
Kahrs, Stefan (1993) Mistakes and Ambiguities in the definition of Standard
ML. Technical report. University of Edinburgh

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21122/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
An update listing further errors can be found at 	t ftp://ftp.dcs.ed.ac.uk/pub/smk/SML/errors-new.ps.Z.

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21122/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Mistakes and Ambiguities

in the De�nition of Standard ML

Stefan Kahrs
�

University of Edinburgh

Laboratory for Foundations of Computer Science

King�s Buildings� EH� �JZ

email� smk�dcs�ed�ac�uk

Version of April 	�
���

Abstract

The De�nition of Standard ML contains several errors and ambiguities� Some

of them have already been published in the Commentary on Standard ML� but

the list given there is incomplete�

The paper lists all errors known to me today� including the errors listed in the

Commentary� On most of the others I came across when writing the semantics of

Extended ML� Most errors are supplied with an explanation �what goes wrong�

and with a suggested correction� I understand �error� in a very broad sense �

ranging from typos to serious �aws in the rules� Some of the problems I mention

are originated by a certain tension between formal de�nitions and informal ex	

planations� e�g� overloading is informally explained though impossible in the given

formal setting�

Some parts of the paper are di
cult to understand without prior knowledge

of the De�nition and the Commentary� because I rely on the notation and jargon

introduced in these books� However� the nature of this paper has it that the

various sections do not depend on each other� making it possible for somebody

not familiar with the entrails of SML to read the less technical sections on their

own�

Structure of the Paper

I have divided the errors into the classes �Errors Listed in the Commentary� and
�Further Errors�� This is by no means a conceptual distinction� It simply gives a quicker
answer to the question �What�s new�� for the lucky owners of the Commentary� Here
and in the following� the �De�nition� always refers to 	MTH
��� the �Commentary� to
	MT

��
Within the two parts� the errors are listed in the same order as they appear in the

De�nition� References of the form �line �n� refer to the nth line from the bottom of
the corresponding page or section�

�The research reported here was partially supported by SERC grant GR�E ������

Part I

Errors Listed in the Commentary

All errors described in this part are mentioned in the Commentary� Not all corrections
proposed in the Commentary are entirely satisfactory� this is also discussed� Some of
the quotations from the Commentary refer to certain �Sections� � these are sections
of the Commentary itself�

� Syntax

��� Comments

The Commentary adds the following clari�cation for SML comments on page � of the
De�nition�

No space is allowed between the two characters which make up a comment
bracket �� or ��� Even an unmatched �� should be detected by the compiler�
Thus the expression �op �� is illegal� But �op � � is legal� so is op� �

The example suggests that �should be detected� cannot be interpreted as �may only
be accepted with a warning��
It is not obvious whether �op ��� is permitted or not� It should be� according to

the principle of longest match� and it should not be� according to the principle of open
comment brackets� Notice that the De�nition does not de�ne �� as a lexical item� We
could make it a lexical item by adding �� to the list of reserved words � this decides
the ambiguity in favour of �should�� because the longest match principle applies to all
lexical items� The use of the reserved word �� in programs is then not allowed� because
it is not mentioned elsewhere� i�e� no program containing it can pass the syntax check�

��� Identi�er Status

There are nine classes of identi�ers in SML� �Class� is an attribute of an identi�er
depending on the context of its occurrence� it does not refer to a partition of identi�ers
into disjoint classes� For instance� an identi�er can be a structure identi�er �strid� and
a variable identi�er �var� in the same scope� The classes Var� Con� and ExCon have
to be kept disjoint in each scope� because identi�ers in those classes denote values and
can occur anywhere a value can occur� Therefore each scope has an associated status
map that assigns to identi�ers one of the values fv� c� eg� indicating to which of the
three classes it belongs in that scope�
Pages � and
� of the De�nition give principles to determine the status of an identi�

�er� These principles are informally stated and incomplete� In particular� they do not
explain the e�ect of signatures and structures on identi�er status�
A more detailed description of how to keep track of identi�er status is in appendix

B of the Commentary� pages
���
��� One can take this appendix almost unchanged
as an additional section for the appendix of the De�nition� I do not repeat it here�
Two things about appendix B deserve a remark� The Commentary says about

incorporating the treatment of identi�er status into the De�nition�

�

����� and indeed the status map could have been combined with the static
environment� so that elaboration could be given the task of assigning status�

This is more an insinuation for implementors than a serious remark about the present�
ation of the semantics� for the dynamic semantics has no access to the results of static
analysis�
Appendix B comments brie�y about the identi�er status in derived forms�

Also� we ignore derived forms�

This is a pity� because the replacement of a derived form by its equivalent form is
inevitably preceded by parsing the program text into the parse tree of a derived form
� a process which depends on identi�er status� For the derived form of function
declarations there is indeed a choice� the left�hand side of fun f x�� could be parsed
in a similar way to patterns� requiring f not to have status c or e� but this requirement
is actually redundant� Not all SML implementations agree on this matter�
Part II discusses a couple of problems related to the treatment of identi�er status

in Modules �as it is suggested in the Commentary��

��� Syntactic Restrictions

Add the following restriction to the end of section ���� page
��

� In the tyvarseq tycon in any typdesc or datdesc� tyvarseq must not
contain the same tyvar twice� Any tyvar occurring on the right side
of the datdesc must occur in tyvarseq�

Similar restrictions already exist for the syntax of the Core� i�e� for datbind � etc�

� Static Semantics for the Core

Three corrections on page ��� sections ��

 and ��
��

Lines
�
� of 	Sec ��

�� principal type schemes ��� principal environments

Line ��� E � E� ��� ClosCE � E�

Line ��� delete �and imperative type variables��

There is no reference in the rules to anything called a principal type scheme� making
the old remark in the De�nition rather pointless�
The second correction captures a problem caused by SML�s imperative type vari�

ables� more precisely by the limitations that apply to the abstraction of imperative
type variables� An environment E is principal for dec in C if C � dec � E and for any
environment E� with C � dec � E� we have �N��m�E�� 	 S
 �m�E� where N are the
names in E� not in C and m is fresh�� The restrictions for abstracting imperative type
variables occasionally exclude the environments that are principal in this stricter sense�
and only in these cases the correction is signi�cant� declaring environments with free

�A formula 	 � S � S
� denotes signature matching in SML
 see sections ���
 ��

 and ��
� in the

De�nition�

�

imperative type variables as principal� For the purposes of this paper I call themweakly

principal� Weakly principal environments characterise all other derivable environments�
but they do not generalise them�
The third correction is a consequence of the second� the phrase �and imperative

type variables� is now obsolete� One could even remove the whole sentence if �in the
second correction� E � E� were replaced by the more liberal ���ClosCE� � E �� for
some realisation � with Supp� � T of C � ��� This would more directly re�ect the
above idea of principality in terms of signature matching�

� Static Semantics for Modules

page �
� Line �
�� delete �imperative���

There is simply no such thing as an imperative attribute for type names�

About page ��� lines ������ the Commentary says

the claim that a principal signature exists must be slightly quali�ed� since
it may be ill�formed in a mild sense� This is discussed at the end of Section

���

This correction is a rather technical point� because principal signatures are only required
in an intermediate step to get equality�principal signatures and the existence of the
latter cannot be claimed in general anyway�

Page ��� rule ��� tyvars�� � � � ��� tyvars�ty� � �� This is needed to
ensure that rule �� is a structural contraction� see Section A�
�

The new condition is slightly more restrictive� because ty might contain more type
variables than � �
A type expression ty is a syntactic object composed from type variables and type

constructors� A type � is a semantic object composed from type variables and type
names� In a static context� type constructors are bound to type functions� k�ary func�
tions mapping k types to a type� All type variables occurring in the result of a type
function have to occur in one of the arguments� but the converse is not true� for ex�
ample ���int is a type function mapping any type �possibly containing type variables�
to int�
Therefore� all type variables occurring in a type � also occur in any type expression

ty that it denotes� but again the converse is not true� Unfortunately� tyvars is only
de�ned for semantic objects� not for syntactic ones such as ty� such that one also has
to extend the domain of tyvars to syntactic objects �page
��� The change is needed to
guarantee the existence of principal signatures� Type names are not quite as expressive
as type functions �they cannot ignore arguments�� but in a principal signature a type
name is supposed to generalise a class of type functions�

Another correction�

Page ��� rule

� namesS�n��N ofB�
N� ��� namesS�h�in��N ofB�
N�

This is obviously a typo in the De�nition�

�

� Dynamic Semantics for the Core

Two mistakes of the dynamic Core semantics are reported in the Commentary� the
variable environments that a datatype binding or an exception bindings generates �or
rather should generate�� and the treatment of the constructor ref� which does not
coincide with the static semantics�

��� Variable Environments

On page ��� section ��
� three corrections are necessary�

�rst bullet� exception bindings ��� constructor and exception bindings�

second bullet� delete �or �datatype datbind� � �see Section �����

fourth bullet� delete �DatBind� Conbind���

All three changes are about the same problem� the �rst and third change being necessary
because of the second� Datatype de�nitions give rise to variable environments �the
constructors� in the static semantics and so they should in the dynamic semantics�
On �rst look it seems unnecessary� because such environments only bind constructors
to themselves and constructors evaluate to themselves anyway� but the status of an
identi�er can change� There is a related problem in the dynamic semantics for Modules�
which was not mentioned in the Commentary� see part II�

We need three additional rules to cope with this properly� also rule
�� has to
be changed for a similar reason� as an exception environment gives rise to a variable
environment in the static semantics� compare rule �
�

After rule
�
 we add the following rule for datatype declarations�

� datbind � VE

E � datatype datbind� VE in Env
�
�
�
�

Rule
�� changes to the following version�

E � exbind � EE VE � EE

E � exception exbind � �VE�EE� in Env
�
���

After rule
�� we insert two extra rule sections and add two rules�

Data Type Bindings � datbind � VE

� conbind � VE h � datbind � VE�i

� tyvarseq tycon � conbind hand datbind i � VE h VE�i
�
���
�

�

Constructor Bindings � conbind � VE

h � conbind � VEi

� con h � conbindi � fcon �� cong h VEi
�
�����

The Commentary is not quite as explicit about the insertion �the suggested version
for rule
�� is the same� for rule
�
�
 almost � see page �
 of the Commentary��
in particular it avoids these two extra sections� Similar context�free rules exist in the
dynamic semantics for Modules anyway� i�e� for consistency of style the insertion should
be as explicit as described�
Remark� these corrections are not su!cient� Abstract types have the same problem

with variable environments� see section

�� in part II�

��� The Constructor ref

The identi�er ref is not a reserved word� it can be hidden or rede�ned just as any
other identi�er� But� as the Commentary states�

Rule
�� deals incorrectly with the case in which a program redeclares
ref as a value constructor� since it will always interpret ref as a memory
reference� Rule

� 	p�
� is similarly at fault in this case� For this reason�
compilers may wish to issue a warning if ref is redeclared or speci�ed as a
value constructor�

This is not quite the whole story� because rules

��
��� and
�� make exactly the
same mistake� The suggestion to �issue a warning� is too tame� because it urges the
compiler to make the programs still behave as de�ned by the incorrect rule� This obvi�
ously loses type�safety� and it would be di!cult and very unsatisfactory to implement�
The correction is moreover incomplete� since the redeclaration of ref as an exception
constructor would not work well with rule
���
Looking up the type of ref at all those places seems to be a simple correction�

because its result type distinguishes it from any other value constructor or exception
constructor� Unfortunately� the dynamic semantics has no access to the results of the
static analysis� The problem goes a bit deeper� because there are similar problems with
the constructors true� false� nil� and �� in appendix A �Derived Forms�� �gures
�
and
�� page ����

All these problems are caused by the fact that value constructors are syntactic
and semantic objects� that there is no distinction between the syntactic item con and
the semantic value con� Such a distinction could be introduced analogously to the
treatment of exception names�

� Extend the Simple Semantic Objects �Figure
�� page ��� by a class of constructor
names ConName� vcon � ConName�

��Type�safety� is the soundness of the static semantics� if a program elaborates �it successfully
passes the static analysis�
 then the evaluation of the program �does not go wrong�
 i�e� the case
analysis in the dynamic semantics is exhaustive�

�A simple solution to this problem is to make these identi�ers reserved words that cannot be
�re��bound
 similarly as ��

�

�� Add for ConName semantic classes ConNameSet and ConVal to the Compound
Semantic Objects �Figure
�� page ���� analogous to ExName�

�� Replace �Con
 �Con �Val�� in the de�nition of Val by �ConVal��

�� Extend the class State by a third component ConName� vcon � ConName�

�� Change rule
�� to�
E�longcon� � vcon

E � longcon � vcon
�
���

�� Replace con by vcon everywhere in rule

��

�� Change rule
���� as follows�

vcon �� vcons of s s� � s fvcong hs� � conbind � VE� s��i

s � con h � conbindi � fcon �� vcong h VEi� s�h�i
�
�����

�� Change in rules
���
���
��� and
�� the premise �side�condition� longcon �
strid������stridk�con to E�longcon� � vcon and replace con in the other premises
by vcon�

� Move derived forms which make explicit use of constructors to the bare language��
This concerns if�then�else and lists in square bracket notation� expressions
and patterns� The reason is that in a particular context there might not exist an
equivalent form in the bare language�

�� Expressions containing andalso and orelse can still be expressed as derived
forms� but in a di�erent way�

exp� orelse exp� let

val var� � exp�
and var� � fn�� �� exp� var� �� var�

in if var� then var� else var��� end

exp� andalso exp� let

val var� � exp�
and var� � fn�� �� exp� var� �� var�

in if var� then var��� else var� end

� The vcons component of the initial state becomes ftrue� false� ��� nil� refg�

These changes respect the original SML semantics� in the sense that programs produce
the same values on observable types �bool� int�� However� there is one exception�

fun f 	 � let datatype a � B in B end

�Remark� moving case�expressions to the bare language would allow to make their bound identi�ers
polymorphic�

�

In the SML semantics� �f ��f
� is a well�typed expression and evaluates to true�
After the changes indicated above� the expression would instead evaluate to false�
because each evaluation of the datatype declaration gives a fresh set of constructor val�
ues� But there is a type�safety problem with rule � �let expressions� static semantics�
anyway� see page
� in part II� and the correction given there would eliminate these
di�erences between SML semantics and the suggested treatment of constructors� The
example does not elaborate then� and the phenomenon that each evaluation of a data�
type declaration gives a fresh set of constructor values would be unobservable and hence
of no concern for implementations�

� A Appendix� Derived Forms

The Commentary makes two comments about derived forms� referring to page �� in
the De�nition�

Some of the derived forms of expressions 	Fig
��� such as ��� must be parsed
as atomic expressions� they can be found under atexp in the full grammar
	App B� Fig

� p �
�� Similarly� the derived forms of patterns 	Fig
�� must
be parsed as atomic patterns� they all appear under atpat in 	Fig �
� p ����

I understand that this means to split �gures
� and
� into �gures
�a �for exp� and

�b �for atexp�� similarly for patterns� The derived forms which happen to be atomic
go to
�b or
�b� the others to �gures
�a or
�a� respectively� We have to do a little bit
more� if the derived form is atomic but the equivalent form is not� then the equivalent
form has to be enclosed in parentheses�
These corrections are necessary but not su!cient� Several equivalent forms do not

respect parsing� because the equivalent forms have not always the same precedence as
the corresponding derived forms� For example� when a nested if�then�else �nested
in its then�part� is rewritten into its equivalent form� then the �parse tree� could be
reshaped� because the resulting nested case�expression does not parse in the intended
way� Or rather� as case�expressions are derived forms themselves� the result depends
on the order in which the rewrite rules are applied � they do not form a con�uent
string rewriting system� This can be seen in Figure
�
Therefore� we have to add parentheses at the appropriate places to prevent the parse

tree to be reshaped � this is the price one has to pay for omitting an abstract syntax
and for the absence of parse trees as semantic objects� The most convenient way to
add those parentheses is to have a convention for inserting parentheses�

All occurrences of the syntactic variables exp and pat �with or without in�
dex� in the equivalent forms are abbreviations of the corresponding atomic
expressions or patterns �exp� and �pat� �with their old index� if any�� Simil�
arly� the equivalent forms of expressions and patterns have to be considered
as atomic� i�e� if �gure
� or
� de�nes an equivalent form phrase of the
syntactic classes Exp or Pat� then this is an abbreviation for �phrase��

This convention emulates parse trees on the level of strings�

The second comment in the Commentary about derived forms addresses a problem
we have already considered�

