the other hand� in a similarly strict sense� one could take the corresponding

rewriting rule literally as the de�nition of if�then�else and leave it to the programmer to
possibly �but recommendably not� rede�ne the meaning of this construct by rede�ning

�Not quite true� ����� always denotes true
 because � cannot be rebound� But it would be bad
style to make the de�nition of derived forms dependent on such a trick�






true and false� Notice that giving the identi�er true value status would make any
if�then�else expression evaluate to its then�part�
The same problem exists for lists in square�bracket notation� i�e� the equivalent form

for lists relies on the access to list�constructors�
The problem with it might be regarded as less serious� because value variables are

not values� in contrast to value constructors� In particular� type�safety is not a�ected�
It is an inconvenience that after introducing it as a value constructor or exception
constructor evaluation of expressions on top level �not within a declaration� is not
longer possible� unless the identi�er it regains value status�

� C Appendix� The Initial Static Basis

Page ��� line ��� �true� false� nil� ��� ��� �true� false� nil� ��� ref�

	 D Appendix� The Initial Dynamic Basis

According to the Commentary� the �fth bullet on page �� of the De�nition should read�

VE�

�
� fid �� id � id � BasValg 
 f�� �� ��g 
 EE�

�


 ftrue �� true� false �� false� nil �� nil� �� �� ��� ref �� refg

A similar obvious oversight� actually� all the �
� should be � ��

After making the indicated corrections for exception environments� the EE com�
ponent of E seems to be redundant� at least in the dynamic semantics� Each time an
EE enters an environment� a copy of it goes to the variable environment� Similarly
redundant is the excons component of an interface� Exception environments are only
signi�cant for structure"signature matching in the static semantics� There is a prob�
lem with the way the De�nition treats exception environments separately from variable
environments� see section 
��� in part II�

Page ��� line 
�� after �initially empty�� add

Any existing contents of the �le s are lost� The exception packet

	�Io��Cannot open s���

is returned if write access to the �le s is not provided�

Raising an exception is the only sensible thing open	out can do in such a case� The
addition is consequent in the sense that open	in already allowed an analogous way of
failure�


�



Part II

Further Errors

Most of the other errors have been found during the development of the semantics of
Extended ML� Some of them are probably known for some time� because they �should�
become apparent when one writes a compiler for SML�


 Syntax

A couple of typos�

Page 
� Fig �� There is a #���� missing� after pat �

Page 

� line ��� In �call call� there is one �call� too many�

Most problems related to the syntax are caused by a lack of formalism in the de�n�
ition of the SML syntax� On the one hand� this leaves room for interpretation and
the reader is urged to �ll the gaps� on the other some ambiguities remain unresolved�
a�ecting the meaning of the semantic rules�

��� Reserved Words

The reserved words of SML are presented in two parts� �reserved words used in the
Core� and �reserved words used in Modules�� The De�nition does not say what this
partition into two sets is supposed to mean� Is for instance struct a reserved word in
a Core declaration� can it be used as a record label� It is certainly unusual to have
context�dependent reserved words� but it is not unknown� One could clarify this by
replacing the �rst two sentences of section ��
 �page �� by the following�

The reserved words of Standard ML can be divided into two groups� namely
�
� those that are necessary for presenting the grammar of the Core and ���
those additional reserved words that are needed for presenting the gram�
mar of Modules� Below we list reserved words of the �rst group �the rest
are listed in Section ��
�� Reserved words may not �except �� be used as
identi�ers�

This insertion makes clear that �reserved� means �reserved everywhere��

The �rst line of Section ��
� page 
�� becomes�

In addition to the reserved words listed in Section ��
� Standard ML reserves
the following words� which are used in the grammar for Modules�

The r$ole of the reserved word � as an identi�er is not entirely clear� The only
restriction about its use is on page ��

The identi�er � may not be re�bound�







This could be interpreted as that it is allowed to de�ne a type �structure� signature�
functor� label� named �� but that it is not allowed to overwrite such a binding once
it is established� This is surely not the intended meaning� Most implementations do
not allow the use of � for any of these purposes� New Jersey ML allows � to be used
for new types� structures� signatures� and functors� but not for labels� it also allows
to overwrite these bindings� However� the following does not pass the syntax check in
New Jersey ML�

signature � � sig end


functor � �� � �� � �

So it seems advisable to exclude � from such applications� The simplest clari�cation is
to replace on page � �re�bound� by �bound��

��� In�xed Operators

The meaning of �xity directives is given in section ��� of the De�nition� One of the
principles formulated there is rather counter�intuitive and can be regarded as a mistake�
it is�

association is always to the left for di�erent operators of the same preced�
ence�

As Andrew Appel pointed out in 	App
��� two right�associative operators of the same
precedence should associate to the right� i�e� the passage should read� ���� for operators
of the same precedence but opposite associativity�� It is a matter of taste whether
those operators associate to the left� to the right� or mix at all without parentheses�
The proposed change keeps the SML meaning when there is such a choice� But if ��
and �� are two right�associative operators of the same precedence� then a��b��c should
parse as a���b��c�� this is well�established folklore in operator precedence parsing�

The SML design was probably in�uenced by a sloppy passage in a standard textbook
on compiler construction 	ASU���� page �
�

Consider the expression ����
� 	���� The associativity of � and � do not
resolve this ambiguity�

This is not directly wrong �apart from the grammatical error�� because the operators
� and � have di�erent precedence anyway� but it leaves the wrong impression that the
associativity of an operator does not help to resolve ambiguity against another operator�
The authors of 	ASU��� are a bit more precise about this matter in a later section� page
����� There it is also implicitly suggested �page �
�� the point under �
��� that mixing
operators of the same precedence and di�erent associativity is an error� which was also
proposed by Appel as the best solution�

Related to in�xed identi�ers is the question when the keyword op is required in
constructor bindings and exception bindings� The De�nition says about op on page ��

The only required use of op is in pre�xing a non�in�xed occurrence of an
identi�er id which has in�x status�
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dec 
 dec

decstrdec 
 strdec

strdec

Figure �� Ambiguity of Declaration Sequences

But is the occurrence of con in a constructor binding an occurrence for which this
principle applies� The intended answer seems to be �yes�� but this is not quite obvi�
ous� because not all non�in�x occurrences of an in�xed identi�er are even allowed to
be preceded by op� for example occurrences in constructor descriptions are not� also�
constructor bindings cannot contain in�x�occurrences of an in�xed identi�er anyway�
The analogy between constructor �exception� bindings and descriptions suggests that
the syntax of these constructs is badly designed� it would probably be better to entirely
remove op from constructor and exception bindings�

��� Resolving Ambiguity

The context�free grammar of SML is highly ambiguous� The De�nition gives several
more or less informally stated principles how to resolve ambiguity in many cases� These
principles are not su!cient to overcome all syntactic ambiguities� The remaining am�
biguities could be considered harmless� as long as the semantics is not a�ected� They
are annoying anyway� because even a harmless ambiguity requires a proof of its harm�
lessness and a formalisation what this �not a�ected� actually means�
Let us �rst look at a rather harmless case� a Core declaration dec can be of the form

dec� h�i dec�� This syntax rule �overlaps� �in the sense used for rewrite systems� with
itself� i�e� a declaration dec��dec��dec� can reduce in two ways to dec� The semantic
rules are de�ned on the syntactic structure� which �for dec� implicitly requires that
the semantic functions that replace h�i in static and dynamic semantics are associat�
ive� Inspecting rules �� and 
��� we �nd the straightforward way to prove that is to
show that � � is associative on �static and dynamic� environments and that �static
semantics� C � �E�  E�� � �C � E�� � E�� Unfortunately� the latter is not true�
the static context on the right�hand side of the equation can contain more type names
than the one on the left� This means that C � �E�  E�� � dec � E does not imply
�C�E���E� � dec � E� Therefore� the associativity of h�i is at least not obvious and
it would be better to avoid the problem in the �rst place�
There are more serious ambiguities in the syntax� A sequence of two Core declar�

ations can be parsed as a structure declaration in two di�erent ways� see �gure �� A
similar ambiguity �with similar consequences� exists for local� as there are local �Core�
declarations and local structure declarations�
Again� one would expect that the di�erent parsings do not a�ect the result� Unfor�

tunately they do� Rule ��� which interprets a dec as a strdec in the static semantics�
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enforces principality of the environment obtained from dec� Thus� on the left�hand side
of the picture principality is enforced twice� on the right�hand side only once� This
would not make a di�erence if the existence claim for principal environments could be
extended to the stricter notion of principality I mentioned in section �� The syntactic
ambiguity causes problems if the principal environment of the �rst declaration is only
weakly principal�

val x � ref ��


val y � x�����

This declaration sequence elaborates as a strdec if and only if it is parsed as in the right�
hand side of the picture� The other parse tree fails to elaborate� because the principal
environment of the �rst declaration binds x to � a list ref � the type variable � a

occurs free in this type and cannot be replaced later by int�
On page ��� the De�nition states�

Note particularly that the use of precedence does not decrease the class
of admissible phrases� it merely rejects alternative ways of parsing certain
phrases�

This idea of disallowing disambiguation principles to decrease the language de�ned by
the grammar sounds nice� but it introduces further ambiguities� Example

false andalso if x then x else x orelse true

The order of precedence is� andalso� orelse� if� There are two ways to parse this
phrase �as an andalso�expression and as an orelse�expression�� but both violate the
precedence andalso � if� Thus� it is not clear which one is to be preferred� Notice
that the value of the expression di�ers for the two parsings�
All these problems suggest that one should not have an ambiguous syntax to begin

with� The best �x would probably be to distinguish between abstract and concrete
syntax� the concrete syntax being non�ambiguously expressed in some formalism� e�g�
as an LALR�
� grammar� As this may require a complete redesign of the SML syntax�
I have chosen the second best �x� which is to add some further principles that resolve
the remaining ambiguities� On page �� we can replace the last bullet by the following
point�

� Longest match� Suppose F�F� is an alternative form of a phrase class�
A natural number i is called a split index w�r�t� F�F� for a lexical
sequence L����Lk� if � � i � k and L����Li reduces to F� and Li�����Lk

reduces to F�� If for a given lexical sequence L � L����Lk there are
di�erent split indices w�r�t� F�F�� then L reduces to F�F� by reducing
L����Lj to F�� where j is the maximal split index�

The Fj are regular expressions as they occur in the SML grammar� with terminals and
non�terminals as primitives� and concatenation and optional brackets as connectives�
A lexical sequence is a sequence of terminals�
The longest match principle for parsing is a generalisation of the �extends as far

right as possible� bit� it also resolves a few further ambiguities�� The same replacement

�Remark� the longest match principle stated here is not general enough for disambiguatingarbitrary
context�free grammars
 because a word of regular expressions of length n can be split in n�
 di�erent
ways into F�F�� For the SML grammar
 this does not seem to be a problem�
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has to be done in appendix B� There it is also explained what �precedence� is supposed
to mean � we can generalise the third bullet there as follows�

� Alternative forms for each phrase class are in order of decreasing pre�
cedence� This precedence resolves ambiguity in parsing in the following
way� Suppose that a phrase class phrase has several alternative forms
F����Fn� If a lexical sequence L����Lk reduces to more than one of
the Fi� then it reduces to phrase via the Fi with lowest precedence�
Example� The parsing of the sequence

if exp� then exp� else exp� handle match

is determined by the above principle� Because if�expressions have
lower precedence than handle�expressions� the sequence parses as

if exp� then exp� else �exp� handle match�

Note particularly that the use of precedence does not decrease the class
of admissible phrases� it merely rejects alternative ways of parsing cer�
tain phrases� In particular� the purpose is not to prevent a phrase�
which is an instance of a form with higher precedence� having a con�
stituent which is an instance of a form with lower precedence� Thus
for example

if ��� then while ��� do ��� else while ��� do ���

is quite admissible� and will be parsed as

if ��� then �while ��� do ���� else �while ��� do ����

This principle is a proper generalisation� because it resolves the syntactic ambiguity
of reducing dec h�i dec to strdec� the alternative form with lowest precedence for strdec
is strdec h�i strdec� so it is parsed this way�

These two additional principles seem to resolve all ambiguities� as the �rst resolves
the overlaps of a form with itself and the second the overlaps with other forms�

Remark� the disambiguation principle suggested here does in a few cases not coin�
cide with several existing SML compilers� For example� the mentioned expression

false andalso if x then x else x orelse true

is regarded here as an orelse�expression �making it true�� while several implementa�
tions treat it as an andalso�expression �making it false�� The implementations seem
to use bottom�up parsing methods while the method described here is essentially a top�
down disambiguation� Both methods delay the use of precedence violating grammar
rules as long as possible� which means that they appear in the parse tree as high as
possible for bottom�up and as low as possible for top�down�
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��� Parsing Problems

Parsers are often generated by compiler compilers for a particular class of context�free
grammars� e�g� LALR�
�� The SML syntax is not described in such a formalism� which
unfortunately tempts implementors to slightly rede�ne it� I mention here two such
problems�

� The syntax allows layered patterns to have a type assertion� i�e� a proper pattern
would be x� int list as y��ys� For LR�parsing� this is quite problematic�
because var � ty can be reduced to pat � but it can also be the initial part of
a layered pattern � we have a shift"reduce con�ict at the ��� that cannot be
resolved by ��nite� lookahead� Solving shift"reduce con�icts in favour of shift
�usually the default in LR parsers� is here clearly undesirable� because it would
exclude type assertions for variable patterns� There is an easy way to realise
layered patterns with type assertions in an LR grammar� extend the class of
syntactically accepted phrases for layered patterns to

hopi pat� h� tyi as pat�

and exclude after parsing those layered patterns in which pat� is not a variable�
We can observe several implementations using this trick�

val x � fn �y� as z �� z

Implementations that �illegally� allow the above declaration probably use the
mentioned trick� they produce the same abstract syntax for the patterns y and
�y�� such that they fail to �nd the syntax error�

� A similar lookahead problem exists for parsing fvalbind if the expression on the
right�hand side is either a case�expression or an fn�abstraction� see the following
example�

fun f x � � case x of �� �� ��

� f x n � �foo�

The grammar �together with its disambiguation rules� permits this example� be�
cause fvalbind and match use di�erent delimiters to separate left�hand and right�
hand side� fvalbind uses � and match uses ��� Therefore� the disambiguation
principle �extends as far right as possible� does not apply here� the � belongs to
the fvalbind � But this is very di!cult to express as an LALR�
� grammar and
most �if not all� implementations reject the example�

A comparatively simple way to solve this problem seems to let the scanner �or
a preprocessor� distinguish between a � that belongs to a match and one that
belongs to an fvalbind � thus� if the scanner �nds a � in an expression it continues
to read the input until it �nds the corresponding delimiter� either � or ��� This
task excesses the expressive power of �nite automata� but it should be expressible
in lex �generated scanners�
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��� Others

In section ��
� page 
� the De�nition restricts the body of val rec declarations�

For each value binding pat � exp within rec� exp must be of the form
fn match� possibly constrained by one or more type expressions�

This is an inconsistent requirement �pointed out by Nick Rothwell in 	Rot
���� because
an expression of the form fnmatch cannot directly be type�constrained� that is� without
parentheses�

Another inconsistency in the grammar description arises as a consequence from the
following restriction on page 
��

Note� No topdec may contain� as an initial segment� a shorter top�level
declaration followed by a semicolon�

A program can contain functor declarations only as top�level declarations� Thus�
the syntax rule for a sequential functor declaration fundech� ifundec is equivalent to
fundec fundec� because the semicolon is forbidden by the mentioned restriction� This
also makes the empty functor declaration redundant �analogously for signature declar�
ations��

� Static Semantics for the Core

Each datatype de�nition �abstypes are similar� does not only introduce several con�
structors� it also attaches to the introduced type a so�called type name which is a kind
of personal identi�cation number for types� Its purpose is to compare types on the
semantic level� for example to distinguish two types which happen to have been de�ned
with the same type identi�er� The static semantics always has to keep track of these
type names to make sure that any newly introduced type gets a fresh type name� This
can be seen in the rules when the � is used�
There are two places in the static semantics where this keeping track of type names

is not done properly�

	�� Too few type names are di
erent

The �rst place is the rule for let�expressions in the static semantics�

C � dec � E C � E � exp � �

C � let dec in exp end� �
���

The type � may contain a type �name� which has been introduced in dec� i�e� a local
type� There is no principal problem with having non�accessible types� but there is a
related problem caused by the required uniqueness of type names� Rule � does not
fully keep track of the type names introduced in dec� It does so for the elaboration
of exp �this is hidden in the ��� but it does not for the elaboration of the rest of
the program� i�e� the text behind the let�expression� If such a new type escapes the
local declaration by occurring in the result � � then it could have the same �personal
identi�cation number� as some other type� introduced at a di�erent place� This loses
type�safety�
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let datatype A � C of bool �� bool

in

fn �C x� �� x true

end

let datatype B � C of int

in

C 


end

The expression above should elaborate according to the static semantics� but the dy�
namic semantics of it tries to apply the number � to true� Both let�expressions are
elaborated in the same static context� which means that the datatypes A and B could
be given the same type name� The whole expression only elaborates if this is the case�
which forces them to have the same type name� In the dynamic semantics constructors
evaluate to themselves	� which in the example means that matching succeeds� Finally�
the expression x true is evaluated in an environment in which x is bound to ��

The easiest �x of this problem would be to disallow type names to escape let�
expressions� that is to change rule � as follows�

C � dec � E C �E � exp � � tynames � � T of C

C � let dec in exp end� �
���

This version of the rule is a bit more restrictive than necessary �and desirable� see
the next section�� because the only thing that has to be taken care of is that fresh type
names are really fresh�

Instead� one could have a notion of state for the static semantics� where a state
is just a set of type names� Introduction of a new type name changes the state� A
state convention similar to the one of the dynamic semantics would then give the rules
in their full form� The idea of keeping track of type names using �solely� a state
does not work well together with the constructor value idea described earlier� because
constructor values of di�erent evaluations of a datatype declarations would then have
to be distinguished�

	�� Too many type names are di
erent

Any newly introduced datatype is attached with a �fresh� type name� Unfortunately�
�completely fresh� is not always the right kind of freshness� Types of atomic patterns
are mainly guessed� in particular the type of a variable pattern� rule ��� This rule could
guess that the type of a variable includes type names which have not been introduced
yet by type de�nitions�

However� those guesses may remain unresolved after a declaration has �nished�
Usually� one can replace all remaining unresolved guesses by bound type variables�
making the declaration polymorphic� But this is not possible for declarations that only
have weakly principal environments�

�The introduction of constructor values as described in part I
 section ���
 would change that� The
example would instead evaluate to the packet �Match��
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let

val x � ref��

datatype a � B

val y � x���B�

in B

end

This example does not elaborate� because the last value declaration only elaborates if
x has type a list ref� where a actually stands for its semantic value� i�e� its type
name� Thus� the �rst value binding has to make this correct guess� The type name
for a occurs then in the environment produced by the �rst declaration� which makes it
non�fresh as far as the datatype declaration is concerned� All three declarations form
a vicious circle�
But there is of course nothing wrong with the above declaration sequence from

an intuitive point of view� and it would complicate the standard algorithm for type
inference considerably to mirror the behaviour the De�nition requires�
To adjust the static semantics� we had to be more explicit about the way type names

are kept track of� i�e� we would not use � any longer for this purpose� For example�
each declaration could explicitly produce a set of type names� Datatype declarations
and abstract type declarations would be the only elementary declarations that produce
non�empty sets of type names� For example� the rule for declaration sequences could
then look like�

C � dec� � E�� T� C  �T�� E�� � dec� � E�� T�
C � dec� h�i dec� � E�  E�� T� 
 T�

����

In this form� the associativity of the semantic function for h�i is easy to show� it
follows directly from the associativity of  on �nite maps and of 
 on �nite sets�
That problemwith the freshness of guessed types also appears in the suggested �x for

let�expressions �last section�� because the premise tynames� � T of C would disallow
� to contain guesses of datatypes which have yet to be de�ned� Having sentences of
the form C � dec � T�E gives us direct access to type names introduced by type
declarations in dec and allows us to reformulate the let�rule to make it slightly more
permissive�

C � dec � E�T C  �T�E� � exp � � tynames � � T � �

C � let dec in exp end� �
���

Thus� type names introduced by datatype bindings in dec are not allowed in � � but
� is allowed to guess type names not occurring in the static context�
A consequence of this slightly more permissive way of dealing with guessed types is

that two claims in the De�nition are not longer true�

� On page ��� the last two paragraphs before the rules have to be reformulated�
One possible reformulation is their removal�

� At the beginning of section ��
� �page ���� the third paragraph after ���� the
following Theorem can be proved�� is not longer true and has to be removed�
Guessed type names would not enter the T component of a context� but at Module
level all guesses have to be resolved� such that the other claims of the Theorem
are not a�ected�







	�� Non�expansive Expressions

A value binding is only allowed to bind imperative type variables if its body is a non�

expansive expression� Non�expansive expressions are de�ned on page ��� section ����
In particular�

Any variable� constructor and fn expression� possibly constrained by one
or more type expressions� is non�expansive� all other expressions are said to
be expansive�

This should probably read� �Any �possibly long� variable� value constructor and�����
Without the insertion �possibly long�� quali�ed identi�ers had to be considered ex�
pansive� according to a general comment about quali�ed identi�ers on page � � this
is surely not the intended meaning� The insertion �value� has the purpose to dis�
ambiguate the term �constructor�� which does not have a meaning on its own in the
De�nition� Remark� it does not a�ect the rules whether exception constructors are con�
sidered expansive or not� provided there are no polymorphic exceptions in the static
context
�

	�� Principal Environments

On page ��� the De�nition locally restricts the meaning of ��

For the present section� E � E� may be taken to mean SE � SE� � fg�
TE � TE�� EE � EE�� DomVE � DomVE� and� for each id � DomVE�
VE�id� � VE��id��

The �SE � SE� � fg� has to be replaced by �SE � SE��� because the structure
environment a Core declaration elaborates to can be non�empty� This happens when
the Core declaration opens a structure that contains substructures�

�� Static Semantics for Modules

���� Free Imperative Type Variables

On the bottom of page �� there is a comment about rules 
�� to 
���

�
�����
��� The side�conditions ensure that no free imperative type vari�
ables enter the basis�

This is only true if �the basis� means here the basis for the elaboration of top declar�
ations� Other bases� intermediately created for the elaboration of �for example� local
structure declarations� may well contain free imperative type variables�

local

val x � ref ��

in

val y � map �fn 	 �� �� ��x�

end
�Exception constructors are never polymorphic in static contexts occurring in proofs for sentences

of the form B	 � program � B
 where B	 is the initial static basis� But the De�nition does not enforce
the use of B	 � see below the section about programs�
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The above example should� elaborate as a top declaration in the initial basis� Parsing
both value declarations as structure declarations leaves the elaboration of the �rst value
declaration with a free imperative type variable� because rule �� enforces principality�
This type variable enters the basis for the elaboration of the second declaration �rule
�
�� but does not appear in the result of the whole declaration� which is fy��int listg�
Thus� the side�condition of rule 
�� is satis�ed�

Remark� the side�condition in rule 
�
 is redundant� because signatures cannot
contain free imperative type variables anyway�

The side�conditions have an unexpected e�ect �many implementations get it wrong�
for the elaboration of sequential declarations as programs� sequential declarations sep�
arated by a semicolon have to be parsed separately as topdec �because of a restriction
for top�level declarations on page 
��� enforcing the side�condition separately for both
declarations� whilst sequential declarations separated by space have �rst to be parsed
as a single strdec �or fundec� sigdec�� enforcing the side�condition only once�

exception A of �	a

exception A

elaborates successfully and

exception A of �	a


exception A

has to be rejected�

���� Identi�er Status

The De�nition itself does not conclusively de�ne how the status of an identi�er �con�
structor� exception constructor� value� in an expression is determined in the presence
of structures and signatures� As mentioned earlier �part I�� the Commentary �lls this
gap with its appendix B and this part of the Commentary should be understood as a
part of the De�nition�
However� type�safety is a�ected by those status maps� although only in rather patho�

logical cases in a negative sense� One can argue which part of the semantics is most
closely related to this loss of type�safety � I prefer to relate it to the static semantics
for Modules� because I prefer to rule out the pathological cases rather than to repair
their behaviour� According to the rules� the following signature declaration should
elaborate�

signature SIG �

sig datatype t � A of int

type u
 sharing type t�u

type t

val f� u �� bool �� int

val B� �bool �� int� �� u

end


Poly ML rejects it�
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Although the datatype description of t has been overwritten by a later type de�
scription� the value constructor A remains part of the signature interface� Usually the
requirement of type explication �rule ��� excludes to overwrite types that occur in the
signature interface� In the example type explication is not violated� because u provides
the required type structure containing the type name occurring in the result type of A�
An important detail is that the status map obtained for the signature expression assigns
constructor status to A� although A is not contained in the constructor environment of
u� This becomes a problem in the following instantiation�

structure STRUCT� SIG �

struct

local datatype t � A of bool �� int

in type u�t

fun f�A x� � x

val B�A

end

type t�unit

fun A x � B �fn 	 �� x�

end

open STRUCT

In the instantiation� the identi�er A is realised by a non�constructor� but imposing
SIG on STRUCT turns A into a constructor� which basically means that the function
de�nition of A will be ignored� As a result� the �well�typed� expression f �A 
� true

is not evaluated to �� evaluation tries instead to apply � to true� i�e� to use it as a
function�
Another consequence� the expression �fn A x��x��B �fn 	 �� 
���
 is wrongly

treated� It successfully parses and elaborates� but then its evaluation tries to multiply
a function with ��
There are several ways to �x this problem� The most permissive is to turn con�

structor status into value status in a status map obtained from a signature expression�
if the corresponding constructor �of a speci�ed type� is not part of some constructor
environment in the principal signature % of that signature expression� In the example�
SIG would no longer assign constructor status to A� and the expression f�A 
�true

would safely evaluate to �� The other ill�treated sample expression would not even pass
the syntax�check� as it uses A as a constructor in a pattern�
The methodological disadvantage of this solution is that it makes static analysis

in�uence the syntax check� More in the spirit of the SML de�nition may be the following
principle�

A signature �N�S is constructor�explicit� if for any substructure S� of S
and any identi�er var in Dom�VE of S�� that has constructor status� where

�VE of S���var� � h� �i��k
t and t � N � there is some substructure of S
containing a type environmentTE with TE�tycon� � �t� CE� and CE�var� �
�VE of S���var� for some tycon�

In rule �� of the De�nition� we could then add another premise�

�N�S is constructor�explicit
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The e�ect of this new premise is to disallow �dangling� constructors � each constructor
in a signature has to occur in a constructor environment of that signature� such that
any structure matching the signature is forced to realise the speci�ed constructors by
�real� constructors���

���� Exception Environments

The problem of the last section was caused by the lack of connection between value
constructors in a variable environment and the constructor environment of their type�
There is a similar problem with exceptions� caused by the lack of connection between
exception constructors in a variable environment and the exception environment�
The purpose of exception environments in structure"signature matching is to require

exception constructors to be matched by other exception constructors� Without this
requirement there would be a misbehaviour of pattern matching� because rules 
���

��� 
��� and 
�� assume that looking up an exception constructor in the environment
results in an exception name�
Unfortunately� this misbehaviour can still occur in some pathological cases�

signature EXC �

sig

exception A of int

end


structure S �

struct

exception B of int

val A � fn x �� B�x���

end


structure T� EXC �

struct

exception A of int

open S

end

The second structure binding is likely to be rejected in an implementation� because
the exception constructor A appears to have been overwritten by a value variable� and
signature EXC requires an exception constructor A� But this overwriting only took place
in the variable environment� not in the exception environment� Thus� the exception

�	A less sophisticated way to solve the problem is to disallow any overwriting of speci�cations
 i�e�
to require that the environments E� and E� obtained for spec� and spec� in a sequential speci�cation
spec� h�i spec� have disjoint domains
 rule �
� However
 occasionally the overwriting of speci�cations
may be useful
 e�g�

sig

include SIG�� type u� sharing type u�t

include SIG�

end

where the signatures SIG� and SIG� both specify a type t�
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constructor A still exists in the EE component of the structure T� and the second
structure binding should elaborate� The exception constructor T�A is now bound to a
closure� not to an exception name� Therefore� the expression

�fn T�A x �� x��T�A ��

is well�formed �T�A has status e�� but it does not evaluate �not even to a packet��
because rules 
�� and 
�� fail to �nd an exception name for T�A in the environment�

The implementations treat the example as follows� Poly ML and New Jersey ML
do not elaborate the second structure declaration� complaining that the value A is not
an exception constructor � they give exception environments less signi�cance than the
De�nition does� Poplog ML elaborates successfully and it even evaluates the expression
to � � it seems to work with a modi�ed dynamic semantics for structure"signature
matching�

A possible �x �along the lines of Poly ML� would be to eliminate exception envir�
onments altogether and instead to supply each entry in a variable environment with
the information whether this is an exception constructor binding or not� In struc�
ture"signature matching we have to require that this attribute is preserved� similarly
as a realisation has to preserve the equality attribute of types�

���� Others

Page �
� line ���

sharing s�t ��� sharing type s�t

In the example� s and t are types� not structures�

�� Dynamic Semantics for the Core

���� Basic Values

The set of all basic values is de�ned in Section ��� on page �� of the De�nition� Basic
values are functions not expressed by SML declarations� for example � or IO operations�
In practice it is undesirable to have all�� basic values speci�ed by the De�nition� because
this prohibits implementations from providing further facilities of an operating system
which are not expressible in terms of the other operations in BasVal� Implementations
seem to ignore this restriction anyway�

���� Variable Environments

The correction in the Commentary about reducing the syntax does not go far enough
�see section ��
 on page � in this paper�� A similar correction is necessary for abstract
types�

��The De�nition does not use the word �all�
 but Appendix D says� �We now describe the e�ect of
APPLY upon each value b � BasVal��
 indicating that there are no other basic values�

��



Page ��� remove the third bullet�

After 
�
�
 we add another rule for abstract types�

� datbind � VE E  VE � dec � E�

E � abstype datbind with dec end� E�
�
�
���

���� Application of Basic Values

There are two little problems with rule 

�� the application of basic values� i�e� the r$ole
of built�in functions�

E � exp � b E � atexp � v APPLY�b� v� � v�

E � exp atexp� v�
�

��

The rule implicitly assumes that the result of an application of a basic value is
always a value� Appendix D makes clear that this is not always the case� the result
may well be a packet �� raised exception�� for example 	Div� for division by zero� The
exception convention does not apply here� because APPLY�b� v� � v� is not a sentence
but a side�condition� An easy correction is to replace v� by v��p�
There is another problem� the state convention does not apply too� for the same

reason� This means that APPLY can neither depend on the state nor change it� For
almost all functions� this is a safe assumption� but not for input and output � they
clearly depend on the state� example�

val p � �open	in �file����


val x � input p

and y � input p

According to the semantic rules� x and y have to be bound to the same values� because
they are evaluated in the same �SML� state and in the same environment� We can
deduce this as follows� both input p are evaluated in the same environment� see rule

��� Expanding the state convention� it is also clear that both are evaluated in the same
SML state� input evaluates in both cases to the basic value input� p is looked up twice
in the same environment� The side�condition of rule 

� requires APPLY�b� v� � v��
but for both applications of input b and v are the same� as we have already seen� and
thus the two v� have to be the same too� by symmetry and transitivity of ��
The intention is surely di�erent� as can be seen in appendix D � x and y are

supposed to be bound to the �rst and second character of �le file�
To mirror this intended behaviour� we have to extend the semantic class State by

another component� the �outside world� W and allow APPLY to depend on it and to
change it� The modi�ed rule then looks as follows�

s�� E � exp � b� s� s�� E � atexp � v� s�
APPLY�b� v�W of s�� � v��p�W � s� � s�  W �

s�� E � exp atexp� v��p� s�
�

��

��



In the appendix D� one could then be more speci�c what �outside world� actually
means and how it is a�ected by the application of basic values�

There is one discrepancy between SML De�nition and any SML implementation�
All implementations provide a function use of type string� unit which reads declar�
ations from a �le� Such a function cannot exist in SML� because function application
has no e�ect on the environment� Making such functions possible would require a
non�trivial redesign of the dynamic semantics�

���� Others

A typo in rule 
�� on page ��� the longstridn must be longstridk�

There is a small oversight in the header of Exception Bindings �for rules 
��� 
�
��
a packet can never occur here� so the header should be�

Exception Bindings E � exbind � EE

If the exception convention is expanded� this little change removes three redundant
rules�

�� Dynamic Semantics for Modules

The De�nition reduces the syntax for describing the Dynamic Semantics for Modules
by the following convention�

� Quali�cations �of ty� are omitted from exception descriptions�

� Any speci�cation of the form �type typdesc�� �eqtype typdesc��
�datatype datdesc� or �sharing shareq� is replaced by the empty
speci�cation�

� The Modules phrase classes TypDesc� DatDesc� ConDesc and SharEq
are omitted�

This is not correct� for similar reasons as datatype bindings cannot entirely be
thrown out of the Core semantics� A datatype description gives rise to a variable
environment in the static semantics and so it should evaluate here to a set of variable
names � the domain of the static variable environment� One can easily show that the
above principle loses type�safety�

val A � 



signature B � sig datatype t�A of bool end


structure S�B � struct datatype t�A of bool end


open S


val C � A true

According to the De�nition� the above declaration should elaborate �which is �ne��
However� the dynamic semantics de�nes the value of A in the last declaration still to
be �� The signature evaluates to the empty interface� because the datatype description
is replaced by the empty speci�cation� As a result� the structure evaluates to the

��



empty environment� similarly open S� Thus� the old value of A is still stored in the
environment when it comes to the evaluation of the last declaration and � is used as a
function�
The correction is rather obvious� First� the bullets in the section ��
 �Reduced

Syntax� become�

� Quali�cations �of ty� are omitted from constructor descriptions and
exception descriptions�

� Any speci�cation of the form �type typdesc�� �eqtype typdesc� or
�sharing shareq� is replaced by the empty speci�cation�

� The Modules phrase classes TypDesc and SharEq are omitted�

We have to insert a rule for datatype descriptions �after rule 
����

� datdesc � vars

IB � datatype datdesc � vars in Int
�
���
�

Also rule 
�� has to be changed� for similar reasons � obvious� if one compares it
with rule ��� The new rule is�

� exdesc � excons vars � excons

IB � exception exdesc � �fg� vars� excons�
�
���

After the section with value descriptions �rule 
���� we have to add two new sections
and rules�

Datatype Descriptions � datdesc � vars

� condesc � vars h � datdesc � vars
�i

� tyvarseq tycon � condesc hand datdesci � vars h
 vars�i
�
���
�

Constructor Descriptions � condesc � vars

h � condesc � varsi

� con h j condesci � fcong h
 varsi
�
�����

�� Programs

The De�nition de�nes an initial static and dynamic basis� but it does not use these
bases for anything� The only exception is section ���� which explains several restrictions
an implementor may impose on modules� Hence� if an implementor does not want to
impose any restrictions but implement the full language� then the initial basis seems to
be not of his or her concern�
In particular� the section about programs does not require to start the execution of

a program in the initial basis� Let us call for the rest of this section the basis in which
the execution starts B�� and the �combined static and dynamic� initial basis B��

��



It may probably be intended to allow B� �� B�� e�g� to encourage implementors to
provide richer libraries� For several reasons this freedom of havingB� and B� completely
unrelated goes a bit too far�

� The semantic object class Basis includes many bases that are inconsistent in
an intuitive sense� For example� the static and dynamic bases may be unrelated�
closures in the dynamic basis may contain ill�typed expressions� the static environ�
ment may bind exception constructors to non�imperative type schemes� some type
structures may not respect equality� some signatures may not be type�explicit�
contain free names� etc�

� It is not clear that B� is included in B�� i�e� it is not clear that the identi�ers
bound in B� are de�ned in B� as well� and even if they are� it is not clear that
they have the same meaning�

� It is similarly unclear which status an identi�er initially has � does it have
in�x status or not� is it a value variable� a value constructor� or an exception
constructor�

The �rst of these points can be considered to be in the responsibility of the imple�
mentor� If he or she chooses a basis di�erent from B� to start execution in� then it
is up to him or her to make sure that this basis works smoothly with the rest of the
De�nition� However� it would be nice if the De�nition provided explicit criteria B� has
to match that guarantee sound behaviour�
The second point is annoying� because without this inclusion we cannot rely on the

presence or even the given meaning of the prede�ned operations� and this is surely
not the intent� We should require B� � B�� where ��� is pointwise subset of the
components �for tuples�� and subset of the corresponding graphs for �nite maps�
For practical reasons� it should also be required that the status maps of B� and

B� agree on non�quali�ed identi�ers� and that an identi�er has exactly the same in�
�x"non�x status in B� and B�� The motivation for this rather strong requirement can
be seen in the portable de�nition of the identity function�

nonfix id x


signature garbage �

sig type garbage

val id� garbage

val x� garbage

end


structure garbage� garbage �

struct datatype garbage � id � x end


open garbage


fun id x � x

�Portable� means here� will successfully elaborate and evaluate with the same mean�
ing in any basis B�� The mentioned restriction for non�quali�ed identi�ers supports
portable programs without this sort of garbage� Quali�ed identi�ers are not involved
in this problem� because they are never in�x and because pattern variables are always
non�quali�ed�
To connect execution of a program with B�� we can do the following�

��




� De�ne some properties of B� and the starting state s� in relation to the initial
basis and state� e�g� along the lines sketched above�

�� Introduce a new syntactic class Root and a syntax rule�
root ��� program

�� Add a rule section after rule 

��

Root � root� B� s

together with the following new rule�

s�� B� � program � B� s

� program� B� s
�

��

The purpose of all these changes and restrictions is to achieve the following port�
ability goal� whenever a program successfully �i�e� without using rules 

� and 

��
executes in the initial basis and state� then it does so in s�� B� and the resulting bases
agree on their common domain�
Notice that this new rule 

� also requires the de�nition of an initial state� We can

de�ne a state s� as �fg�BasExName� and allow s� to be an extension of it� similarly as
for the bases� The exception names and addresses occurring in B� should all occur �be
de�ned� in s��

�� A Appendix� Derived Forms

The section does not say anything about the meaning of optional phrases in rewrite
rules� This is a problem� as they can neither be treated as optional phrases in grammar
rules nor as options in sentences� Therefore a clari�cation is desirable� for instance the
following �to be inserted before �In the derived form for tuples�� page ��� line 
��

Each row that contains k optional phrases in the left column is an abbre�
viation for �k rules� one for each combination of presence or absence of the
optional phrases� An optional phrase on the right�hand side of such a rule
is present� i� the corresponding phrase on the left�hand side is� A phrase
corresponds to itself and h� sigexpi corresponds to h� sigexp �i�

We have to slightly change the table for function�value bindings �page ��� �gure

���

Function�value Bindings fvalbind

op var � fn var ��� ��� fn varn��

case �var ������varn� of

hopivar atpat�����atpat�nh�ty�i � exp� �atpat�������atpat�n� �� exp�h�ty�i
�hopivar atpat�����atpat�nh�ty�i � exp� ��atpat�������atpat�n� �� exp�h�ty�i
� ��� ��� � ��� ���
�hopivar atpatm����atpatmnh�tyni � expm ��atpatm������atpatmn� �� expmh�tyni

hand fvalbind i hand fvalbind i
�m�n 	 
� var�� ���� varn distinct and new�

�




There are two changes� �rst� the op on the right�hand side is not longer optional
but compulsory � otherwise we could not say whether it should be present or not if
some of the op on the left are present and some are absent� the other change is that the
type expressions have been supplied with indices� This makes a corresponding change
necessary in the full grammar on page ���
Supplying these type expressions with indices is a bit more liberal as it allows them

to be syntactically di�erent� The static semantics expects them to be semantically

equal eventually� but this should not be handled on the level of syntax� For example�
the old rule prohibits the following �declaration� to pass the syntax check�

fun f � � int � �

� f x � �int� � x�f�x���

The problem is that int and �int� are syntactically di�erent� i�e� di�erent beings of the
syntactic class Ty� Requiring syntactic equality is problematic anyway� because there
are several levels of syntax� characters� and lexical items before and after expanding
derived forms�

�� B Appendix� Full Grammar

On page ��� Figure ��� there is an �R� missing after �function type expression� � it
was not forgotten in Figure ��

The syntax rule for fvalbind does not describe all phrases that are supposed to
reduce to fvalbind � because there is a note in Figure ��� page ���

Note� In the fvalbind form� if var has in�x status then either op must be
present� or var must be in�xed� Thus� at the start of any clause� � op var

�atpat�atpat
�

� ���� may be written ��atpat var atpat�� ����� the parentheses
may also be dropped if ��ty� or ��� follows immediately�

The syntax rule itself does not allow any form of in�x notation for fvalbind � in other
words� it is incomplete� Notice that the full grammar for expressions and patterns
explicitly permits in�x notation� so it should be made explicit here as well� for example
as follows �introducing fpat as a variable for a new syntactic class Fpat��

fvalbind ��� fpat� h� ty�i � exp�
� fpat� h� ty�i � exp�
� ��� ���
� fpatm h� tymi � expm

hand fvalbind i

fpat ��� hopivar atpat����atpatn
�atpat� var atpat

�

�
� atpat����atpatn

atpat� var atpat
�

�

The last alternative form for fpat corresponds to the last remark in the �Note�� about
dropping parentheses�

��



In this presentation� we have to additionally require that each fpat in an fvalbind

has the same number of arguments� that is the index n of the atpat in the syntax rule
for fpat is �xed for one fvalbind � This is also the reason for indexing �both arguments�
of an in�xed operator with 
� as they only constitute a single argument� a pair with
two components�
In the syntax rule for an in�xed fpat I have required the other components to be

atomic patterns� This is more restrictive than the corresponding rules for exp and
pat� but allowing arbitrary pat to be components of an in�xed fpat would lead to some
disambiguation problems � the precedence of an in�xed value variable in an fpat had
to be lower than any syntactic construct of pat � regardless of its �xity directive� One
might consider the introduction of additional syntactic variables apppat and infpat� in
analogy to appexp and infexp� to use infpat instead of atpat at the appropriate places
in the rule for fpat� This would still leave the in�xed value variable in fpat with a lower
precedence than any in�xed constructor� because �precedence does not decrease the
class of admissible phrases��
The implementations do not agree on this matter � Poly ML accepts in�x patterns

as components of an in�x fpat� New Jersey ML and Poplog ML do not� However� Poly
ML requires the precedence �given by a �xity directive� of the in�xed value variable to
be lower than the precedences of the in�xed constructors in the arguments�

�� C Appendix� The Initial Static Basis

The second bullet in Figure �� on page �� describes the resolution of overloading and
what the occurrences of num in Figure �� stand for�
Strictly speaking� a static environment having the properties required in the second

bullet cannot exist� i�e� it cannot be built out of the semantic objects de�ned in section
� of the De�nition� There is simply no type scheme � such that � � int � int and
� � real� real� but � �� � for any other � �
To express overloading within the semantics we could do the following changes�

� On page 
�� section ��
� line ��� add at the end�

There is a distinguished type variable num�

� On page 

� section ���� line �� add after �imperative if �i is imperative� the
following�

� if �i � num� then �i � int or �i � real

� Finally� on page ��� we remove the second bullet and add to any type scheme
containing a num the pre�x ��num���

Notice that these changes a�ect the existence of principal environments� We simply
have to drop the claim of their existence �in section ��
�� page ���� As a consequence of
that� rule �� would be the natural place where overloading has to be resolved� Declar�
ations that do not have a principal environment are declarations for which overloading
cannot be resolved� This requires no change � such a declaration simply fails to satisfy
the side�condition of rule ���

�




Examples like the following are disallowed�

local

structure s � struct fun g x � x�x end

in

val h � s�g 


end

There does not seem to exist any SML compiler that allows the above example anyway�
Another consequence of the change is that overloading in Core declarations is al�

lowed� i�e� it is not longer a question of the mercy of the compiler writer� The following
example is currently refused by Poly ML and Poplog ML� but accepted by New Jersey
ML and the ML Kit compiler�

let fun g x � x�x

in g 


end

The described change means that the example has to be allowed�
Notice that the above approach does not distinguish between di�erent dynamic

values for �� etc� This is fortunately not necessary� because the De�nition can consider
int and real as disjoint sets� allowing � to be expressed as one function�
Another e�ect of dropping the �general� existence claim of principal environments is

that disambiguation of wildcard pattern rows �syntax� ���� could be located at rule ���
Currently� section ��

 requires the type of a wildcard pattern row to be determined
by �the program context�� Taken literally� this mild requirement is quite a task for
implementors� as a �program� properly includes top declarations�
Even disambiguation at rule �� is rather subtle� because type inference �that is� the

implementation of type checking� replacing guesses by logical variables� on the Core
level has then to be able to deal with incomplete record types and type schemes� For
instance� if an incomplete record type scheme � is instantiated to an incomplete record
type � and then � is uni�ed with another �perhaps incomplete� record type� then this
uni�cation may extend the record domain of � and ��
Remark� enforcing principality �rule ��� or not �core semantics� are not the only

two possible options to handle overloading� For example� one could require �or� allow
implementations to require� the existence of a principal environment at rule 
� �value
binding�� This would mean that both kinds of overloading had to be resolved at this
place� But there is a subtlety � it might interfere with guessing imperative types
�weakly principal environments�� a correct guess could resolve overloading�

val a � ref ��

val b � fn y �� case �a of x��xs �� x�y � �� �� y

val c � a���
�

Although type inference cannot resolve the overloaded � before the declaration of c�
the type system does it earlier by having correctly guessed the type of a� In other
words� overload resolution in type inference does not quite coincide with requiring the
existence of principal environments�

��



�	 D Appendix� The Initial Dynamic Basis

A problem concerning the initial dynamic basis is the way functions on integer or real
numbers are de�ned� see 	Har
��� The De�nition says about special values in section
���� �Each integer or real constant denotes a value according to normal mathematical
conventions�� In appendix D� sqrt�r� is de�ned as� �returns the square root of r� or
the packet 	Sqrt� if r is negative��
Normal mathematical convention is that a real number is ��� a real number� as

opposed to a �oating point number that approximates it� Of course� it was not the
intention of the authors of the De�nition to force some unusual powerful representation
of some subset of real numbers that is closed under ordinary arithmetic� square root�
natural logarithm and powers of e � equality would hardly be decidable� for instance�
To make the intentions clear� the De�nition should rather refer to IEEE standards

or the ISO standard for language independent arithmetic� This does not only a�ect the
arithmetic operations� but also the meaning of special constants� Notice that it has to
be explained what happens to overly large or overly precise special constants� possible
choices are� compile�time error� run�time exception� rounding� truncation� etc�
For integers there is the similar problem that �normal mathematical conventions�

for them do not know the concept of a �range�� The De�nition uses the term �out of
range� without ever introducing it�
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