�

if A then
if B then C
else D

else E

case A of true ��
�fn true �� C �

false �� D �
false �� E��B�

case A of true ��
case B of true �� C

� false �� D
� false �� E

�fn true ��
�fn true �� C �

false �� D �
false �� E� �B���A�

if A then
case B of true �� C

else E
� false �� D

if A then
�fn true �� C � false �� D��B�

else E

� false �� E��A�
� false �� D��B�

�fn true �� �fn true �� C

case A of true ��
�fn true �� C � false �� D��B�

� false �� E

Figure
� Derived Forms

Note that the meanings of certain derived forms 	Fig
� and
�� change if
certain parts of the initial basis are overwritten� For example� the meaning
of an if ���then ���else expression is a�ected by a rebinding of true or
false� similarly� giving it constructor status changes the meaning of the
derived form of expressions at top�level 	Fig
��� For this reason� compilers
may wish to issue a warning if true� false� nil or �� is redeclared or
speci�ed as a value constructor� exception constructor or variable� or if
it is declared at top�level as a value constructor or exception constructor�

This is again about the distinction between con as a syntactic item and as a value�
In the derived form for if�then�else� one needs a syntactic gadget that accesses the
values true and false� In general� this might not exist�� In a strict sense� this means
that if�then�else in its usual meaning cannot be de�ned as a derived form�
On the other hand� in a similarly strict sense� one could take the corresponding

rewriting rule literally as the de�nition of if�then�else and leave it to the programmer to
possibly �but recommendably not� rede�ne the meaning of this construct by rede�ning

�Not quite true� ����� always denotes true
 because � cannot be rebound� But it would be bad
style to make the de�nition of derived forms dependent on such a trick�

true and false� Notice that giving the identi�er true value status would make any
if�then�else expression evaluate to its then�part�
The same problem exists for lists in square�bracket notation� i�e� the equivalent form

for lists relies on the access to list�constructors�
The problem with it might be regarded as less serious� because value variables are

not values� in contrast to value constructors� In particular� type�safety is not a�ected�
It is an inconvenience that after introducing it as a value constructor or exception
constructor evaluation of expressions on top level �not within a declaration� is not
longer possible� unless the identi�er it regains value status�

� C Appendix� The Initial Static Basis

Page ��� line ��� �true� false� nil� ��� ��� �true� false� nil� ��� ref�

	 D Appendix� The Initial Dynamic Basis

According to the Commentary� the �fth bullet on page �� of the De�nition should read�

VE�

�
� fid �� id � id � BasValg
 f�� �� ��g
 EE�

�

 ftrue �� true� false �� false� nil �� nil� �� �� ��� ref �� refg

A similar obvious oversight� actually� all the �
� should be � ��

After making the indicated corrections for exception environments� the EE com�
ponent of E seems to be redundant� at least in the dynamic semantics� Each time an
EE enters an environment� a copy of it goes to the variable environment� Similarly
redundant is the excons component of an interface� Exception environments are only
signi�cant for structure"signature matching in the static semantics� There is a prob�
lem with the way the De�nition treats exception environments separately from variable
environments� see section
��� in part II�

Page ��� line
�� after �initially empty�� add

Any existing contents of the �le s are lost� The exception packet

	�Io��Cannot open s���

is returned if write access to the �le s is not provided�

Raising an exception is the only sensible thing open	out can do in such a case� The
addition is consequent in the sense that open	in already allowed an analogous way of
failure�

�

Part II

Further Errors

Most of the other errors have been found during the development of the semantics of
Extended ML� Some of them are probably known for some time� because they �should�
become apparent when one writes a compiler for SML�

 Syntax

A couple of typos�

Page
� Fig �� There is a #���� missing� after pat �

Page

� line ��� In �call call� there is one �call� too many�

Most problems related to the syntax are caused by a lack of formalism in the de�n�
ition of the SML syntax� On the one hand� this leaves room for interpretation and
the reader is urged to �ll the gaps� on the other some ambiguities remain unresolved�
a�ecting the meaning of the semantic rules�

��� Reserved Words

The reserved words of SML are presented in two parts� �reserved words used in the
Core� and �reserved words used in Modules�� The De�nition does not say what this
partition into two sets is supposed to mean� Is for instance struct a reserved word in
a Core declaration� can it be used as a record label� It is certainly unusual to have
context�dependent reserved words� but it is not unknown� One could clarify this by
replacing the �rst two sentences of section ��
 �page �� by the following�

The reserved words of Standard ML can be divided into two groups� namely
�
� those that are necessary for presenting the grammar of the Core and ���
those additional reserved words that are needed for presenting the gram�
mar of Modules� Below we list reserved words of the �rst group �the rest
are listed in Section ��
�� Reserved words may not �except �� be used as
identi�ers�

This insertion makes clear that �reserved� means �reserved everywhere��

The �rst line of Section ��
� page
�� becomes�

In addition to the reserved words listed in Section ��
� Standard ML reserves
the following words� which are used in the grammar for Modules�

The r$ole of the reserved word � as an identi�er is not entirely clear� The only
restriction about its use is on page ��

The identi�er � may not be re�bound�

This could be interpreted as that it is allowed to de�ne a type �structure� signature�
functor� label� named �� but that it is not allowed to overwrite such a binding once
it is established� This is surely not the intended meaning� Most implementations do
not allow the use of � for any of these purposes� New Jersey ML allows � to be used
for new types� structures� signatures� and functors� but not for labels� it also allows
to overwrite these bindings� However� the following does not pass the syntax check in
New Jersey ML�

signature � � sig end

functor � �� � �� � �

So it seems advisable to exclude � from such applications� The simplest clari�cation is
to replace on page � �re�bound� by �bound��

��� In�xed Operators

The meaning of �xity directives is given in section ��� of the De�nition� One of the
principles formulated there is rather counter�intuitive and can be regarded as a mistake�
it is�

association is always to the left for di�erent operators of the same preced�
ence�

As Andrew Appel pointed out in 	App
��� two right�associative operators of the same
precedence should associate to the right� i�e� the passage should read� ���� for operators
of the same precedence but opposite associativity�� It is a matter of taste whether
those operators associate to the left� to the right� or mix at all without parentheses�
The proposed change keeps the SML meaning when there is such a choice� But if ��
and �� are two right�associative operators of the same precedence� then a��b��c should
parse as a���b��c�� this is well�established folklore in operator precedence parsing�

The SML design was probably in�uenced by a sloppy passage in a standard textbook
on compiler construction 	ASU���� page �
�

Consider the expression ����
� 	���� The associativity of � and � do not
resolve this ambiguity�

This is not directly wrong �apart from the grammatical error�� because the operators
� and � have di�erent precedence anyway� but it leaves the wrong impression that the
associativity of an operator does not help to resolve ambiguity against another operator�
The authors of 	ASU��� are a bit more precise about this matter in a later section� page
����� There it is also implicitly suggested �page �
�� the point under �
��� that mixing
operators of the same precedence and di�erent associativity is an error� which was also
proposed by Appel as the best solution�

Related to in�xed identi�ers is the question when the keyword op is required in
constructor bindings and exception bindings� The De�nition says about op on page ��

The only required use of op is in pre�xing a non�in�xed occurrence of an
identi�er id which has in�x status�

�

dec
 dec

decstrdec
 strdec

strdec

Figure �� Ambiguity of Declaration Sequences

But is the occurrence of con in a constructor binding an occurrence for which this
principle applies� The intended answer seems to be �yes�� but this is not quite obvi�
ous� because not all non�in�x occurrences of an in�xed identi�er are even allowed to
be preceded by op� for example occurrences in constructor descriptions are not� also�
constructor bindings cannot contain in�x�occurrences of an in�xed identi�er anyway�
The analogy between constructor �exception� bindings and descriptions suggests that
the syntax of these constructs is badly designed� it would probably be better to entirely
remove op from constructor and exception bindings�

��� Resolving Ambiguity

The context�free grammar of SML is highly ambiguous� The De�nition gives several
more or less informally stated principles how to resolve ambiguity in many cases� These
principles are not su!cient to overcome all syntactic ambiguities� The remaining am�
biguities could be considered harmless� as long as the semantics is not a�ected� They
are annoying anyway� because even a harmless ambiguity requires a proof of its harm�
lessness and a formalisation what this �not a�ected� actually means�
Let us �rst look at a rather harmless case� a Core declaration dec can be of the form

dec� h�i dec�� This syntax rule �overlaps� �in the sense used for rewrite systems� with
itself� i�e� a declaration dec��dec��dec� can reduce in two ways to dec� The semantic
rules are de�ned on the syntactic structure� which �for dec� implicitly requires that
the semantic functions that replace h�i in static and dynamic semantics are associat�
ive� Inspecting rules �� and
��� we �nd the straightforward way to prove that is to
show that � � is associative on �static and dynamic� environments and that �static
semantics� C � �E� E�� � �C � E�� � E�� Unfortunately� the latter is not true�
the static context on the right�hand side of the equation can contain more type names
than the one on the left� This means that C � �E� E�� � dec � E does not imply
�C�E���E� � dec � E� Therefore� the associativity of h�i is at least not obvious and
it would be better to avoid the problem in the �rst place�
There are more serious ambiguities in the syntax� A sequence of two Core declar�

ations can be parsed as a structure declaration in two di�erent ways� see �gure �� A
similar ambiguity �with similar consequences� exists for local� as there are local �Core�
declarations and local structure declarations�
Again� one would expect that the di�erent parsings do not a�ect the result� Unfor�

tunately they do� Rule ��� which interprets a dec as a strdec in the static semantics�

�

enforces principality of the environment obtained from dec� Thus� on the left�hand side
of the picture principality is enforced twice� on the right�hand side only once� This
would not make a di�erence if the existence claim for principal environments could be
extended to the stricter notion of principality I mentioned in section �� The syntactic
ambiguity causes problems if the principal environment of the �rst declaration is only
weakly principal�

val x � ref ��

val y � x�����

This declaration sequence elaborates as a strdec if and only if it is parsed as in the right�
hand side of the picture� The other parse tree fails to elaborate� because the principal
environment of the �rst declaration binds x to � a list ref � the type variable � a

occurs free in this type and cannot be replaced later by int�
On page ��� the De�nition states�

Note particularly that the use of precedence does not decrease the class
of admissible phrases� it merely rejects alternative ways of parsing certain
phrases�

This idea of disallowing disambiguation principles to decrease the language de�ned by
the grammar sounds nice� but it introduces further ambiguities� Example

false andalso if x then x else x orelse true

The order of precedence is� andalso� orelse� if� There are two ways to parse this
phrase �as an andalso�expression and as an orelse�expression�� but both violate the
precedence andalso � if� Thus� it is not clear which one is to be preferred� Notice
that the value of the expression di�ers for the two parsings�
All these problems suggest that one should not have an ambiguous syntax to begin

with� The best �x would probably be to distinguish between abstract and concrete
syntax� the concrete syntax being non�ambiguously expressed in some formalism� e�g�
as an LALR�
� grammar� As this may require a complete redesign of the SML syntax�
I have chosen the second best �x� which is to add some further principles that resolve
the remaining ambiguities� On page �� we can replace the last bullet by the following
point�

� Longest match� Suppose F�F� is an alternative form of a phrase class�
A natural number i is called a split index w�r�t� F�F� for a lexical
sequence L����Lk� if � � i � k and L����Li reduces to F� and Li�����Lk

reduces to F�� If for a given lexical sequence L � L����Lk there are
di�erent split indices w�r�t� F�F�� then L reduces to F�F� by reducing
L����Lj to F�� where j is the maximal split index�

The Fj are regular expressions as they occur in the SML grammar� with terminals and
non�terminals as primitives� and concatenation and optional brackets as connectives�
A lexical sequence is a sequence of terminals�
The longest match principle for parsing is a generalisation of the �extends as far

right as possible� bit� it also resolves a few further ambiguities�� The same replacement

�Remark� the longest match principle stated here is not general enough for disambiguatingarbitrary
context�free grammars
 because a word of regular expressions of length n can be split in n�
 di�erent
ways into F�F�� For the SML grammar
 this does not seem to be a problem�

�

has to be done in appendix B� There it is also explained what �precedence� is supposed
to mean � we can generalise the third bullet there as follows�

� Alternative forms for each phrase class are in order of decreasing pre�
cedence� This precedence resolves ambiguity in parsing in the following
way� Suppose that a phrase class phrase has several alternative forms
F����Fn� If a lexical sequence L����Lk reduces to more than one of
the Fi� then it reduces to phrase via the Fi with lowest precedence�
Example� The parsing of the sequence

if exp� then exp� else exp� handle match

is determined by the above principle� Because if�expressions have
lower precedence than handle�expressions� the sequence parses as

if exp� then exp� else �exp� handle match�

Note particularly that the use of precedence does not decrease the class
of admissible phrases� it merely rejects alternative ways of parsing cer�
tain phrases� In particular� the purpose is not to prevent a phrase�
which is an instance of a form with higher precedence� having a con�
stituent which is an instance of a form with lower precedence� Thus
for example

if ��� then while ��� do ��� else while ��� do ���

is quite admissible� and will be parsed as

if ��� then �while ��� do ���� else �while ��� do ����

This principle is a proper generalisation� because it resolves the syntactic ambiguity
of reducing dec h�i dec to strdec� the alternative form with lowest precedence for strdec
is strdec h�i strdec� so it is parsed this way�

These two additional principles seem to resolve all ambiguities� as the �rst resolves
the overlaps of a form with itself and the second the overlaps with other forms�

Remark� the disambiguation principle suggested here does in a few cases not coin�
cide with several existing SML compilers� For example� the mentioned expression

false andalso if x then x else x orelse true

is regarded here as an orelse�expression �making it true�� while several implementa�
tions treat it as an andalso�expression �making it false�� The implementations seem
to use bottom�up parsing methods while the method described here is essentially a top�
down disambiguation� Both methods delay the use of precedence violating grammar
rules as long as possible� which means that they appear in the parse tree as high as
possible for bottom�up and as low as possible for top�down�

�

��� Parsing Problems

Parsers are often generated by compiler compilers for a particular class of context�free
grammars� e�g� LALR�
�� The SML syntax is not described in such a formalism� which
unfortunately tempts implementors to slightly rede�ne it� I mention here two such
problems�

� The syntax allows layered patterns to have a type assertion� i�e� a proper pattern
would be x� int list as y��ys� For LR�parsing� this is quite problematic�
because var � ty can be reduced to pat � but it can also be the initial part of
a layered pattern � we have a shift"reduce con�ict at the ��� that cannot be
resolved by ��nite� lookahead� Solving shift"reduce con�icts in favour of shift
�usually the default in LR parsers� is here clearly undesirable� because it would
exclude type assertions for variable patterns� There is an easy way to realise
layered patterns with type assertions in an LR grammar� extend the class of
syntactically accepted phrases for layered patterns to

hopi pat� h� tyi as pat�

and exclude after parsing those layered patterns in which pat� is not a variable�
We can observe several implementations using this trick�

val x � fn �y� as z �� z

Implementations that �illegally� allow the above declaration probably use the
mentioned trick� they produce the same abstract syntax for the patterns y and
�y�� such that they fail to �nd the syntax error�

� A similar lookahead problem exists for parsing fvalbind if the expression on the
right�hand side is either a case�expression or an fn�abstraction� see the following
example�

fun f x � � case x of �� �� ��

� f x n � �foo�

The grammar �together with its disambiguation rules� permits this example� be�
cause fvalbind and match use di�erent delimiters to separate left�hand and right�
hand side� fvalbind uses � and match uses ��� Therefore� the disambiguation
principle �extends as far right as possible� does not apply here� the � belongs to
the fvalbind � But this is very di!cult to express as an LALR�
� grammar and
most �if not all� implementations reject the example�

A comparatively simple way to solve this problem seems to let the scanner �or
a preprocessor� distinguish between a � that belongs to a match and one that
belongs to an fvalbind � thus� if the scanner �nds a � in an expression it continues
to read the input until it �nds the corresponding delimiter� either � or ��� This
task excesses the expressive power of �nite automata� but it should be expressible
in lex �generated scanners�

�

��� Others

In section ��
� page
� the De�nition restricts the body of val rec declarations�

For each value binding pat � exp within rec� exp must be of the form
fn match� possibly constrained by one or more type expressions�

This is an inconsistent requirement �pointed out by Nick Rothwell in 	Rot
���� because
an expression of the form fnmatch cannot directly be type�constrained� that is� without
parentheses�

Another inconsistency in the grammar description arises as a consequence from the
following restriction on page
��

Note� No topdec may contain� as an initial segment� a shorter top�level
declaration followed by a semicolon�

A program can contain functor declarations only as top�level declarations� Thus�
the syntax rule for a sequential functor declaration fundech� ifundec is equivalent to
fundec fundec� because the semicolon is forbidden by the mentioned restriction� This
also makes the empty functor declaration redundant �analogously for signature declar�
ations��

� Static Semantics for the Core

Each datatype de�nition �abstypes are similar� does not only introduce several con�
structors� it also attaches to the introduced type a so�called type name which is a kind
of personal identi�cation number for types� Its purpose is to compare types on the
semantic level� for example to distinguish two types which happen to have been de�ned
with the same type identi�er� The static semantics always has to keep track of these
type names to make sure that any newly introduced type gets a fresh type name� This
can be seen in the rules when the � is used�
There are two places in the static semantics where this keeping track of type names

is not done properly�

	�� Too few type names are di
erent

The �rst place is the rule for let�expressions in the static semantics�

C � dec � E C � E � exp � �

C � let dec in exp end� �
���

The type � may contain a type �name� which has been introduced in dec� i�e� a local
type� There is no principal problem with having non�accessible types� but there is a
related problem caused by the required uniqueness of type names� Rule � does not
fully keep track of the type names introduced in dec� It does so for the elaboration
of exp �this is hidden in the ��� but it does not for the elaboration of the rest of
the program� i�e� the text behind the let�expression� If such a new type escapes the
local declaration by occurring in the result � � then it could have the same �personal
identi�cation number� as some other type� introduced at a di�erent place� This loses
type�safety�

�

let datatype A � C of bool �� bool

in

fn �C x� �� x true

end

let datatype B � C of int

in

C

end

The expression above should elaborate according to the static semantics� but the dy�
namic semantics of it tries to apply the number � to true� Both let�expressions are
elaborated in the same static context� which means that the datatypes A and B could
be given the same type name� The whole expression only elaborates if this is the case�
which forces them to have the same type name� In the dynamic semantics constructors
evaluate to themselves	� which in the example means that matching succeeds� Finally�
the expression x true is evaluated in an environment in which x is bound to ��

The easiest �x of this problem would be to disallow type names to escape let�
expressions� that is to change rule � as follows�

C � dec � E C �E � exp � � tynames � � T of C

C � let dec in exp end� �
���

This version of the rule is a bit more restrictive than necessary �and desirable� see
the next section�� because the only thing that has to be taken care of is that fresh type
names are really fresh�

Instead� one could have a notion of state for the static semantics� where a state
is just a set of type names� Introduction of a new type name changes the state� A
state convention similar to the one of the dynamic semantics would then give the rules
in their full form� The idea of keeping track of type names using �solely� a state
does not work well together with the constructor value idea described earlier� because
constructor values of di�erent evaluations of a datatype declarations would then have
to be distinguished�

	�� Too many type names are di
erent

Any newly introduced datatype is attached with a �fresh� type name� Unfortunately�
�completely fresh� is not always the right kind of freshness� Types of atomic patterns
are mainly guessed� in particular the type of a variable pattern� rule ��� This rule could
guess that the type of a variable includes type names which have not been introduced
yet by type de�nitions�

However� those guesses may remain unresolved after a declaration has �nished�
Usually� one can replace all remaining unresolved guesses by bound type variables�
making the declaration polymorphic� But this is not possible for declarations that only
have weakly principal environments�

�The introduction of constructor values as described in part I
 section ���
 would change that� The
example would instead evaluate to the packet �Match��

�

let

val x � ref��

datatype a � B

val y � x���B�

in B

end

This example does not elaborate� because the last value declaration only elaborates if
x has type a list ref� where a actually stands for its semantic value� i�e� its type
name� Thus� the �rst value binding has to make this correct guess� The type name
for a occurs then in the environment produced by the �rst declaration� which makes it
non�fresh as far as the datatype declaration is concerned� All three declarations form
a vicious circle�
But there is of course nothing wrong with the above declaration sequence from

an intuitive point of view� and it would complicate the standard algorithm for type
inference considerably to mirror the behaviour the De�nition requires�
To adjust the static semantics� we had to be more explicit about the way type names

are kept track of� i�e� we would not use � any longer for this purpose� For example�
each declaration could explicitly produce a set of type names� Datatype declarations
and abstract type declarations would be the only elementary declarations that produce
non�empty sets of type names� For example� the rule for declaration sequences could
then look like�

C � dec� � E�� T� C �T�� E�� � dec� � E�� T�
C � dec� h�i dec� � E� E�� T�
 T�

����

In this form� the associativity of the semantic function for h�i is easy to show� it
follows directly from the associativity of on �nite maps and of
 on �nite sets�
That problemwith the freshness of guessed types also appears in the suggested �x for

let�expressions �last section�� because the premise tynames� � T of C would disallow
� to contain guesses of datatypes which have yet to be de�ned� Having sentences of
the form C � dec � T�E gives us direct access to type names introduced by type
declarations in dec and allows us to reformulate the let�rule to make it slightly more
permissive�

C � dec � E�T C �T�E� � exp � � tynames � � T � �

C � let dec in exp end� �
���

Thus� type names introduced by datatype bindings in dec are not allowed in � � but
� is allowed to guess type names not occurring in the static context�
A consequence of this slightly more permissive way of dealing with guessed types is

that two claims in the De�nition are not longer true�

� On page ��� the last two paragraphs before the rules have to be reformulated�
One possible reformulation is their removal�

� At the beginning of section ��
� �page ���� the third paragraph after ���� the
following Theorem can be proved�� is not longer true and has to be removed�
Guessed type names would not enter the T component of a context� but at Module
level all guesses have to be resolved� such that the other claims of the Theorem
are not a�ected�

	�� Non�expansive Expressions

A value binding is only allowed to bind imperative type variables if its body is a non�

expansive expression� Non�expansive expressions are de�ned on page ��� section ����
In particular�

Any variable� constructor and fn expression� possibly constrained by one
or more type expressions� is non�expansive� all other expressions are said to
be expansive�

This should probably read� �Any �possibly long� variable� value constructor and�����
Without the insertion �possibly long�� quali�ed identi�ers had to be considered ex�
pansive� according to a general comment about quali�ed identi�ers on page � � this
is surely not the intended meaning� The insertion �value� has the purpose to dis�
ambiguate the term �constructor�� which does not have a meaning on its own in the
De�nition� Remark� it does not a�ect the rules whether exception constructors are con�
sidered expansive or not� provided there are no polymorphic exceptions in the static
context
�

	�� Principal Environments

On page ��� the De�nition locally restricts the meaning of ��

For the present section� E � E� may be taken to mean SE � SE� � fg�
TE � TE�� EE � EE�� DomVE � DomVE� and� for each id � DomVE�
VE�id� � VE��id��

The �SE � SE� � fg� has to be replaced by �SE � SE��� because the structure
environment a Core declaration elaborates to can be non�empty� This happens when
the Core declaration opens a structure that contains substructures�

�� Static Semantics for Modules

���� Free Imperative Type Variables

On the bottom of page �� there is a comment about rules
�� to
���

�
�����
��� The side�conditions ensure that no free imperative type vari�
ables enter the basis�

This is only true if �the basis� means here the basis for the elaboration of top declar�
ations� Other bases� intermediately created for the elaboration of �for example� local
structure declarations� may well contain free imperative type variables�

local

val x � ref ��

in

val y � map �fn 	 �� �� ��x�

end
�Exception constructors are never polymorphic in static contexts occurring in proofs for sentences

of the form B	 � program � B
 where B	 is the initial static basis� But the De�nition does not enforce
the use of B	 � see below the section about programs�

��

The above example should� elaborate as a top declaration in the initial basis� Parsing
both value declarations as structure declarations leaves the elaboration of the �rst value
declaration with a free imperative type variable� because rule �� enforces principality�
This type variable enters the basis for the elaboration of the second declaration �rule
�
�� but does not appear in the result of the whole declaration� which is fy��int listg�
Thus� the side�condition of rule
�� is satis�ed�

Remark� the side�condition in rule
�
 is redundant� because signatures cannot
contain free imperative type variables anyway�

The side�conditions have an unexpected e�ect �many implementations get it wrong�
for the elaboration of sequential declarations as programs� sequential declarations sep�
arated by a semicolon have to be parsed separately as topdec �because of a restriction
for top�level declarations on page
��� enforcing the side�condition separately for both
declarations� whilst sequential declarations separated by space have �rst to be parsed
as a single strdec �or fundec� sigdec�� enforcing the side�condition only once�

exception A of �	a

exception A

elaborates successfully and

exception A of �	a

exception A

has to be rejected�

���� Identi�er Status

The De�nition itself does not conclusively de�ne how the status of an identi�er �con�
structor� exception constructor� value� in an expression is determined in the presence
of structures and signatures� As mentioned earlier �part I�� the Commentary �lls this
gap with its appendix B and this part of the Commentary should be understood as a
part of the De�nition�
However� type�safety is a�ected by those status maps� although only in rather patho�

logical cases in a negative sense� One can argue which part of the semantics is most
closely related to this loss of type�safety � I prefer to relate it to the static semantics
for Modules� because I prefer to rule out the pathological cases rather than to repair
their behaviour� According to the rules� the following signature declaration should
elaborate�

signature SIG �

sig datatype t � A of int

type u
 sharing type t�u

type t

val f� u �� bool �� int

val B� �bool �� int� �� u

end

Poly ML rejects it�

�

Although the datatype description of t has been overwritten by a later type de�
scription� the value constructor A remains part of the signature interface� Usually the
requirement of type explication �rule ��� excludes to overwrite types that occur in the
signature interface� In the example type explication is not violated� because u provides
the required type structure containing the type name occurring in the result type of A�
An important detail is that the status map obtained for the signature expression assigns
constructor status to A� although A is not contained in the constructor environment of
u� This becomes a problem in the following instantiation�

structure STRUCT� SIG �

struct

local datatype t � A of bool �� int

in type u�t

fun f�A x� � x

val B�A

end

type t�unit

fun A x � B �fn 	 �� x�

end

open STRUCT

In the instantiation� the identi�er A is realised by a non�constructor� but imposing
SIG on STRUCT turns A into a constructor� which basically means that the function
de�nition of A will be ignored� As a result� the �well�typed� expression f �A
� true

is not evaluated to �� evaluation tries instead to apply � to true� i�e� to use it as a
function�
Another consequence� the expression �fn A x��x��B �fn 	 ��
���
 is wrongly

treated� It successfully parses and elaborates� but then its evaluation tries to multiply
a function with ��
There are several ways to �x this problem� The most permissive is to turn con�

structor status into value status in a status map obtained from a signature expression�
if the corresponding constructor �of a speci�ed type� is not part of some constructor
environment in the principal signature % of that signature expression� In the example�
SIG would no longer assign constructor status to A� and the expression f�A
�true

would safely evaluate to �� The other ill�treated sample expression would not even pass
the syntax�check� as it uses A as a constructor in a pattern�
The methodological disadvantage of this solution is that it makes static analysis

in�uence the syntax check� More in the spirit of the SML de�nition may be the following
principle�

A signature �N�S is constructor�explicit� if for any substructure S� of S
and any identi�er var in Dom�VE of S�� that has constructor status� where

�VE of S���var� � h� �i��k
t and t � N � there is some substructure of S
containing a type environmentTE with TE�tycon� � �t� CE� and CE�var� �
�VE of S���var� for some tycon�

In rule �� of the De�nition� we could then add another premise�

�N�S is constructor�explicit

��

The e�ect of this new premise is to disallow �dangling� constructors � each constructor
in a signature has to occur in a constructor environment of that signature� such that
any structure matching the signature is forced to realise the speci�ed constructors by
�real� constructors���

���� Exception Environments

The problem of the last section was caused by the lack of connection between value
constructors in a variable environment and the constructor environment of their type�
There is a similar problem with exceptions� caused by the lack of connection between
exception constructors in a variable environment and the exception environment�
The purpose of exception environments in structure"signature matching is to require

exception constructors to be matched by other exception constructors� Without this
requirement there would be a misbehaviour of pattern matching� because rules
���

���
��� and
�� assume that looking up an exception constructor in the environment
results in an exception name�
Unfortunately� this misbehaviour can still occur in some pathological cases�

signature EXC �

sig

exception A of int

end

structure S �

struct

exception B of int

val A � fn x �� B�x���

end

structure T� EXC �

struct

exception A of int

open S

end

The second structure binding is likely to be rejected in an implementation� because
the exception constructor A appears to have been overwritten by a value variable� and
signature EXC requires an exception constructor A� But this overwriting only took place
in the variable environment� not in the exception environment� Thus� the exception

�	A less sophisticated way to solve the problem is to disallow any overwriting of speci�cations
 i�e�
to require that the environments E� and E� obtained for spec� and spec� in a sequential speci�cation
spec� h�i spec� have disjoint domains
 rule �
� However
 occasionally the overwriting of speci�cations
may be useful
 e�g�

sig

include SIG�� type u� sharing type u�t

include SIG�

end

where the signatures SIG� and SIG� both specify a type t�

��

constructor A still exists in the EE component of the structure T� and the second
structure binding should elaborate� The exception constructor T�A is now bound to a
closure� not to an exception name� Therefore� the expression

�fn T�A x �� x��T�A ��

is well�formed �T�A has status e�� but it does not evaluate �not even to a packet��
because rules
�� and
�� fail to �nd an exception name for T�A in the environment�

The implementations treat the example as follows� Poly ML and New Jersey ML
do not elaborate the second structure declaration� complaining that the value A is not
an exception constructor � they give exception environments less signi�cance than the
De�nition does� Poplog ML elaborates successfully and it even evaluates the expression
to � � it seems to work with a modi�ed dynamic semantics for structure"signature
matching�

A possible �x �along the lines of Poly ML� would be to eliminate exception envir�
onments altogether and instead to supply each entry in a variable environment with
the information whether this is an exception constructor binding or not� In struc�
ture"signature matching we have to require that this attribute is preserved� similarly
as a realisation has to preserve the equality attribute of types�

���� Others

Page �
� line ���

sharing s�t ��� sharing type s�t

In the example� s and t are types� not structures�

�� Dynamic Semantics for the Core

���� Basic Values

The set of all basic values is de�ned in Section ��� on page �� of the De�nition� Basic
values are functions not expressed by SML declarations� for example � or IO operations�
In practice it is undesirable to have all�� basic values speci�ed by the De�nition� because
this prohibits implementations from providing further facilities of an operating system
which are not expressible in terms of the other operations in BasVal� Implementations
seem to ignore this restriction anyway�

���� Variable Environments

The correction in the Commentary about reducing the syntax does not go far enough
�see section ��
 on page � in this paper�� A similar correction is necessary for abstract
types�

��The De�nition does not use the word �all�
 but Appendix D says� �We now describe the e�ect of
APPLY upon each value b � BasVal��
 indicating that there are no other basic values�

��

Page ��� remove the third bullet�

After
�
�
 we add another rule for abstract types�

� datbind � VE E VE � dec � E�

E � abstype datbind with dec end� E�
�
�
���

���� Application of Basic Values

There are two little problems with rule

�� the application of basic values� i�e� the r$ole
of built�in functions�

E � exp � b E � atexp � v APPLY�b� v� � v�

E � exp atexp� v�
�

��

The rule implicitly assumes that the result of an application of a basic value is
always a value� Appendix D makes clear that this is not always the case� the result
may well be a packet �� raised exception�� for example 	Div� for division by zero� The
exception convention does not apply here� because APPLY�b� v� � v� is not a sentence
but a side�condition� An easy correction is to replace v� by v��p�
There is another problem� the state convention does not apply too� for the same

reason� This means that APPLY can neither depend on the state nor change it� For
almost all functions� this is a safe assumption� but not for input and output � they
clearly depend on the state� example�

val p � �open	in �file����

val x � input p

and y � input p

According to the semantic rules� x and y have to be bound to the same values� because
they are evaluated in the same �SML� state and in the same environment� We can
deduce this as follows� both input p are evaluated in the same environment� see rule

��� Expanding the state convention� it is also clear that both are evaluated in the same
SML state� input evaluates in both cases to the basic value input� p is looked up twice
in the same environment� The side�condition of rule

� requires APPLY�b� v� � v��
but for both applications of input b and v are the same� as we have already seen� and
thus the two v� have to be the same too� by symmetry and transitivity of ��
The intention is surely di�erent� as can be seen in appendix D � x and y are

supposed to be bound to the �rst and second character of �le file�
To mirror this intended behaviour� we have to extend the semantic class State by

another component� the �outside world� W and allow APPLY to depend on it and to
change it� The modi�ed rule then looks as follows�

s�� E � exp � b� s� s�� E � atexp � v� s�
APPLY�b� v�W of s�� � v��p�W � s� � s� W �

s�� E � exp atexp� v��p� s�
�

��

��

In the appendix D� one could then be more speci�c what �outside world� actually
means and how it is a�ected by the application of basic values�

There is one discrepancy between SML De�nition and any SML implementation�
All implementations provide a function use of type string� unit which reads declar�
ations from a �le� Such a function cannot exist in SML� because function application
has no e�ect on the environment� Making such functions possible would require a
non�trivial redesign of the dynamic semantics�

���� Others

A typo in rule
�� on page ��� the longstridn must be longstridk�

There is a small oversight in the header of Exception Bindings �for rules
���
�
��
a packet can never occur here� so the header should be�

Exception Bindings E � exbind � EE

If the exception convention is expanded� this little change removes three redundant
rules�

�� Dynamic Semantics for Modules

The De�nition reduces the syntax for describing the Dynamic Semantics for Modules
by the following convention�

� Quali�cations �of ty� are omitted from exception descriptions�

� Any speci�cation of the form �type typdesc�� �eqtype typdesc��
�datatype datdesc� or �sharing shareq� is replaced by the empty
speci�cation�

� The Modules phrase classes TypDesc� DatDesc� ConDesc and SharEq
are omitted�

This is not correct� for similar reasons as datatype bindings cannot entirely be
thrown out of the Core semantics� A datatype description gives rise to a variable
environment in the static semantics and so it should evaluate here to a set of variable
names � the domain of the static variable environment� One can easily show that the
above principle loses type�safety�

val A �

signature B � sig datatype t�A of bool end

structure S�B � struct datatype t�A of bool end

open S

val C � A true

According to the De�nition� the above declaration should elaborate �which is �ne��
However� the dynamic semantics de�nes the value of A in the last declaration still to
be �� The signature evaluates to the empty interface� because the datatype description
is replaced by the empty speci�cation� As a result� the structure evaluates to the

��

empty environment� similarly open S� Thus� the old value of A is still stored in the
environment when it comes to the evaluation of the last declaration and � is used as a
function�
The correction is rather obvious� First� the bullets in the section ��
 �Reduced

Syntax� become�

� Quali�cations �of ty� are omitted from constructor descriptions and
exception descriptions�

� Any speci�cation of the form �type typdesc�� �eqtype typdesc� or
�sharing shareq� is replaced by the empty speci�cation�

� The Modules phrase classes TypDesc and SharEq are omitted�

We have to insert a rule for datatype descriptions �after rule
����

� datdesc � vars

IB � datatype datdesc � vars in Int
�
���
�

Also rule
�� has to be changed� for similar reasons � obvious� if one compares it
with rule ��� The new rule is�

� exdesc � excons vars � excons

IB � exception exdesc � �fg� vars� excons�
�
���

After the section with value descriptions �rule
���� we have to add two new sections
and rules�

Datatype Descriptions � datdesc � vars

� condesc � vars h � datdesc � vars
�i

� tyvarseq tycon � condesc hand datdesci � vars h
 vars�i
�
���
�

Constructor Descriptions � condesc � vars

h � condesc � varsi

� con h j condesci � fcong h
 varsi
�
�����

�� Programs

The De�nition de�nes an initial static and dynamic basis� but it does not use these
bases for anything� The only exception is section ���� which explains several restrictions
an implementor may impose on modules� Hence� if an implementor does not want to
impose any restrictions but implement the full language� then the initial basis seems to
be not of his or her concern�
In particular� the section about programs does not require to start the execution of

a program in the initial basis� Let us call for the rest of this section the basis in which
the execution starts B�� and the �combined static and dynamic� initial basis B��

��

It may probably be intended to allow B� �� B�� e�g� to encourage implementors to
provide richer libraries� For several reasons this freedom of havingB� and B� completely
unrelated goes a bit too far�

� The semantic object class Basis includes many bases that are inconsistent in
an intuitive sense� For example� the static and dynamic bases may be unrelated�
closures in the dynamic basis may contain ill�typed expressions� the static environ�
ment may bind exception constructors to non�imperative type schemes� some type
structures may not respect equality� some signatures may not be type�explicit�
contain free names� etc�

� It is not clear that B� is included in B�� i�e� it is not clear that the identi�ers
bound in B� are de�ned in B� as well� and even if they are� it is not clear that
they have the same meaning�

� It is similarly unclear which status an identi�er initially has � does it have
in�x status or not� is it a value variable� a value constructor� or an exception
constructor�

The �rst of these points can be considered to be in the responsibility of the imple�
mentor� If he or she chooses a basis di�erent from B� to start execution in� then it
is up to him or her to make sure that this basis works smoothly with the rest of the
De�nition� However� it would be nice if the De�nition provided explicit criteria B� has
to match that guarantee sound behaviour�
The second point is annoying� because without this inclusion we cannot rely on the

presence or even the given meaning of the prede�ned operations� and this is surely
not the intent� We should require B� � B�� where ��� is pointwise subset of the
components �for tuples�� and subset of the corresponding graphs for �nite maps�
For practical reasons� it should also be required that the status maps of B� and

B� agree on non�quali�ed identi�ers� and that an identi�er has exactly the same in�
�x"non�x status in B� and B�� The motivation for this rather strong requirement can
be seen in the portable de�nition of the identity function�

nonfix id x

signature garbage �

sig type garbage

val id� garbage

val x� garbage

end

structure garbage� garbage �

struct datatype garbage � id � x end

open garbage

fun id x � x

�Portable� means here� will successfully elaborate and evaluate with the same mean�
ing in any basis B�� The mentioned restriction for non�quali�ed identi�ers supports
portable programs without this sort of garbage� Quali�ed identi�ers are not involved
in this problem� because they are never in�x and because pattern variables are always
non�quali�ed�
To connect execution of a program with B�� we can do the following�

��

� De�ne some properties of B� and the starting state s� in relation to the initial
basis and state� e�g� along the lines sketched above�

�� Introduce a new syntactic class Root and a syntax rule�
root ��� program

�� Add a rule section after rule

��

Root � root� B� s

together with the following new rule�

s�� B� � program � B� s

� program� B� s
�

��

The purpose of all these changes and restrictions is to achieve the following port�
ability goal� whenever a program successfully �i�e� without using rules

� and

��
executes in the initial basis and state� then it does so in s�� B� and the resulting bases
agree on their common domain�
Notice that this new rule

� also requires the de�nition of an initial state� We can

de�ne a state s� as �fg�BasExName� and allow s� to be an extension of it� similarly as
for the bases� The exception names and addresses occurring in B� should all occur �be
de�ned� in s��

�� A Appendix� Derived Forms

The section does not say anything about the meaning of optional phrases in rewrite
rules� This is a problem� as they can neither be treated as optional phrases in grammar
rules nor as options in sentences� Therefore a clari�cation is desirable� for instance the
following �to be inserted before �In the derived form for tuples�� page ��� line
��

Each row that contains k optional phrases in the left column is an abbre�
viation for �k rules� one for each combination of presence or absence of the
optional phrases� An optional phrase on the right�hand side of such a rule
is present� i� the corresponding phrase on the left�hand side is� A phrase
corresponds to itself and h� sigexpi corresponds to h� sigexp �i�

We have to slightly change the table for function�value bindings �page ��� �gure

���

Function�value Bindings fvalbind

op var � fn var ��� ��� fn varn��

case �var ������varn� of

hopivar atpat�����atpat�nh�ty�i � exp� �atpat�������atpat�n� �� exp�h�ty�i
�hopivar atpat�����atpat�nh�ty�i � exp� ��atpat�������atpat�n� �� exp�h�ty�i
� ��� ��� � ��� ���
�hopivar atpatm����atpatmnh�tyni � expm ��atpatm������atpatmn� �� expmh�tyni

hand fvalbind i hand fvalbind i
�m�n 	
� var�� ���� varn distinct and new�

�

There are two changes� �rst� the op on the right�hand side is not longer optional
but compulsory � otherwise we could not say whether it should be present or not if
some of the op on the left are present and some are absent� the other change is that the
type expressions have been supplied with indices� This makes a corresponding change
necessary in the full grammar on page ���
Supplying these type expressions with indices is a bit more liberal as it allows them

to be syntactically di�erent� The static semantics expects them to be semantically

equal eventually� but this should not be handled on the level of syntax� For example�
the old rule prohibits the following �declaration� to pass the syntax check�

fun f � � int � �

� f x � �int� � x�f�x���

The problem is that int and �int� are syntactically di�erent� i�e� di�erent beings of the
syntactic class Ty� Requiring syntactic equality is problematic anyway� because there
are several levels of syntax� characters� and lexical items before and after expanding
derived forms�

�� B Appendix� Full Grammar

On page ��� Figure ��� there is an �R� missing after �function type expression� � it
was not forgotten in Figure ��

The syntax rule for fvalbind does not describe all phrases that are supposed to
reduce to fvalbind � because there is a note in Figure ��� page ���

Note� In the fvalbind form� if var has in�x status then either op must be
present� or var must be in�xed� Thus� at the start of any clause� � op var

�atpat�atpat
�

� ���� may be written ��atpat var atpat�� ����� the parentheses
may also be dropped if ��ty� or ��� follows immediately�

The syntax rule itself does not allow any form of in�x notation for fvalbind � in other
words� it is incomplete� Notice that the full grammar for expressions and patterns
explicitly permits in�x notation� so it should be made explicit here as well� for example
as follows �introducing fpat as a variable for a new syntactic class Fpat��

fvalbind ��� fpat� h� ty�i � exp�
� fpat� h� ty�i � exp�
� ��� ���
� fpatm h� tymi � expm

hand fvalbind i

fpat ��� hopivar atpat����atpatn
�atpat� var atpat

�

�
� atpat����atpatn

atpat� var atpat
�

�

The last alternative form for fpat corresponds to the last remark in the �Note�� about
dropping parentheses�

��

In this presentation� we have to additionally require that each fpat in an fvalbind

has the same number of arguments� that is the index n of the atpat in the syntax rule
for fpat is �xed for one fvalbind � This is also the reason for indexing �both arguments�
of an in�xed operator with
� as they only constitute a single argument� a pair with
two components�
In the syntax rule for an in�xed fpat I have required the other components to be

atomic patterns� This is more restrictive than the corresponding rules for exp and
pat� but allowing arbitrary pat to be components of an in�xed fpat would lead to some
disambiguation problems � the precedence of an in�xed value variable in an fpat had
to be lower than any syntactic construct of pat � regardless of its �xity directive� One
might consider the introduction of additional syntactic variables apppat and infpat� in
analogy to appexp and infexp� to use infpat instead of atpat at the appropriate places
in the rule for fpat� This would still leave the in�xed value variable in fpat with a lower
precedence than any in�xed constructor� because �precedence does not decrease the
class of admissible phrases��
The implementations do not agree on this matter � Poly ML accepts in�x patterns

as components of an in�x fpat� New Jersey ML and Poplog ML do not� However� Poly
ML requires the precedence �given by a �xity directive� of the in�xed value variable to
be lower than the precedences of the in�xed constructors in the arguments�

�� C Appendix� The Initial Static Basis

The second bullet in Figure �� on page �� describes the resolution of overloading and
what the occurrences of num in Figure �� stand for�
Strictly speaking� a static environment having the properties required in the second

bullet cannot exist� i�e� it cannot be built out of the semantic objects de�ned in section
� of the De�nition� There is simply no type scheme � such that � � int � int and
� � real� real� but � �� � for any other � �
To express overloading within the semantics we could do the following changes�

� On page
�� section ��
� line ��� add at the end�

There is a distinguished type variable num�

� On page

� section ���� line �� add after �imperative if �i is imperative� the
following�

� if �i � num� then �i � int or �i � real

� Finally� on page ��� we remove the second bullet and add to any type scheme
containing a num the pre�x ��num���

Notice that these changes a�ect the existence of principal environments� We simply
have to drop the claim of their existence �in section ��
�� page ���� As a consequence of
that� rule �� would be the natural place where overloading has to be resolved� Declar�
ations that do not have a principal environment are declarations for which overloading
cannot be resolved� This requires no change � such a declaration simply fails to satisfy
the side�condition of rule ���

�

Examples like the following are disallowed�

local

structure s � struct fun g x � x�x end

in

val h � s�g

end

There does not seem to exist any SML compiler that allows the above example anyway�
Another consequence of the change is that overloading in Core declarations is al�

lowed� i�e� it is not longer a question of the mercy of the compiler writer� The following
example is currently refused by Poly ML and Poplog ML� but accepted by New Jersey
ML and the ML Kit compiler�

let fun g x � x�x

in g

end

The described change means that the example has to be allowed�
Notice that the above approach does not distinguish between di�erent dynamic

values for �� etc� This is fortunately not necessary� because the De�nition can consider
int and real as disjoint sets� allowing � to be expressed as one function�
Another e�ect of dropping the �general� existence claim of principal environments is

that disambiguation of wildcard pattern rows �syntax� ���� could be located at rule ���
Currently� section ��

 requires the type of a wildcard pattern row to be determined
by �the program context�� Taken literally� this mild requirement is quite a task for
implementors� as a �program� properly includes top declarations�
Even disambiguation at rule �� is rather subtle� because type inference �that is� the

implementation of type checking� replacing guesses by logical variables� on the Core
level has then to be able to deal with incomplete record types and type schemes� For
instance� if an incomplete record type scheme � is instantiated to an incomplete record
type � and then � is uni�ed with another �perhaps incomplete� record type� then this
uni�cation may extend the record domain of � and ��
Remark� enforcing principality �rule ��� or not �core semantics� are not the only

two possible options to handle overloading� For example� one could require �or� allow
implementations to require� the existence of a principal environment at rule
� �value
binding�� This would mean that both kinds of overloading had to be resolved at this
place� But there is a subtlety � it might interfere with guessing imperative types
�weakly principal environments�� a correct guess could resolve overloading�

val a � ref ��

val b � fn y �� case �a of x��xs �� x�y � �� �� y

val c � a���
�

Although type inference cannot resolve the overloaded � before the declaration of c�
the type system does it earlier by having correctly guessed the type of a� In other
words� overload resolution in type inference does not quite coincide with requiring the
existence of principal environments�

��

�	 D Appendix� The Initial Dynamic Basis

A problem concerning the initial dynamic basis is the way functions on integer or real
numbers are de�ned� see 	Har
��� The De�nition says about special values in section
���� �Each integer or real constant denotes a value according to normal mathematical
conventions�� In appendix D� sqrt�r� is de�ned as� �returns the square root of r� or
the packet 	Sqrt� if r is negative��
Normal mathematical convention is that a real number is ��� a real number� as

opposed to a �oating point number that approximates it� Of course� it was not the
intention of the authors of the De�nition to force some unusual powerful representation
of some subset of real numbers that is closed under ordinary arithmetic� square root�
natural logarithm and powers of e � equality would hardly be decidable� for instance�
To make the intentions clear� the De�nition should rather refer to IEEE standards

or the ISO standard for language independent arithmetic� This does not only a�ect the
arithmetic operations� but also the meaning of special constants� Notice that it has to
be explained what happens to overly large or overly precise special constants� possible
choices are� compile�time error� run�time exception� rounding� truncation� etc�
For integers there is the similar problem that �normal mathematical conventions�

for them do not know the concept of a �range�� The De�nition uses the term �out of
range� without ever introducing it�

Acknowledgement

People who have knowingly or unknowingly contributed to this paper are� Bill Aitken�
Andrew Appel� Dave Berry� Rob Harley� Robin Milner� Nick Rothwell� Don Sannella�
Jon Thackray� and Mads Tofte�

References

	App
�� Andrew W� Appel� A Critique of Standard ML� Technical Report CS�TR�
����
�� Princeton University�

��

	ASU��� Alfred Aho� Ravi Sethi� and Je�rey Ullman� Compilers � Principles� Tech�

niques� and Tools� Addison�Wesley�

���

	Har
�� Rob Harley� Formalizing SML�s arithmetic by tracking cumulated error
bounds� CS� Report� University of Edinburgh�

��

	MT

� Robin Milner and Mads Tofte� Commentary on Standard ML� MIT Press�

�

	MTH
�� Robin Milner� Mads Tofte� and Robert Harper� The De�nition of Standard

ML� MIT Press�

��

	Rot
�� Nick Rothwell� Parsing in the SML Kit� Technical Report ECS�LFCS�
������
University of Edinburgh� LFCS�

��

��

